Initialisation	LERW	Results	Anisotropic case	Ideas of proof

Non-local Correlation Functions in the Spanning Tree Model near the Boundary

Khaydar Nurligareev (joint with A. Povolotsky)

HSE, Moscow

Classical and Quantum Integrable Systems 2021

Sochi, July 27, 2021

Khaydar Nurligareev (joint with A. Povolotsky)

HSE, Moscow

Initialisation	LERW	Results	Anisotropic case	Ideas of proof

Content

- 3 Results
- 4 Anisotropic case
- 5 Ideas of proof

Khaydar Nurligareev (joint with A. Povolotsky)

HSE. Moscow

Initialisation	LERW	Results	Anisotropic case	Ideas of proof
000				

Watermelon configurations

Let G = (V, E) be an undirected connected graph with neither loops nor multiple edges.

•
$$I_k = \{i_1, \ldots, i_k\}$$
 and $J_k = \{j_1, \ldots, j_k\}$ are two non-intersecting subsets.

Khaydar Nurligareev (joint with A. Povolotsky)

Initialisation	LERW	Results	Anisotropic case	Ideas of proof
000				

Watermelon configurations

- Let G = (V, E) be an undirected connected graph with neither loops nor multiple edges.
- *I_k* = {*i*₁,...,*i_k*} and *J_k* = {*j*₁,...,*j_k*} are two non-intersecting subsets.
- Watermelon is a configuration of k disjoint loopless paths from Ik to Jk.

Khaydar Nurligareev (joint with A. Povolotsky)

Initialisation ○●○	LERW 000	Results	Anisotropic case	Ideas of proof

Spanning forests

- Let $\mathcal{G}^* = (V^*, E^*)$, where $V^* = V \cup \{*\}$ and * is a sink.
- Choose I_k and J_k .

Khaydar Nurligareev (joint with A. Povolotsky)

Initialisation	LERW	Results	Anisotropic case	Ideas of proof
000				

Spanning forests

- Let $\mathcal{G}^* = (V^*, E^*)$, where $V^* = V \cup \{*\}$ and * is a sink.
- Choose I_k and J_k .
- Take a (k + 1)-connected spanning forest with roots I_k ∪ {*}.
- Consider a uniform measure on the set of all spanning forests.

Initialisation ○●○	LERW 000	Results	Anisotropic case	Ideas of proof

Spanning forests

- Let $\mathcal{G}^* = (V^*, E^*)$, where $V^* = V \cup \{*\}$ and * is a sink.
- Choose I_k and J_k .
- Take a (k + 1)-connected spanning forest with roots I_k ∪ {*}.
- Consider a uniform measure on the set of all spanning forests.

Question.

What is the probability to have a watermelon configuration?

HSE, Moscow

Initialisation	LERW	Results	Anisotropic case	Ideas of proof
000				

Main question

• Let I_k and J_k be separated by distance r.

• Main question. What is the asymptotical behavior of $\mathbb{P}(\text{watermelon configuration})$ for $r \to \infty$?

Khaydar Nurligareev (joint with A. Povolotsky)

Initialisation	LERW	Results	Anisotropic case	Ideas of proof
	000			

- $A \subset V$ is a set of vertices.
- X_n is a simple random walk starting at $X_0 = x$,
- $\tau_A = \min\{n \ge 0 : \xi_n \in A\}$ is a stopping time (hitting time for the set A),

•
$$\gamma = (X_0, X_1, \dots, X_{\tau_A})$$
 is a path corresponding to X_n .

Loop-erased random walk is a path

$$\begin{split} & \textit{LERW}(x,A) = (y_0,\ldots,y_m) = (X_{n_0},\ldots,X_{n_m}), \\ \text{where} \quad & n_0 = 0, \qquad n_{i+1} = \max\{j \colon \gamma(j) = \gamma(n_i)\} + 1. \end{split}$$

Khaydar Nurligareev (joint with A. Povolotsky)

Initialisation	LERW	Results	Anisotropic case	Ideas of proof
	000			

- $A \subset V$ is a set of vertices.
- X_n is a simple random walk starting at $X_0 = x$,
- $\tau_A = \min\{n \ge 0 : \xi_n \in A\}$ is a stopping time (hitting time for the set A),

•
$$\gamma = (X_0, X_1, \dots, X_{\tau_A})$$
 is a path corresponding to X_n .

