Asymptotics for the probability of labeled objects to be irreducible

Khaydar Nurligareev (with Thierry Monteil)

LIPN, Paris 13

Journées ALÉA 2021

March 16, 2021

Khaydar Nurligareev (with Thierry Monteil)

Asymptotics for the probability of labeled objects to be irreducible

_IPN, Paris 13

Table of contents

- Asymptotics for graphs
- Irreducible tournaments

2 Theorems

- SET and SEQ asymptotics
- SET_m and SEQ_m asymptotics

3 Other applications

Khaydar Nurligareev (with Thierry Monteil)

Introduction • ooo • ooo	Theorems 0000 000	Other applications
Asymptotics for graphs		

Graphs

Let f_n be the number of labeled graphs with n vertices.

Khaydar Nurligareev (with Thierry Monteil)

Connected graphs

Let g_n be the number of connected labeled graphs with n vertices.

Every graph is a disjoint union (SET) of connected graphs.

Asymptotics for graphs

Probability of a graph to be connected

<u>Question</u>. What is the probability $p_n = \frac{g_n}{f_n}$ of a random graph with n vertices to be connected as $n \to \infty$?

Asymptotics for graphs

Probability of a graph to be connected

<u>Question</u>. What is the probability $p_n = \frac{g_n}{f_n}$ of a random graph with n vertices to be connected as $n \to \infty$?

• folklore: $p_n = 1 + o(1)$

Asymptotics for graphs

Probability of a graph to be connected

<u>Question</u>. What is the probability $p_n = \frac{g_n}{f_n}$ of a random graph with n vertices to be connected as $n \to \infty$?

• folklore: $p_n = 1 + o(1)$

Gilbert, 1959:
$$p_n = 1 - \frac{2n}{2^n} + O\left(\frac{n^2}{2^{3n/2}}\right)$$

Asymptotics for graphs

Probability of a graph to be connected

<u>Question</u>. What is the probability $p_n = \frac{g_n}{f_n}$ of a random graph with n vertices to be connected as $n \to \infty$?

• folklore: $p_n = 1 + o(1)$

Gilbert, 1959:
$$p_n = 1 - \frac{2n}{2^n} + O\left(\frac{n^2}{2^{3n/2}}\right)$$

Wright, 1970:

$$p_n = 1 - \binom{n}{1} \frac{2}{2^n} - \binom{n}{3} \frac{2^7}{2^{3n}} - 3\binom{n}{4} \frac{2^{13}}{2^{4n}} + O\left(\frac{n^5}{2^{5n}}\right)$$

Khaydar Nurligareev (with Thierry Monteil)

Asymptotics for graphs

Probability of a graph to be connected

<u>Question</u>. What is the probability $p_n = \frac{g_n}{f_n}$ of a random graph with n vertices to be connected as $n \to \infty$?

folklore: $p_n = 1 + o(1)$

Gilbert, 1959:
$$p_n = 1 - \frac{2n}{2^n} + O\left(\frac{n^2}{2^{3n/2}}\right)$$

Wright, 1970:

$$p_n = 1 - \binom{n}{1} \frac{2}{2^n} - \binom{n}{3} \frac{2^7}{2^{3n}} - 3\binom{n}{4} \frac{2^{13}}{2^{4n}} + O\left(\frac{n^5}{2^{5n}}\right)$$

• Can we have all terms at once? What is the interpretation?

Khaydar Nurligareev (with Thierry Monteil)

Introduction	Theorems	Other applications
0000 0000	0000 000	
Asymptotics for graphs		

Asymptotics for p_n

Monteil, N., 2019:

as $n \to \infty$, for every $r \geqslant 1$

$$p_n = 1 - \sum_{k=1}^{r-1} h_k \cdot {n \choose k} \cdot \frac{2^{k(k+1)/2}}{2^{nk}} + O\left(\frac{n^r}{2^{nr}}\right),$$

Khaydar Nurligareev (with Thierry Monteil)

Introduction	Theorems	Other applications
000 0000	0000 000	
Asymptotics for graphs		

Asymptotics for p_n

Monteil, N., 2019:

as $n \to \infty$, for every $r \geqslant 1$

$$p_n = 1 - \sum_{k=1}^{r-1} h_k \cdot {n \choose k} \cdot \frac{2^{k(k+1)/2}}{2^{nk}} + O\left(\frac{n^r}{2^{nr}}\right),$$

where h_k counts irreducible labeled tournaments of size k.

$$(h_k) = 1, 0, 2, 24, 544, 22320, 1677488, \ldots$$

Khaydar Nurligareev (with Thierry Monteil)

Tournaments

A tournament is a complete directed graph.

