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Square-tiled surfaces

Take n labeled squares.

Identify their sides by translation
(right side ↔ left side, bottom side ↔ top side).

If the obtained surface is connected, then it is called
a labeled square-tiled surface (SQS) or origami.
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Square-tiled surfaces

SQS is determined by the pair of permutations (h, v) ∈ S2
n acting

transitively on {1, . . . , n}:
h: horizontal (right) permutation,

v : vertical (top) permutation,

transitive action ↔ connectedness of SQS.

a

a

b

b

c c d d

e

e

f f1 2 3 ⇔
h = (1)(23)
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Probability of a surface to be connected

Question. What is the probability pn of a random surface
determined by (σ, τ) ∈ S2

n to be connected as n→∞?

Dixon, 2005: pn = 1−
r−1∑
k=1

µk
(n)k

+ O

(
1

nr

)
,

where (n)k = n(n − 1) . . . (n − k + 1) are the falling
factorials.

Cori, 2009: the sequence

(µk) = 1, 1, 3, 13, 71, 461, 3447, 29093, . . .

counts indecomposable permutations.
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Indecomposable permutations

A permutation σ ∈ Sn is

decomposable, if there is an index p < n
such that σ

(
{1, . . . , p}

)
= {1, . . . , p}.

indecomposable otherwise.

(
1 2 3 4 5
3 1 2 5 4

)
decomposable (p = 3)

(
1 2 3 4 5
5 3 2 1 4

)
indecomposable

Observation. Every permutation can be uniquely decomposed into
a sequence (SEQ) of indecomposable permutations.

Khaydar Nurligareev (with Thierry Monteil) LIPN, Paris 13

Asymptotic probability of connected surfaces



Square-tiled surfaces Graphs Theorems Combinatorial maps Appendix

Graphs

Let fn be the number of labeled graphs with n vertices.
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fn = 2(n2)
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Connected graphs

Let gn be the number of connected labeled graphs with n vertices.

3

26

1

4 5

3

26

1

4 5
connected graph disconnected graph

(gn) = 1, 1, 4, 38, 728, 26704, 1866256, . . .

Observation. Every graph is a disjoint union (SET) of connected
graphs.
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Probability of a graph to be connected

Question. What is the probability pn =
gn
fn

of a random graph with

n vertices to be connected as n→∞?

folklore: pn = 1 + o(1)

Gilbert, 1959: pn = 1− 2n

2n
+ O

(
n2

23n/2

)
Wright, 1970:

pn = 1−
(
n

1

)
2

2n
−
(
n

3

)
27

23n
− 3

(
n

4

)
213

24n
+ O

(
n5

25n

)

Can we have all terms at once? What is the interpretation?
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Asymptotics for pn

Monteil, N., 2019:

as n→∞, for every r > 1

pn = 1−
r−1∑
k=1

hk ·
(
n

k

)
· 2k(k+1)/2

2nk
+ O

(
nr

2nr

)
,

where hk counts irreducible labeled tournaments of size k ,

(hk) = 1, 0, 2, 24, 544, 22320, 1677488, . . .
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Tournaments

A tournament is a complete directed graph.

1

23

4

5 6

The number of labeled tournaments with n vertices is equal to

fn = 2(n2)
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Irreducible tournaments

A tournament is called irreducible
(or strongly connected tournament),

if for every partition of vertices V = A t B

1 there exist an edge from A to B and

2 there exist an edge from B to A.

Equivalently, for each two vertices u and v

1 there is a path from u to v and

2 there is a path from v to u.

V = {1, 2, 3, 4, 5, 6}

V = {1, 2, 3, 4, 5, 6}

1

23

4

5 6

1

23

4

5 6

A = {1, 2, 3, 6}
B = {4, 5}
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A tournament is called irreducible
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if for every partition of vertices V = A t B

1 there exist an edge from A to B and

2 there exist an edge from B to A.

Equivalently, for each two vertices u and v

1 there is a path from u to v and

2 there is a path from v to u.

