Asymptotics for connected graphs and irreducible tournaments

Khaydar Nurligareev (joint with Thierry Monteil)

LIPN, University of Paris 13

EUROCOMB 2021

September 9, 2021

Table of contents

1 Background and results

2 Ideas of proof

3 Further results

Graphs

Let g_{n} be the number of labeled graphs with n vertices.

$$
g_{n}=2\binom{n}{2}
$$

Connected graphs

Let c_{n} be the number of connected labeled graphs with n vertices.

$$
\left(c_{n}\right)=1,1,4,38,728,26704,1866256, \ldots
$$

Every graph is a disjoint union (SET) of connected graphs.

Probability of a graph to be connected

Question. What is the probability $p_{n}=\frac{c_{n}}{g_{n}}$ of a random graph with n vertices to be connected as $n \rightarrow \infty$?

Probability of a graph to be connected

Question. What is the probability $p_{n}=\frac{c_{n}}{g_{n}}$ of a random graph with n vertices to be connected as $n \rightarrow \infty$?

- folklore:

$$
p_{n}=1+o(1)
$$

Probability of a graph to be connected

Question. What is the probability $p_{n}=\frac{c_{n}}{g_{n}}$ of a random graph with n vertices to be connected as $n \rightarrow \infty$?

- folklore:

$$
p_{n}=1+o(1)
$$

- Gilbert, 1959:

$$
p_{n}=1-\frac{2 n}{2^{n}}+O\left(\frac{n^{2}}{2^{3 n / 2}}\right)
$$

Probability of a graph to be connected

Question. What is the probability $p_{n}=\frac{c_{n}}{g_{n}}$ of a random graph with n vertices to be connected as $n \rightarrow \infty$?

- folklore:

$$
p_{n}=1+o(1)
$$

- Gilbert, 1959:

$$
p_{n}=1-\frac{2 n}{2^{n}}+O\left(\frac{n^{2}}{2^{3 n / 2}}\right)
$$

- Wright, 1970:

$$
p_{n}=1-\binom{n}{1} \frac{2}{2^{n}}-2\binom{n}{3} \frac{2^{6}}{2^{3 n}}-24\binom{n}{4} \frac{2^{10}}{2^{4 n}}+O\left(\frac{n^{5}}{2^{5 n}}\right)
$$

Probability of a graph to be connected

Question. What is the probability $p_{n}=\frac{c_{n}}{g_{n}}$ of a random graph with n vertices to be connected as $n \rightarrow \infty$?

- folklore:

$$
p_{n}=1+o(1)
$$

- Gilbert, 1959:

$$
p_{n}=1-\frac{2 n}{2^{n}}+O\left(\frac{n^{2}}{2^{3 n / 2}}\right)
$$

- Wright, 1970:

$$
p_{n}=1-\binom{n}{1} \frac{2}{2^{n}}-2\binom{n}{3} \frac{2}{}_{2^{6 n}}^{2^{3 n}}-24\binom{n}{4} \frac{2^{10}}{2^{4 n}}+O\left(\frac{n^{5}}{2^{5 n}}\right)
$$

- Can we have all terms at once? What is the interpretation?

Asymptotics for connected graphs

Theorem (1)

For any positive integer r, the probability p_{n} that a random labeled graph of size n is connected, satisfies

$$
p_{n}=1-\sum_{k=1}^{r-1} i_{k} \cdot\binom{n}{k} \cdot \frac{2^{k(k+1) / 2}}{2^{n k}}+O\left(\frac{n^{r}}{2^{n r}}\right)
$$

where i_{k} is the number of irreducible labeled tournaments of size k.

$$
\left(i_{k}\right)=1,0,2,24,544,22320,1677488, \ldots
$$

Tournaments

A tournament is a complete directed graph.

