Asymptotics for the probability of labeled objects to be irreducible

Khaydar Nurligareev (with Thierry Monteil)

LIPN, Paris 13

Seminar Teich, Marseille

26 February 2021

Table of contents

1 Introduction

- Asymptotics for square-tiled surfaces
- Asymptotics for graphs

2 Theorems

- SET and SEQ asymptotics
- SET $_{m}$ and SEQ $_{m}$ asymptotics

3 Other applications

Asymptotics for square-tiled surfaces

Square-tiled surfaces

- Take n labeled squares.
- Identify their sides by translation (right side \leftrightarrow left side, bottom side \leftrightarrow top side).
- If obtained surface is connected, then it is called a labeled square-tiled surface (SQS) or origami.

Square-tiled surfaces

SQS is determined by the pair of permutations $(h, v) \in S_{n}^{2}$ acting transitively on $\{1, \ldots, n\}$:

- h : horizontal (right) permutation,
- v : vertical (top) permutation,
- transitive action \leftrightarrow connectedness of SQS.

Probability of a surface to be connected

Question. What is the probability p_{n} of a random surface determined by $(\sigma, \tau) \in S_{n}^{2}$ to be connected as $n \rightarrow \infty$?

Probability of a surface to be connected

Question. What is the probability p_{n} of a random surface determined by $(\sigma, \tau) \in S_{n}^{2}$ to be connected as $n \rightarrow \infty$?

- Dixon, 2005: $\quad p_{n}=1-\sum_{k=1}^{r-1} \frac{\mu_{k}}{(n)_{k}}+O\left(\frac{1}{n^{r}}\right)$,
where $(n)_{k}=n(n-1) \ldots(n-k+1)$ are the falling factorials.

Asymptotics for square-tiled surfaces

Probability of a surface to be connected

Question. What is the probability p_{n} of a random surface determined by $(\sigma, \tau) \in S_{n}^{2}$ to be connected as $n \rightarrow \infty$?

- Dixon, 2005: $\quad p_{n}=1-\sum_{k=1}^{r-1} \frac{\mu_{k}}{(n)_{k}}+O\left(\frac{1}{n^{r}}\right)$,
where $(n)_{k}=n(n-1) \ldots(n-k+1)$ are the falling factorials.
- Cori, 2009: the sequence

$$
\left(\mu_{k}\right)=1,1,3,13,71,461,3447,29093, \ldots
$$

counts indecomposable permutations.

Indecomposable permutations

A permutation $\sigma \in S_{n}$ is

- decomposable, if there is an index $p<n$ such that $\sigma(\{1, \ldots, p\})=\{1, \ldots, p\}$.
- indecomposable otherwise.

$$
\begin{array}{ll}
\left(\begin{array}{lll|ll}
1 & 2 & 3 & 4 & 5 \\
3 & 1 & 2 & 5 & 4
\end{array}\right) & \left(\begin{array}{ccccc}
1 & 2 & 3 & 4 & 5 \\
5 & 3 & 2 & 1 & 4
\end{array}\right) \\
\text { decomposable }(p=3) & \text { indecomposable }
\end{array}
$$

Observation. Every permutation can be uniquely decomposed into a sequence (SEQ) of indecomposable permutations.

Asymptotics for graphs

Graphs

Let f_{n} be the number of labeled graphs with n vertices.

$$
f_{n}=2^{\binom{n}{2}}
$$

Connected graphs

Let g_{n} be the number of connected labeled graphs with n vertices.

$$
\left(g_{n}\right)=1,1,4,38,728,26704,1866256, \ldots
$$

Every graph is a disjoint union (SET) of connected graphs.

Probability of a graph to be connected

Question. What is the probability $p_{n}=\frac{g_{n}}{f_{n}}$ of a random graph with n vertices to be connected as $n \rightarrow \infty$?

Probability of a graph to be connected

Question. What is the probability $p_{n}=\frac{g_{n}}{f_{n}}$ of a random graph with n vertices to be connected as $n \rightarrow \infty$?

- folklore:

$$
p_{n}=1+o(1)
$$

Probability of a graph to be connected

Question. What is the probability $p_{n}=\frac{g_{n}}{f_{n}}$ of a random graph with n vertices to be connected as $n \rightarrow \infty$?

- folklore:

$$
p_{n}=1+o(1)
$$

- Gilbert, 1959:

$$
p_{n}=1-\frac{2 n}{2^{n}}+O\left(\frac{n^{2}}{2^{3 n / 2}}\right)
$$

Probability of a graph to be connected

Question. What is the probability $p_{n}=\frac{g_{n}}{f_{n}}$ of a random graph with n vertices to be connected as $n \rightarrow \infty$?

