Asymptotic probability of connected surfaces

Khaydar Nurligareev (with Thierry Monteil)

LIPN, Paris 13

Seminar Structures on Surfaces

June 25, 2021

Table of contents

1 Square-tiled surfaces
2 Graphs
3 Theorems

4 Combinatorial maps
5 Appendix

Square-tiled surfaces

- Take n labeled squares.

■ Identify their sides by translation (right side \leftrightarrow left side, bottom side \leftrightarrow top side).

- If the obtained surface is connected, then it is called a labeled square-tiled surface (SQS) or origami.

Square-tiled surfaces

SQS is determined by the pair of permutations $(h, v) \in S_{n}^{2}$ acting transitively on $\{1, \ldots, n\}$:

- h : horizontal (right) permutation,

■ v: vertical (top) permutation,

- transitive action \leftrightarrow connectedness of SQS.

Probability of a surface to be connected

Question. What is the probability p_{n} of a random surface determined by $(\sigma, \tau) \in S_{n}^{2}$ to be connected as $n \rightarrow \infty$?

Probability of a surface to be connected

Question. What is the probability p_{n} of a random surface determined by $(\sigma, \tau) \in S_{n}^{2}$ to be connected as $n \rightarrow \infty$?

- Dixon, 2005: $\quad p_{n}=1-\sum_{k=1}^{r-1} \frac{\mu_{k}}{(n)_{k}}+O\left(\frac{1}{n^{r}}\right)$,
where $(n)_{k}=n(n-1) \ldots(n-k+1)$ are the falling factorials.

Probability of a surface to be connected

Question. What is the probability p_{n} of a random surface determined by $(\sigma, \tau) \in S_{n}^{2}$ to be connected as $n \rightarrow \infty$?

- Dixon, 2005: $\quad p_{n}=1-\sum_{k=1}^{r-1} \frac{\mu_{k}}{(n)_{k}}+O\left(\frac{1}{n^{r}}\right)$,
where $(n)_{k}=n(n-1) \ldots(n-k+1)$ are the falling factorials.
- Cori, 2009: the sequence

$$
\left(\mu_{k}\right)=1,1,3,13,71,461,3447,29093, \ldots
$$

counts indecomposable permutations.

Indecomposable permutations

A permutation $\sigma \in S_{n}$ is

- decomposable, if there is an index $p<n$ such that $\sigma(\{1, \ldots, p\})=\{1, \ldots, p\}$.
- indecomposable otherwise.

$$
\begin{array}{lllll}
\left(\begin{array}{lll|ll}
1 & 2 & 3 & 4 & 5 \\
3 & 1 & 2 & 5 & 4
\end{array}\right) & \left(\begin{array}{ccccc}
1 & 2 & 3 & 4 & 5 \\
5 & 3 & 2 & 1 & 4
\end{array}\right) \\
\text { decomposable }(p=3) & \text { indecomposable }
\end{array}
$$

Observation. Every permutation can be uniquely decomposed into a sequence (SEQ) of indecomposable permutations.

Graphs

Let f_{n} be the number of labeled graphs with n vertices.

2
-1
3^{\bullet}

$$
f_{n}=2\binom{n}{2}
$$

Connected graphs

Let g_{n} be the number of connected labeled graphs with n vertices.

connected graph

disconnected graph

$$
\left(g_{n}\right)=1,1,4,38,728,26704,1866256, \ldots
$$

Observation. Every graph is a disjoint union (SET) of connected graphs.

Probability of a graph to be connected

Question. What is the probability $p_{n}=\frac{g_{n}}{f_{n}}$ of a random graph with n vertices to be connected as $n \rightarrow \infty$?

Probability of a graph to be connected

Question. What is the probability $p_{n}=\frac{g_{n}}{f_{n}}$ of a random graph with n vertices to be connected as $n \rightarrow \infty$?

- folklore:

$$
p_{n}=1+o(1)
$$

- Gilbert, 1959: $\quad p_{n}=1-\frac{2 n}{2^{n}}+O\left(\frac{n^{2}}{2^{3 n / 2}}\right)$
- Wright, 1970:

$$
p_{n}=1-\binom{n}{1} \frac{2}{2^{n}}-\binom{n}{3} \frac{2^{7}}{2^{3 n}}-3\binom{n}{4} \frac{2^{13}}{2^{4 n}}+O\left(\frac{n^{5}}{2^{5 n}}\right)
$$

Probability of a graph to be connected

Question. What is the probability $p_{n}=\frac{g_{n}}{f_{n}}$ of a random graph with n vertices to be connected as $n \rightarrow \infty$?

