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Graphs

Let gn be the number of labeled graphs with n vertices.
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gn = 2(n2)
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Connected graphs

Let cn be the number of connected labeled graphs with n vertices.
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connected graph disconnected graph

(cn) = 1, 1, 4, 38, 728, 26704, 1866256, . . .

Every graph is a disjoint union (SET) of connected graphs.
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Probability of a graph to be connected

Question. What is the probability pn =
cn
gn

of a random graph with

n vertices to be connected as n→∞?

folklore: pn = 1 + o(1)

Gilbert, 1959: pn = 1− 2n

2n
+ O

(
n2

23n/2

)
Wright, 1970:

pn = 1−
(
n

1

)
2

2n
− 2

(
n

3

)
26

23n
− 24

(
n

4

)
210

24n
+ O

(
n5

25n

)

Can we have all terms at once? What is the interpretation?

Khaydar Nurligareev (joint with Thierry Monteil) LIPN, University of Paris 13

Asymptotics for connected graphs and irreducible tournaments



Background and results Ideas of proof Further results

Probability of a graph to be connected

Question. What is the probability pn =
cn
gn

of a random graph with

n vertices to be connected as n→∞?

folklore: pn = 1 + o(1)

Gilbert, 1959: pn = 1− 2n

2n
+ O

(
n2

23n/2

)
Wright, 1970:

pn = 1−
(
n

1

)
2

2n
− 2

(
n

3

)
26

23n
− 24

(
n

4

)
210

24n
+ O

(
n5

25n

)

Can we have all terms at once? What is the interpretation?

Khaydar Nurligareev (joint with Thierry Monteil) LIPN, University of Paris 13

Asymptotics for connected graphs and irreducible tournaments



Background and results Ideas of proof Further results

Probability of a graph to be connected

Question. What is the probability pn =
cn
gn

of a random graph with

n vertices to be connected as n→∞?

folklore: pn = 1 + o(1)

Gilbert, 1959: pn = 1− 2n

2n
+ O

(
n2

23n/2

)

Wright, 1970:

pn = 1−
(
n

1

)
2

2n
− 2

(
n

3

)
26

23n
− 24

(
n

4

)
210

24n
+ O

(
n5

25n

)

Can we have all terms at once? What is the interpretation?

Khaydar Nurligareev (joint with Thierry Monteil) LIPN, University of Paris 13

Asymptotics for connected graphs and irreducible tournaments



Background and results Ideas of proof Further results

Probability of a graph to be connected

Question. What is the probability pn =
cn
gn

of a random graph with

n vertices to be connected as n→∞?

folklore: pn = 1 + o(1)

Gilbert, 1959: pn = 1− 2n

2n
+ O

(
n2

23n/2

)
Wright, 1970:

pn = 1−
(
n

1

)
2

2n
− 2

(
n

3

)
26

23n
− 24

(
n

4

)
210

24n
+ O

(
n5

25n

)

Can we have all terms at once? What is the interpretation?

Khaydar Nurligareev (joint with Thierry Monteil) LIPN, University of Paris 13

Asymptotics for connected graphs and irreducible tournaments



Background and results Ideas of proof Further results

Probability of a graph to be connected

Question. What is the probability pn =
cn
gn

of a random graph with

n vertices to be connected as n→∞?

folklore: pn = 1 + o(1)

Gilbert, 1959: pn = 1− 2n

2n
+ O

(
n2

23n/2

)
Wright, 1970:

pn = 1−
(
n

1

)
2

2n
− 2

(
n

3

)
26

23n
− 24

(
n

4

)
210

24n
+ O

(
n5

25n

)

Can we have all terms at once? What is the interpretation?

Khaydar Nurligareev (joint with Thierry Monteil) LIPN, University of Paris 13

Asymptotics for connected graphs and irreducible tournaments



Background and results Ideas of proof Further results

Asymptotics for connected graphs

Theorem (1)

For any positive integer r , the probability pn that a random labeled
graph of size n is connected, satisfies

pn = 1−
r−1∑
k=1

ik ·
(
n

k

)
· 2k(k+1)/2

2nk
+ O

(
nr

2nr

)
,

where ik is the number of irreducible labeled tournaments of
size k.

(ik) = 1, 0, 2, 24, 544, 22320, 1677488, . . .
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Tournaments

A tournament is a complete directed graph.

1

23
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5 6

The number of labeled tournaments with n vertices is equal to

tn = 2(n2)

Khaydar Nurligareev (joint with Thierry Monteil) LIPN, University of Paris 13

Asymptotics for connected graphs and irreducible tournaments



Background and results Ideas of proof Further results

Irreducible tournaments

A tournament is called irreducible
(or strongly connected tournament),

if for every partition of vertices V = A t B

1 there exist an edge from A to B and

2 there exist an edge from B to A.