V = {1, 2, 3, 4, 5, 6}

V = {1, 2, 3, 4, 5, 6}

1

23

4

5 6

4

6

u = 4

v = 6
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Tournament as a sequence

Lemma. Every labeled tournament can be uniquely decomposed
into a sequence (SEQ) of irreducible labeled tournaments.

1

23

4

5 6

4

5 1

23

6

4 5 3
1

2

6
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SET vs SEQ

F (x) =
∞∑
n=0

fn
xn

n!
=
∞∑
n=0

2(n2)
xn

n!

counts

graphs

counts

tournaments

decomposed

as SET of

connected

graphs

decomposed as

as SEQ of

irreducible

tournaments

counted by

G (x) =
∞∑
n=0

gn
xn

n!
= log(F (x))

counted by

H(x) =
∞∑
n=0

hn
xn

n!
= 1−

1

F (x)
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SET asymptotics

Theorem (Monteil, N., 2019+)

Let F = SET(G) and F = SEQ(H).
If fn 6= 0 for all n ∈ N and there exists r > 1 such that

(i) n · fn−1
fn
→ 0 and (ii)

n−r∑
k=r

(
n

k

)
fk fn−k = O

(
nr fn−r

)
,

Then, as n→∞,

pn =
gn
fn

= 1−
r−1∑
k=1

hk ·
(
n

k

)
· fn−k

fn
+ O

(
nr · fn−r

fn

)
.

Combinatorial meaning: pn is the probability of a random object of
size n to be connected (in terms of SET-decomposition).
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Example 1: square-tiled surfaces

fn counts surfaces generated by pairs (σ, τ) ∈ S2
n ,

gn counts connected surfaces (SQS),

hn = n! · µn, where µn counts indecomposable permutations.

P{surface is connected} =

=
gn
fn

= 1−
r−1∑
k=1

µk
(n)k

+ O

(
1

nr

)
,

where (n)k = n(n − 1) . . . (n − k + 1) are the falling factorials

and (µk) = 1, 1, 3, 13, 71, 461, 3447, 29093, . . .
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Example 2: connected graphs

fn counts labeled graphs / tournaments,

gn counts connected labeled graphs,

hn counts irreducible labeled tournaments.

P{graph is connected} =

=
gn
fn

= 1−
r−1∑
k=1

hk ·
(
n

k

)
· 2k(k+1)/2

2nk
+ O

(
nr

2nr

)
,

where (hk) = 1, 0, 2, 24, 544, 22320, 1677488, . . .
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SETm asymptotics

Theorem (Monteil, N., 2020+)

Let F = SET(G) and Gm = SETm(G).
If fn 6= 0 for all n ∈ N and there exists r > 1 such that

(i) n · fn−1
fn
→ 0 and (ii)

n−r∑
k=r

(
n

k

)
fk fn−k = O

(
nr fn−r

)
,

Then for all m > 1, as n→∞,

g
(m+1)
n

fn
=

r−1∑
k=1

c
(m+1)
k ·

(
n

k

)
· fn−k

fn
+ O

(
nr · fn−r

fn

)
,

where c
(m+1)
k =

k∑
s=1

(−1)s−m
(
s

m

)
g
(s)
k .

Khaydar Nurligareev (with Thierry Monteil) LIPN, Paris 13

Asymptotic probability of connected surfaces



Square-tiled surfaces Graphs Theorems Combinatorial maps Appendix

Example 1: square-tiled surfaces

fn counts surfaces generated by pairs (σ, τ) ∈ S2
n ,

g
(2)
n counts surfaces with exactly 2 connected components.

P{surface has exactly 2 connected components} =

=
g
(2)
n

fn
=

r−1∑
k=1

c
(2)
k

k! · (n)k
+ O

(
1

nr

)
,

where (n)k = n(n − 1) . . . (n − k + 1) are the falling factorials

and (c
(2)
k ) = 1, 1, 11, 214, 6314, 259956, 14174292, . . .
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Example 2: graphs with two connected connected

fn counts labeled graphs,

g
(2)
n counts labeled graphs with exactly 2 connected

components.