- folklore:

$$
p_{n}=1+o(1)
$$

- Gilbert, 1959: $\quad p_{n}=1-\frac{2 n}{2^{n}}+O\left(\frac{n^{2}}{2^{3 n / 2}}\right)$
- Wright, 1970:

$$
p_{n}=1-\binom{n}{1} \frac{2}{2^{n}}-\binom{n}{3} \frac{2^{7}}{2^{3 n}}-3\binom{n}{4} \frac{2^{13}}{2^{4 n}}+O\left(\frac{n^{5}}{2^{5 n}}\right)
$$

Can we have all terms at once? What is the interpretation?

Asymptotics for p_{n}

■ Monteil, N., 2019:
as $n \rightarrow \infty$, for every $r \geqslant 1$

$$
p_{n}=1-\sum_{k=1}^{r-1} h_{k} \cdot\binom{n}{k} \cdot \frac{2^{k(k+1) / 2}}{2^{n k}}+O\left(\frac{n^{r}}{2^{n r}}\right),
$$

Asymptotics for p_{n}

■ Monteil, N., 2019:
as $n \rightarrow \infty$, for every $r \geqslant 1$

$$
p_{n}=1-\sum_{k=1}^{r-1} h_{k} \cdot\binom{n}{k} \cdot \frac{2^{k(k+1) / 2}}{2^{n k}}+O\left(\frac{n^{r}}{2^{n r}}\right)
$$

where h_{k} counts irreducible labeled tournaments of size k,

$$
\left(h_{k}\right)=1,0,2,24,544,22320,1677488, \ldots
$$

Tournaments

A tournament is a complete directed graph.

The number of labeled tournaments with n vertices is equal to

$$
f_{n}=2\binom{n}{2}
$$

Irreducible tournaments

A tournament is called irreducible

$$
V=\{1,2,3,4,5,6\}
$$ (or strongly connected tournament),

if for every partition of vertices $V=A \sqcup B$
1 there exist an edge from A to B and
2 there exist an edge from B to A.

Irreducible tournaments

A tournament is called irreducible (or strongly connected tournament),
if for every partition of vertices $V=A \sqcup B$
1 there exist an edge from A to B and
2 there exist an edge from B to A.

Equivalently, for each two vertices u and v
1 there is a path from u to v and
2 there is a path from v to u.

$$
V=\{1,2,3,4,5,6\}
$$

$$
\begin{aligned}
& u=4 \\
& v=6
\end{aligned}
$$

Tournament as a sequence

Lemma. Every labeled tournament can be uniquely decomposed into a sequence (SEQ) of irreducible labeled tournaments.

Tournament as a sequence

Lemma. Every labeled tournament can be uniquely decomposed into a sequence (SEQ) of irreducible labeled tournaments.

Tournament as a sequence

Lemma. Every labeled tournament can be uniquely decomposed into a sequence (SEQ) of irreducible labeled tournaments.

SET vs SEQ

graphs	decomposed as SET of
connected graphs	
counted by	
	$G(x)=\sum_{n=0}^{\infty} g_{n} \frac{x^{n}}{n!}=\log (F(x))$

$$
F(x)=\sum_{n=0}^{\infty} f_{n} \frac{x^{n}}{n!}=\sum_{n=0}^{\infty} 2\binom{n}{2} \frac{x^{n}}{n!}
$$

$H(x)=\sum_{n=0}^{\infty} h_{n} \frac{x^{n}}{n!}=1-\frac{1}{F(x)} T$
irreducible
counted by
tournaments

SET asymptotics

Theorem (Monteil, N., 2019+)

Let $\mathcal{F}=\operatorname{SET}(\mathcal{G})$ and $\mathcal{F}=\operatorname{SEQ}(\mathcal{H})$.
If $f_{n} \neq 0$ for all $n \in \mathbb{N}$ and there exists $r \geqslant 1$ such that
(i) $n \cdot \frac{f_{n-1}}{f_{n}} \rightarrow 0 \quad$ and \quad (ii) $\sum_{k=r}^{n-r}\binom{n}{k} f_{k} f_{n-k}=O\left(n^{r} f_{n-r}\right)$,

Then, as $n \rightarrow \infty$,

$$
p_{n}=\frac{g_{n}}{f_{n}}=1-\sum_{k=1}^{r-1} h_{k} \cdot\binom{n}{k} \cdot \frac{f_{n-k}}{f_{n}}+O\left(n^{r} \cdot \frac{f_{n-r}}{f_{n}}\right) .
$$

Combinatorial meaning: p_{n} is the probability of a random object of size n to be connected (in terms of SET-decomposition).