Loop-erased random walk is a path

$$\begin{split} & \textit{LERW}(x,A) = (y_0,\ldots,y_m) = (X_{n_0},\ldots,X_{n_m}), \\ & \text{where} \qquad n_0 = 0, \qquad n_{i+1} = \max\{j \colon \gamma(j) = \gamma(n_i)\} + 1. \end{split}$$

Khaydar Nurligareev (joint with A. Povolotsky)

Initialisation	LERW	Results	Anisotropic case	Ideas of proof
	000			

- $A \subset V$ is a set of vertices.
- X_n is a simple random walk starting at $X_0 = x$,
- $\tau_A = \min\{n \ge 0 : \xi_n \in A\}$ is a stopping time (hitting time for the set A),

•
$$\gamma = (X_0, X_1, \dots, X_{\tau_A})$$
 is a path corresponding to X_n .

Loop-erased random walk is a path

$$\begin{split} & \textit{LERW}(x,A) = (y_0,\ldots,y_m) = (X_{n_0},\ldots,X_{n_m}), \\ \text{where} \quad & n_0 = 0, \qquad n_{i+1} = \max\{j \colon \gamma(j) = \gamma(n_i)\} + 1. \end{split}$$

Khaydar Nurligareev (joint with A. Povolotsky)

Initialisation	LERW	Results	Anisotropic case	Ideas of proof
	000			

- $A \subset V$ is a set of vertices.
- \blacksquare X_n is a simple random walk starting at $X_0 = x$,
- $\tau_A = \min\{n \ge 0 : \xi_n \in A\}$ is a stopping time (hitting time for the set A),

•
$$\gamma = (X_0, X_1, \dots, X_{\tau_A})$$
 is a path corresponding to X_n .

Loop-erased random walk is a path

$$\begin{split} & \textit{LERW}(x,A) = (y_0,\ldots,y_m) = (X_{n_0},\ldots,X_{n_m}), \\ \text{where} \quad & n_0 = 0, \qquad n_{i+1} = \max\{j \colon \gamma(j) = \gamma(n_i)\} + 1. \end{split}$$

Khaydar Nurligareev (joint with A. Povolotsky)

Initialisation	LERW	Results	Anisotropic case	Ideas of proof
	000			

- $A \subset V$ is a set of vertices.
- \blacksquare X_n is a simple random walk starting at $X_0 = x$,
- $\tau_A = \min\{n \ge 0 : \xi_n \in A\}$ is a stopping time (hitting time for the set A),

•
$$\gamma = (X_0, X_1, \dots, X_{\tau_A})$$
 is a path corresponding to X_n .

Loop-erased random walk is a path

$$\begin{split} & \textit{LERW}(x,A) = (y_0,\ldots,y_m) = (X_{n_0},\ldots,X_{n_m}), \\ \text{where} \quad & n_0 = 0, \qquad n_{i+1} = \max\{j \colon \gamma(j) = \gamma(n_i)\} + 1. \end{split}$$

Khaydar Nurligareev (joint with A. Povolotsky)

Initialisation	LERW	Results	Anisotropic case	Ideas of proof
	000			

- $A \subset V$ is a set of vertices.
- \blacksquare X_n is a simple random walk starting at $X_0 = x$,
- $\tau_A = \min\{n \ge 0 : \xi_n \in A\}$ is a stopping time (hitting time for the set A),

•
$$\gamma = (X_0, X_1, \dots, X_{\tau_A})$$
 is a path corresponding to X_n .

Loop-erased random walk is a path

$$\begin{split} & \textit{LERW}(x,A) = (y_0,\ldots,y_m) = (X_{n_0},\ldots,X_{n_m}), \\ \text{where} \quad & n_0 = 0, \qquad n_{i+1} = \max\{j \colon \gamma(j) = \gamma(n_i)\} + 1. \end{split}$$

Khaydar Nurligareev (joint with A. Povolotsky)

Initialisation	LERW	Results	Anisotropic case	Ideas of proof
	000			

- $A \subset V$ is a set of vertices.
- \blacksquare X_n is a simple random walk starting at $X_0 = x$,
- $\tau_A = \min\{n \ge 0 : \xi_n \in A\}$ is a stopping time (hitting time for the set A),

•
$$\gamma = (X_0, X_1, \dots, X_{\tau_A})$$
 is a path corresponding to X_n .