The number of labeled tournaments with n vertices is equal to

$$
t_{n}=2\binom{n}{2}
$$

Irreducible tournaments

A tournament is called irreducible (or strongly connected tournament),
if for every partition of vertices $V=A \sqcup B$
1 there exist an edge from A to B and
2 there exist an edge from B to A.

$$
\begin{aligned}
& V=\{1,2,3,4,5,6\} \\
& B=\{1,2,3,6\} \\
& A=5\}
\end{aligned}
$$

Irreducible tournaments

A tournament is called irreducible (or strongly connected tournament),
if for every partition of vertices $V=A \sqcup B$
1 there exist an edge from A to B and
2 there exist an edge from B to A.

Equivalently, for each two vertices u and v
1 there is a path from u to v and
2 there is a path from v to u.

$$
V=\{1,2,3,4,5,6\}
$$

$$
\begin{aligned}
& u=4 \\
& v=6
\end{aligned}
$$

Probability of a tournament to be irreducible

Question. What is the probability $q_{n}=\frac{i_{n}}{t_{n}}$ of a random tournament with n vertices to be irreducible as $n \rightarrow \infty$?

Probability of a tournament to be irreducible

Question. What is the probability $q_{n}=\frac{i_{n}}{t_{n}}$ of a random tournament with n vertices to be irreducible as $n \rightarrow \infty$?

- Moon and Moser, 1962:

$$
q_{n}=1+o(1)
$$

Probability of a tournament to be irreducible

Question. What is the probability $q_{n}=\frac{i_{n}}{t_{n}}$ of a random tournament with n vertices to be irreducible as $n \rightarrow \infty$?

- Moon and Moser, 1962:

$$
\begin{gathered}
q_{n}=1+o(1) \\
q_{n}=1-\frac{4 n}{2^{n}}+O\left(\frac{n^{2}}{2^{2 n}}\right)
\end{gathered}
$$

Probability of a tournament to be irreducible

Question. What is the probability $q_{n}=\frac{i_{n}}{t_{n}}$ of a random tournament with n vertices to be irreducible as $n \rightarrow \infty$?

- Moon and Moser, 1962:

$$
\begin{gathered}
q_{n}=1+o(1) \\
q_{n}=1-\frac{4 n}{2^{n}}+O\left(\frac{n^{2}}{2^{2 n}}\right)
\end{gathered}
$$

■ Moon, 1968:
■ Wright, 1970:

$$
q_{n}=1-\binom{n}{1} \frac{2^{2}}{2^{n}}+\binom{n}{2} \frac{2^{4}}{2^{2 n}}-\binom{n}{3} \frac{2^{8}}{2^{3 n}}-\binom{n}{4} \frac{2^{15}}{2^{4 n}}+O\left(\frac{n^{5}}{2^{5 n}}\right)
$$

Probability of a tournament to be irreducible

Question. What is the probability $q_{n}=\frac{i_{n}}{t_{n}}$ of a random tournament with n vertices to be irreducible as $n \rightarrow \infty$?

- Moon and Moser, 1962:

$$
q_{n}=1+o(1)
$$

■ Moon, 1968:

$$
q_{n}=1-\frac{4 n}{2^{n}}+O\left(\frac{n^{2}}{2^{2 n}}\right)
$$

■ Wright, 1970:

$$
q_{n}=1-\binom{n}{1} \frac{2^{2}}{2^{n}}+\binom{n}{2} \frac{2^{4}}{2^{2 n}}-\binom{n}{3} \frac{2^{8}}{2^{3 n}}-\binom{n}{4} \frac{2^{15}}{2^{4 n}}+O\left(\frac{n^{5}}{2^{5 n}}\right)
$$

■ Can we have all terms at once? What is the interpretation?

