Asymptotics for the probability of labeled objects to be irreducible

Khaydar Nurligareev (with Thierry Monteil)

LIPN, Paris 13

Séminaire CALIN

6 October 2020

Asymptotics for graphs

Graphs

Let f_{n} be the number of labeled graphs with n vertices.

$$
f_{n}=2^{\binom{n}{2}}
$$

Connected graphs

Let g_{n} be the number of connected labeled graphs with n vertices.

$$
\left(g_{n}\right)=1,1,4,38,728,26704,1866256, \ldots
$$

Every graph is a disjoint union (SET) of connected graphs.

Probability of a graph to be connected

Question. What is the probability $p_{n}=\frac{g_{n}}{f_{n}}$ of a random graph with n vertices to be connected as $n \rightarrow \infty$?

Probability of a graph to be connected

Question. What is the probability $p_{n}=\frac{g_{n}}{f_{n}}$ of a random graph with n vertices to be connected as $n \rightarrow \infty$?

- folklore:

$$
p_{n}=1+o(1)
$$

Probability of a graph to be connected

Question. What is the probability $p_{n}=\frac{g_{n}}{f_{n}}$ of a random graph with n vertices to be connected as $n \rightarrow \infty$?

- folklore:

$$
p_{n}=1+o(1)
$$

- Gilbert, 1959:

$$
p_{n}=1-\frac{2 n}{2^{n}}+O\left(\frac{n^{2}}{2^{3 n / 2}}\right)
$$

Probability of a graph to be connected

Question. What is the probability $p_{n}=\frac{g_{n}}{f_{n}}$ of a random graph with n vertices to be connected as $n \rightarrow \infty$?

- folklore:

$$
p_{n}=1+o(1)
$$

- Gilbert, 1959: $\quad p_{n}=1-\frac{2 n}{2^{n}}+O\left(\frac{n^{2}}{2^{3 n / 2}}\right)$
- Wright, 1970:

$$
p_{n}=1-\binom{n}{1} \frac{2}{2^{n}}-\binom{n}{3} \frac{2^{7}}{2^{3 n}}-3\binom{n}{4} \frac{2^{13}}{2^{4 n}}+O\left(\frac{n^{5}}{2^{5 n}}\right)
$$

Probability of a graph to be connected

Question. What is the probability $p_{n}=\frac{g_{n}}{f_{n}}$ of a random graph with n vertices to be connected as $n \rightarrow \infty$?

- folklore:

$$
p_{n}=1+o(1)
$$

- Gilbert, 1959: $\quad p_{n}=1-\frac{2 n}{2^{n}}+O\left(\frac{n^{2}}{2^{3 n / 2}}\right)$
- Wright, 1970:

$$
p_{n}=1-\binom{n}{1} \frac{2}{2^{n}}-\binom{n}{3} \frac{2^{7}}{2^{3 n}}-3\binom{n}{4} \frac{2^{13}}{2^{4 n}}+O\left(\frac{n^{5}}{2^{5 n}}\right)
$$

- Can we have all terms at once? What is the interpretation?

Asymptotics for p_{n}

■ Monteil, N., 2019:
as $n \rightarrow \infty$, for every $r \geqslant 1$

$$
p_{n}=1-\sum_{k=1}^{r-1} h_{k} \cdot\binom{n}{k} \cdot \frac{2^{k(k+1) / 2}}{2^{n k}}+O\left(\frac{n^{r}}{2^{n r}}\right),
$$

Asymptotics for p_{n}

■ Monteil, N., 2019:
as $n \rightarrow \infty$, for every $r \geqslant 1$

$$
p_{n}=1-\sum_{k=1}^{r-1} h_{k} \cdot\binom{n}{k} \cdot \frac{2^{k(k+1) / 2}}{2^{n k}}+O\left(\frac{n^{r}}{2^{n r}}\right),
$$

where h_{k} counts irreducible labeled tournaments of size k.

$$
\left(h_{k}\right)=1,0,2,24,544,22320,1677488, \ldots
$$

Tournaments

A tournament is a complete directed graph.