Loop-erased random walk is a path

$$\begin{split} & \textit{LERW}(x,A) = (y_0,\ldots,y_m) = (X_{n_0},\ldots,X_{n_m}), \\ \text{where} \quad & n_0 = 0, \qquad n_{i+1} = \max\{j \colon \gamma(j) = \gamma(n_i)\} + 1. \end{split}$$

Khaydar Nurligareev (joint with A. Povolotsky)

Initialisation	LERW	Results	Anisotropic case	Ideas of proof
	000			

- $A \subset V$ is a set of vertices.
- X_n is a simple random walk starting at $X_0 = x$,
- $\tau_A = \min\{n \ge 0 : \xi_n \in A\}$ is a stopping time (hitting time for the set A),

•
$$\gamma = (X_0, X_1, \dots, X_{\tau_A})$$
 is a path corresponding to X_n .

Loop-erased random walk is a path

$$\begin{split} & \textit{LERW}(x,A) = (y_0,\ldots,y_m) = (X_{n_0},\ldots,X_{n_m}), \\ \text{where} \quad & n_0 = 0, \qquad n_{i+1} = \max\{j \colon \gamma(j) = \gamma(n_i)\} + 1. \end{split}$$

Khaydar Nurligareev (joint with A. Povolotsky)

Initialisation	LERW	Results	Anisotropic case	Ideas of proof
	000			

- $A \subset V$ is a set of vertices.
- X_n is a simple random walk starting at $X_0 = x$,
- $\tau_A = \min\{n \ge 0 : \xi_n \in A\}$ is a stopping time (hitting time for the set A),

•
$$\gamma = (X_0, X_1, \dots, X_{\tau_A})$$
 is a path corresponding to X_n .

Loop-erased random walk is a path

$$\begin{split} & \textit{LERW}(x,A) = (y_0,\ldots,y_m) = (X_{n_0},\ldots,X_{n_m}), \\ & \text{where} \qquad n_0 = 0, \qquad n_{i+1} = \max\{j \colon \gamma(j) = \gamma(n_i)\} + 1. \end{split}$$

Khaydar Nurligareev (joint with A. Povolotsky)

Initialisation	LERW	Results	Anisotropic case	Ideas of proof
	000			

- $A \subset V$ is a set of vertices.
- X_n is a simple random walk starting at $X_0 = x$,
- $\tau_A = \min\{n \ge 0 : \xi_n \in A\}$ is a stopping time (hitting time for the set A),

•
$$\gamma = (X_0, X_1, \dots, X_{\tau_A})$$
 is a path corresponding to X_n .

Loop-erased random walk is a path

$$\begin{split} & \textit{LERW}(x,A) = (y_0,\ldots,y_m) = (X_{n_0},\ldots,X_{n_m}), \\ & \text{where} \qquad n_0 = 0, \qquad n_{i+1} = \max\{j \colon \gamma(j) = \gamma(n_i)\} + 1. \end{split}$$

Khaydar Nurligareev (joint with A. Povolotsky)

Initialisation	LERW	Results	Anisotropic case	Ideas of proof
	000			

- $A \subset V$ is a set of vertices.
- X_n is a simple random walk starting at $X_0 = x$,
- $\tau_A = \min\{n \ge 0 : \xi_n \in A\}$ is a stopping time (hitting time for the set A),

•
$$\gamma = (X_0, X_1, \dots, X_{\tau_A})$$
 is a path corresponding to X_n .

Loop-erased random walk is a path

$$\begin{split} & \textit{LERW}(x,A) = (y_0,\ldots,y_m) = (X_{n_0},\ldots,X_{n_m}), \\ & \text{where} \qquad n_0 = 0, \qquad n_{i+1} = \max\{j \colon \gamma(j) = \gamma(n_i)\} + 1. \end{split}$$

Khaydar Nurligareev (joint with A. Povolotsky)

Initialisation	LERW	Results	Anisotropic case	Ideas of proof
	000			

- $A \subset V$ is a set of vertices.
- X_n is a simple random walk starting at $X_0 = x$,
- $\tau_A = \min\{n \ge 0 : \xi_n \in A\}$ is a stopping time (hitting time for the set A),

•
$$\gamma = (X_0, X_1, \dots, X_{\tau_A})$$
 is a path corresponding to X_n .