- folklore:

$$
p_{n}=1+o(1)
$$

- Gilbert, 1959: $\quad p_{n}=1-\frac{2 n}{2^{n}}+O\left(\frac{n^{2}}{2^{3 n / 2}}\right)$

■ Wright, 1970:

$$
p_{n}=1-\binom{n}{1} \frac{2}{2^{n}}-\binom{n}{3} \frac{2^{7}}{2^{3 n}}-3\binom{n}{4} \frac{2^{13}}{2^{4 n}}+O\left(\frac{n^{5}}{2^{5 n}}\right)
$$

Probability of a graph to be connected

Question. What is the probability $p_{n}=\frac{g_{n}}{f_{n}}$ of a random graph with n vertices to be connected as $n \rightarrow \infty$?

- folklore:

$$
p_{n}=1+o(1)
$$

- Gilbert, 1959: $\quad p_{n}=1-\frac{2 n}{2^{n}}+O\left(\frac{n^{2}}{2^{3 n / 2}}\right)$

■ Wright, 1970:

$$
p_{n}=1-\binom{n}{1} \frac{2}{2^{n}}-\binom{n}{3} \frac{2^{7}}{2^{3 n}}-3\binom{n}{4} \frac{2^{13}}{2^{4 n}}+O\left(\frac{n^{5}}{2^{5 n}}\right)
$$

- Can we have all terms at once? What is the interpretation?

Asymptotics for p_{n}

■ Monteil, N., 2019:
as $n \rightarrow \infty$, for every $r \geqslant 1$

$$
p_{n}=1-\sum_{k=1}^{r-1} h_{k} \cdot\binom{n}{k} \cdot \frac{2^{k(k+1) / 2}}{2^{n k}}+O\left(\frac{n^{r}}{2^{n r}}\right)
$$

Asymptotics for p_{n}

■ Monteil, N., 2019:
as $n \rightarrow \infty$, for every $r \geqslant 1$

$$
p_{n}=1-\sum_{k=1}^{r-1} h_{k} \cdot\binom{n}{k} \cdot \frac{2^{k(k+1) / 2}}{2^{n k}}+O\left(\frac{n^{r}}{2^{n r}}\right),
$$

where h_{k} counts irreducible labeled tournaments of size k.

$$
\left(h_{k}\right)=1,0,2,24,544,22320,1677488, \ldots
$$

Tournaments

A tournament is a complete directed graph.

The number of labeled tournaments with n vertices is equal to

$$
f_{n}=2\binom{n}{2}
$$

Irreducible tournaments

A tournament is called irreducible (or strongly connected tournament),
if for every partition of vertices $V=A \sqcup B$
1 there exist an edge from A to B and
2 there exist an edge from B to A.

$$
V=\{1,2,3,4,5,6\}
$$

$$
\begin{gathered}
A=\{1,2,3,6\} \\
B=\{4,5\}
\end{gathered}
$$

Irreducible tournaments

A tournament is called irreducible

$$
V=\{1,2,3,4,5,6\}
$$ (or strongly connected tournament),

if for every partition of vertices $V=A \sqcup B$
1 there exist an edge from A to B and
2 there exist an edge from B to A.

Equivalently, for each two vertices u and v
1 there is a path from u to v and
2 there is a path from v to u.

$$
\begin{aligned}
u & =4 \\
v & =6
\end{aligned}
$$

Tournament as a sequence

Lemma. Every labeled tournament can be uniquely decomposed into a sequence (SEQ) of irreducible labeled tournaments.

Tournament as a sequence

Lemma. Every labeled tournament can be uniquely decomposed into a sequence (SEQ) of irreducible labeled tournaments.

Asymptotics for graphs

Tournament as a sequence

Lemma. Every labeled tournament can be uniquely decomposed into a sequence (SEQ) of irreducible labeled tournaments.