Example 1: square-tiled surfaces

- f_{n} counts surfaces generated by pairs $(\sigma, \tau) \in S_{n}^{2}$,
- g_{n} counts connected surfaces (SQS),

■ $h_{n}=n!\cdot \mu_{n}$, where μ_{n} counts indecomposable permutations.
$\mathbb{P}\{$ surface is connected $\}=$

$$
=\frac{g_{n}}{f_{n}}=1-\sum_{k=1}^{r-1} \frac{\mu_{k}}{(n)_{k}}+O\left(\frac{1}{n^{r}}\right)
$$

where $\quad(n)_{k}=n(n-1) \ldots(n-k+1)$ are the falling factorials and

$$
\left(\mu_{k}\right)=1,1,3,13,71,461,3447,29093, \ldots
$$

Example 2: connected graphs

- f_{n} counts labeled graphs / tournaments,
- g_{n} counts connected labeled graphs,
- h_{n} counts irreducible labeled tournaments.
$\mathbb{P}\{$ graph is connected $\}=$

$$
=\frac{g_{n}}{f_{n}}=1-\sum_{k=1}^{r-1} h_{k} \cdot\binom{n}{k} \cdot \frac{2^{k(k+1) / 2}}{2^{n k}}+O\left(\frac{n^{r}}{2^{n r}}\right),
$$

where

$$
\left(h_{k}\right)=1,0,2,24,544,22320,1677488, \ldots
$$

SET_{m} asymptotics

Theorem (Monteil, N., 2020+)

Let $\mathcal{F}=\operatorname{SET}(\mathcal{G}) \quad$ and $\quad \mathcal{G}_{m}=\operatorname{SET}_{m}(\mathcal{G})$.
If $f_{n} \neq 0$ for all $n \in \mathbb{N}$ and there exists $r \geqslant 1$ such that
(i) $n \cdot \frac{f_{n-1}}{f_{n}} \rightarrow 0 \quad$ and
(ii) $\sum_{k=r}^{n-r}\binom{n}{k} f_{k} f_{n-k}=O\left(n^{r} f_{n-r}\right)$,

Then for all $m \geqslant 1$, as $n \rightarrow \infty$,
where

$$
\frac{g_{n}^{(m+1)}}{f_{n}}=\sum_{k=1}^{r-1} c_{k}^{(m+1)} \cdot\binom{n}{k} \cdot \frac{f_{n-k}}{f_{n}}+O\left(n^{r} \cdot \frac{f_{n-r}}{f_{n}}\right)
$$

$$
c_{k}^{(m+1)}=\sum_{s=1}^{k}(-1)^{s-m}\binom{s}{m} g_{k}^{(s)}
$$

Example 1: square-tiled surfaces

- f_{n} counts surfaces generated by pairs $(\sigma, \tau) \in S_{n}^{2}$,
- $g_{n}^{(2)}$ counts surfaces with exactly 2 connected components.
$\mathbb{P}\{$ surface has exactly 2 connected components $\}=$

$$
=\frac{g_{n}^{(2)}}{f_{n}}=\sum_{k=1}^{r-1} \frac{c_{k}^{(2)}}{k!\cdot(n)_{k}}+O\left(\frac{1}{n^{r}}\right)
$$

where $(n)_{k}=n(n-1) \ldots(n-k+1)$ are the falling factorials and $\quad\left(c_{k}^{(2)}\right)=1,1,11,214,6314,259956,14174292, \ldots$