Equivalently, for each two vertices u and v

1 there is a path from u to v and

2 there is a path from v to u.

V = {1, 2, 3, 4, 5, 6}

V = {1, 2, 3, 4, 5, 6}

1

23

4

5 6

1

23

4

5 6

A = {1, 2, 3, 6}
B = {4, 5}
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2n
+ O
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n2

22n
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1

)
22

2n
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(
n
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)
24

22n
−
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3

)
28

23n
−
(
n

4

)
215
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(
n5
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Asymptotics for irreducible tournaments

Theorem (2)

For any positive integer r , the probability qn that a random labeled
tournament of size n is irreducible, satisfies

qn = 1−
r−1∑
k=1

(
2ik − i

(2)
k

)
·
(
n

k

)
· 2k(k+1)/2

2nk
+ O

(
nr

2nr

)
,

where i
(2)
k is the number of irreducible labeled tournaments of

size k with two irreducible components.

(ik) = 1, 0, 2, 24, 544, 22320, . . .(
i
(2)
k

)
= 0, 2, 0, 16, 240, 6608, . . .(

2ik − i
(2)
k

)
= 2, −2, 4, 32, 848, 38032, . . .
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Tournament as a sequence

Lemma. Every labeled tournament can be uniquely decomposed
into a sequence (SEQ) of irreducible labeled tournaments.
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Tournament as a sequence

Lemma. Every labeled tournament can be uniquely decomposed
into a sequence (SEQ) of irreducible labeled tournaments.
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SET and SEQ decompositions

G (z) =
∞∑
n=0

2(n
2)
zn

n!
= T (z)

counts

graphs

counts

tournaments

decomposed

as SET of

connected

graphs

decomposed as

as SEQ of

irreducible

tournaments

counted by

C (z) =
∞∑
n=0

cn
zn

n!
= log(G (z))

counted by

I (z) =
∞∑
n=0

in
zn

n!
= 1−

1

T (z)
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Main tool: Bender’s theorem

Theorem (Bender, 1975)

A(z) =
∞∑
n=1

anz
n is a formal power series, ∀n ∈ N : an 6= 0;

F (x , y) is a function analytic in a neighborhood of (0; 0);

B(z) =
∞∑
n=1

bnz
n = F (z ,A(z));

D(z) =
∞∑
n=1

dnz
n =

∂F

∂y
(z ,A(z)).

If (i)
an−1
an
→ 0 and (ii) ∃r > 1 :

n−r∑
k=r

|akan−k | = O(an−r ),

then, as n→∞, bn =
r−1∑
k=0

dkan−k + O(an−r ).
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Applying Bender’s theorem for graphs

Take

A(z) = G (z)− 1 = T (z)− 1,

F (x , y) = ln(1 + y).

Then

B(z) = F (z ,A(z)) = ln
(
G (z)

)
= C (z),

D(z) =
∂F

∂y
(z ,A(z)) =

1

T (z)
= 1− I (z).

The statement of Bender’s theorem transforms into

bn =
cn
n!

=
gn
n!
− 1

n!

r−1∑
k=1

(
n

k

)
ikgn−k + O

(
gn−r

(n − r)!

)
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Applying Bender’s theorem for tournaments

Take

A(z) = T (z)− 1,

F (x , y) = − 1

1 + y
.

Then

B(z) = F (z ,A(z)) = − 1

T (z)
= −1 + I (z),

D(z) =
∂F

∂y
(z ,A(z)) =

1(
T (z)

)2 =
(
1− I (z)

)2
.

The statement of Bender’s theorem transforms into

bn =
in
n!

=
tn
n!
− 1

n!

r−1∑
k=1

(
n

k

)(
2ik − i

(2)
k

)
tn−k + O

(
tn−r

(n − r)!

)
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Asymptotics for graphs

Theorem (forthcoming)

For any positive m and r , the probability p
(m+1)
n that a random

labeled graph of size n has exactly (m + 1) connected components,
satisfies

p
(m+1)
n = 1−

r−1∑
k=1

α
(m+1)
k ·

(
n

k

)
· 2k(k+1)/2

2nk
+ O

(
nr

2nr

)
,

where α
(m+1)
k =

k∑
s=1

(−1)s
(
s

m

)
c
(s)
k

and c
(s)
k is the number of labeled graphs of size k with s connected

components.
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Asymptotics for tournaments

Theorem (forthcoming)

