Asymptotics for connected graphs and irreducible tournaments

Khaydar Nurligareev (joint with Thierry Monteil)

LIPN, University of Paris 13

EUROCOMB 2021

September 9, 2021

Khaydar Nurligareev (joint with Thierry Monteil)

IPN, University of Paris 13

Table of contents

2 Ideas of proof

3 Further results

Khaydar Nurligareev (joint with Thierry Monteil)

IPN. University of Paris 13.

Bacl ●00	ground and results 00000	Ideas of proof	Further results
Gr	aphs		
	Let g_n be the number of label	ed graphs with <i>n</i> vertices.	

Khaydar Nurligareev (joint with Thierry Monteil)

Background and results ○●○○○○○○	Ideas of proof 00000	Further results

Connected graphs

Let c_n be the number of connected labeled graphs with n vertices.

 $(c_n) = 1, 1, 4, 38, 728, 26704, 1866256, \ldots$

Every graph is a disjoint union (SET) of connected graphs.

Background and results	Ideas of proof	Further results
000000		

<u>Question</u>. What is the probability $p_n = \frac{c_n}{g_n}$ of a random graph with n vertices to be connected as $n \to \infty$?

Background and results	Ideas of proof	Further results
0000000		

<u>Question</u>. What is the probability $p_n = \frac{c_n}{g_n}$ of a random graph with n vertices to be connected as $n \to \infty$?

• folklore:
$$p_n = 1 + o(1)$$

Background and results	Ideas of proof	Further results
000000	00000	0000

Question. What is the probability $p_n = \frac{c_n}{g_n}$ of a random graph with n vertices to be connected as $n \to \infty$?

folklore: p_n = 1 + o(1)
 Gilbert, 1959: p_n = 1 - ²ⁿ/_{2ⁿ} + O(^{n²}/_{2^{3n/2}})

Background and results	Ideas of proof	Further results
000000	00000	0000

<u>Question</u>. What is the probability $p_n = \frac{c_n}{g_n}$ of a random graph with n vertices to be connected as $n \to \infty$?

• folklore: $p_n = 1 + o(1)$

Gilbert, 1959:
$$p_n = 1 - \frac{2n}{2^n} + O\left(\frac{n^2}{2^{3n/2}}\right)$$

Wright, 1970:

$$p_n = 1 - \binom{n}{1} \frac{2}{2^n} - 2\binom{n}{3} \frac{2^6}{2^{3n}} - 24\binom{n}{4} \frac{2^{10}}{2^{4n}} + O\left(\frac{n^5}{2^{5n}}\right)$$

Khaydar Nurligareev (joint with Thierry Monteil)

Background and results	Ideas of proof	Further results
000000	00000	0000

<u>Question</u>. What is the probability $p_n = \frac{c_n}{g_n}$ of a random graph with n vertices to be connected as $n \to \infty$?

• folklore: $p_n = 1 + o(1)$

Gilbert, 1959:
$$p_n = 1 - \frac{2n}{2^n} + O\left(\frac{n^2}{2^{3n/2}}\right)$$

Wright, 1970:

$$p_n = 1 - \binom{n}{1} \frac{2}{2^n} - 2\binom{n}{3} \frac{2^6}{2^{3n}} - 24\binom{n}{4} \frac{2^{10}}{2^{4n}} + O\left(\frac{n^5}{2^{5n}}\right)$$

Can we have all terms at once? What is the interpretation?

Khaydar Nurligareev (joint with Thierry Monteil)

LIPN, University of Paris 13

Asymptotics for connected graphs

Theorem (1)

For any positive integer r, the probability p_n that a random labeled graph of size n is connected, satisfies

$$p_n = 1 - \sum_{k=1}^{r-1} i_k \cdot {n \choose k} \cdot \frac{2^{k(k+1)/2}}{2^{nk}} + O\left(\frac{n^r}{2^{nr}}\right),$$

where i_k is the number of irreducible labeled tournaments of size k.

$$(i_k) = 1, 0, 2, 24, 544, 22320, 1677488, \ldots$$

Khaydar Nurligareev (joint with Thierry Monteil)

Background and results 0000●000	Ideas of proof 00000	Further results

Tournaments

A tournament is a complete directed graph.