The number of labeled tournaments with n vertices is equal to

$$
f_{n}=2\binom{n}{2}
$$

Irreducible tournaments

A tournament is called irreducible (or strongly connected tournament),
if for every partition of vertices $V=A \sqcup B$
1 there exist an edge from A to B and
2 there exist an edge from B to A.

$$
V=\{1,2,3,4,5,6\}
$$

$$
\begin{gathered}
A=\{1,2,3,6\} \\
B=\{4,5\}
\end{gathered}
$$

Irreducible tournaments

A tournament is called irreducible

$$
V=\{1,2,3,4,5,6\}
$$ (or strongly connected tournament),

if for every partition of vertices $V=A \sqcup B$
1 there exist an edge from A to B and
2 there exist an edge from B to A.

Equivalently, for each two vertices u and v
1 there is a path from u to v and
2 there is a path from v to u.

$$
\begin{aligned}
& u=4 \\
& v=6
\end{aligned}
$$

Tournaments as a sequence

Lemma. Every labeled tournament can be uniquely decomposed into a sequence (SEQ) of irreducible labeled tournaments.

Tournaments as a sequence

Lemma. Every labeled tournament can be uniquely decomposed into a sequence (SEQ) of irreducible labeled tournaments.

Tournaments as a sequence

Lemma. Every labeled tournament can be uniquely decomposed into a sequence (SEQ) of irreducible labeled tournaments.

SET vs SEQ

graphs

connected graphs

counted by
counts $F(x)=\sum_{n=0}^{\infty} f_{n} \frac{x^{n}}{n!}=\sum_{n=0}^{\infty} 2\binom{n}{2} \frac{x^{n}}{n!}$

$$
H(x)=\sum_{n=0}^{\infty} h_{n} \frac{x^{n}}{n!}=1-\frac{1}{F(x)}
$$

Notations

$$
\begin{aligned}
& \square \mathcal{F}=\operatorname{SET}(\mathcal{G}), \quad G(x)=\log (F(x)) ; \\
& \mathcal{F}=\operatorname{SEQ}(\mathcal{H}), \quad H(x)=1-\frac{1}{F(x)} ; \\
& -\mathcal{T}^{(m)}=\operatorname{SEQ}_{m}(\mathcal{H}), \quad T^{(m)}(x)=(H(x))^{m} ; \\
& H^{(m)}(x)=1-\frac{1}{(F(x))^{m}}=1-(1-H(x))^{m} .
\end{aligned}
$$

General result

$$
\text { Let } G(x)=\log (F(x)), \quad H(x)=1-\frac{1}{F(x)}, \quad H^{(2)}(x)=1-\frac{1}{F^{2}(x)} .
$$

Theorem (Monteil, N., 2019+)

If $f_{n} \neq 0$ for all $n \in \mathbb{N}$ and there exists $r \geqslant 1$ such that
(i) $n \cdot \frac{f_{n-1}}{f_{n}} \rightarrow 0 \quad$ and
(ii) $\sum_{k=r}^{n-r}\binom{n}{k} f_{k} f_{n-k}=O\left(n^{r} f_{n-r}\right)$,

Then
(a)

$$
p_{n}=\frac{g_{n}}{f_{n}}=1-\sum_{k=1}^{r-1} h_{k} \cdot\binom{n}{k} \cdot \frac{f_{n-k}}{f_{n}}+O\left(n^{r} \cdot \frac{f_{n-r}}{f_{n}}\right) .
$$

(b) $\quad p_{n}^{(1)}:=\frac{h_{n}}{f_{n}}=1-\sum_{k=1}^{r-1} h_{k}^{(2)} \cdot\binom{n}{k} \cdot \frac{f_{n-k}}{f_{n}}+O\left(n^{r} \cdot \frac{f_{n-r}}{f_{n}}\right)$.