Example 2: graphs with two connected connected

■ f_{n} counts labeled graphs,

- $g_{n}^{(2)}$ counts labeled graphs with exactly 2 connected components.
$\mathbb{P}\{$ surface has exactly 2 connected components $\}=$

$$
=\frac{g_{n}^{(2)}}{f_{n}}=\sum_{k=1}^{r-1} c_{k}^{(2)} \cdot\binom{n}{k} \cdot \frac{2^{k(k+1) / 2}}{2^{n k}}+O\left(\frac{n^{r}}{2^{n r}}\right),
$$

where

$$
\left(c_{k}^{(2)}\right)=1,-1,1,14,398,18552,1505644, \ldots
$$

Combinatorial map model

- Take several labeled polygons of total perimeter $N=2 n$ (1-gons and 2-gons are allowed).
■ Identify their sides randomly to obtain a surface.
- Each surface is defined by a pair $(\phi, \alpha) \in S_{N}^{2}$, where α is a perfect matching.

Combinatorial map model asymptotics

Question. What is the probability of a random surface determined $\overline{\text { by }(\phi, \alpha)} \in S_{N}^{2}$ to be connected as $N \rightarrow \infty$?

Combinatorial map model asymptotics

Question. What is the probability of a random surface determined by $(\phi, \alpha) \in S_{N}^{2}$ to be connected as $N \rightarrow \infty$?

■ Budzinski, Curien and Petri, 2019:

$$
\mathbb{P}(\text { surface is connected })=1-\frac{1}{2 n}+O\left(\frac{1}{n^{2}}\right) .
$$

Combinatorial map model asymptotics

Question. What is the probability of a random surface determined by $(\phi, \alpha) \in S_{N}^{2}$ to be connected as $N \rightarrow \infty$?

■ Budzinski, Curien and Petri, 2019:

$$
\mathbb{P}(\text { surface is connected })=1-\frac{1}{2 n}+O\left(\frac{1}{n^{2}}\right) .
$$

■ Monteil, N., 2020:
$\mathbb{P}($ surface is connected $)=1-\sum_{k=1}^{r-1} \mu_{2 k} \cdot \frac{(2(n-k)-1)!!}{(2 n-1)!!}+O\left(\frac{1}{n^{r}}\right)$
where ($\mu_{2 k}$) counts indecomposable perfect matchings.

Combinatorial map model asymptotics, continued

- f_{n} counts surfaces generated by pairs $(\phi, \alpha) \in S_{N}^{2}$, where α is a perfect matching.
- $g_{n}^{(2)}$ counts surfaces with exactly 2 connected components.
$\mathbb{P}\{$ surface has exactly 2 connected components $\}=$

$$
=\frac{g_{n}^{(2)}}{f_{n}}=\sum_{k=1}^{r-1} c_{k}^{(2)} \cdot \frac{(2(n-k)-1)!!}{(2 k)!\cdot(2 n-1)!!}+O\left(\frac{1}{n^{r}}\right)
$$

where

$$
\left(c_{k}^{(2)}\right)=2,36,5640,2456160,2192823310, \ldots
$$

Many thanks to all listeners

Thank you for your attention!

Literature I

Bender E.A.
An asymptotic expansion for some coefficients of some formal power series
Journal of the London Mathematical Society, 9 (1975), pp. 451-458.

- Budzinski T., Curien N., Petri B.

Universality for random surfaces in unconstrained genus The Electronic Journal of Combinatorics, 26 (2019), \#P4.2.

Literature II

Cori R.Indecomposable permutations, hypermaps and labeled Dyck paths
Journal of Combinatorial Theory, Series A, 116 (2009), pp. 1326-1343.
R
Dixon J.
Asymptotics of generating the symmetric and alternating groups
The Electronic Journal of Combinatorics, 12 (2005), \#R56.

Literature III

Gilbert E.N.
Random graphs
Annals of Mathematical Statistics, Volume 30, Number 4 (1959), pp. 1141-1144.

星
Wright E.M.
Asymptotic relations between enumerative functions in graph theory
Proceedings of the London Mathematical Society, Volume s3-20, Issue 3 (April 1970), pp. 558-572.