SET vs SEQ

graphs

connected graphs

counted by

$$
G(x)=\sum_{n=0}^{\infty} g_{n} \frac{x^{n}}{n!}=\log (F(x))
$$

$$
F(x)=\sum_{n=0}^{\infty} f_{n} \frac{x^{n}}{n!}=\sum_{n=0}^{\infty} 2\binom{n}{2} \frac{x^{n}}{n!}
$$

$$
\begin{array}{ll}
\text { counts } \mid & H(x)=\sum_{n=0}^{\infty} h_{n} \\
\text { tournaments } \xrightarrow[\text { as SEQ of }]{\text { decomposed as }} \begin{array}{c}
\text { irreducible } \\
\text { tournaments }
\end{array}
\end{array}
$$

$$
H(x)=\sum_{n=0}^{\infty} h_{n} \frac{x^{n}}{n!}=1-\frac{1}{F(x)}
$$

SET and SEQ asymptotics

Notations

$$
\begin{aligned}
& \square \mathcal{F}=\operatorname{SET}(\mathcal{G}), \quad F(x)=\exp (G(x)) ; \\
& \mathcal{F}=\operatorname{SEQ}(\mathcal{H}), \quad F(x)=\frac{1}{1-H(x)} ; \\
& \mathcal{G}^{(m)}=\operatorname{SET}_{m}(\mathcal{G}), \quad G^{(m)}(x)=\frac{(G(x))^{m}}{m!} ; \\
& \mathcal{H}^{(m)}=\operatorname{SEQ}_{m}(\mathcal{H}), \quad H^{(m)}(x)=(H(x))^{m}
\end{aligned}
$$

SET asymptotics

Theorem (Monteil, N., 2019+)

If $f_{n} \neq 0$ for all $n \in \mathbb{N}$ and there exists $r \geqslant 1$ such that (i) $n \cdot \frac{f_{n-1}}{f_{n}} \rightarrow 0 \quad$ and \quad (ii) $\sum_{k=r}^{n-r}\binom{n}{k} f_{k} f_{n-k}=O\left(n^{r} f_{n-r}\right)$,

Then, as $n \rightarrow \infty$,
(a) $\quad p_{n}=\frac{g_{n}}{f_{n}}=1-\sum_{k=1}^{r-1} h_{k} \cdot\binom{n}{k} \cdot \frac{f_{n-k}}{f_{n}}+O\left(n^{r} \cdot \frac{f_{n-r}}{f_{n}}\right)$.

Combinatorial meaning: p_{n} is the probability of a random object of size n to be irreducible in terms of SET-decomposition.

Main tool: Bender's theorem

Theorem (Bender, 1975)

- $A(x)=\sum_{n=1}^{\infty} a_{n} x^{n}$ is a formal power series, $\forall n \in \mathbb{N}: a_{n} \neq 0$;
- $C(x, y)$ is a function analytic in a neighborhood of $(0 ; 0)$;
- $B(x)=\sum_{n=1}^{\infty} b_{n} x^{n}=C(x, A(x))$;
- $D(x)=\sum_{n=1}^{\infty} d_{n} x^{n}=C_{y}^{\prime}(x, A(x))$.

If (i) $\frac{a_{n-1}}{a_{n}} \rightarrow 0$ and (ii) $\exists r \geqslant 1: \sum_{k=r}^{n-r}\left|a_{k} a_{n-k}\right|=O\left(a_{n-r}\right)$,
then, as $n \rightarrow \infty$,

$$
b_{n}=\sum_{k=0}^{r-1} d_{k} a_{n-k}+O\left(a_{n-r}\right)
$$

SET and SEQ asymptotics

Example 1: connected graphs

■ f_{n} counts labeled graphs / tournaments,

- g_{n} counts connected labeled graphs,
- h_{n} counts irreducible labeled tournaments.
$\mathbb{P}\{$ graph is connected $\}=$

$$
=\frac{g_{n}}{f_{n}}=1-\sum_{k=1}^{r-1} h_{k} \cdot\binom{n}{k} \cdot \frac{2^{k(k+1) / 2}}{2^{n k}}+O\left(\frac{n^{r}}{2^{n r}}\right),
$$

where

$$
\left(h_{k}\right)=1,0,2,24,544,22320,1677488, \ldots
$$

SET and SEQ asymptotics

Example 2: square-tiled surfaces

- f_{n} counts surfaces generated by pairs $(\sigma, \tau) \in S_{n}^{2}$,
- g_{n} counts connected surfaces (SQS),

■ $h_{n}=n!\cdot \mu_{n}$, where μ_{n} counts indecomposable permutations.
$\mathbb{P}\{$ surface is connected $\}=$

$$
=\frac{g_{n}}{f_{n}}=1-\sum_{k=1}^{r-1} \frac{\mu_{k}}{(n)_{k}}+O\left(\frac{1}{n^{r}}\right)
$$

where $\quad(n)_{k}=n(n-1) \ldots(n-k+1)$ are the falling factorials and

$$
\left(\mu_{k}\right)=1,1,3,13,71,461,3447,29093, \ldots
$$

SET and SEQ asymptotics

SEQ asymptotics

Theorem (Monteil, N., 2019+)

