Asymptotics for the probability of labeled objects to be connected

Khaydar Nurligareev (with Thierry Monteil)

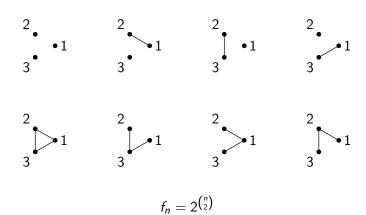
LIPN, Paris 13

EJCIM — 2020

10 June 2020

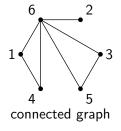
Graphs

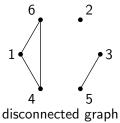
Let f_n be the number of labeled graphs with n vertices.



Connected graphs

Let g_n be the number of connected labeled graphs with n vertices.





$$(g_n) = 1, 1, 4, 38, 728, 26704, 1866256, \dots$$

Every graph is a disjoint union (SET) of connected graphs.

Asymptotics for graphs

Probability of graph to be connected

Question. What is the probability $p_n = \frac{g_n}{f_n}$ of a random graph with n vertices to be connected as $n \to \infty$?

Asymptotics for graphs

Probability of graph to be connected

Question. What is the probability $p_n = \frac{g_n}{f_n}$ of a random graph with n vertices to be connected as $n \to \infty$?

• folklore: $p_n = 1 + o(1)$

Probability of graph to be connected

Question. What is the probability $p_n = \frac{g_n}{f_n}$ of a random graph with n vertices to be connected as $n \to \infty$?

- folklore: $p_n = 1 + o(1)$
- Gilbert, 1959: $p_n = 1 \frac{2n}{2^n} + O\left(\frac{n^2}{2^{3n/2}}\right)$

Probability of graph to be connected

Question. What is the probability $p_n = \frac{g_n}{f_n}$ of a random graph with n vertices to be connected as $n \to \infty$?

- folklore: $p_n = 1 + o(1)$
- Gilbert, 1959: $p_n = 1 \frac{2n}{2^n} + O\left(\frac{n^2}{2^{3n/2}}\right)$
- Wright, 1970:

$$p_n = 1 - \binom{n}{1} \frac{2}{2^n} - \binom{n}{3} \frac{2^7}{2^{3n}} - 3\binom{n}{4} \frac{2^{13}}{2^{4n}} + O\left(\frac{n^5}{2^{5n}}\right)$$

Probability of graph to be connected

Question. What is the probability $p_n = \frac{g_n}{f_n}$ of a random graph with n vertices to be connected as $n \to \infty$?

- folklore: $p_n = 1 + o(1)$
- Gilbert, 1959: $p_n = 1 \frac{2n}{2^n} + O\left(\frac{n^2}{2^{3n/2}}\right)$
- Wright, 1970:

$$p_n = 1 - \binom{n}{1} \frac{2}{2^n} - \binom{n}{3} \frac{2^7}{2^{3n}} - 3\binom{n}{4} \frac{2^{13}}{2^{4n}} + O\left(\frac{n^5}{2^{5n}}\right)$$

• Can we have all terms at once? What is the interpretation?

Asymptotics for p_n

■ Monteil, N., 2019:

as
$$n \to \infty$$
, for every $r \geqslant 1$

$$p_n = 1 - \sum_{k=1}^{r-1} h_k \cdot {n \choose k} \cdot \frac{2^{k(k+1)/2}}{2^{nk}} + O\left(\frac{n^r}{2^{nr}}\right),$$

Asymptotics for p_n

Monteil, N., 2019:

as $n \to \infty$, for every $r \geqslant 1$

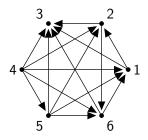
$$p_n = 1 - \sum_{k=1}^{r-1} h_k \cdot \binom{n}{k} \cdot \frac{2^{k(k+1)/2}}{2^{nk}} + O\left(\frac{n^r}{2^{nr}}\right),$$

where h_k counts irreducible labeled tournaments of size k.

$$(h_k) = 1, 0, 2, 24, 544, 22320, 1677488, \dots$$

Tournaments

A tournament is a complete directed graph.