SEQ asymptotics

Theorem (Monteil, N., 2019+)

Let $\mathcal{F}=\operatorname{SEQ}(\mathcal{H}) \quad$ and $\quad \mathcal{H}^{(2)}=\operatorname{SEQ}_{2}(\mathcal{H})$.
If $f_{n} \neq 0$ for all $n \in \mathbb{N}$ and there exists $r \geqslant 1$ such that
(i) $n \cdot \frac{f_{n-1}}{f_{n}} \rightarrow 0 \quad$ and \quad (ii) $\sum_{k=r}^{n-r}\binom{n}{k} f_{k} f_{n-k}=O\left(n^{r} f_{n-r}\right)$,

Then, as $n \rightarrow \infty$,

$$
\frac{h_{n}}{f_{n}}=1-\sum_{k=1}^{r-1}\left(2 h_{k}-h_{k}^{(2)}\right) \cdot\binom{n}{k} \cdot \frac{f_{n-k}}{f_{n}}+O\left(n^{r} \cdot \frac{f_{n-r}}{f_{n}}\right) .
$$

Combinatorial meaning: it is the probability of a random object of size n to be irreducible in the sense of SEQ-decomposition.

Example 1: indecomposable permutations

- $f_{n}=(n!)^{2}$ counts pairs of permutations,

■ $h_{n}=n!\cdot \mu_{n}$, where μ_{n} counts indecomposable permutations.

- $h_{n}^{(m)}=n!\cdot \mu_{n}^{(m)}$, where $\mu_{n}^{(m)}$ counts permutations that have exactly m indecomposable parts.
$\mathbb{P}\{$ permutation is indecomposable $\}=$

$$
\begin{aligned}
&=\frac{h_{n}}{f_{n}}=\frac{\mu_{n}}{n!}=1-\sum_{k=1}^{r-1} \frac{2 \mu_{k}-\mu_{k}^{(2)}}{(n)_{k}}+O\left(\frac{1}{n^{r}}\right), \\
& \text { where } \quad\left(\begin{array}{llllllll}
\left(\mu_{k}\right) & = & 1, & 1, & 3, & 13, & 71, & 461, \\
\left(\mu_{k}^{(2)}\right) & 3447, & \ldots & \ldots & 1, & 2, & 7, & 32, \\
177, & 1142, & \ldots \\
\left(c_{k}^{(1)}\right) & & 2, & 1, & 4, & 19, & 110, & 745,
\end{array} 5752,\right. \ldots
\end{aligned}
$$

Example 2: irreducible tournaments

- f_{n} counts labeled tournaments,
- h_{n} counts irreducible labeled tournaments.
- $h_{n}^{(m)}$ counts labeled tournaments that have exactly m irreducible components.
$\mathbb{P}\{$ tournament is irreducible $\}=$

$$
=\frac{h_{n}}{f_{n}}=1-\sum_{k=1}^{r-1}\left(2 h_{k}-h_{k}^{(2)}\right) \cdot\binom{n}{k} \cdot \frac{2^{k(k+1) / 2}}{2^{n k}}+O\left(\frac{n^{r}}{2^{n r}}\right)
$$

$$
\left(h_{k}\right)=1, \quad 0, \quad 2, \quad 24, \quad 544, \quad 22320, \ldots
$$

where

$$
\begin{array}{rlrlllrl}
\left(h_{k}^{(2)}\right) & = & 0, & 2, & 0, & 16, & 240, & 6608, \\
\ldots \\
\left(c_{k}^{(1)}\right) & = & 2, & -2, & 4, & 32, & 848, & 38032, \\
\ldots
\end{array}
$$

SEQ_{m} asymptotics

Theorem (Monteil, N., 2020+)

Let $\mathcal{F}=\operatorname{SEQ}(\mathcal{H}) \quad$ and $\quad \mathcal{H}_{m}=\operatorname{SEQ}_{m}(\mathcal{H})$.
If $f_{n} \neq 0$ for all $n \in \mathbb{N}$ and there exists $r \geqslant 1$ such that
(i) $n \cdot \frac{f_{n-1}}{f_{n}} \rightarrow 0 \quad$ and
(ii) $\sum_{k=r}^{n-r}\binom{n}{k} f_{k} f_{n-k}=O\left(n^{r} f_{n-r}\right)$,

Then for all $m \geqslant 1$, as $n \rightarrow \infty$,
(c) $p_{n}^{(m+1)}=\frac{h_{n}^{(m+1)}}{f_{n}}=\sum_{k=1}^{r-1} c_{k}^{(m+1)} \cdot\binom{n}{k} \cdot \frac{f_{n-k}}{f_{n}}+O\left(n^{r} \cdot \frac{f_{n-r}}{f_{n}}\right)$,
where $\quad c_{k}^{(m+1)}=(m+1)\left(h_{k}^{(m)}-2 h_{k}^{(m+1)}+h_{k}^{(m+2)}\right)$.