If $f_{n} \neq 0$ for all $n \in \mathbb{N}$ and there exists $r \geqslant 1$ such that

$$
\text { (i) } n \cdot \frac{f_{n-1}}{f_{n}} \rightarrow 0 \quad \text { and } \quad \text { (ii) } \sum_{k=r}^{n-r}\binom{n}{k} f_{k} f_{n-k}=O\left(n^{r} f_{n-r}\right) \text {, }
$$

Then, as $n \rightarrow \infty$,
(b) $\frac{h_{n}}{f_{n}}=1-\sum_{k=1}^{r-1}\left(2 h_{k}-h_{k}^{(2)}\right) \cdot\binom{n}{k} \cdot \frac{f_{n-k}}{f_{n}}+O\left(n^{r} \cdot \frac{f_{n-r}}{f_{n}}\right)$.

Combinatorial meaning: it is the probability of a random object of size n to be irreducible in the sense of SEQ-decomposition.

SET and SEQ asymptotics

Example 1: irreducible tournaments

- f_{n} counts labeled tournaments,
- h_{n} counts irreducible labeled tournaments.
- $h_{n}^{(m)}$ counts labeled tournaments that have exactly m irreducible components.
$\mathbb{P}\{$ tournament is irreducible $\}=$

$$
\begin{aligned}
& =\frac{h_{n}}{f_{n}}=1-\sum_{k=1}^{r-1}\left(2 h_{k}-h_{k}^{(2)}\right) \cdot\binom{n}{k} \cdot \frac{2^{k(k+1) / 2}}{2^{n k}}+O\left(\frac{n^{r}}{2^{n r}}\right), \\
& \text { where } \quad \begin{array}{rlllllll}
\left(h_{k}\right) & =1, & 0, & 2, & 24, & 544, & 22320, & \ldots \\
\left(h_{k}^{(2)}\right) & = & 0, & 2, & 0, & 16, & 240, & 6608, \\
\left(c_{k}^{(1)}\right) & = & 2, & -2, & 4, & 32, & 848, & 38032,
\end{array} \cdots
\end{aligned}
$$

SET and SEQ asymptotics

Example 2: indecomposable permutations

■ $f_{n}=(n!)^{2}$ counts pairs of permutations,

- $h_{n}=n!\cdot \mu_{n}$, where μ_{n} counts indecomposable permutations.

■ $h_{n}^{(m)}=n!\cdot \mu_{n}^{(m)}$, where $\mu_{n}^{(m)}$ counts permutations that have exactly m indecomposable parts.
$\mathbb{P}\{$ permutation is indecomposable $\}=$

$$
\begin{aligned}
=\frac{h_{n}}{f_{n}}=\frac{\mu_{n}}{n!}=1-\sum_{k=1}^{r-1} \frac{2 \mu_{k}-\mu_{k}^{(2)}}{(n)_{k}}+O\left(\frac{1}{n^{r}}\right), \\
\text { where } \quad\left(\begin{array}{llllllll}
\left(\mu_{k}\right) & = & 1, & 1, & 3, & 13, & 71, & 461, \\
\left(\mu_{k}^{(2)}\right) & 3447, & \ldots & 0, & 1, & 2, & 7, & 32, \\
177, & 1142, & \ldots \\
\left(c_{k}^{(1)}\right) & = & 2, & 1, & 4, & 19, & 110, & 745, \\
5752, & \ldots
\end{array}\right.
\end{aligned}
$$

SEQ_{m} asymptotics

Theorem (Monteil, N., 2020+)

If $f_{n} \neq 0$ for all $n \in \mathbb{N}$ and there exists $r \geqslant 1$ such that
(i) $n \cdot \frac{f_{n-1}}{f_{n}} \rightarrow 0 \quad$ and
(ii) $\sum_{k=r}^{n-r}\binom{n}{k} f_{k} f_{n-k}=O\left(n^{r} f_{n-r}\right)$,

Then for all $m \geqslant 1$, as $n \rightarrow \infty$,
(c) $p_{n}^{(m+1)}=\frac{h_{n}^{(m+1)}}{f_{n}}=\sum_{k=1}^{r-1} c_{k}^{(m+1)} \cdot\binom{n}{k} \cdot \frac{f_{n-k}}{f_{n}}+O\left(n^{r} \cdot \frac{f_{n-r}}{f_{n}}\right)$,
where $\quad c_{k}^{(m+1)}=(m+1)\left(h_{k}^{(m)}-2 h_{k}^{(m+1)}+h_{k}^{(m+2)}\right)$.
Combinatorial meaning: $p_{n}^{(m+1)}$ is the probability of a random object of size n to have exactly $(m+1)$ irreducible components.

