Square-tiled surfaces	Graphs	Theorems	Combinatorial maps	Appendix

Asymptotic probability of connected surfaces

Khaydar Nurligareev (with Thierry Monteil)

LIPN, Paris 13

Seminar Structures on Surfaces

June 25, 2021

Khaydar Nurligareev (with Thierry Monteil)

Square-tiled surfaces	Graphs	Theorems	Combinatorial maps	Appendix

Table of contents

1 Square-tiled surfaces

2 Graphs

3 Theorems

4 Combinatorial maps

5 Appendix

Khaydar Nurligareev (with Thierry Monteil) Asymptotic probability of connected surfaces

Square-tiled surfaces

- Take n labeled squares.
- Identify their sides by translation (right side ↔ left side, bottom side ↔ top side).
- If the obtained surface is connected, then it is called a labeled square-tiled surface (SQS) or origami.

Khaydar Nurligareev (with Thierry Monteil)

Square-tiled surfaces

SQS is determined by the pair of permutations $(h, v) \in S_n^2$ acting transitively on $\{1, \ldots, n\}$:

- *h*: horizontal (right) permutation,
- v: vertical (top) permutation,
- transitive action \leftrightarrow connectedness of SQS.

$$c \boxed{1}_{e} c f \boxed{2}_{b} d d \boxed{3}_{a} f \Leftrightarrow (1)(23)$$

Square-tiled surfaces	Graphs	Theorems	Combinatorial maps	Appendix
0000				

Probability of a surface to be connected

<u>Question</u>. What is the probability p_n of a random surface determined by $(\sigma, \tau) \in S_n^2$ to be connected as $n \to \infty$?

Khaydar Nurligareev (with Thierry Monteil)

Probability of a surface to be connected

<u>Question</u>. What is the probability p_n of a random surface determined by $(\sigma, \tau) \in S_n^2$ to be connected as $n \to \infty$?

Dixon, 2005: $p_n = 1 - \sum_{k=1}^{r-1} \frac{\mu_k}{(n)_k} + O\left(\frac{1}{n^r}\right)$,

where $(n)_k = n(n-1)...(n-k+1)$ are the falling factorials.

Probability of a surface to be connected

<u>Question</u>. What is the probability p_n of a random surface determined by $(\sigma, \tau) \in S_n^2$ to be connected as $n \to \infty$?

Dixon, 2005: $p_n = 1 - \sum_{k=1}^{r-1} \frac{\mu_k}{(n)_k} + O\left(\frac{1}{n^r}\right),$

where $(n)_k = n(n-1)...(n-k+1)$ are the falling factorials.

Cori, 2009: the sequence

 $(\mu_k) = 1, 1, 3, 13, 71, 461, 3447, 29093, \ldots$

counts indecomposable permutations.

Khaydar Nurligareev (with Thierry Monteil) Asymptotic probability of connected surfaces

Square-tiled surfaces	Graphs	Theorems	Combinatorial maps	Appendix
0000	0000000	000000	0000 0	000000

Indecomposable permutations

A permutation $\sigma \in S_n$ is

- decomposable, if there is an index p < n such that $\sigma(\{1, \ldots, p\}) = \{1, \ldots, p\}.$
- indecomposable otherwise.

$$\begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 3 & 1 & 2 & 5 & 4 \end{pmatrix} \qquad \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 5 & 3 & 2 & 1 & 4 \end{pmatrix}$$

decomposable (p = 3) indecomposable

<u>Observation</u>. Every permutation can be uniquely decomposed into a sequence (SEQ) of indecomposable permutations.

Square-tiled surfaces	Graphs ●○○○○○○○	Theorems	Combinatorial maps	Appendix 000000

Graphs

Let f_n be the number of labeled graphs with n vertices.

Connected graphs

Let g_n be the number of connected labeled graphs with n vertices.

 $(g_n) = 1, 1, 4, 38, 728, 26704, 1866256, \ldots$

<u>Observation</u>. Every graph is a disjoint union (SET) of connected graphs.