P{surface has exactly 2 connected components} =

=
g
(2)
n

fn
=

r−1∑
k=1

c
(2)
k ·

(
n

k

)
· 2k(k+1)/2

2nk
+ O

(
nr

2nr

)
,

where (c
(2)
k ) = 1,−1, 1, 14, 398, 18552, 1505644, . . .
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Combinatorial map model

Take several labeled polygons of total perimeter N = 2n
(1-gons and 2-gons are allowed).

Identify their sides randomly to obtain a surface.

Each surface is defined by a pair (φ, α) ∈ S2
N ,

where α is a perfect matching.

1
2

3

4
5

6

7

8

9

10

φ = (1 2 3 4 5)(6 7 8)(9 10), α = (1 3)(2 6)(4 10)(5 9)(7 8)
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Combinatorial map model asymptotics

Question. What is the probability of a random surface determined
by (φ, α) ∈ S2

N to be connected as N →∞?

Budzinski, Curien and Petri, 2019:

P
(
surface is connected

)
= 1− 1

2n
+ O

(
1

n2

)
.

Monteil, N., 2020:

P
(
surface is connected

)
= 1−

r−1∑
k=1

µ2k ·
(2(n − k)− 1)!!

(2n − 1)!!
+ O

(
1

nr

)
where (µ2k) counts indecomposable perfect matchings.
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Combinatorial map model asymptotics, continued

fn counts surfaces generated by pairs (φ, α) ∈ S2
N ,

where α is a perfect matching.

g
(2)
n counts surfaces with exactly 2 connected components.

P{surface has exactly 2 connected components} =

=
g
(2)
n

fn
=

r−1∑
k=1

c
(2)
k · (2(n − k)− 1)!!

(2k)! · (2n − 1)!!
+ O

(
1

nr

)
,

where (c
(2)
k ) = 2, 36, 5640, 2456160, 2192823310, . . .

Khaydar Nurligareev (with Thierry Monteil) LIPN, Paris 13

Asymptotic probability of connected surfaces



Square-tiled surfaces Graphs Theorems Combinatorial maps Appendix

Many thanks to all listeners

Thank you for your attention!
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SEQ asymptotics

Theorem (Monteil, N., 2019+)

Let F = SEQ(H) and H(2) = SEQ2(H).
If fn 6= 0 for all n ∈ N and there exists r > 1 such that

(i) n · fn−1
fn
→ 0 and (ii)

n−r∑
k=r

(
n

k

)
fk fn−k = O

(
nr fn−r

)
,

Then, as n→∞,

hn
fn

= 1−
r−1∑
k=1

(
2hk − h

(2)
k

)
·
(
n

k

)
· fn−k

fn
+ O

(
nr · fn−r

fn

)
.

Combinatorial meaning: it is the probability of a random object of
size n to be irreducible in the sense of SEQ-decomposition.
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Example 1: indecomposable permutations

fn = (n!)2 counts pairs of permutations,

hn = n! · µn, where µn counts indecomposable permutations.

h
(m)
n = n! · µ(m)

n , where µ
(m)
n counts permutations that have

exactly m indecomposable parts.

P{permutation is indecomposable} =

=
hn
fn

=
µn
n!

= 1−
r−1∑
k=1

2µk − µ
(2)
k

(n)k
+ O

(
1

nr

)
,

where

(µk) = 1, 1, 3, 13, 71, 461, 3447, . . .(
µ
(2)
k

)
= 0, 1, 2, 7, 32, 177, 1142, . . .(

c
(1)
k

)
= 2, 1, 4, 19, 110, 745, 5752, . . .
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Example 2: irreducible tournaments

fn counts labeled tournaments,

hn counts irreducible labeled tournaments.

h
(m)
n counts labeled tournaments that have exactly

m irreducible components.