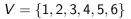
The number of labeled tournaments with n vertices is equal to

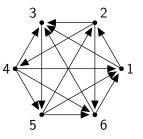
$$f_n=2^{\binom{n}{2}}$$

A tournament is called irreducible (or strongly connected tournament),

if for every partition of vertices $V = A \sqcup B$

- 1 there exist an edge from A to B and
- 2 there exist an edge from B to A.

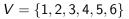


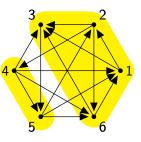


A tournament is called irreducible (or strongly connected tournament),

if for every partition of vertices $V = A \sqcup B$

- 1 there exist an edge from A to B and
- 2 there exist an edge from B to A.





$$A = \{1, 2, 3, 6\}$$

$$B = \{4, 5\}$$

A tournament is called irreducible (or strongly connected tournament),

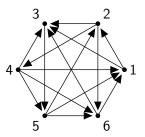
if for every partition of vertices $V = A \sqcup B$

- 1 there exist an edge from A to B and
- 2 there exist an edge from B to A.

Equivalently, for each two vertices u and v

- \blacksquare there is a path from u to v and
- 2 there is a path from v to u.

$$V = \{1, 2, 3, 4, 5, 6\}$$



A tournament is called irreducible (or strongly connected tournament),

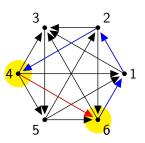
if for every partition of vertices $V = A \sqcup B$

- \blacksquare there exist an edge from A to B and
- 2 there exist an edge from B to A.

Equivalently, for each two vertices u and v

- \blacksquare there is a path from u to v and
- 2 there is a path from v to u.

$$V = \{1, 2, 3, 4, 5, 6\}$$

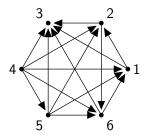


$$u = 4$$

$$v = 6$$

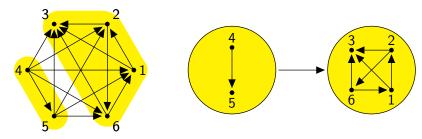
Tournaments as a sequence

<u>Lemma.</u> Every labeled tournament can be uniquely decomposed into a sequence (SEQ) of irreducible labeled tournaments.



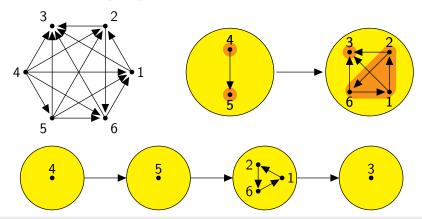
Tournaments as a sequence

<u>Lemma.</u> Every labeled tournament can be uniquely decomposed into a sequence (SEQ) of irreducible labeled tournaments.



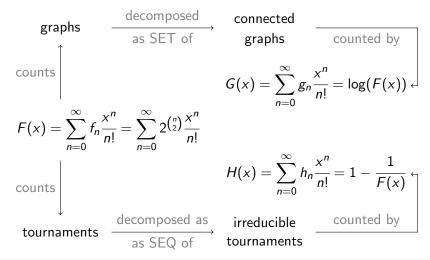
Tournaments as a sequence

<u>Lemma.</u> Every labeled tournament can be uniquely decomposed into a sequence (SEQ) of irreducible labeled tournaments.



Khaydar Nurligareev (with Thierry Monteil)

SET vs SEQ



General result

Let
$$G(x) = \log(F(x))$$
, $H(x) = 1 - \frac{1}{F(x)}$, $H^{(2)}(x) = 1 - \frac{1}{F^2(x)}$.

Theorem (Monteil, N., 2019)

If $f_n \neq 0$ for all $n \in \mathbb{N}$ and there exists $r \geqslant 1$ such that

(i)
$$n \cdot \frac{f_{n-1}}{f_n} \to 0$$
 and (ii) $\sum_{k=r}^{n-r} \binom{n}{k} f_k f_{n-k} = O(n^r f_{n-r}),$

Then

(a)
$$p_n = \frac{g_n}{f_n} = 1 - \sum_{k=1}^{r-1} h_k \cdot \binom{n}{k} \cdot \frac{f_{n-k}}{f_n} + O\left(n^r \cdot \frac{f_{n-r}}{f_n}\right).$$

(b)
$$p_n^{(1)} := \frac{h_n}{f_n} = 1 - \sum_{k=1}^{r-1} h_k^{(2)} \cdot \binom{n}{k} \cdot \frac{f_{n-k}}{f_n} + O\left(n^r \cdot \frac{f_{n-r}}{f_n}\right).$$

General result

Let
$$G(x) = \log(F(x))$$
, $H(x) = 1 - \frac{1}{F(x)}$, $H^{(m)}(x) = 1 - \frac{1}{F^m(x)}$.