Khaydar Nurligareev (with Thierry Monteil) Asymptotic probability of connected surfaces

Square-tiled surfaces	Graphs	Theorems	Combinatorial maps	Appendix
0000	0000000	000000	0000 0	000000

Probability of a graph to be connected

<u>Question</u>. What is the probability $p_n = \frac{g_n}{f_n}$ of a random graph with n vertices to be connected as $n \to \infty$?

Khaydar Nurligareev (with Thierry Monteil)

Square-tiled surfaces	Graphs	Theorems	Combinatorial maps	Appendix
0000	0000000	000000	0000 0	000000

Probability of a graph to be connected

<u>Question</u>. What is the probability $p_n = \frac{g_n}{f_n}$ of a random graph with n vertices to be connected as $n \to \infty$?

folklore: $p_n = 1 + o(1)$ Gilbert, 1959: $p_n = 1 - \frac{2n}{2^n} + O\left(\frac{n^2}{2^{3n/2}}\right)$

Wright, 1970:

$$p_n = 1 - \binom{n}{1} \frac{2}{2^n} - \binom{n}{3} \frac{2^7}{2^{3n}} - 3\binom{n}{4} \frac{2^{13}}{2^{4n}} + O\left(\frac{n^5}{2^{5n}}\right)$$

Khaydar Nurligareev (with Thierry Monteil)

Square-tiled surfaces	Graphs	Theorems	Combinatorial maps	Appendix
0000	0000000	000000	0000 0	000000

Probability of a graph to be connected

<u>Question</u>. What is the probability $p_n = \frac{g_n}{f_n}$ of a random graph with n vertices to be connected as $n \to \infty$?

folklore: $p_n = 1 + o(1)$ Gilbert, 1959: $p_n = 1 - \frac{2n}{2^n} + O\left(\frac{n^2}{2^{3n/2}}\right)$

Wright, 1970:

$$p_n = 1 - \binom{n}{1} \frac{2}{2^n} - \binom{n}{3} \frac{2^7}{2^{3n}} - 3\binom{n}{4} \frac{2^{13}}{2^{4n}} + O\left(\frac{n^5}{2^{5n}}\right)$$

Can we have all terms at once? What is the interpretation?

Khaydar Nurligareev (with Thierry Monteil) Asymptotic probability of connected surfaces

Square-tiled surfaces	Graphs	Theorems	Combinatorial maps	Appendix
	0000000			

Asymptotics for p_n

Monteil, N., 2019:

as $n \to \infty$, for every $r \geqslant 1$

$$p_n = 1 - \sum_{k=1}^{r-1} h_k \cdot {n \choose k} \cdot \frac{2^{k(k+1)/2}}{2^{nk}} + O\left(\frac{n^r}{2^{nr}}\right),$$

Khaydar Nurligareev (with Thierry Monteil)

Square-tiled surfaces	Graphs	Theorems	Combinatorial maps	Appendix
	0000000			

Asymptotics for p_n

Monteil, N., 2019:

as $n \to \infty$, for every $r \geqslant 1$

$$p_n = 1 - \sum_{k=1}^{r-1} h_k \cdot {n \choose k} \cdot \frac{2^{k(k+1)/2}}{2^{nk}} + O\left(\frac{n^r}{2^{nr}}\right),$$

where h_k counts irreducible labeled tournaments of size k,

 $(h_k) = 1, 0, 2, 24, 544, 22320, 1677488, \ldots$

Khaydar Nurligareev (with Thierry Monteil)

Square-tiled surfaces	Graphs ○○○○●○○○○	Theorems	Combinatorial maps	Appendix

Tournaments

A tournament is a complete directed graph.

The number of labeled tournaments with n vertices is equal to

$$f_n=2^{\binom{n}{2}}$$

Khaydar Nurligareev (with Thierry Monteil)

Square-tiled surfaces	Graphs	Theorems	Combinatorial maps	Appendix
	00000000			

Irreducible tournaments

A tournament is called irreducible (or strongly connected tournament),

if for every partition of vertices $V = A \sqcup B$

- 1 there exist an edge from A to B and
- **2** there exist an edge from B to A.