Loop-erased random walk is a path

$$\begin{split} & \textit{LERW}(x,A) = (y_0,\ldots,y_m) = (X_{n_0},\ldots,X_{n_m}), \\ \text{where} \quad & n_0 = 0, \qquad n_{i+1} = \max\{j \colon \gamma(j) = \gamma(n_i)\} + 1. \end{split}$$

Khaydar Nurligareev (joint with A. Povolotsky)

Initialisation	LERW	Results	Anisotropic case	Ideas of proof
	000			

- $A \subset V$ is a set of vertices.
- X_n is a simple random walk starting at $X_0 = x$,
- $\tau_A = \min\{n \ge 0 : \xi_n \in A\}$ is a stopping time (hitting time for the set A),

•
$$\gamma = (X_0, X_1, \dots, X_{\tau_A})$$
 is a path corresponding to X_n .

Loop-erased random walk is a path

$$\begin{split} & \textit{LERW}(x,A) = (y_0,\ldots,y_m) = (X_{n_0},\ldots,X_{n_m}), \\ & \text{where} \qquad n_0 = 0, \qquad n_{i+1} = \max\{j \colon \gamma(j) = \gamma(n_i)\} + 1. \end{split}$$

Khaydar Nurligareev (joint with A. Povolotsky)

Initialisation	LERW	Results	Anisotropic case	Ideas of proof
000	000	0000	0000	0000

- **1** Take any vertex $v_0 \in V$.
- **2** Define $U_0 = \{v_0\}$.
- **3** Take any vertex $v_1 \in V \setminus U_0$.
- 4 Consider $LERW(v_1, U_0)$ and define $U_1 = LERW(v_1, U_0)$.
- 5 . . .
- **6** Take any vertex $v_k \in V \setminus U_{k-1}$.
- 7 Define $U_k = LERW(v_k, U_{k-1}) \cup U_{k-1}$.
- 8 At the end, we obtain a spanning tree.
- If $|\mathcal{U}_0| > 1$, then we will get a spanning forest.

Initialisation	LERW	Results	Anisotropic case	Ideas of proof
000	000	0000	0000	0000

- **1** Take any vertex $v_0 \in V$.
- **2** Define $U_0 = \{v_0\}$.
- **3** Take any vertex $v_1 \in V \setminus \mathcal{U}_0$.
- 4 Consider $LERW(v_1, U_0)$ and define $U_1 = LERW(v_1, U_0)$.
- 5 . . .
- **6** Take any vertex $v_k \in V \setminus U_{k-1}$.
- 7 Define $U_k = LERW(v_k, U_{k-1}) \cup U_{k-1}$.
- 8 At the end, we obtain a spanning tree.
- If $|\mathcal{U}_0| > 1$, then we will get a spanning forest.

Initialisation	LERW	Results	Anisotropic case	Ideas of proof
000	000	0000	0000	0000

- **1** Take any vertex $v_0 \in V$.
- **2** Define $U_0 = \{v_0\}$.
- **3** Take any vertex $v_1 \in V \setminus \mathcal{U}_0$.
- 4 Consider $LERW(v_1, U_0)$ and define $U_1 = LERW(v_1, U_0)$.

5 . . .

- **6** Take any vertex $v_k \in V \setminus U_{k-1}$.
- 7 Define $U_k = LERW(v_k, U_{k-1}) \cup U_{k-1}$.
- 8 At the end, we obtain a spanning tree.
- If $|\mathcal{U}_0| > 1$, then we will get a spanning forest.

Initialisation	LERW	Results	Anisotropic case	Ideas of proof
000	000	0000	0000	0000

- **1** Take any vertex $v_0 \in V$.
- **2** Define $U_0 = \{v_0\}$.
- **3** Take any vertex $v_1 \in V \setminus \mathcal{U}_0$.
- 4 Consider $LERW(v_1, U_0)$ and define $U_1 = LERW(v_1, U_0)$.
- 5 . . .
- **6** Take any vertex $v_k \in V \setminus U_{k-1}$.
- 7 Define $U_k = LERW(v_k, U_{k-1}) \cup U_{k-1}$.
- 8 At the end, we obtain a spanning tree.
- If $|\mathcal{U}_0| > 1$, then we will get a spanning forest.

Initialisation	LERW	Results	Anisotropic case	Ideas of proof
000	000	0000	0000	0000

- **1** Take any vertex $v_0 \in V$.
- **2** Define $U_0 = \{v_0\}$.
- **3** Take any vertex $v_1 \in V \setminus \mathcal{U}_0$.
- 4 Consider $LERW(v_1, U_0)$ and define $U_1 = LERW(v_1, U_0)$.
- 5 . . .
- **6** Take any vertex $v_k \in V \setminus U_{k-1}$.
- 7 Define $U_k = LERW(v_k, U_{k-1}) \cup U_{k-1}$.
- 8 At the end, we obtain a spanning tree.
- If $|\mathcal{U}_0| > 1$, then we will get a spanning forest.