Asymptotics for irreducible tournaments

Theorem (2)

For any positive integer r, the probability q_{n} that a random labeled tournament of size n is irreducible, satisfies

$$
q_{n}=1-\sum_{k=1}^{r-1}\left(2 i_{k}-i_{k}^{(2)}\right) \cdot\binom{n}{k} \cdot \frac{2^{k(k+1) / 2}}{2^{n k}}+O\left(\frac{n^{r}}{2^{n r}}\right)
$$

where $i_{k}^{(2)}$ is the number of irreducible labeled tournaments of size k with two irreducible components.

$$
\begin{array}{rllllllll}
\left(i_{k}\right) & =1, & 0, & 2, & 24, & 544, & 22320, & \ldots \\
\left(i_{k}^{(2)}\right) & = & 0, & 2, & 0, & 16, & 240, & 6608, & \ldots \\
\left(2 i_{k}-i_{k}^{(2)}\right) & = & 2, & -2, & 4, & 32, & 848, & 38032, & \ldots
\end{array}
$$

Tournament as a sequence

Lemma. Every labeled tournament can be uniquely decomposed into a sequence (SEQ) of irreducible labeled tournaments.

Tournament as a sequence

Lemma. Every labeled tournament can be uniquely decomposed into a sequence (SEQ) of irreducible labeled tournaments.

Tournament as a sequence

Lemma. Every labeled tournament can be uniquely decomposed into a sequence (SEQ) of irreducible labeled tournaments.

SET and SEQ decompositions

Main tool: Bender's theorem

Theorem (Bender, 1975)

- $A(z)=\sum_{n=1}^{\infty} a_{n} z^{n}$ is a formal power series, $\forall n \in \mathbb{N}: a_{n} \neq 0$;
- $F(x, y)$ is a function analytic in a neighborhood of $(0 ; 0)$;
- $B(z)=\sum_{n=1}^{\infty} b_{n} z^{n}=F(z, A(z))$;

■ $D(z)=\sum_{n=1}^{\infty} d_{n} z^{n}=\frac{\partial F}{\partial y}(z, A(z))$.
If (i) $\frac{a_{n-1}}{a_{n}} \rightarrow 0$ and (ii) $\exists r \geqslant 1: \sum_{k=r}^{n-r}\left|a_{k} a_{n-k}\right|=O\left(a_{n-r}\right)$,
then, as $n \rightarrow \infty$,

$$
b_{n}=\sum_{k=0}^{r-1} d_{k} a_{n-k}+O\left(a_{n-r}\right)
$$

Applying Bender's theorem for graphs

Take

- $A(z)=G(z)-1=T(z)-1$,
- $\quad F(x, y)=\ln (1+y)$.

Then

- $\quad B(z)=F(z, A(z))=\ln (G(z))=C(z)$,
- $D(z)=\frac{\partial F}{\partial y}(z, A(z))=\frac{1}{T(z)}=1-I(z)$.
- The statement of Bender's theorem transforms into

$$
b_{n}=\frac{c_{n}}{n!}=\frac{g_{n}}{n!}-\frac{1}{n!} \sum_{k=1}^{r-1}\binom{n}{k} i_{k} g_{n-k}+O\left(\frac{g_{n-r}}{(n-r)!}\right)
$$

Applying Bender's theorem for tournaments

Take

- $\quad A(z)=T(z)-1$,
- $F(x, y)=-\frac{1}{1+y}$.

Then

- $B(z)=F(z, A(z))=-\frac{1}{T(z)}=-1+I(z)$,
- $D(z)=\frac{\partial F}{\partial y}(z, A(z))=\frac{1}{(T(z))^{2}}=(1-I(z))^{2}$.
- The statement of Bender's theorem transforms into

$$
b_{n}=\frac{i_{n}}{n!}=\frac{t_{n}}{n!}-\frac{1}{n!} \sum_{k=1}^{r-1}\binom{n}{k}\left(2 i_{k}-i_{k}^{(2)}\right) t_{n-k}+O\left(\frac{t_{n-r}}{(n-r)!}\right)
$$

Asymptotics for graphs

Theorem (forthcoming)

For any positive m and r, the probability $p_{n}^{(m+1)}$ that a random labeled graph of size n has exactly $(m+1)$ connected components, satisfies

$$
p_{n}^{(m+1)}=1-\sum_{k=1}^{r-1} \alpha_{k}^{(m+1)} \cdot\binom{n}{k} \cdot \frac{2^{k(k+1) / 2}}{2^{n k}}+O\left(\frac{n^{r}}{2^{n r}}\right)
$$

where

$$
\alpha_{k}^{(m+1)}=\sum_{s=1}^{k}(-1)^{s}\binom{s}{m} c_{k}^{(s)}
$$

and $c_{k}^{(s)}$ is the number of labeled graphs of size k with s connected components.