Irreducible tournaments

A tournament is called irreducible (or strongly connected tournament),

if for every partition of vertices $V = A \sqcup B$

1 there exist an edge from A to B and

2 there exist an edge from B to A.

Equivalently, for each two vertices u and v
1 there is a path from u to v and
2 there is a path from v to u.

 $V = \{1, 2, 3, 4, 5, 6\}$

Square-tiled surfaces	Graphs	Theorems	Combinatorial maps	Appendix
	00000000			

Tournament as a sequence

Lemma. Every labeled tournament can be uniquely decomposed into a sequence (SEQ) of irreducible labeled tournaments.

Khaydar Nurligareev (with Thierry Monteil)

Square-tiled surfaces	Graphs	Theorems	Combinatorial maps	Appendix
	00000000			

Tournament as a sequence

Lemma. Every labeled tournament can be uniquely decomposed into a sequence (SEQ) of irreducible labeled tournaments.

Square-tiled surfaces	Graphs	Theorems	Combinatorial maps	Appendix
	00000000			

Tournament as a sequence

Lemma. Every labeled tournament can be uniquely decomposed into a sequence (SEQ) of irreducible labeled tournaments.

Khaydar Nurligareev (with Thierry Monteil) Asymptotic probability of connected surfaces

Khaydar Nurligareev (with Thierry Monteil)

Square-tiled surfaces	Graphs	Theorems	Combinatorial maps	Appendix
		•00000		

SET asymptotics

Theorem (Monteil, N., 2019+)

Let $\mathcal{F} = \operatorname{SET}(\mathcal{G})$ and $\mathcal{F} = \operatorname{SEQ}(\mathcal{H})$. If $f_n \neq 0$ for all $n \in \mathbb{N}$ and there exists $r \ge 1$ such that (i) $n \cdot \frac{f_{n-1}}{f_n} \to 0$ and (ii) $\sum_{k=r}^{n-r} \binom{n}{k} f_k f_{n-k} = O(n^r f_{n-r})$, Then, as $n \to \infty$, $p_n = \frac{g_n}{f_n} = 1 - \sum_{k=1}^{r-1} h_k \cdot \binom{n}{k} \cdot \frac{f_{n-k}}{f_n} + O\left(n^r \cdot \frac{f_{n-r}}{f_n}\right)$.

Combinatorial meaning: p_n is the probability of a random object of size n to be connected (in terms of SET-decomposition).

Khaydar Nurligareev (with Thierry Monteil) Asymptotic probability of connected surfaces

Square-tiled surfaces	Graphs	Theorems	Combinatorial maps	Appendix
0000	0000000	00000	0000 0	000000

Example 1: square-tiled surfaces

- f_n counts surfaces generated by pairs $(\sigma, \tau) \in S_n^2$,
- *g_n* counts connected surfaces (SQS),
- $h_n = n! \cdot \mu_n$, where μ_n counts indecomposable permutations.

 $\mathbb{P}\{\text{surface is connected}\} =$

$$= \frac{g_n}{f_n} = 1 - \sum_{k=1}^{r-1} \frac{\mu_k}{(n)_k} + O\left(\frac{1}{n^r}\right),$$

where $(n)_k = n(n-1)...(n-k+1)$ are the falling factorials and $(\mu_k) = 1, 1, 3, 13, 71, 461, 3447, 29093, ...$

Khaydar Nurligareev (with Thierry Monteil)

Example 2: connected graphs

- f_n counts labeled graphs / tournaments,
- g_n counts connected labeled graphs,
- h_n counts irreducible labeled tournaments.