Example 1: permutations with m indecomposable parts

■ $f_{n}=(n!)^{2}$ counts pairs of permutations,

- $\mu_{n}^{(m)}$ counts permutations that have exactly m indecomposable parts.
$\mathbb{P}\{$ permutation has exactly 2 indecomposable parts $\}=$

$$
=\frac{h_{n}^{(2)}}{f_{n}}=\frac{\mu_{n}^{(2)}}{n!}=\sum_{k=1}^{r-1} \frac{2\left(\mu_{k}^{(1)}-2 \mu_{k}^{(2)}+\mu_{k}^{(3)}\right)}{(n)_{k}}+O\left(\frac{1}{n^{r}}\right),
$$

$$
\begin{array}{rlrrrrrrrr}
\left(\mu_{k}^{(1)}\right) & =1, & 1, & 3, & 13, & 71, & 461, & 3447, & \ldots \\
\text { where } \quad\left(\mu_{k}^{(2)}\right) & =0, & 1, & 2, & 7, & 32, & 177, & 1142, & \ldots \\
\left(\mu_{k}^{(3)}\right) & = & 0, & 0, & 1, & 3, & 12, & 58, & 327, & \ldots \\
\left(c_{k}^{(2)}\right) & = & 2, & -2, & 0, & 4, & 38, & 330, & 2980, & \ldots
\end{array}
$$

Example 1: permutations with m indecomposable parts

- $f_{n}=(n!)^{2}$ counts pairs of permutations,
- $\mu_{n}^{(m)}$ counts permutations that have exactly m indecomposable parts.
$\mathbb{P}\{$ permutation has exactly 3 indecomposable parts $\}=$

$$
=\frac{h_{n}^{(3)}}{f_{n}}=\frac{\mu_{n}^{(3)}}{n!}=\sum_{k=1}^{r-1} \frac{3\left(\mu_{k}^{(2)}-2 \mu_{k}^{(3)}+\mu_{k}^{(4)}\right)}{(n)_{k}}+O\left(\frac{1}{n^{r}}\right),
$$

$$
\left(\mu_{k}^{(2)}\right)=0,1,2,7, \quad 32,177,1142, \ldots
$$

where
$\left(\mu_{k}^{(3)}\right)=0, \quad 0,1,3,12, \quad 58, \quad 327, \ldots$

$$
\begin{aligned}
\left(\mu_{k}^{(4)}\right) & = \\
\left(\mu_{k},\right. & 0, \\
0, & 1, \\
\left(c_{k}^{(3)}\right) & = \\
0, & 3, \\
0, & 6, \\
36, & 237, \\
1740, & \ldots
\end{aligned}
$$

Example 1: permutations with m indecomposable parts

- $f_{n}=(n!)^{2}$ counts pairs of permutations,
- $\mu_{n}^{(m)}$ counts permutations that have exactly m indecomposable parts.
$\mathbb{P}\{$ permutation has exactly 4 indecomposable parts $\}=$

$$
=\frac{h_{n}^{(4)}}{f_{n}}=\frac{\mu_{n}^{(4)}}{n!}=\sum_{k=1}^{r-1} \frac{4\left(\mu_{k}^{(3)}-2 \mu_{k}^{(4)}+\mu_{k}^{(5)}\right)}{(n)_{k}}+O\left(\frac{1}{n^{r}}\right),
$$

Example 1: permutations with m indecomposable parts

- $f_{n}=(n!)^{2}$ counts pairs of permutations,
- $\mu_{n}^{(m)}$ counts permutations that have exactly m indecomposable parts.
$\mathbb{P}\{$ permutation has exactly $(m+1)$ indecomposable parts $\}=$

$$
=\frac{h_{n}^{(m+1)}}{f_{n}}=\frac{\mu_{n}^{(m+1)}}{n!}=\frac{(m+1)}{(n)_{m}}+O\left(\frac{1}{n^{m+1}}\right)
$$