Initialisation	LERW	Results	Anisotropic case	Ideas of proof
000	000	0000	0000	0000

- **1** Take any vertex $v_0 \in V$.
- **2** Define $U_0 = \{v_0\}$.
- **3** Take any vertex $v_1 \in V \setminus \mathcal{U}_0$.
- 4 Consider $LERW(v_1, U_0)$ and define $U_1 = LERW(v_1, U_0)$.
- 5 . . .
- **6** Take any vertex $v_k \in V \setminus \mathcal{U}_{k-1}$.

8 At the end, we obtain a spanning tree.

If $|\mathcal{U}_0| > 1$, then we will get a spanning forest.

Khaydar Nurligareev (joint with A. Povolotsky)

Initialisation	LERW	Results	Anisotropic case	Ideas of proof
000	000	0000	0000	0000

- **1** Take any vertex $v_0 \in V$.
- **2** Define $U_0 = \{v_0\}$.
- **3** Take any vertex $v_1 \in V \setminus U_0$.
- 4 Consider $LERW(v_1, U_0)$ and define $U_1 = LERW(v_1, U_0)$.
- 5 . . .
- **6** Take any vertex $v_k \in V \setminus \mathcal{U}_{k-1}$.

- 7 Define $\mathcal{U}_k = LERW(v_k, \mathcal{U}_{k-1}) \cup \mathcal{U}_{k-1}$.
- 8 At the end, we obtain a spanning tree.
- If $|\mathcal{U}_0| > 1$, then we will get a spanning forest.

Khaydar Nurligareev (joint with A. Povolotsky)

Initialisation	LERW	Results	Anisotropic case	Ideas of proof
000	000	0000	0000	0000

- **1** Take any vertex $v_0 \in V$.
- **2** Define $U_0 = \{v_0\}$.
- **3** Take any vertex $v_1 \in V \setminus U_0$.
- 4 Consider $LERW(v_1, U_0)$ and define $U_1 = LERW(v_1, U_0)$.

5 . . .

- **6** Take any vertex $v_k \in V \setminus \mathcal{U}_{k-1}$.
- 7 Define $\mathcal{U}_k = LERW(v_k, \mathcal{U}_{k-1}) \cup \mathcal{U}_{k-1}$.
- 8 At the end, we obtain a spanning tree.
- If $\left|\mathcal{U}_{0}\right|>1,$ then we will get a spanning forest.

Initialisation	LERW	Results	Anisotropic case	Ideas of proof
	000			

Every k-leg watermelon can be considered as k loop-erased random walks from J_k to I_k .

Khaydar Nurligareev (joint with A. Povolotsky)

HSE, Moscow

Initialisation	LERW	Results	Anisotropic case	Ideas of proof
	000			

Every k-leg watermelon can be considered as k loop-erased random walks from J_k to I_k .

Khaydar Nurligareev (joint with A. Povolotsky)

HSE, Moscow

Initialisation	LERW	Results	Anisotropic case	Ideas of proof
	000			

Every k-leg watermelon can be considered as k loop-erased random walks from J_k to I_k .

Khaydar Nurligareev (joint with A. Povolotsky)

HSE, Moscow

Initialisation	LERW	Results	Anisotropic case	Ideas of proof
	000			

Every k-leg watermelon can be considered as k loop-erased random walks from J_k to I_k .

Khaydar Nurligareev (joint with A. Povolotsky)

HSE. Moscow

Initialisation	LERW	Results	Anisotropic case	Ideas of proof
	000			

Every k-leg watermelon can be considered as k loop-erased random walks from J_k to I_k .

Khaydar Nurligareev (joint with A. Povolotsky)

Initialisation	LERW 000	Results ●000	Anisotropic case	Ideas of proof

CFT predictions

In the bulk, Duplantier and Saleur (1987) predicted

$$\nu^{bulk} = \frac{k^2 - 1}{2}$$

with the help of the Coulomb gas approach.