 $\mathbb{P}\{\text{graph is connected}\} =$

$$=\frac{g_n}{f_n}=1-\sum_{k=1}^{r-1}h_k\cdot \binom{n}{k}\cdot \frac{2^{k(k+1)/2}}{2^{nk}}+O\left(\frac{n^r}{2^{nr}}\right),$$

where

 $(h_k) = 1, 0, 2, 24, 544, 22320, 1677488, \ldots$

Square-tiled surfaces	Graphs	Theorems	Combinatorial maps	Appendix
		000000		

SET_m asymptotics

Theorem (Monteil, N., 2020+)

Let
$$\mathcal{F} = \operatorname{SET}(\mathcal{G})$$
 and $\mathcal{G}_m = \operatorname{SET}_m(\mathcal{G})$.
If $f_n \neq 0$ for all $n \in \mathbb{N}$ and there exists $r \ge 1$ such that
(i) $n \cdot \frac{f_{n-1}}{f_n} \to 0$ and (ii) $\sum_{k=r}^{n-r} \binom{n}{k} f_k f_{n-k} = O(n^r f_{n-r})$,

Then for all $m \geqslant 1$, as $n \to \infty$,

$$\frac{g_n^{(m+1)}}{f_n} = \sum_{k=1}^{r-1} c_k^{(m+1)} \cdot {\binom{n}{k}} \cdot \frac{f_{n-k}}{f_n} + O\left(n^r \cdot \frac{f_{n-r}}{f_n}\right),$$

where $c_k^{(m+1)} = \sum_{s=1}^k (-1)^{s-m} {\binom{s}{m}} g_k^{(s)}.$

Khaydar Nurligareev (with Thierry Monteil)

Square-tiled surfaces	Graphs	Theorems	Combinatorial maps	Appendix
0000	0000000	000000	0000 0	000000

Example 1: square-tiled surfaces

- f_n counts surfaces generated by pairs $(\sigma, \tau) \in S_n^2$,
- $g_n^{(2)}$ counts surfaces with exactly 2 connected components.

 $\mathbb{P}\{\text{surface has exactly 2 connected components}\} =$

$$=\frac{g_n^{(2)}}{f_n}=\sum_{k=1}^{r-1}\frac{c_k^{(2)}}{k!\cdot (n)_k}+O\left(\frac{1}{n^r}\right),$$

where $(n)_k = n(n-1)\dots(n-k+1)$ are the falling factorials and $(c_k^{(2)}) = 1, 1, 11, 214, 6314, 259956, 14174292, \dots$

Example 2: graphs with two connected connected

- f_n counts labeled graphs,
- g_n⁽²⁾ counts labeled graphs with exactly 2 connected components.
- $\mathbb{P}\{\text{surface has exactly 2 connected components}\} =$

$$=\frac{g_n^{(2)}}{f_n}=\sum_{k=1}^{r-1}c_k^{(2)}\cdot\binom{n}{k}\cdot\frac{2^{k(k+1)/2}}{2^{nk}}+O\left(\frac{n^r}{2^{nr}}\right),$$

where

$$(c_k^{(2)}) = 1, -1, 1, 14, 398, 18552, 1505644, \dots$$

Khaydar Nurligareev (with Thierry Monteil) Asymptotic probability of connected surfaces

Combinatorial map model

- Take several labeled polygons of total perimeter N = 2n (1-gons and 2-gons are allowed).
- Identify their sides randomly to obtain a surface.
- Each surface is defined by a pair $(\phi, \alpha) \in S_N^2$, where α is a perfect matching.

 $\phi = (12345)(678)(910), \quad \alpha = (13)(26)(410)(59)(78)$

Square-tiled surfaces	Graphs	Theorems	Combinatorial maps	Appendix
0000	0000000	000000	0000	000000

Combinatorial map model asymptotics

Question. What is the probability of a random surface determined by $(\phi, \alpha) \in S_N^2$ to be connected as $N \to \infty$?

Khaydar Nurligareev (with Thierry Monteil)

Square-tiled surfaces	Graphs	Theorems	Combinatorial maps	Appendix
0000	0000000	000000	0000	000000

Combinatorial map model asymptotics

Question. What is the probability of a random surface determined by $(\phi, \alpha) \in S_N^2$ to be connected as $N \to \infty$?