Example 1: tournaments with m irreducible components

- f_{n} counts labeled tournaments,
- $h_{n}^{(m)}$ counts labeled tournaments that have exactly m irreducible components.
$\mathbb{P}\{$ tournament has exactly 2 irreducible components $\}=$
$=\frac{h_{n}^{(2)}}{f_{n}}=\sum_{k=1}^{r-1} 2\left(h_{k}^{(1)}-2 h_{k}^{(2)}+h_{k}^{(3)}\right) \cdot\binom{n}{k} \cdot \frac{2^{k(k+1) / 2}}{2^{n k}}+O\left(\frac{n^{r}}{2^{n r}}\right)$,
where $\left.\quad \begin{array}{rlrrrrrl}\left(h_{k}^{(1)}\right) & =1, & 0, & 2, & 24, & 544, & 22320, & \ldots \\ \left(h_{k}^{(2)}\right) & = & 0, & 2, & 0, & 16 & 240, & 6608,\end{array}\right]$

Example 1: tournaments with m irreducible components

- f_{n} counts labeled tournaments,
- $h_{n}^{(m)}$ counts labeled tournaments that have exactly m irreducible components.
$\mathbb{P}\{$ tournament has exactly 3 irreducible components $\}=$
$=\frac{h_{n}^{(3)}}{f_{n}}=\sum_{k=1}^{r-1} 3\left(h_{k}^{(2)}-2 h_{k}^{(3)}+h_{k}^{(4)}\right) \cdot\binom{n}{k} \cdot \frac{2^{k(k+1) / 2}}{2^{n k}}+O\left(\frac{n^{r}}{2^{n r}}\right)$,
where

$$
\begin{array}{rlrrrrrl}
\left(h_{k}^{(2)}\right) & = & 0, & 2, & 0, & 16, & 240, & 6608, \\
\ldots \\
\left(h_{k}^{(3)}\right) & = & 0, & 0, & 6, & 0, & 120, & 2160, \\
\ldots \\
\left(h_{k}^{(4)}\right) & = & 0, & 0, & 0, & 24, & 0, & 960 \\
\left(c_{k}^{(3)}\right) & = & 0, & 6, & -36, & 120, & 0, & 9744 \\
\left(c_{k}\right)
\end{array}
$$

Example 1: tournaments with m irreducible components

- f_{n} counts labeled tournaments,
- $h_{n}^{(m)}$ counts labeled tournaments that have exactly m irreducible components.
$\mathbb{P}\{$ tournament has exactly 4 irreducible components $\}=$
$=\frac{h_{n}^{(4)}}{f_{n}}=\sum_{k=1}^{r-1} 4\left(h_{k}^{(3)}-2 h_{k}^{(4)}+h_{k}^{(5)}\right) \cdot\binom{n}{k} \cdot \frac{2^{k(k+1) / 2}}{2^{n k}}+O\left(\frac{n^{r}}{2^{n r}}\right)$,
where

$$
\begin{array}{rlllrrrl}
\left(h_{k}^{(3)}\right) & = & 0, & 0, & 6, & 0, & 120, & 2160, \\
\ldots \\
\left(h_{k}^{(4)}\right) & = & 0, & 0, & 0, & 24, & 0, & 960, \\
\ldots \\
\left(h_{k}^{(5)}\right) & = & 0, & 0, & 0, & 0, & 120, & 0, \\
\ldots \\
\left(c_{k}^{(4)}\right) & = & 0, & 0, & 24, & -192, & 960, & 960, \\
\ldots
\end{array}
$$