The number of labeled tournaments with n vertices is equal to

$$t_n=2\binom{n}{2}$$

Khaydar Nurligareev (joint with Thierry Monteil)

LIPN, University of Paris 13

Ideas of proof

Irreducible tournaments

A tournament is called irreducible (or strongly connected tournament),

if for every partition of vertices $V = A \sqcup B$

- **1** there exist an edge from A to B and
- **2** there exist an edge from B to A.

Ideas of proof

Irreducible tournaments

A tournament is called irreducible (or strongly connected tournament),

if for every partition of vertices $V = A \sqcup B$

1 there exist an edge from A to B and

2 there exist an edge from B to A.

Equivalently, for each two vertices *u* and *v* 1 there is a path from *u* to *v* and 2 there is a path from *v* to *u*. $V = \{1, 2, 3, 4, 5, 6\}$

Background and results	Ideas of proof	Further results
0000000		

Probability of a tournament to be irreducible

<u>Question</u>. What is the probability $q_n = \frac{i_n}{t_n}$ of a random tournament with *n* vertices to be irreducible as $n \to \infty$?

Background and results	Ideas of proof	Further results

Probability of a tournament to be irreducible

Question. What is the probability $q_n = \frac{i_n}{t_n}$ of a random tournament with *n* vertices to be irreducible as $n \to \infty$?

• Moon and Moser, 1962: $q_n = 1 + o(1)$

Probability of a tournament to be irreducible

<u>Question</u>. What is the probability $q_n = \frac{i_n}{t_n}$ of a random tournament with *n* vertices to be irreducible as $n \to \infty$?

- Moon and Moser, 1962: $q_n = 1 + o(1)$
- Moon, 1968: $q_n = 1 \frac{4n}{2^n} + O\left(\frac{n^2}{2^{2n}}\right)$

Ideas of proof

Probability of a tournament to be irreducible

<u>Question</u>. What is the probability $q_n = \frac{i_n}{t_n}$ of a random tournament with *n* vertices to be irreducible as $n \to \infty$?

- Moon and Moser, 1962: $q_n = 1 + o(1)$
- Moon, 1968:

$$q_n = 1 - \frac{4n}{2^n} + O\left(\frac{n^2}{2^{2n}}\right)$$

Wright, 1970:

$$q_n = 1 - \binom{n}{1} \frac{2^2}{2^n} + \binom{n}{2} \frac{2^4}{2^{2n}} - \binom{n}{3} \frac{2^8}{2^{3n}} - \binom{n}{4} \frac{2^{15}}{2^{4n}} + O\left(\frac{n^5}{2^{5n}}\right)$$

Khaydar Nurligareev (joint with Thierry Monteil)

Ideas of proof

Probability of a tournament to be irreducible

<u>Question</u>. What is the probability $q_n = \frac{i_n}{t_n}$ of a random tournament with *n* vertices to be irreducible as $n \to \infty$?

- Moon and Moser, 1962: $q_n = 1 + o(1)$ Moon, 1968: $q_n = 1 \frac{4n}{2^n} + O\left(\frac{n^2}{2^{2n}}\right)$
- Wright, 1970:

$$q_n = 1 - \binom{n}{1} \frac{2^2}{2^n} + \binom{n}{2} \frac{2^4}{2^{2n}} - \binom{n}{3} \frac{2^8}{2^{3n}} - \binom{n}{4} \frac{2^{15}}{2^{4n}} + O\left(\frac{n^5}{2^{5n}}\right)$$

Can we have all terms at once? What is the interpretation?

Khaydar Nurligareev (joint with Thierry Monteil)

LIPN, University of Paris 13

Asymptotics for irreducible tournaments

Theorem (2)

For any positive integer r, the probability q_n that a random labeled tournament of size n is irreducible, satisfies

$$q_n = 1 - \sum_{k=1}^{r-1} \left(2i_k - i_k^{(2)} \right) \cdot {\binom{n}{k}} \cdot \frac{2^{k(k+1)/2}}{2^{nk}} + O\left(\frac{n^r}{2^{nr}} \right),$$

where $i_k^{(2)}$ is the number of irreducible labeled tournaments of size k with two irreducible components.

$$(i_k) = 1, 0, 2, 24, 544, 22320, \dots$$

 $(i_k^{(2)}) = 0, 2, 0, 16, 240, 6608, \dots$
 $(2i_k - i_k^{(2)}) = 2, -2, 4, 32, 848, 38032, \dots$

Khaydar Nurligareev (joint with Thierry Monteil)

Background and results	Ideas of proof	Further results
0000000	•0000	0000

Tournament as a sequence

Lemma. Every labeled tournament can be uniquely decomposed into a sequence (SEQ) of irreducible labeled tournaments.