Budzinski, Curien and Petri, 2019:

$$\mathbb{P}(\text{surface is connected}) = 1 - \frac{1}{2n} + O\left(\frac{1}{n^2}\right).$$

Square-tiled surfaces	Graphs	Theorems	Combinatorial maps	Appendix
0000	0000000	000000	0000	000000

Combinatorial map model asymptotics

<u>Question</u>. What is the probability of a random surface determined by $(\phi, \alpha) \in S_N^2$ to be connected as $N \to \infty$?

Budzinski, Curien and Petri, 2019:

$$\mathbb{P}ig(ext{surface is connected}ig) = 1 - rac{1}{2n} + O\left(rac{1}{n^2}
ight).$$

Monteil, N., 2020:

$$\mathbb{P}(\text{surface is connected}) = 1 - \sum_{k=1}^{r-1} \mu_{2k} \cdot \frac{(2(n-k)-1)!!}{(2n-1)!!} + O\left(\frac{1}{n^r}\right)$$

where (μ_{2k}) counts indecomposable perfect matchings.

Combinatorial map model asymptotics, continued

- f_n counts surfaces generated by pairs $(\phi, \alpha) \in S_N^2$, where α is a perfect matching.
- $g_n^{(2)}$ counts surfaces with exactly 2 connected components.

 $\mathbb{P}\{\text{surface has exactly 2 connected components}\} =$

$$=\frac{g_n^{(2)}}{f_n}=\sum_{k=1}^{r-1}c_k^{(2)}\cdot\frac{(2(n-k)-1)!!}{(2k)!\cdot(2n-1)!!}+O\left(\frac{1}{n^r}\right),$$

where

e
$$(c_k^{(2)}) = 2,36,5640,2456160,2192823310,\ldots$$

Khaydar Nurligareev (with Thierry Monteil)

Asymptotic probability of connected surfaces

LIPN, Paris 13

Square-tiled surfaces	Graphs	Theorems	Combinatorial maps	Appendix
0000	0000000	000000	00000	000000

Many thanks to all listeners

Thank you for your attention!

Khaydar Nurligareev (with Thierry Monteil)

Asymptotic probability of connected surfaces

LIPN, Paris 13

Square-tiled surfaces	Graphs	Theorems	Combinatorial maps	Appendix
			00000	

Literature I

Bender E.A.

An asymptotic expansion for some coefficients of some formal power series

Journal of the London Mathematical Society, 9 (1975), pp. 451-458.

 Budzinski T., Curien N., Petri B.
 Universality for random surfaces in unconstrained genus The Electronic Journal of Combinatorics, 26 (2019), #P4.2.

Square-tiled surfaces	Graphs	Theorems	Combinatorial maps	Appendix
			00000	

Literature II

Indecomposable permutations, hypermaps and labeled Dyck paths

Journal of Combinatorial Theory, Series A, 116 (2009), pp. 1326-1343.

Dixon J.

Asymptotics of generating the symmetric and alternating groups The Electronic Journal of Combinatorics, 12 (2005), #R56.

Square-tiled surfaces	Graphs	Theorems	Combinatorial maps	Appendix
			00000	

Literature III

${\sf Gilbert} \ {\sf E.N.}$

Random graphs

Annals of Mathematical Statistics, Volume 30, Number 4 (1959), pp. 1141-1144.

Wright E.M.

Asymptotic relations between enumerative functions in graph theory

Proceedings of the London Mathematical Society, Volume s3-20, Issue 3 (April 1970), pp. 558-572.