P{tournament is irreducible} =

=
hn
fn

= 1−
r−1∑
k=1

(
2hk − h

(2)
k

)
·
(
n

k

)
· 2k(k+1)/2

2nk
+ O

(
nr

2nr

)
,

where

(hk) = 1, 0, 2, 24, 544, 22320, . . .(
h
(2)
k

)
= 0, 2, 0, 16, 240, 6608, . . .(

c
(1)
k

)
= 2, −2, 4, 32, 848, 38032, . . .
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SEQm asymptotics

Theorem (Monteil, N., 2020+)

Let F = SEQ(H) and Hm = SEQm(H).
If fn 6= 0 for all n ∈ N and there exists r > 1 such that

(i) n · fn−1
fn
→ 0 and (ii)

n−r∑
k=r

(
n

k

)
fk fn−k = O

(
nr fn−r

)
,

Then for all m > 1, as n→∞,

(c) p
(m+1)
n =

h
(m+1)
n

fn
=

r−1∑
k=1

c
(m+1)
k ·

(
n

k

)
· fn−k

fn
+ O

(
nr · fn−r

fn

)
,

where c
(m+1)
k = (m + 1)

(
h
(m)
k − 2h

(m+1)
k + h

(m+2)
k

)
.

Khaydar Nurligareev (with Thierry Monteil) LIPN, Paris 13

Asymptotic probability of connected surfaces
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Example 1: permutations with m indecomposable parts

fn = (n!)2 counts pairs of permutations,

µ
(m)
n counts permutations that have exactly

m indecomposable parts.

P{permutation has exactly 2 indecomposable parts} =

=
h
(2)
n

fn
=
µ
(2)
n

n!
=

r−1∑
k=1

2
(
µ
(1)
k − 2µ

(2)
k + µ

(3)
k

)
(n)k

+ O

(
1

nr

)
,

where

(
µ
(1)
k

)
= 1, 1, 3, 13, 71, 461, 3447, . . .(

µ
(2)
k

)
= 0, 1, 2, 7, 32, 177, 1142, . . .(

µ
(3)
k

)
= 0, 0, 1, 3, 12, 58, 327, . . .(

c
(2)
k

)
= 2, −2, 0, 4, 38, 330, 2980, . . .

Khaydar Nurligareev (with Thierry Monteil) LIPN, Paris 13

Asymptotic probability of connected surfaces
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Example 1: permutations with m indecomposable parts

fn = (n!)2 counts pairs of permutations,

µ
(m)
n counts permutations that have exactly

m indecomposable parts.

P{permutation has exactly 3 indecomposable parts} =

=
h
(3)
n

fn
=
µ
(3)
n

n!
=

r−1∑
k=1

3
(
µ
(2)
k − 2µ

(3)
k + µ

(4)
k

)
(n)k

+ O

(
1

nr

)
,

where

(
µ
(2)
k

)
= 0, 1, 2, 7, 32, 177, 1142, . . .(

µ
(3)
k

)
= 0, 0, 1, 3, 12, 58, 327, . . .(

µ
(4)
k

)
= 0, 0, 0, 1, 4, 18, 92, . . .(

c
(3)
k

)
= 0, 3, 0, 6, 36, 237, 1740, . . .

Khaydar Nurligareev (with Thierry Monteil) LIPN, Paris 13

Asymptotic probability of connected surfaces
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Example 1: permutations with m indecomposable parts

fn = (n!)2 counts pairs of permutations,

µ
(m)
n counts permutations that have exactly

m indecomposable parts.

P{permutation has exactly 4 indecomposable parts} =

=
h
(4)
n

fn
=
µ
(4)
n

n!
=

r−1∑
k=1

4
(
µ
(3)
k − 2µ

(4)
k + µ

(5)
k

)
(n)k

+ O

(
1

nr

)
,

where

(
µ
(3)
k

)
= 0, 0, 1, 3, 12, 58, 327, . . .(

µ
(4)
k

)
= 0, 0, 0, 1, 4, 18, 92, . . .(

µ
(5)
k

)
= 0, 0, 0, 0, 1, 5, 25, . . .(

c
(4)
k

)
= 0, 0, 4, 4, 20, 108, 672, . . .