Example 1: tournaments with m irreducible components

- f_{n} counts labeled tournaments,
- $h_{n}^{(m)}$ counts labeled tournaments that have exactly m irreducible components.
$\mathbb{P}\{$ tournament has exactly $(m+1)$ irreducible components $\}=$

$$
=\frac{h_{n}^{(m+1)}}{f_{n}}=(n)_{m} \cdot \frac{2^{m(m+1) / 2}}{2^{n m}}+O\left(\frac{n^{m+1}}{2^{n(m+1)}}\right)
$$

where

$$
(n)_{m}=n(n-1)(n-2) \ldots(n-m+1) .
$$

SET_{m} and SEQ_{m} asymptotics

Example 2: permutations with m indecomposable parts

■ $f_{n}=(n!)^{2}$ counts pairs of permutations,

- $\mu_{n}^{(m)}$ counts permutations that have exactly m indecomposable parts.
$\mathbb{P}\{$ permutation has exactly 2 indecomposable parts $\}=$

$$
=\frac{h_{n}^{(2)}}{f_{n}}=\frac{\mu_{n}^{(2)}}{n!}=\sum_{k=1}^{r-1} \frac{2\left(\mu_{k}^{(1)}-2 \mu_{k}^{(2)}+\mu_{k}^{(3)}\right)}{(n)_{k}}+O\left(\frac{1}{n^{r}}\right)
$$

$\begin{array}{rlrrrrrrrl}\left(\mu_{k}^{(1)}\right) & = & 1, & 1, & 3, & 13, & 71, & 461, & 3447, & \ldots \\ \text { where } \quad\left(\mu_{k}^{(2)}\right) & = & 0, & 1, & 2, & 7, & 32, & 177, & 1142, & \ldots \\ \left(\mu_{k}^{(3)}\right) & = & 0, & 0, & 1, & 3, & 12, & 58, & 327, & \ldots \\ \left(c_{k}^{(2)}\right) & = & 2, & -2, & 0, & 4, & 38, & 330, & 2980, & \ldots\end{array}$

SET_{m} and SEQ_{m} asymptotics

Example 2: permutations with m indecomposable parts

- $f_{n}=(n!)^{2}$ counts pairs of permutations,
- $\mu_{n}^{(m)}$ counts permutations that have exactly m indecomposable parts.
$\mathbb{P}\{$ permutation has exactly 3 indecomposable parts $\}=$

$$
=\frac{h_{n}^{(3)}}{f_{n}}=\frac{\mu_{n}^{(3)}}{n!}=\sum_{k=1}^{r-1} \frac{3\left(\mu_{k}^{(2)}-2 \mu_{k}^{(3)}+\mu_{k}^{(4)}\right)}{(n)_{k}}+O\left(\frac{1}{n^{r}}\right)
$$

SET_{m} and SEQ_{m} asymptotics

Example 2: permutations with m indecomposable parts

- $f_{n}=(n!)^{2}$ counts pairs of permutations,
- $\mu_{n}^{(m)}$ counts permutations that have exactly m indecomposable parts.
$\mathbb{P}\{$ permutation has exactly 4 indecomposable parts $\}=$

$$
=\frac{h_{n}^{(4)}}{f_{n}}=\frac{\mu_{n}^{(4)}}{n!}=\sum_{k=1}^{r-1} \frac{4\left(\mu_{k}^{(3)}-2 \mu_{k}^{(4)}+\mu_{k}^{(5)}\right)}{(n)_{k}}+O\left(\frac{1}{n^{r}}\right),
$$

$\begin{array}{rllllllrrl}\left(\mu_{k}^{(3)}\right) & = & 0, & 0 & 1 & 3, & 12, & 58, & 327, & \ldots \\ \text { where } \quad\left(\mu_{k}^{(4)}\right) & = & 0, & 0, & 0 & 1, & 4, & 18, & 92, & \ldots \\ \left(\mu_{k}^{(5)}\right) & = & 0, & 0, & 0, & 0, & 1, & 5, & 25 & \ldots \\ \left(c_{k}^{(4)}\right) & = & 0, & 0, & 4, & 4, & 20, & 108, & 672, & \ldots\end{array}$

Example 2: permutations with m indecomposable parts

■ $f_{n}=(n!)^{2}$ counts pairs of permutations,

- $\mu_{n}^{(m)}$ counts permutations that have exactly m indecomposable parts.
$\mathbb{P}\{$ permutation has exactly $(m+1)$ indecomposable parts $\}=$

$$
=\frac{h_{n}^{(m+1)}}{f_{n}}=\frac{\mu_{n}^{(m+1)}}{n!}=\frac{(m+1)}{(n)_{m}}+O\left(\frac{1}{n^{m+1}}\right)
$$

where

$$
(n)_{m}=n(n-1)(n-2) \ldots(n-m+1) .
$$

Theorem (Monteil, N., 2020+)