Square-tiled surfaces	Graphs	Theorems	Combinatorial maps	Appendix
				00000

SEQ asymptotics

Theorem (Monteil, N., 2019+)

Let
$$\mathcal{F} = \operatorname{SEQ}(\mathcal{H})$$
 and $\mathcal{H}^{(2)} = \operatorname{SEQ}_{2}(\mathcal{H})$.
If $f_{n} \neq 0$ for all $n \in \mathbb{N}$ and there exists $r \ge 1$ such that
(i) $n \cdot \frac{f_{n-1}}{f_{n}} \to 0$ and (ii) $\sum_{k=r}^{n-r} {n \choose k} f_{k} f_{n-k} = O(n^{r} f_{n-r})$,
Then, as $n \to \infty$,

$$\frac{h_n}{f_n} = 1 - \sum_{k=1}^{r-1} \left(2h_k - h_k^{(2)} \right) \cdot \binom{n}{k} \cdot \frac{f_{n-k}}{f_n} + O\left(n^r \cdot \frac{f_{n-r}}{f_n} \right).$$

Combinatorial meaning: it is the probability of a random object of size n to be irreducible in the sense of SEQ-decomposition.

Khaydar Nurligareev (with Thierry Monteil) Asymptotic probability of connected surfaces

Square-tiled surfaces	Graphs	Theorems	Combinatorial maps	Appendix
				000000
Evample 1. i	ndecomnosa	ble permut	ations	

Example 1: indecomposable permutations

- $f_n = (n!)^2$ counts pairs of permutations,
- h_n = n! · μ_n, where μ_n counts indecomposable permutations.
 h_n^(m) = n! · μ_n^(m), where μ_n^(m) counts permutations that have exactly m indecomposable parts.

 $\mathbb{P}\{\text{permutation is indecomposable}\} =$

$$= \frac{h_n}{f_n} = \frac{\mu_n}{n!} = 1 - \sum_{k=1}^{r-1} \frac{2\mu_k - \mu_k^{(2)}}{(n)_k} + O\left(\frac{1}{n^r}\right),$$

$$\begin{pmatrix} (\mu_k) &= 1, 1, 3, 13, 71, 461, 3447, \dots \\ (\mu_k^{(2)}) &= 0, 1, 2, 7, 32, 177, 1142, \dots \\ (c_k^{(1)}) &= 2, 1, 4, 19, 110, 745, 5752, \dots \end{cases}$$

where

Khaydar Nurligareev (with Thierry Monteil)

Square-tiled surfaces Grap	phs T	Theorems (Combinatorial maps	Appendix
0000 000	000000 C	000000	0000 0	000000

Example 2: irreducible tournaments

- f_n counts labeled tournaments,
- *h_n* counts irreducible labeled tournaments.
 h_n^(m) counts labeled tournaments that have exactly *m* irreducible components.

 $\mathbb{P}\{\text{tournament is irreducible}\} =$

$$= \frac{h_n}{f_n} = 1 - \sum_{k=1}^{r-1} \left(2h_k - h_k^{(2)} \right) \cdot \binom{n}{k} \cdot \frac{2^{k(k+1)/2}}{2^{nk}} + O\left(\frac{n^r}{2^{nr}}\right),$$

ere $\begin{pmatrix} h_k \end{pmatrix} = 1, \quad 0, \quad 2, \quad 24, \quad 544, \quad 22320, \quad \dots \\ \begin{pmatrix} h_k^{(2)} \end{pmatrix} = 0, \quad 2, \quad 0, \quad 16, \quad 240, \quad 6608, \quad \dots \\ \begin{pmatrix} c_k^{(1)} \end{pmatrix} = 2, \quad -2, \quad 4, \quad 32, \quad 848, \quad 38032, \quad \dots \end{cases}$

where

Square-tiled surfaces	Graphs	Theorems	Combinatorial maps	Appendix
				000000
				7

SEQ_m asymptotics

Theorem (Monteil, N., 2020+)

Let $\mathcal{F} = \operatorname{SEQ}(\mathcal{H})$ and $\mathcal{H}_m = \operatorname{SEQ}_m(\mathcal{H})$. If $f_n \neq 0$ for all $n \in \mathbb{N}$ and there exists $r \ge 1$ such that (i) $n \cdot \frac{f_{n-1}}{f_n} \to 0$ and (ii) $\sum_{k=r}^{n-r} \binom{n}{k} f_k f_{n-k} = O(n^r f_{n-r})$, Then for all $m \ge 1$, as $n \to \infty$, (c) $p_n^{(m+1)} = \frac{h_n^{(m+1)}}{f_n} = \sum_{k=1}^{r-1} c_k^{(m+1)} \cdot \binom{n}{k} \cdot \frac{f_{n-k}}{f_n} + O\left(n^r \cdot \frac{f_{n-r}}{f_n}\right)$, where $c_k^{(m+1)} = (m+1)\left(h_k^{(m)} - 2h_k^{(m+1)} + h_k^{(m+2)}\right)$.