Asymptotics for tournaments

Theorem (forthcoming)

For any positive m and r, the probability $q_{n}^{(m+1)}$ that a random labeled tournament of size n has exactly $(m+1)$ irreducible components, satisfies

$$
q_{n}^{(m+1)}=1-\sum_{k=1}^{r-1} \beta_{k}^{(m+1)} \cdot\binom{n}{k} \cdot \frac{2^{k(k+1) / 2}}{2^{n k}}+O\left(\frac{n^{r}}{2^{n r}}\right)
$$

$$
\text { where } \quad \beta_{k}^{(m+1)}=(m+1)\left(i_{k}^{(m)}-2 i_{k}^{(m+1)}+i_{k}^{(m+2)}\right)
$$

and $i_{k}^{(s)}$ is the number of labeled tournaments of size k with s irreducible components.

Asymptotics for the Erdös-Rényi model $G(n, p)$

Theorem (forthcoming)

For any positive r, the probability p_{n} that a random labeled graph $G(n, p)$ is connected, satisfies

$$
p_{n}=1-\sum_{k=1}^{r-1} P_{k}(\rho) \cdot\binom{n}{k} \cdot \frac{q^{n k}}{q^{k(k+1) / 2}}+O\left(n^{r} q^{n r}\right)
$$

where $\rho=1 /(1-p)$ and a sequence of polynomials $P_{k}(\rho)$ has an explicit combinatorial interpretation.

$$
\left(P_{k}(\rho)\right)=1, \rho-2, \rho^{3}-6 \rho+6, \rho^{6}-8 \rho^{3}-6 \rho^{2}+36 \rho-24, \ldots
$$

Many thanks to all listeners

Thank you for your attention!

Square-tiled surfaces

- Take n labeled squares.
- Identify their sides by translation (right side \leftrightarrow left side, bottom side \leftrightarrow top side).
- If obtained surface is connected, then it is called a labeled square-tiled surface (SQS) or origami.

Square-tiled surfaces

SQS is determined by the pair of permutations $(h, v) \in S_{n}^{2}$ acting transitively on $\{1, \ldots, n\}$:

- h : horizontal (right) permutation,
- v : vertical (top) permutation,
- transitive action \leftrightarrow connectedness of SQS.

Probability to obtain a square-tiled surface

- g_{n} counts surfaces generated by pairs $(\sigma, \tau) \in S_{n}^{2}$,
- c_{n} counts connected surfaces (SQS),

■ $i_{n}=n!\cdot \mu_{n}$, where μ_{n} counts indecomposable permutations.
$\mathbb{P}\{$ surface is connected $\}=$

$$
=\frac{c_{n}}{g_{n}}=1-\sum_{k=1}^{r-1} \frac{\mu_{k}}{(n)_{k}}+O\left(\frac{1}{n^{r}}\right)
$$

where $\quad(n)_{k}=n(n-1) \ldots(n-k+1)$ are the falling factorials and

$$
\left(\mu_{k}\right)=1,1,3,13,71,461,3447,29093, \ldots
$$

Indecomposable permutations

A permutation $\sigma \in S_{n}$ is
■ decomposable, if there is an index $p<n$ such that $\sigma(\{1, \ldots, p\})=\{1, \ldots, p\}$.

- indecomposable otherwise.

$$
\begin{array}{lll}
\left(\begin{array}{lll|ll}
1 & 2 & 3 & 4 & 5 \\
3 & 1 & 2 & 5 & 4
\end{array}\right) & \left(\begin{array}{ccccc}
1 & 2 & 3 & 4 & 5 \\
5 & 3 & 2 & 1 & 4
\end{array}\right) \\
\text { decomposable }(p=3) & \text { indecomposable }
\end{array}
$$

Observation. Every permutation can be uniquely decomposed into a sequence (SEQ) of indecomposable permutations.