If $f_{n} \neq 0$ for all $n \in \mathbb{N}$ and there exists $r \geqslant 1$ such that (i) $n \cdot \frac{f_{n-1}}{f_{n}} \rightarrow 0 \quad$ and \quad (ii) $\sum_{k=r}^{n-r}\binom{n}{k} f_{k} f_{n-k}=O\left(n^{r} f_{n-r}\right)$,

Then for all $m \geqslant 1$, as $n \rightarrow \infty$, (d) $\frac{g_{n}^{(m+1)}}{f_{n}}=\sum_{k=1}^{r-1} c_{k}^{(m+1)} \cdot\binom{n}{k} \cdot \frac{f_{n-k}}{f_{n}}+O\left(n^{r} \cdot \frac{f_{n-r}}{f_{n}}\right)$, where $c_{k}^{(m+1)}$ are the coefficients of $G_{m}(x)(1-H(x))$.

Combinatorial meaning: it is the probability of a random object of size n to have exactly $(m+1)$ connected components.

Erdös-Rényi model $G(n, p)$

Fix $p \in(0,1), q=1-p$.
Consider a random labeled graph $\mathcal{G}=G(n, p)$:

- p is the probability of edge presence;
- $q=1-p$ is the probability of edge absence;
- weight of the graph: $W(\mathcal{G})=\left(q^{-1}-1\right)^{|E(\mathcal{G})|}$.

Erdös-Rényi model $G(n, p)$

Fix $p \in(0,1), \quad q=1-p$.
Consider a random labeled graph $\mathcal{G}=G(n, p)$:

- p is the probability of edge presence;
- $q=1-p$ is the probability of edge absence;
- weight of the graph: $W(\mathcal{G})=\left(q^{-1}-1\right)^{|E(\mathcal{G})|}$.

Define:

- $f_{n}:=\sum_{|V(\mathcal{G})|=n} W(\mathcal{G})=q^{-\binom{n}{2}}-$ total weight.
- $g_{n}:=\sum_{\mathcal{G} \text { is connected }} W(\mathcal{G})$ - weight of connected graphs.

Asymptotics for $G(n, p)$

Question. What is the probability p_{n} of a random graph with n vertices to be connected as $n \rightarrow \infty$?

- Gilbert, 1959: $\quad p_{n}=1-n q^{n-1}+O\left(n^{2} q^{3 n / 2}\right)$

Asymptotics for $G(n, p)$

Question. What is the probability p_{n} of a random graph with n vertices to be connected as $n \rightarrow \infty$?

- Gilbert, 1959: $\quad p_{n}=1-n q^{n-1}+O\left(n^{2} q^{3 n / 2}\right)$
- Monteil, N., 2020:

$$
p_{n}=1-\sum_{k=1}^{r-1} h_{k}(q) \cdot\binom{n}{k} \cdot \frac{q^{n k}}{q^{k(k+1) / 2}}+O\left(n^{r} q^{n r}\right)
$$

where $\quad h_{k}(q) \in \mathbb{Z}\left[q^{-1}\right] \quad$ and $\quad \operatorname{deg} h_{k}=\binom{k}{2}$.

$$
h_{1}(q)=1, \quad h_{2}(q)=q^{-1}-2, \quad h_{3}(q)=q^{-3}-6 q^{-1}+6, \quad \ldots
$$

Question. What is the meaning of $h_{k}(q)$?

Representation of $h_{3}(q)$

$$
\begin{aligned}
& 2 \\
& +\left(q^{-1}-1\right)^{0} \\
& +\left(q^{-1}-1\right)^{3} \\
& q^{-3}-6 q^{-1}+6=\left(q^{-1}-1\right)^{2} \\
& +\left(q^{-1}-1\right)^{3}+3\left(q^{-1}-1\right)^{2}-3\left(q^{-1}-1\right)^{1}+1
\end{aligned}
$$

Asymptotics for $G(n, p)$, continued

Theorem (Monteil, N., 2020+)

a) The probability p_{n} of a random graph with n vertices to be connected, as $n \rightarrow \infty$, is
where

$$
p_{n}=1-\sum_{k=1}^{r-1} h_{k}(q) \cdot\binom{n}{k} \cdot \frac{q^{n k}}{q^{k(k+1) / 2}}+O\left(n^{r} q^{n r}\right)
$$

$$
h_{k}(q)=\sum_{|V(\mathcal{G})|=k}(-1)^{\# C C(\mathcal{G})-1} W(\mathcal{G})
$$

Asymptotics for $G(n, p)$, continued

Theorem (Monteil, N., 2020+)

b) The probability $p_{n}^{(m+1)}$ of a random graph with n vertices to have exactly $(m+1)$ connected components, as $n \rightarrow \infty$, is

$$
p_{n}^{(m+1)}=\sum_{k=1}^{r-1} h_{k}^{(m+1)}(q) \cdot\binom{n}{k} \cdot \frac{q^{n k}}{q^{k(k+1) / 2}}+O\left(n^{r} q^{n r}\right)
$$

where $\quad h_{k}^{(m+1)}(q)=\sum_{|V(\mathcal{G})|=k}(-1)^{\# C C(\mathcal{G})-m}(\underset{m}{\# C C(\mathcal{G})}) W(\mathcal{G})$.