Khaydar Nurligareev (joint with Thierry Monteil)

Background and results	Ideas of proof	Further results
	00000	

Tournament as a sequence

Lemma. Every labeled tournament can be uniquely decomposed into a sequence (SEQ) of irreducible labeled tournaments.

Khaydar Nurligareev (joint with Thierry Monteil)

Background and results	Ideas of proof	Further results
	00000	

Tournament as a sequence

Lemma. Every labeled tournament can be uniquely decomposed into a sequence (SEQ) of irreducible labeled tournaments.

Khaydar Nurligareev (joint with Thierry Monteil)

LIPN, University of Paris 13

Background and results	Ideas of proof	Further results
0000000	0000	0000

SET and SEQ decompositions

Khaydar Nurligareev (joint with Thierry Monteil)

LIPN, University of Paris 13

Background and results	Ideas of proof	Further results
	00000	

Main tool: Bender's theorem

Theorem (Bender, 1975)

•
$$A(z) = \sum_{n=1}^{\infty} a_n z^n$$
 is a formal power series, $\forall n \in \mathbb{N} : a_n \neq 0$;
• $F(x, y)$ is a function analytic in a neighborhood of $(0; 0)$;
• $B(z) = \sum_{n=1}^{\infty} b_n z^n = F(z, A(z))$;
• $D(z) = \sum_{n=1}^{\infty} d_n z^n = \frac{\partial F}{\partial y}(z, A(z))$.
f (i) $\frac{a_{n-1}}{a_n} \to 0$ and (ii) $\exists r \ge 1 : \sum_{k=r}^{n-r} |a_k a_{n-k}| = O(a_{n-r})$.
then, as $n \to \infty$, $b_n = \sum_{k=0}^{r-1} d_k a_{n-k} + O(a_{n-r})$.

Khaydar Nurligareev (joint with Thierry Monteil)

Background and results	Ideas of proof	Further results
0000000	00000	0000

Applying Bender's theorem for graphs

Take

•
$$A(z) = G(z) - 1 = T(z) - 1$$
,
• $F(x, y) = \ln(1 + y)$.

Then

$$B(z) = F(z, A(z)) = \ln (G(z)) = C(z),$$

$$D(z) = \frac{\partial F}{\partial y}(z, A(z)) = \frac{1}{T(z)} = 1 - I(z).$$

The statement of Bender's theorem transforms into $b_n = \frac{c_n}{n!} = \frac{g_n}{n!} - \frac{1}{n!} \sum_{k=1}^{r-1} \binom{n}{k} i_k g_{n-k} + O\left(\frac{g_{n-r}}{(n-r)!}\right)$

Khaydar Nurligareev (joint with Thierry Monteil)

Background and results	Ideas of proof	Further results
	00000	

Applying Bender's theorem for tournaments

Take

•
$$A(z) = T(z) - 1$$
,
• $F(x, y) = -\frac{1}{1+y}$.

Then

$$B(z) = F(z, A(z)) = -\frac{1}{T(z)} = -1 + I(z),$$

$$D(z) = \frac{\partial F}{\partial y}(z, A(z)) = \frac{1}{(T(z))^2} = (1 - I(z))^2.$$

The statement of Bender's theorem transforms into

$$b_n = \frac{i_n}{n!} = \frac{t_n}{n!} - \frac{1}{n!} \sum_{k=1}^{r-1} \binom{n}{k} (2i_k - i_k^{(2)}) t_{n-k} + O\left(\frac{t_{n-r}}{(n-r)!}\right)$$

Khaydar Nurligareev (joint with Thierry Monteil)

LIPN, University of Paris 1.