The number of labeled tournaments with n vertices is equal to

$$f_n = 2^{\binom{n}{2}}$$

Khaydar Nurligareev (with Thierry Monteil)

Irreducible tournaments

- A tournament is called irreducible (or strongly connected tournament),
- if for every partition of vertices $V = A \sqcup B$
 - **1** there exist an edge from A to B and
 - **2** there exist an edge from B to A.

Irreducible tournaments

- A tournament is called irreducible (or strongly connected tournament),
- if for every partition of vertices $V = A \sqcup B$
 - 1 there exist an edge from A to B and
 - **2** there exist an edge from B to A.
- Equivalently, for each two vertices u and v
 1 there is a path from u to v and
 2 there is a path from v to u.

 $V = \{1, 2, 3, 4, 5, 6\}$

Introduction	Theorems	Other applications
0000	0000	
Irreducible tournaments		

Tournament as a sequence

<u>Lemma.</u> Every labeled tournament can be uniquely decomposed into a sequence (SEQ) of irreducible labeled tournaments.

Tournament as a sequence

Lemma. Every labeled tournament can be uniquely decomposed into a sequence (SEQ) of irreducible labeled tournaments.

Introduction	Theorems	Other app
0000	0000	000000
0000		
Irreducible tournaments		

Tournament as a sequence

Lemma. Every labeled tournament can be uniquely decomposed into a sequence (SEQ) of irreducible labeled tournaments.

Khaydar Nurligareev (with Thierry Monteil)

Introduction	Theorems	Other applications
0000 0000	0000 000	
Irreducible tournaments		

SET vs SEQ

Khaydar Nurligareev (with Thierry Monteil)

SET and SEQ asymptotics

Theorems ●000

SET asymptotics

Theorem (Monteil, N., 2019+)

Let $\mathcal{F} = \operatorname{SET}(\mathcal{G})$ and $\mathcal{F} = \operatorname{SEQ}(\mathcal{H})$. If $f_n \neq 0$ for all $n \in \mathbb{N}$ and there exists $r \ge 1$ such that (i) $n \cdot \frac{f_{n-1}}{f_n} \to 0$ and (ii) $\sum_{k=r}^{n-r} \binom{n}{k} f_k f_{n-k} = O(n^r f_{n-r})$, Then, as $n \to \infty$, (a) $p_n = \frac{g_n}{f_n} = 1 - \sum_{k=1}^{r-1} h_k \cdot \binom{n}{k} \cdot \frac{f_{n-k}}{f_n} + O\left(n^r \cdot \frac{f_{n-r}}{f_n}\right)$.

Combinatorial meaning: p_n is the probability of a random object of size *n* to be irreducible in terms of SET-decomposition.

Khaydar Nurligareev (with Thierry Monteil)

SET and SEQ asymptotics

Example: connected graphs

- f_n counts labeled graphs / tournaments,
- *g_n* counts connected labeled graphs,
- h_n counts irreducible labeled tournaments.

 $\mathbb{P}\{\text{graph is connected}\} =$

$$=\frac{g_n}{f_n}=1-\sum_{k=1}^{r-1}h_k\cdot\binom{n}{k}\cdot\frac{2^{k(k+1)/2}}{2^{nk}}+O\left(\frac{n^r}{2^{nr}}\right),$$

where

$$(h_k) = 1, 0, 2, 24, 544, 22320, 1677488, \ldots$$

Khaydar Nurligareev (with Thierry Monteil)

Theorems 00●0

SEQ asymptotics

Theorem (Monteil, N., 2019+)

Let $\mathcal{F} = \operatorname{SEQ}(\mathcal{H})$ and $\mathcal{H}^{(2)} = \operatorname{SEQ}_{2}(\mathcal{H})$. If $f_{n} \neq 0$ for all $n \in \mathbb{N}$ and there exists $r \ge 1$ such that (i) $n \cdot \frac{f_{n-1}}{f_{n}} \to 0$ and (ii) $\sum_{k=r}^{n-r} \binom{n}{k} f_{k} f_{n-k} = O(n^{r} f_{n-r})$, Then, as $n \to \infty$, (b) $\frac{h_{n}}{f_{n}} = 1 - \sum_{k=1}^{r-1} \left(2h_{k} - h_{k}^{(2)}\right) \cdot \binom{n}{k} \cdot \frac{f_{n-k}}{f_{n}} + O\left(n^{r} \cdot \frac{f_{n-r}}{f_{n}}\right)$.

Combinatorial meaning: it is the probability of a random object of size n to be irreducible in the sense of SEQ-decomposition.