Theorem (Monteil, N., 2019)

If $f_n \neq 0$ for all $n \in \mathbb{N}$ and there exists $r \geqslant 1$ such that

(i)
$$n \cdot \frac{f_{n-1}}{f_n} \to 0$$
 and (ii) $\sum_{k=r}^{n-r} \binom{n}{k} f_k f_{n-k} = O(n^r f_{n-r}),$

Then

(a)
$$p_n = \frac{g_n}{f_n} = 1 - \sum_{k=1}^{r-1} h_k \cdot \binom{n}{k} \cdot \frac{f_{n-k}}{f_n} + O\left(n^r \cdot \frac{f_{n-r}}{f_n}\right).$$

$$(b') \quad p_n^{(m)} := \frac{1}{m} \frac{h_n^{(m)}}{f_n} = 1 - \sum_{k=1}^{r-1} h_k^{(m+1)} \cdot \binom{n}{k} \cdot \frac{f_{n-k}}{f_n} + O\left(n^r \cdot \frac{f_{n-r}}{f_n}\right).$$

Probability for graphs and tournaments

- f_n counts labeled graphs / tournaments,
- \blacksquare g_n counts connected labeled graphs,
- \bullet h_n counts irreducible labeled tournaments.

 $\mathbb{P}\{\mathsf{graph}\;\mathsf{is}\;\mathsf{connected}\}=$

$$= \frac{g_n}{f_n} = 1 - \sum_{k=1}^{r-1} h_k \cdot \binom{n}{k} \cdot \frac{2^{k(k+1)/2}}{2^{nk}} + O\left(\frac{n^r}{2^{nr}}\right).$$

Probability for graphs and tournaments

- f_n counts labeled graphs / tournaments,
- \blacksquare g_n counts connected labeled graphs,
- \bullet h_n counts irreducible labeled tournaments.

 $\mathbb{P}\{\text{graph is connected}\}=$

$$= \frac{g_n}{f_n} = 1 - \sum_{k=1}^{r-1} h_k \cdot \binom{n}{k} \cdot \frac{2^{k(k+1)/2}}{2^{nk}} + O\left(\frac{n^r}{2^{nr}}\right).$$

 $\mathbb{P}\{\text{tournament is irreducible}\} =$

$$=\frac{h_n}{f_n}=1-\sum_{k=1}^{r-1}h_k^{(2)}\cdot\binom{n}{k}\cdot\frac{2^{k(k+1)/2}}{2^{nk}}+O\left(\frac{n^r}{2^{nr}}\right),$$

where
$$(h_{\nu}^{(2)}) = 2, -2, 4, 32, 848, 38032...$$

Other applications

	square-tiled surfaces	polygons model
	translation surfaces	surfaces obtained
f_n	obtained by gluing squares	by gluing polygons
	$\{(\sigma, \tau) \mid \sigma, \tau \in \mathcal{S}_n^2\}$	$\{(\sigma, au) \mid au$ is perfect matching $\}$
gn	connected surfaces	connected surfaces
	$\{(\sigma, \tau) \mid \tau \text{ is indecomposable }$	$\{(\sigma, au)\mid au$ is indecomposable
h _n	$permutation\}$	perfect matching}
p _n	$\mathbb{P}\{surface\;is\;connected\}$	$\mathbb{P}\{surface\;is\;connected\}$
	$\mathbb{P}\{permutation\;is\;$	$\mathbb{P}\{perfect \; matching \; is \;$
$p_n^{(1)}$	$indecomposable\}$	$indecomposable\}$
f_n	n!	n!(n-1)!!, n is even
gn	1, 3, 26, 426, 11064	0, 2, 0, 60, 0, 8880
	$h_n = n! \cdot m_n$	$h_n = n! \cdot m_n$
h _n	$(m_n) = 1, 1, 3, 13, 71, 461$	$(m_n) = 0, 1, 0, 2, 0, 10, 0, 74$

Applications

Happy end

Thank you for attention!