Asymptotics for graphs

Theorem (forthcoming)

For any positive m and r, the probability $p_n^{(m+1)}$ that a random labeled graph of size n has exactly (m+1) connected components, satisfies

$$p_n^{(m+1)} = 1 - \sum_{k=1}^{r-1} \alpha_k^{(m+1)} \cdot {\binom{n}{k}} \cdot \frac{2^{k(k+1)/2}}{2^{nk}} + O\left(\frac{n^r}{2^{nr}}\right),$$

ere
$$\alpha_k^{(m+1)} = \sum_{s=1}^k (-1)^s {\binom{s}{m}} c_k^{(s)}$$
$$c_k^{(s)} \text{ is the number of labeled graphs of size k with s connections}$$

and $c_k^{(s)}$ is the number of labeled graphs of size k with s connected components.

Khaydar Nurligareev (joint with Thierry Monteil)

wh

Asymptotics for tournaments

Theorem (forthcoming)

For any positive m and r, the probability $q_n^{(m+1)}$ that a random labeled tournament of size n has exactly (m + 1) irreducible components, satisfies

$$q_n^{(m+1)} = 1 - \sum_{k=1}^{r-1} \beta_k^{(m+1)} \cdot {\binom{n}{k}} \cdot \frac{2^{k(k+1)/2}}{2^{nk}} + O\left(\frac{n^r}{2^{nr}}\right),$$

where $\beta_k^{(m+1)} = (m+1)(i_k^{(m)} - 2i_k^{(m+1)} + i_k^{(m+2)})$ and $i_k^{(s)}$ is the number of labeled tournaments of size k with s irreducible components.

Khaydar Nurligareev (joint with Thierry Monteil) Asymptotics for connected graphs and irreducible tournaments

Asymptotics for the Erdös-Rényi model G(n, p)

Theorem (forthcoming)

For any positive r, the probability p_n that a random labeled graph G(n, p) is connected, satisfies

$$p_n = 1 - \sum_{k=1}^{r-1} P_k(\rho) \cdot {\binom{n}{k}} \cdot \frac{q^{nk}}{q^{k(k+1)/2}} + O(n^r q^{nr}),$$

where $\rho = 1/(1 - p)$ and a sequence of polynomials $P_k(\rho)$ has an explicit combinatorial interpretation.

$$(P_k(\rho)) = 1, \ \rho - 2, \ \rho^3 - 6\rho + 6, \ \rho^6 - 8\rho^3 - 6\rho^2 + 36\rho - 24, \ldots$$

Khaydar Nurligareev (joint with Thierry Monteil)

LIPN, University of Paris 13

Ideas of proof

Many thanks to all listeners

Thank you for your attention!

Khaydar Nurligareev (joint with Thierry Monteil)

Square-tiled surfaces

- Take n labeled squares.
- Identify their sides by translation (right side ↔ left side, bottom side ↔ top side).
- If obtained surface is connected, then it is called a labeled square-tiled surface (SQS) or origami.

Khaydar Nurligareev (joint with Thierry Monteil)

Square-tiled surfaces

SQS is determined by the pair of permutations $(h, v) \in S_n^2$ acting transitively on $\{1, \ldots, n\}$:

- *h*: horizontal (right) permutation,
- v: vertical (top) permutation,
- transitive action \leftrightarrow connectedness of SQS.

$$c \boxed{1}_{e} c f \boxed{2}_{b} d d \boxed{3}_{a} f \Leftrightarrow (1)(23)$$

Khaydar Nurligareev (joint with Thierry Monteil)

Probability to obtain a square-tiled surface

- g_n counts surfaces generated by pairs $(\sigma, \tau) \in S_n^2$,
- c_n counts connected surfaces (SQS),
- $i_n = n! \cdot \mu_n$, where μ_n counts indecomposable permutations.