Khaydar Nurligareev (with Thierry Monteil) LIPN, Paris 13

Asymptotic probability of connected surfaces
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Example 1: permutations with m indecomposable parts

fn = (n!)2 counts pairs of permutations,

µ
(m)
n counts permutations that have exactly

m indecomposable parts.

P{permutation has exactly (m + 1) indecomposable parts} =

=
h
(m+1)
n

fn
=
µ
(m+1)
n

n!
=

(m + 1)

(n)m
+ O

(
1

nm+1

)
,

where (n)m = n(n − 1)(n − 2) . . . (n −m + 1).

Khaydar Nurligareev (with Thierry Monteil) LIPN, Paris 13

Asymptotic probability of connected surfaces
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Example 2: tournaments with m irreducible components

fn counts labeled tournaments,

h
(m)
n counts labeled tournaments that have exactly

m irreducible components.

P{tournament has exactly 2 irreducible components} =

=
h
(2)
n

fn
=

r−1∑
k=1

2
(
h
(1)
k − 2h

(2)
k + h

(3)
k

)
·
(
n

k

)
· 2k(k+1)/2

2nk
+ O

(
nr

2nr

)
,

where

(
h
(1)
k

)
= 1, 0, 2, 24, 544, 22320, . . .(

h
(2)
k

)
= 0, 2, 0, 16, 240, 6608, . . .(

h
(3)
k

)
= 0, 0, 6, 0, 120, 2160, . . .(

c
(2)
k

)
= 2, −8, 16, −16, 368, 22528, . . .

Khaydar Nurligareev (with Thierry Monteil) LIPN, Paris 13

Asymptotic probability of connected surfaces
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Example 2: tournaments with m irreducible components

fn counts labeled tournaments,

h
(m)
n counts labeled tournaments that have exactly

m irreducible components.

P{tournament has exactly 3 irreducible components} =

=
h
(3)
n

fn
=

r−1∑
k=1

3
(
h
(2)
k − 2h

(3)
k + h

(4)
k

)
·
(
n

k

)
· 2k(k+1)/2

2nk
+ O

(
nr

2nr

)
,

where

(
h
(2)
k

)
= 0, 2, 0, 16, 240, 6608, . . .(

h
(3)
k

)
= 0, 0, 6, 0, 120, 2160, . . .(

h
(4)
k

)
= 0, 0, 0, 24, 0, 960, . . .(

c
(3)
k

)
= 0, 6, −36, 120, 0, 9744, . . .

Khaydar Nurligareev (with Thierry Monteil) LIPN, Paris 13

Asymptotic probability of connected surfaces
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Example 2: tournaments with m irreducible components

fn counts labeled tournaments,

h
(m)
n counts labeled tournaments that have exactly

m irreducible components.

P{tournament has exactly 4 irreducible components} =

=
h
(4)
n

fn
=

r−1∑
k=1

4
(
h
(3)
k − 2h

(4)
k + h

(5)
k

)
·
(
n

k

)
· 2k(k+1)/2

2nk
+ O

(
nr

2nr

)
,

where

(
h
(3)
k

)
= 0, 0, 6, 0, 120, 2160, . . .(

h
(4)
k

)
= 0, 0, 0, 24, 0, 960, . . .(

h
(5)
k

)
= 0, 0, 0, 0, 120, 0, . . .(

c
(4)
k

)
= 0, 0, 24, −192, 960, 960, . . .

Khaydar Nurligareev (with Thierry Monteil) LIPN, Paris 13
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Example 2: tournaments with m irreducible components

fn counts labeled tournaments,

h
(m)
n counts labeled tournaments that have exactly

m irreducible components.

P{tournament has exactly (m + 1) irreducible components} =

=
h
(m+1)
n

fn
= (n)m ·

2m(m+1)/2

2nm
+ O

(
nm+1

2n(m+1)

)
,

where (n)m = n(n − 1)(n − 2) . . . (n −m + 1).

Khaydar Nurligareev (with Thierry Monteil) LIPN, Paris 13

Asymptotic probability of connected surfaces
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