Khaydar Nurligareev (with Thierry Monteil)

SET and SEQ asymptotics

Example: irreducible tournaments

- f_n counts labeled tournaments,
- h_n counts irreducible labeled tournaments.
- h_n⁽²⁾ counts labeled tournaments that have exactly 2 irreducible components.

 $\mathbb{P}\{\text{tournament is irreducible}\} =$

$$= \frac{h_n}{f_n} = 1 - \sum_{k=1}^{r-1} \left(2h_k - h_k^{(2)} \right) \cdot \binom{n}{k} \cdot \frac{2^{k(k+1)/2}}{2^{nk}} + O\left(\frac{n^r}{2^{nr}}\right),$$

ere $\begin{pmatrix} h_k \end{pmatrix} = 1, \quad 0, \quad 2, \quad 24, \quad 544, \quad 22320, \quad \dots \\ \begin{pmatrix} h_k^{(2)} \end{pmatrix} = 0, \quad 2, \quad 0, \quad 16, \quad 240, \quad 6608, \quad \dots \\ \begin{pmatrix} c_k^{(1)} \end{pmatrix} = 2, \quad -2, \quad 4, \quad 32, \quad 848, \quad 38032, \quad \dots \end{cases}$

Khaydar Nurligareev (with Thierry Monteil)

wh

Theorems ○○○○

SEQ_m asymptotics

Theorem (Monteil, N., 2020+)

Let $\mathcal{F} = \operatorname{SEQ}(\mathcal{H})$ and $\mathcal{H}^{(m)} = \operatorname{SEQ}_m(\mathcal{H}), \quad \forall m \in \mathbb{N}.$

Then, under the same conditions, for all $m \ge 1$, as $n \to \infty$,

(c)
$$p_n^{(m+1)} = \frac{h_n^{(m+1)}}{f_n} = \sum_{k=1}^{r-1} c_k^{(m+1)} \cdot {\binom{n}{k}} \cdot \frac{f_{n-k}}{f_n} + O\left(n^r \cdot \frac{f_{n-r}}{f_n}\right),$$

where $c_k^{(m+1)} = (m+1)\left(h_k^{(m)} - 2h_k^{(m+1)} + h_k^{(m+2)}\right).$

<u>Combinatorial meaning</u>: $p_n^{(m+1)}$ is the probability of a random object of size *n* to have exactly (m + 1) irreducible components in the sense of SEQ-decomposition.

Introduction	Theorems	Other applications
0000	000	
SET - and SEQ - asymptotics		

- f_n counts labeled tournaments,
- h_n^(m) counts labeled tournaments that have exactly m irreducible components.

 $\mathbb{P}\{\text{tournament has exactly 2 irreducible components}\} =$

$$=\frac{h_n^{(2)}}{f_n}=\sum_{k=1}^{r-1}2\Big(h_k^{(1)}-2h_k^{(2)}+h_k^{(3)}\Big)\cdot\binom{n}{k}\cdot\frac{2^{k(k+1)/2}}{2^{nk}}+O\left(\frac{n^r}{2^{nr}}\right),$$

where

$$\begin{pmatrix} h_k^{(1)} \end{pmatrix} = 1, 0, 2, 24, 544, 22320, \dots$$

 $\begin{pmatrix} h_k^{(2)} \end{pmatrix} = 0, 2, 0, 16, 240, 6608, \dots$
 $\begin{pmatrix} h_k^{(3)} \end{pmatrix} = 0, 0, 6, 0, 120, 2160, \dots$
 $\begin{pmatrix} c_k^{(2)} \end{pmatrix} = 2, -8, 16, -16, 368, 22528, \dots$

Khaydar Nurligareev (with Thierry Monteil)

Introduction	Theorems	Other applications
0000 0000	0000 0 0 0	
SET and SEQ asymptotics		

- f_n counts labeled tournaments,
- h_n^(m) counts labeled tournaments that have exactly m irreducible components.

 \mathbb{P} {tournament has exactly 3 irreducible components} =

$$=\frac{h_n^{(3)}}{f_n}=\sum_{k=1}^{r-1}3\Big(h_k^{(2)}-2h_k^{(3)}+h_k^{(4)}\Big)\cdot\binom{n}{k}\cdot\frac{2^{k(k+1)/2}}{2^{nk}}+O\left(\frac{n^r}{2^{nr}}\right),$$

where

Khaydar Nurligareev (with Thierry Monteil)

Introduction	Theorems	Other applications
0000 0000	0000 0 ●0	
SET _m and SEQ _m asymptotics		

- f_n counts labeled tournaments,
- h_n^(m) counts labeled tournaments that have exactly m irreducible components.