For any positive m and r , the probability q
(m+1)
n that a random

labeled tournament of size n has exactly (m + 1) irreducible
components, satisfies

q
(m+1)
n = 1−

r−1∑
k=1

β
(m+1)
k ·

(
n

k

)
· 2k(k+1)/2

2nk
+ O

(
nr

2nr

)
,

where β
(m+1)
k = (m + 1)

(
i
(m)
k − 2i

(m+1)
k + i

(m+2)
k

)
and i

(s)
k is the number of labeled tournaments of size k

with s irreducible components.
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Asymptotics for the Erdös-Rényi model G (n, p)

Theorem (forthcoming)

For any positive r , the probability pn that a random labeled graph
G (n, p) is connected, satisfies

pn = 1−
r−1∑
k=1

Pk(ρ) ·
(
n

k

)
· qnk

qk(k+1)/2
+ O

(
nrqnr

)
,

where ρ = 1/(1− p) and a sequence of polynomials Pk(ρ) has an
explicit combinatorial interpretation.

(
Pk(ρ)

)
= 1, ρ− 2, ρ3 − 6ρ+ 6, ρ6 − 8ρ3 − 6ρ2 + 36ρ− 24, . . .
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Many thanks to all listeners

Thank you for your attention!
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Square-tiled surfaces

Take n labeled squares.

Identify their sides by translation
(right side ↔ left side, bottom side ↔ top side).

If obtained surface is connected, then it is called
a labeled square-tiled surface (SQS) or origami.

a

a

b

b

c c d d

e

e

f f1 2 3 ⇔

a

a

b

b

c c

d d

1

23
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Square-tiled surfaces

SQS is determined by the pair of permutations (h, v) ∈ S2
n acting

transitively on {1, . . . , n}:
h: horizontal (right) permutation,

v : vertical (top) permutation,

transitive action ↔ connectedness of SQS.

a

a

b

b

c c d d

e

e

f f1 2 3 ⇔
h = (1)(23)

v = (13)(2)
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Probability to obtain a square-tiled surface

gn counts surfaces generated by pairs (σ, τ) ∈ S2
n ,

cn counts connected surfaces (SQS),

in = n! · µn, where µn counts indecomposable permutations.

P{surface is connected} =

=
cn
gn

= 1−
r−1∑
k=1

µk
(n)k

+ O

(
1

nr

)
,

where (n)k = n(n − 1) . . . (n − k + 1) are the falling factorials

and (µk) = 1, 1, 3, 13, 71, 461, 3447, 29093, . . .
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Indecomposable permutations

A permutation σ ∈ Sn is

decomposable, if there is an index p < n
such that σ

(
{1, . . . , p}

)
= {1, . . . , p}.

indecomposable otherwise.

(
1 2 3 4 5
3 1 2 5 4

)
decomposable (p = 3)

(
1 2 3 4 5
5 3 2 1 4

)
indecomposable

Observation. Every permutation can be uniquely decomposed into
a sequence (SEQ) of indecomposable permutations.
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Probability of a permutation to be indecomposable

tn = (n!)2 counts pairs of permutations,

in = n! · µn, where µn counts indecomposable permutations.

i
(2)
n = n! · µ(2)n , where µ

(2)
n counts permutations that have

exactly 2 indecomposable parts.

P{permutation is indecomposable} =

=
in
tn

=
µn
n!

= 1−
r−1∑
k=1

2µk − µ
(2)
k

(n)k
+ O

(
1

nr

)
,

(µk) = 1, 1, 3, 13, 71, 461, 3447, . . .(
µ
(2)
k

)
= 0, 1, 2, 7, 32, 177, 1142, . . .(

2µk − µ
(2)
k

)
= 2, 1, 4, 19, 110, 745, 5752, . . .
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Other applications

combinatorial map model (D + 1)-colored graphs

surfaces obtained bipartite regular graphs
fn by gluing polygons with colored edges

{(σ, τ) | τ is perfect matching} (σ1, . . . , σD+1) ∈ SD+1
n

gn connected surfaces connected graphs
{(σ, τ) | τ is indecomposable (τ1, . . . , τD−1) is indecomposable

hn perfect matching} tuple of permutations
pn P{surface is connected} P{graph is connected}

P{perfect matching is . P{tuple of permutations is .

p
(1)
n indecomposable} indecomposable}
f2n (2n)!(2n − 1)!! (2n)! · (n!)D−1

g2n 2, 60, 8880, 3558240 . . . 2, 12(2D − 1), . . .
µ2n h2n = (2n)! · µ2n h2n = (2n)! · µ2n

h2n (µ2n) = 1, 2, 10, 74, 706 . . . 1, 2D−1 − 1, 6D−1 − 2D + 1, . . .
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