Khaydar Nurligareev (with Thierry Monteil) Asymptotic probability of connected surfaces

Square-tiled surfaces	Graphs	Theorems	Combinatorial maps	Appendix
				000000

 $\mathbb{P}\{\text{permutation has exactly 2 indecomposable parts}\} =$

$$= \frac{h_n^{(2)}}{f_n} = \frac{\mu_n^{(2)}}{n!} = \sum_{k=1}^{r-1} \frac{2\left(\mu_k^{(1)} - 2\mu_k^{(2)} + \mu_k^{(3)}\right)}{(n)_k} + O\left(\frac{1}{n^r}\right),$$

re
$$\begin{pmatrix} (\mu_k^{(1)}) &= 1, & 1, & 3, & 13, & 71, & 461, & 3447, & \dots \\ (\mu_k^{(2)}) &= 0, & 1, & 2, & 7, & 32, & 177, & 1142, & \dots \\ (\mu_k^{(3)}) &= 0, & 0, & 1, & 3, & 12, & 58, & 327, & \dots \\ (c_k^{(2)}) &= 2, & -2, & 0, & 4, & 38, & 330, & 2980, & \dots \end{cases}$$

where

Square-tiled surfaces	Graphs	Theorems	Combinatorial maps	Appendix
				000000

 $\mathbb{P}\{\text{permutation has exactly 3 indecomposable parts}\} =$

$$= \frac{h_n^{(3)}}{f_n} = \frac{\mu_n^{(3)}}{n!} = \sum_{k=1}^{r-1} \frac{3\left(\mu_k^{(2)} - 2\mu_k^{(3)} + \mu_k^{(4)}\right)}{(n)_k} + O\left(\frac{1}{n^r}\right),$$

re
$$\begin{pmatrix} (\mu_k^{(2)}) &= 0, \ 1, \ 2, \ 7, \ 32, \ 177, \ 1142, \ \dots \\ (\mu_k^{(3)}) &= 0, \ 0, \ 1, \ 3, \ 12, \ 58, \ 327, \ \dots \\ (\mu_k^{(4)}) &= 0, \ 0, \ 0, \ 1, \ 4, \ 18, \ 92, \ \dots \\ (c_k^{(3)}) &= 0, \ 3, \ 0, \ 6, \ 36, \ 237, \ 1740, \ \dots \end{cases}$$

where

Square-tiled surfaces	Graphs	Theorems	Combinatorial maps	Appendix
				000000

 $\mathbb{P}\{\text{permutation has exactly 4 indecomposable parts}\} =$

$$= \frac{h_n^{(4)}}{f_n} = \frac{\mu_n^{(4)}}{n!} = \sum_{k=1}^{r-1} \frac{4\left(\mu_k^{(3)} - 2\mu_k^{(4)} + \mu_k^{(5)}\right)}{(n)_k} + O\left(\frac{1}{n^r}\right),$$

re
$$\begin{pmatrix} (\mu_k^{(3)}) &= 0, 0, 1, 3, 12, 58, 327, \dots \\ (\mu_k^{(4)}) &= 0, 0, 0, 1, 4, 18, 92, \dots \\ (\mu_k^{(5)}) &= 0, 0, 0, 0, 1, 5, 25, \dots \\ (c_k^{(4)}) &= 0, 0, 4, 4, 20, 108, 672, \dots \end{cases}$$

where

Khaydar Nurligareev (with Thierry Monteil)

Square-tiled surfaces	Graphs	Theorems	Combinatorial maps	Appendix ○○○○●○

 $\mathbb{P}\{\text{permutation has exactly } (m+1) \text{ indecomposable parts}\} =$

$$=\frac{h_n^{(m+1)}}{f_n}=\frac{\mu_n^{(m+1)}}{n!}=\frac{(m+1)}{(n)_m}+O\left(\frac{1}{n^{m+1}}\right),$$

where $(n)_m = n(n-1)(n-2)...(n-m+1).$

- f_n counts labeled tournaments,
- h_n^(m) counts labeled tournaments that have exactly m irreducible components.