 $\mathbb{P}\{\text{tournament has exactly 4 irreducible components}\} =$

$$=\frac{h_n^{(4)}}{f_n}=\sum_{k=1}^{r-1}4\left(h_k^{(3)}-2h_k^{(4)}+h_k^{(5)}\right)\cdot\binom{n}{k}\cdot\frac{2^{k(k+1)/2}}{2^{nk}}+O\left(\frac{n^r}{2^{nr}}\right),$$

where

Khaydar Nurligareev (with Thierry Monteil)

Introduction	Theorems	Other applications
0000	0000	
SET_m and SEQ_m asymptotics		

- f_n counts labeled tournaments,
- h_n^(m) counts labeled tournaments that have exactly m irreducible components.

 $\mathbb{P}\{$ tournament has exactly (m+1) irreducible components $\} =$

$$=\frac{h_n^{(m+1)}}{f_n}=(n)_m\cdot\frac{2^{m(m+1)/2}}{2^{nm}}+O\left(\frac{n^{m+1}}{2^{n(m+1)}}\right),$$

where $(n)_m = n(n-1)(n-2)...(n-m+1).$

Khaydar Nurligareev (with Thierry Monteil)

SET_m asymptotics

Theorem (Monteil, N., 2020+)

Let $\mathcal{F} = \operatorname{SET}(\mathcal{G})$ and $\mathcal{G}^{(m)} = \operatorname{SET}_m(\mathcal{G})$, $\forall m \in \mathbb{N}$.

Then, under the same conditions, for all $m \geqslant 1$, as $n \rightarrow \infty$,

(d)
$$\frac{g_n^{(m+1)}}{f_n} = \sum_{k=1}^{r-1} c_k^{(m+1)} \cdot {\binom{n}{k}} \cdot \frac{f_{n-k}}{f_n} + O\left(n^r \cdot \frac{f_{n-r}}{f_n}\right),$$

where $c_k^{(m+1)} = \sum_{s=1}^k (-1)^s {\binom{s}{m}} f_{k,s}$

and $f_{k,s}$ is the number of objects of size k which have exactly s connected components.

Combinatorial meaning: it is the probability of a random object of size *n* to have exactly (m + 1) connected components.

Khaydar Nurligareev (with Thierry Monteil)

Erdös-Rényi model G(n, p)

Fix $p \in (0, 1)$, q = 1 - p.

Consider a random labeled graph $\mathcal{G} = G(n, p)$:

p is the probability of edge presence;

• q = 1 - p is the probability of edge absence;

• weight of the graph: $W(\mathcal{G}) = (q^{-1} - 1)^{|\mathcal{E}(\mathcal{G})|}$.

Erdös-Rényi model G(n, p)

Fix $p \in (0, 1)$, q = 1 - p.

Consider a random labeled graph $\mathcal{G} = \mathcal{G}(n, p)$:

p is the probability of edge presence;

• q = 1 - p is the probability of edge absence;

• weight of the graph: $W(\mathcal{G}) = (q^{-1} - 1)^{|\mathcal{E}(\mathcal{G})|}$.

Define:

•
$$f_n := \sum_{|V(\mathcal{G})|=n} W(\mathcal{G}) = q^{-\binom{n}{2}}$$
 — total weight.
• $g_n := \sum_{\mathcal{G} \text{ is connected}} W(\mathcal{G})$ — weight of connected graphs.

Khaydar Nurligareev (with Thierry Monteil)

Asymptotics for G(n, p)

<u>Question</u>. What is the probability p_n of a random graph with n vertices to be connected as $n \to \infty$?

Gilbert, 1959: $p_n = 1 - nq^{n-1} + O(n^2q^{3n/2})$

Khaydar Nurligareev (with Thierry Monteil)

Asymptotics for G(n, p)

<u>Question</u>. What is the probability p_n of a random graph with n vertices to be connected as $n \to \infty$?

• Gilbert, 1959: $p_n = 1 - nq^{n-1} + O(n^2q^{3n/2})$

Monteil, N., 2020:

$$p_n = 1 - \sum_{k=1}^{r-1} h_k(q) \cdot \binom{n}{k} \cdot \frac{q^{nk}}{q^{k(k+1)/2}} + O(n^r q^{nr}),$$

where $h_k(q) \in \mathbb{Z}[q^{-1}]$ and $\deg h_k = \binom{k}{2}$. $h_1(q) = 1$, $h_2(q) = q^{-1} - 2$, $h_3(q) = q^{-3} - 6q^{-1} + 6$, ...

Question. What is the meaning of $h_k(q)$?