where

$$
(n)_{m}=n(n-1)(n-2) \ldots(n-m+1) .
$$

Example 2: tournaments with m irreducible components

- f_{n} counts labeled tournaments,
- $h_{n}^{(m)}$ counts labeled tournaments that have exactly m irreducible components.
$\mathbb{P}\{$ tournament has exactly 2 irreducible components $\}=$
$=\frac{h_{n}^{(2)}}{f_{n}}=\sum_{k=1}^{r-1} 2\left(h_{k}^{(1)}-2 h_{k}^{(2)}+h_{k}^{(3)}\right) \cdot\binom{n}{k} \cdot \frac{2^{k(k+1) / 2}}{2^{n k}}+O\left(\frac{n^{r}}{2^{n r}}\right)$,
where $\left.\quad \begin{array}{rlrrrrrl}\left(h_{k}^{(1)}\right) & = & 1, & 0, & 2, & 24, & 544, & 22320, \\ \left(h_{k}^{(2)}\right) & = & 0, & 2, & 0, & 16, & 240, & 6608, \\ \ldots & \ldots \\ \left(h_{k}^{(3)}\right) & = & 0, & 0, & 6, & 0, & 120, & 2160, \\ \ldots \\ \left(c_{k}^{(2)}\right) & = & 2, & -8, & 16, & -16, & 368, & 22528,\end{array}\right]$

Example 2: tournaments with m irreducible components

- f_{n} counts labeled tournaments,
- $h_{n}^{(m)}$ counts labeled tournaments that have exactly m irreducible components.
$\mathbb{P}\{$ tournament has exactly 3 irreducible components $\}=$
$=\frac{h_{n}^{(3)}}{f_{n}}=\sum_{k=1}^{r-1} 3\left(h_{k}^{(2)}-2 h_{k}^{(3)}+h_{k}^{(4)}\right) \cdot\binom{n}{k} \cdot \frac{2^{k(k+1) / 2}}{2^{n k}}+O\left(\frac{n^{r}}{2^{n r}}\right)$,
where

$$
\begin{array}{rlrrrrrl}
\left(h_{k}^{(2)}\right) & = & 0, & 2, & 0, & 16, & 240, & 6608, \\
\ldots \\
\left(h_{k}^{(3)}\right) & = & 0, & 0, & 6, & 0, & 120, & 2160, \\
\ldots \\
\left(h_{k}^{(4)}\right) & = & 0, & 0, & 0, & 24, & 0, & 960, \\
\ldots \\
\left(c_{k}^{(3)}\right) & = & 0, & 6, & -36, & 120, & 0, & 9744, \\
\ldots
\end{array}
$$

Example 2: tournaments with m irreducible components

- f_{n} counts labeled tournaments,
- $h_{n}^{(m)}$ counts labeled tournaments that have exactly m irreducible components.
$\mathbb{P}\{$ tournament has exactly 4 irreducible components $\}=$
$=\frac{h_{n}^{(4)}}{f_{n}}=\sum_{k=1}^{r-1} 4\left(h_{k}^{(3)}-2 h_{k}^{(4)}+h_{k}^{(5)}\right) \cdot\binom{n}{k} \cdot \frac{2^{k(k+1) / 2}}{2^{n k}}+O\left(\frac{n^{r}}{2^{n r}}\right)$,
where

$$
\begin{array}{rlllrrrl}
\left(h_{k}^{(3)}\right) & = & 0, & 0, & 6, & 0, & 120, & 2160, \\
\ldots \\
\left(h_{k}^{(4)}\right) & = & 0, & 0, & 0, & 24, & 0, & 960, \\
\ldots \\
\left(h_{k}^{(5)}\right) & = & 0, & 0, & 0, & 0, & 120, & 0, \\
\left(c_{k}^{(4)}\right) & = & 0, & 0, & 24, & -192, & 960, & 960, \\
\left(c_{k}\right. & \ldots
\end{array}
$$

Example 2: tournaments with m irreducible components

- f_{n} counts labeled tournaments,
- $h_{n}^{(m)}$ counts labeled tournaments that have exactly m irreducible components.
$\mathbb{P}\{$ tournament has exactly $(m+1)$ irreducible components $\}=$

$$
=\frac{h_{n}^{(m+1)}}{f_{n}}=(n)_{m} \cdot \frac{2^{m(m+1) / 2}}{2^{n m}}+O\left(\frac{n^{m+1}}{2^{n(m+1)}}\right)
$$

where

$$
(n)_{m}=n(n-1)(n-2) \ldots(n-m+1) .
$$