 $\mathbb{P}\{\text{tournament has exactly 2 irreducible components}\} =$

$$=\frac{h_n^{(2)}}{f_n}=\sum_{k=1}^{r-1}2\Big(h_k^{(1)}-2h_k^{(2)}+h_k^{(3)}\Big)\cdot\binom{n}{k}\cdot\frac{2^{k(k+1)/2}}{2^{nk}}+O\left(\frac{n^r}{2^{nr}}\right),$$

where

$$\begin{pmatrix} h_k^{(1)} \end{pmatrix} = 1, 0, 2, 24, 544, 22320, \dots \\ \begin{pmatrix} h_k^{(2)} \end{pmatrix} = 0, 2, 0, 16, 240, 6608, \dots \\ \begin{pmatrix} h_k^{(3)} \end{pmatrix} = 0, 0, 6, 0, 120, 2160, \dots \\ \begin{pmatrix} c_k^{(2)} \end{pmatrix} = 2, -8, 16, -16, 368, 22528, \dots$$

- f_n counts labeled tournaments,
- h_n^(m) counts labeled tournaments that have exactly m irreducible components.

 $\mathbb{P}\{\text{tournament has exactly 3 irreducible components}\} =$

$$=\frac{h_n^{(3)}}{f_n}=\sum_{k=1}^{r-1}3\Big(h_k^{(2)}-2h_k^{(3)}+h_k^{(4)}\Big)\cdot\binom{n}{k}\cdot\frac{2^{k(k+1)/2}}{2^{nk}}+O\left(\frac{n^r}{2^{nr}}\right),$$

where

Khaydar Nurligareev (with Thierry Monteil)

Square-tiled surfaces	Graphs	Theorems	Combinatorial maps	Appendix
0000	0000000	000000	0000 0	000000

- f_n counts labeled tournaments,
- h_n^(m) counts labeled tournaments that have exactly m irreducible components.

 $\mathbb{P}\{\text{tournament has exactly 4 irreducible components}\} =$

$$=\frac{h_n^{(4)}}{f_n}=\sum_{k=1}^{r-1}4\left(h_k^{(3)}-2h_k^{(4)}+h_k^{(5)}\right)\cdot\binom{n}{k}\cdot\frac{2^{k(k+1)/2}}{2^{nk}}+O\left(\frac{n^r}{2^{nr}}\right),$$

where

$$\begin{pmatrix} h_k^{(3)} \end{pmatrix} = 0, 0, 6, 0, 120, 2160, \dots$$

 $\begin{pmatrix} h_k^{(4)} \end{pmatrix} = 0, 0, 0, 24, 0, 960, \dots$
 $\begin{pmatrix} h_k^{(5)} \end{pmatrix} = 0, 0, 0, 0, 120, 0, \dots$
 $\begin{pmatrix} c_k^{(4)} \end{pmatrix} = 0, 0, 24, -192, 960, 960, \dots$

- f_n counts labeled tournaments,
- h_n^(m) counts labeled tournaments that have exactly m irreducible components.

 $\mathbb{P}\{$ tournament has exactly (m+1) irreducible components $\} =$

$$=\frac{h_n^{(m+1)}}{f_n}=(n)_m\cdot\frac{2^{m(m+1)/2}}{2^{nm}}+O\left(\frac{n^{m+1}}{2^{n(m+1)}}\right),$$

where $(n)_m = n(n-1)(n-2)...(n-m+1).$