 $\mathbb{P}\{\text{surface is connected}\} =$

$$=\frac{c_n}{g_n}=1-\sum_{k=1}^{r-1}\frac{\mu_k}{(n)_k}+O\left(\frac{1}{n^r}\right),$$

where $(n)_k = n(n-1)...(n-k+1)$ are the falling factorials and $(\mu_k) = 1, 1, 3, 13, 71, 461, 3447, 29093, ...$

Khaydar Nurligareev (joint with Thierry Monteil)

LIPN, University of Paris 13

Indecomposable permutations

A permutation $\sigma \in S_n$ is

- decomposable, if there is an index p < n such that $\sigma(\{1, \ldots, p\}) = \{1, \ldots, p\}.$
- indecomposable otherwise.

$$\begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 3 & 1 & 2 & 5 & 4 \end{pmatrix} \qquad \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 5 & 3 & 2 & 1 & 4 \end{pmatrix}$$

decomposable (p = 3) indecomposable

<u>Observation</u>. Every permutation can be uniquely decomposed into a sequence (SEQ) of indecomposable permutations.

Probability of a permutation to be indecomposable

- $t_n = (n!)^2$ counts pairs of permutations,
- i_n = n! · μ_n, where μ_n counts indecomposable permutations.
 i⁽²⁾_n = n! · μ⁽²⁾_n, where μ⁽²⁾_n counts permutations that have exactly 2 indecomposable parts.

 $\mathbb{P}\{\text{permutation is indecomposable}\} =$

$$=\frac{i_n}{t_n}=\frac{\mu_n}{n!}=1-\sum_{k=1}^{r-1}\frac{2\mu_k-\mu_k^{(2)}}{(n)_k}+O\left(\frac{1}{n^r}\right),$$

$$(\mu_k) = 1, 1, 3, 13, 71, 461, 3447, \dots$$

 $(\mu_k^{(2)}) = 0, 1, 2, 7, 32, 177, 1142, \dots$
 $(2\mu_k - \mu_k^{(2)}) = 2, 1, 4, 19, 110, 745, 5752, \dots$

Khaydar Nurligareev (joint with Thierry Monteil)

Other applications

	combinatorial map model	(D+1)-colored graphs
	surfaces obtained	bipartite regular graphs
f_n	by gluing polygons	with colored edges
	$\{(\sigma, \tau) \mid \tau \text{ is perfect matching}\}$	$(\sigma_1,\ldots,\sigma_{D+1})\in S_n^{D+1}$
gn	connected surfaces	connected graphs
	$\{(\sigma, \tau) \mid \tau \text{ is indecomposable} \}$	(au_1,\ldots, au_{D-1}) is indecomposable
h _n	perfect matching}	tuple of permutations
p _n	$\mathbb{P}\{$ surface is connected $\}$	$\mathbb{P}\{$ graph is connected $\}$
	$\mathbb{P}\{perfect \ matching \ is \}$	$\mathbb{P}\{$ tuple of permutations is
$p_{n}^{(1)}$	indecomposable}	indecomposable}
f _{2n}	(2n)!(2n-1)!!	$(2n)! \cdot (n!)^{D-1}$
g _{2n}	2,60,8880,3558240	$2, 12(2^D - 1), \dots$
μ_{2n}	$h_{2n} = (2n)! \cdot \mu_{2n}$	$h_{2n}=(2n)!\cdot \mu_{2n}$
h _{2n}	$(\mu_{2n}) = 1, 2, 10, 74, 706 \dots$	$1, 2^{D-1} - 1, 6^{D-1} - 2^D + 1, \dots$

Khaydar Nurligareev (joint with Thierry Monteil)

Literature I

Moon J.W.

Topics on tournament. New-York: Holt, Rinehart and Winston VIII, 1968.

Bender F A

An asymptotic expansion for some coefficients of some formal power series

J. Lond. Math. Soc., Ser. 9 (1975), pp. 451-458.

Gilbert E.N.

Random graphs

Ann. Math. Stat., Vol. 30, N. 4 (1959), pp. 1141-1144.

Literature II

Moon J.W., Moser L.

Almost all tournaments are irreducible *Can. Math. Bull.*, 5 (1962), 61-65.

Wright E.M.

Asymptotic relations between enumerative functions in graph theory

Proc. Lond. Math. Soc., Vol. s3-20, Issue 3 (1970), pp. 558-572.

The Number of Irreducible Tournaments Glasg. Math. J., Vol. 11, Issue 2 (1970), pp. 97-101.

Khaydar Nurligareev (joint with Thierry Monteil)