For the half-plane, Duplantier and Saleur (1986) predicted

$$\nu^{hp}=k(k-1).$$

Khaydar Nurligareev (joint with A. Povolotsky)

HSE, Moscow

Initialisation	LERW	Results	Anisotropic case	Ideas of proof
		0000		

Watermelons in the bulk

Let

- \mathcal{G} be a square lattice (bulk case),
- *k* be odd,
- I_k and J_k have the form of *fence*.

Theorem (Ivashkevich, Hu, 2005;
Gorsky, Nechaev, Poghosyan, Priezzhev, 2013)
$$F(r) \sim C \cdot r^{-\nu^{bulk}} \cdot \ln r, \qquad \text{where } \nu^{bulk} = \frac{k^2 - 1}{2}.$$

Khaydar Nurligareev (joint with A. Povolotsky)

Initialisation	LERW	Results	Anisotropic case	Ideas of proof
		0000		

Watermelons on the half-plane, open boundary

- \mathcal{G} is a square lattice on the half-plane,
- *I_k* and *J_k* have the form of segments located near the boundary,
- absorbing boundary conditions.

Theorem

$$\mathbb{P}(watermelon \ configuration) \sim C^{op} \cdot r^{-k(k+1)},$$

$$C^{op} = \frac{\prod_{s=1}^{k} (s!)^2}{p_k^{op}(\pi) \cdot k!}, \qquad p_k^{op}(x) \text{ is a polynomial of degree } k$$

Khaydar Nurligareev (joint with A. Povolotsky)

Non-local Correlation Functions in the Spanning Tree Model near the Boundary

HSE, Moscow

Initialisation	LERW	Results	Anisotropic case	Ideas of proof
		0000		

Watermelons on the half-plane, closed boundary

- \mathcal{G} is a square lattice on the half-plane,
- *I_k* and *J_k* have the form of segments located near the boundary,

reflecting boundary conditions.

Theorem

$$\mathbb{P}(watermelon \ configuration) \sim C^{cl} \cdot r^{-k(k-1)},$$

$$C^{cl} = \frac{\prod_{s=1}^{k-1} (s!)^2}{p_k^{cl}(\pi) \cdot (k-1)!}, \qquad p_k^{cl}(x) \text{ is a polynomial of degree } k-1.$$

Khaydar Nurligareev (joint with A. Povolotsky)

Non-local Correlation Functions in the Spanning Tree Model near the Boundary

HSE, Moscow

Initialisation	LERW	Results	Anisotropic case	Ideas of proof
000	000	0000	•000	0000

Predictions for stretched watermelons

For the anisotropic case, we have the universality class of the vicious walkers model.

■ In the bulk, Fisher (1984) predicted

$$\nu^{bulk,\parallel} = \frac{k^2}{2}.$$

 For the half-plane, depending on boundary conditions, Guttmann, Owczarek, and Viennot (1998) predicted

 $u^{op,\parallel} = k\left(k + \frac{1}{2}\right)$ for absorbing boundary conditions, $u^{cl,\parallel} = k\left(k - \frac{1}{2}\right)$ for reflecting boundary conditions.

Khaydar Nurligareev (joint with A. Povolotsky)

Initialisation	LERW	Results	Anisotropic case	Ideas of proof
000	000	0000	0000	0000

Elongated watermelons in the bulk

- G is an elongated square lattice,
- I_k and J_k have the form of *fence*.

Theorem (Gorsky, Nechaev, Poghosyan, Priezzhev, 2013)

If $\varepsilon
ightarrow 1/4$, then

$$\mathbb{P}(watermelon \ configuration) \sim C \cdot r^{-
u^{bulk,\parallel}},$$

where
$$u^{bulk,\parallel} = rac{k^2}{2}$$

Khaydar Nurligareev (joint with A. Povolotsky)

Initialisation	LERW	Results	Anisotropic case	Ideas of proof
000	000	0000	0000	0000

Elongated watermelons on the half-plane, open boundary

- $\hfill \ensuremath{\: \ensuremath{\mathcal{G}}}$ is a horizontally elongated square lattice on the half-plane,
- I_k and J_k are segments located near the boundary,
- absorbing boundary conditions.