Khaydar Nurligareev (with Thierry Monteil)

Representation of $h_k(q)$

 $+(q^{-1}-1)^{0}$ $1=(q^{-1}-1)^{0}$

Khaydar Nurligareev (with Thierry Monteil)

Asymptotics for the probability of labeled objects to be irreducible

LIPN, Paris 13

Representation of $h_k(q)$

•	••	• •
$+(q^{-1}-1)^0$	$+(q^{-1}-1)^1$	$-(q^{-1}-1)^0$
$1=(q^{-1}\!-\!1)^0$	$q^{-1} - 2 = (q^{-1})$	$(-1)^1 - (q^{-1} - 1)^0$

Khaydar Nurligareev (with Thierry Monteil)

Representation of $h_k(q)$

Khaydar Nurligareev (with Thierry Monteil)

Asymptotics for G(n, p), continued

Theorem (Monteil, N., 2020+)

a) The probability p_n of a random graph with n vertices to be connected, as $n\to\infty,$ is

$$p_n = 1 - \sum_{k=1}^{r-1} h_k(q) \cdot \binom{n}{k} \cdot \frac{q^{nk}}{q^{k(k+1)/2}} + O(n^r q^{nr}),$$

where

$$h_k(q) = \sum_{|V(\mathcal{G})|=k} (-1)^{\#CC(\mathcal{G})-1} W(\mathcal{G}).$$

Khaydar Nurligareev (with Thierry Monteil)

Asymptotics for G(n, p), continued

Theorem (Monteil, N., 2020+)

b) The probability $p_n^{(m+1)}$ of a random graph with n vertices to have exactly (m + 1) connected components, as $n \to \infty$, is

$$p_n^{(m+1)} = \sum_{k=1}^{r-1} h_k^{(m+1)}(q) \cdot \binom{n}{k} \cdot \frac{q^{nk}}{q^{k(k+1)/2}} + O(n^r q^{nr}),$$

where

$$h_k^{(m+1)}(q) = \sum_{|V(\mathcal{G})|=k} (-1)^{\#CC(\mathcal{G})} {\#CC(\mathcal{G}) \choose m} W(\mathcal{G}).$$

Khaydar Nurligareev (with Thierry Monteil)

Other applications

	combinatorial map model	(D+1)-colored graphs
	surfaces obtained	bipartite regular graphs
f_n	by gluing polygons	with colored edges
	$\{(\sigma, \tau) \mid \tau \text{ is perfect matching}\}$	$(\sigma_1,\ldots,\sigma_{D+1})\in S_n^{D+1}$
gn	connected surfaces	connected graphs
	$\{(\sigma, \tau) \mid \tau \text{ is indecomposable} \}$	(au_1,\ldots, au_{D-1}) is indecomposable
h _n	perfect matching}	tuple of permutations
p _n	$\mathbb{P}\{$ surface is connected $\}$	$\mathbb{P}\{$ graph is connected $\}$
	$\mathbb{P}\{perfect \ matching \ is \}$	$\mathbb{P}\{tuple \; of \; permutations \; is \;$
$p_{n}^{(1)}$	indecomposable}	indecomposable}
f _{2n}	(2n)!(2n-1)!!	$(2n)! \cdot (n!)^{D-1}$
g _{2n}	2,60,8880,3558240	$2, 12(2^D - 1), \ldots$
μ_{2n}	$h_{2n}=(2n)!\cdot\mu_{2n}$	$h_{2n} = (2n)! \cdot \mu_{2n}$
h _{2n}	$(\mu_{2n}) = 1, 2, 10, 74, 706 \dots$	$1, 2^{D-1} - 1, 6^{D-1} - 2^D + 1, \dots$

Khaydar Nurligareev (with Thierry Monteil)

Many thanks to all listeners

Thank you for your attention!

Khaydar Nurligareev (with Thierry Monteil)

Asymptotics for the probability of labeled objects to be irreducible

IPN, Paris 13.

Literature I

Bender E.A.

An asymptotic expansion for some coefficients of some formal power series

Journal of the London Mathematical Society, 9 (1975), pp. 451-458.

$\mathsf{Gilbert}\ \mathsf{E}.\mathsf{N}.$

Random graphs

Annals of Mathematical Statistics, Volume 30, Number 4 (1959), pp. 1141-1144.

Literature II

Wright E.M.

Asymptotic relations between enumerative functions in graph theory

Proceedings of the London Mathematical Society, Volume s3-20, Issue 3 (April 1970), pp. 558-572.

Wright E.M.

The Number of Irreducible Tournaments

Glasgow Mathematical Journal, Volume 11, Issue 2 (July 1970), pp. 97-101.