Probability of a permutation to be indecomposable

- $t_{n}=(n!)^{2}$ counts pairs of permutations,

■ $i_{n}=n!\cdot \mu_{n}$, where μ_{n} counts indecomposable permutations.

- $i_{n}^{(2)}=n!\cdot \mu_{n}^{(2)}$, where $\mu_{n}^{(2)}$ counts permutations that have exactly 2 indecomposable parts.
$\mathbb{P}\{$ permutation is indecomposable $\}=$

$$
\begin{aligned}
=\frac{i_{n}}{t_{n}} & =\frac{\mu_{n}}{n!}=1-\sum_{k=1}^{r-1} \frac{2 \mu_{k}-\mu_{k}^{(2)}}{(n)_{k}}+O\left(\frac{1}{n^{r}}\right), \\
\left(\mu_{k}\right) & =1, \\
1, & 3, \\
\left(\mu_{k}^{(2)}\right) & = \\
0, & 13,
\end{aligned} \quad 2, \quad 7, \quad 71, \quad 461, \quad 3447, \quad \ldots, 177, \quad 1142, \quad \ldots
$$

Other applications

	combinatorial map model	($D+1$)-colored graphs
f_{n}	surfaces obtained by gluing polygons $\{(\sigma, \tau) \mid \tau$ is perfect matching $\}$	bipartite regular graphs with colored edges $\left(\sigma_{1}, \ldots, \sigma_{D+1}\right) \in S_{n}^{D+1}$
g_{n}	connected surfaces	connected graphs
h_{n}	$\{(\sigma, \tau) \mid \tau$ is indecomposable perfect matching $\}$	$\left(\tau_{1}, \ldots, \tau_{D-1}\right)$ is indecomposable tuple of permutations
p_{n}	$\mathbb{P}\{$ surface is connected $\}$	$\mathbb{P}\{$ graph is connected $\}$
$p_{n}^{(1)}$	\mathbb{P} \{perfect matching is indecomposable\}	$\mathbb{P}\{$ tuple of permutations is indecomposable\}
$f_{2 n}$	$(2 n)!(2 n-1)!$!	$(2 n)!\cdot(n!)^{D-1}$
$g_{2 n}$	2, 60, 8880, 3558240...	$2,12\left(2^{D}-1\right), \ldots$
$\begin{aligned} & \mu_{2 n} \\ & h_{2 n} \end{aligned}$	$\begin{gathered} h_{2 n}=(2 n)!\cdot \mu_{2 n} \\ \left(\mu_{2 n}\right)=1,2,10,74,706 \ldots \\ \hline \end{gathered}$	$\begin{gathered} h_{2 n}=(2 n)!\cdot \mu_{2 n} \\ 1,2^{D-1}-1,6^{D-1}-2^{D}+1, \ldots \end{gathered}$

Literature I

Q Moon J.W.
Topics on tournament.
New-York: Holt, Rinehart and Winston VIII, 1968.
围
Bender E.A.
An asymptotic expansion for some coefficients of some formal power series
J. Lond. Math. Soc., Ser. 9 (1975), pp. 451-458.

T
Gilbert E.N.
Random graphs
Ann. Math. Stat., Vol. 30, N. 4 (1959), pp. 1141-1144.

Literature II

風 Moon J.W., Moser L.
Almost all tournaments are irreducible
Can. Math. Bull., 5 (1962), 61-65.

Wright E.M.
Asymptotic relations between enumerative functions in graph theory
Proc. Lond. Math. Soc., Vol. s3-20, Issue 3 (1970), pp. 558-572.
R
Wright E.M.
The Number of Irreducible Tournaments
Glasg. Math. J., Vol. 11, Issue 2 (1970), pp. 97-101.