Theorem

If $\varepsilon
ightarrow 1/4$, then

$$\mathbb{P}(\mathit{watermelon} \; \mathit{configuration}) \sim C^{\mathit{op}} \cdot r^{-k\left(k+rac{1}{2}
ight)}.$$

Khaydar Nurligareev (joint with A. Povolotsky)

HSE, Moscow

Initialisation LE	ERW I	Results	Anisotropic case	Ideas of proof
000 00	00 00	0000	0000	0000

Elongated watermelons on the half-plane, closed boundary

- $\hfill \ensuremath{\: \ensuremath{\mathcal{G}}}$ is a horizontally elongated square lattice on the half-plane,
- I_k and J_k have are segments located near the boundary,
- reflecting boundary conditions.

$$\begin{array}{c|c} & \frac{1}{4} & \frac{1}{4} - \varepsilon \\ \hline \\ \frac{1}{4} + \varepsilon & & \\ & \frac{1}{4} \end{array}$$

1 🛧

Theorem

If $\varepsilon
ightarrow 1/4$, then

$$\mathbb{P}(\textit{watermelon configuration}) \sim C^{\textit{cl}} \cdot r^{-k\left(k-rac{1}{2}
ight)}.$$

Khaydar Nurligareev (joint with A. Povolotsky)

HSE, Moscow

Initialisation	LERW 000	Results	Anisotropic case	Ideas of proof ●○○○

Matrix Tree Theorem

- *G* = (*V*, *E*) is a finite connected (directed) graph without loops and multiple edges.
- $\mathcal{G}^* = (V^*, E^*)$, where $V^* = V \cup \{*\}$, * is a sink.
- Discrete Laplacian is the matrix $\Delta = (\Delta_{ij})_{i,j \in V}$,

$$\Delta_{ij} = \begin{cases} \operatorname{deg} i, & \text{if } i = j; \\ -1, & \text{if } i \neq j, & ij \in V; \\ 0, & \text{if } i \neq j, & ij \notin V. \end{cases}$$

Theorem (Kirchhoff, 1848)

$$\#\{\text{spanning trees of } \mathcal{G}^* \text{ rooted to } *\} = \det \Delta.$$

Khaydar Nurligareev (joint with A. Povolotsky)

Initialisation	LERW	Results	Anisotropic case	Ideas of proof
				0000

All Minors Matrix Tree Theorem

• $I = \{i_1, \ldots, i_k\}$, $J = \{j_1, \ldots, j_k\}$ and $R = \{r_1, \ldots, r_n\}$ are three disjoint subsets of V,

- $\rho_{\sigma} = i_1 j_{\sigma(1)} | \dots | i_k j_{\sigma(k)} | r_1 | \dots | r_n | *$ is partial pairing, $\sigma \in S_k$,
- $Z[\rho_{\sigma}]$ is the number of spanning forests on \mathcal{G}^* such that ■ each component is rooted to $I \cup R \cup \{*\}$,
 - i_m and $j_{\sigma(m)}$ are in the same component.

Theorem (Chen, 1976)

Let Δ be invertible, $G = \Delta^{-1}$. Then

$$\det \Delta \cdot \det G_{J\cup R}^{I\cup R} = \sum_{\sigma\in \mathcal{S}_k} (-1)^\sigma Z[
ho_\sigma].$$

Khaydar Nurligareev (joint with A. Povolotsky)

HSE, Moscow

Initialisation	LERW	Results	Anisotropic case	Ideas of proof
				0000

Watermelon probability and Green functions

$$\mathbb{P}(ext{watermelon configuration}) = rac{\det G_{J_k}^{I_k}}{\det G_{I_k}^{I_k}}$$

$$G - \text{Green function}$$

$$G_{J_{k}}^{l_{k}} \text{ and } G_{J_{k}}^{l_{k}} \text{ are matrices } k \times k$$

$$G_{(x;y_{1},y_{2})}^{op} = \frac{1}{\pi^{2}} \int_{0}^{\pi} d\alpha \int_{0}^{\pi} d\beta \frac{\cos x\alpha \sin y_{1}\beta \sin y_{2}\beta}{2 - (\cos \alpha + \cos \beta)}.$$

$$G_{(x;y_{1},y_{2})}^{cl} = \frac{1}{\pi^{2}} \int_{0}^{\pi} d\alpha \int_{0}^{\pi} d\beta \frac{\cos x\alpha \cos (y_{1} - 1/2)\beta \cos (y_{2} - 1/2)\beta - 1}{2 - (\cos \alpha + \cos \beta)}.$$

Khaydar Nurligareev (joint with A. Povolotsky)

HSE, Moscow

Initialisation	LERW	Results	Anisotropic case	Ideas of proof
				0000

Thank you for the attention!

Khaydar Nurligareev (joint with A. Povolotsky)

HSE, Moscow