SET_{m} asymptotics, continued

Theorem (Monteil, N., 2020+)

If $f_{n} \neq 0$ for all $n \in \mathbb{N}$ and there exists $r \geqslant 1$ such that
(i) $n \cdot \frac{f_{n-1}}{f_{n}} \rightarrow 0 \quad$ and
(ii) $\sum_{k=r}^{n-r}\binom{n}{k} f_{k} f_{n-k}=O\left(n^{r} f_{n-r}\right)$,

Then for all $m \geqslant 1$, as $n \rightarrow \infty$,
$\left(d^{\prime}\right) \quad \frac{g_{n}^{(m+1)}}{f_{n}}=\sum_{k=1}^{r-1} c_{k}^{(m+1)} \cdot\binom{n}{k} \cdot \frac{f_{n-k}}{f_{n}}+O\left(n^{r} \cdot \frac{f_{n-r}}{f_{n}}\right)$,
where

$$
c_{k}^{(m+1)}=\sum_{s=1}^{k}(-1)^{s}\binom{s}{m} f_{k, s}
$$

and $f_{k, s}$ is the number of objects of size k which have exactly s connected components.

Other applications

	combinatorial map model	($D+1$)-colored graphs
f_{n}	surfaces obtained by gluing polygons $\{(\sigma, \tau) \mid \tau$ is perfect matching $\}$	bipartite regular graphs with colored edges $\left(\sigma_{1}, \ldots, \sigma_{D+1}\right) \in S_{n}^{D+1}$
g_{n}	connected surfaces	connected graphs
h_{n}	$\{(\sigma, \tau) \mid \tau$ is indecomposable perfect matching\}	$\left(\tau_{1}, \ldots, \tau_{D-1}\right)$ is indecomposable tuple of permutations
p_{n}	$\mathbb{P}\{$ surface is connected $\}$	$\mathbb{P}\{$ graph is connected $\}$
$p_{n}^{(1)}$	\mathbb{P} \{perfect matching is indecomposable\}	$\mathbb{P}\{$ tuple of permutations is indecomposable\}
$f_{2 n}$	$(2 n)!(2 n-1)!$!	$(2 n)!\cdot(n!)^{D-1}$
$g_{2 n}$	2, 60, 8880, $3558240 \ldots$	$2,12\left(2^{D}-1\right), \ldots$
$\begin{aligned} & \mu_{2 n} \\ & h_{2 n} \end{aligned}$	$\begin{gathered} h_{2 n}=(2 n)!\cdot \mu_{2 n} \\ \left(\mu_{2 n}\right)=1,2,10,74,706 \ldots \end{gathered}$	$\begin{gathered} h_{2 n}=(2 n)!\cdot \mu_{2 n} \\ 1,2^{D-1}-1,6^{D-1}-2^{D}+1, \ldots \end{gathered}$

Many thanks to all listeners

Thank you for your attention!

Literature I

嗇 Bender E.A.
An asymptotic expansion for some coefficients of some formal power series
Journal of the London Mathematical Society, 9 (1975), pp. 451-458.
國 Cori R.
Indecomposable permutations, hypermaps and labeled Dyck paths
Journal of Combinatorial Theory, Series A, 116 (2009), pp. 1326-1343.

Literature II

國 Dixon J.
Asymptotics of Generating the Symmetric and Alternating Groups
The Electronic Journal of Combinatorics, 12 (2005), \#R56.
Gilbert E.N.
Random graphs
Annals of Mathematical Statistics, Volume 30, Number 4 (1959), pp. 1141-1144.

Literature III

固 Wright E.M.
Asymptotic relations between enumerative functions in graph theory
Proceedings of the London Mathematical Society, Volume s3-20, Issue 3 (April 1970), pp. 558-572.
里
Wright E.M.
The Number of Irreducible Tournaments
Glasgow Mathematical Journal, Volume 11, Issue 2 (July 1970), pp. 97-101.