General result

Let $\quad G(x)=\log (F(x)), H(x)=1-\frac{1}{F(x)}, H^{(m)}(x)=1-\frac{1}{F^{m}(x)}$.

Theorem (Monteil, N., 2019+)

If $f_{n} \neq 0$ for all $n \in \mathbb{N}$ and there exists $r \geqslant 1$ such that
(i) $n \cdot \frac{f_{n-1}}{f_{n}} \rightarrow 0 \quad$ and
(ii) $\sum_{k=r}^{n-r}\binom{n}{k} f_{k} f_{n-k}=O\left(n^{r} f_{n-r}\right)$,

Then for all $m \geqslant 1$
(a) $\quad p_{n}=\frac{g_{n}}{f_{n}}=1-\sum_{k=1}^{r-1} h_{k} \cdot\binom{n}{k} \cdot \frac{f_{n-k}}{f_{n}}+O\left(n^{r} \cdot \frac{f_{n-r}}{f_{n}}\right)$.
(c) $\frac{1}{m} \frac{h_{n}^{(m)}}{f_{n}}=1-\sum_{k=1}^{r-1} h_{k}^{(m+1)} \cdot\binom{n}{k} \cdot \frac{f_{n-k}}{f_{n}}+O\left(n^{r} \cdot \frac{f_{n-r}}{f_{n}}\right)$.

General result

Let $\quad H(x)=1-\frac{1}{F(x)}, \quad T^{(m)}=(H(x))^{m}$.

Theorem (Monteil, N., 2019+)

If $f_{n} \neq 0$ for all $n \in \mathbb{N}$ and there exists $r \geqslant 1$ such that

$$
\begin{array}{ll}
\text { (i) } n \cdot \frac{f_{n-1}}{f_{n}} \rightarrow 0 \quad \text { and } \quad \text { (ii) } \sum_{k=r}^{n-r}\binom{n}{k} f_{k} f_{n-k}=O\left(n^{r} f_{n-r}\right) \text {, }, \text {, } \quad \text {. }
\end{array}
$$

Then for all $m \geqslant 1$
(d) $p_{n}^{(m+1)}=\frac{t_{n}^{(m+1)}}{f_{n}}=\sum_{k=1}^{r-1} c_{k}^{(m+1)} \cdot\binom{n}{k} \cdot \frac{f_{n-k}}{f_{n}}+O\left(n^{r} \cdot \frac{f_{n-r}}{f_{n}}\right)$, where $\quad c_{k}^{(m+1)}=(m+1)\left(t_{k}^{(m)}-2 t_{k}^{(m+1)}+t_{k}^{(m+2)}\right)$.

Probability for graphs and tournaments

■ f_{n} counts labeled graphs / tournaments,

- g_{n} counts connected labeled graphs,
- h_{n} counts irreducible labeled tournaments.
- $t_{n}^{(m)}$ counts irreducible labeled tournaments with exactly m irreducible components.
$\mathbb{P}\{$ graph is connected $\}=$

$$
=\frac{g_{n}}{f_{n}}=1-\sum_{k=1}^{r-1} h_{k} \cdot\binom{n}{k} \cdot \frac{2^{k(k+1) / 2}}{2^{n k}}+O\left(\frac{n^{r}}{2^{n r}}\right) .
$$

where

$$
\left(h_{k}\right)=1,0,2,24,544,22320,1677488, \ldots
$$

Probability for graphs and tournaments

- f_{n} counts labeled graphs / tournaments,
- g_{n} counts connected labeled graphs,
- h_{n} counts irreducible labeled tournaments.
- $t_{n}^{(m)}$ counts irreducible labeled tournaments with exactly m irreducible components.
$\mathbb{P}\{$ tournament is irreducible $\}=$

$$
=\frac{h_{n}}{f_{n}}=1-\sum_{k=1}^{r-1} h_{k}^{(2)} \cdot\binom{n}{k} \cdot \frac{2^{k(k+1) / 2}}{2^{n k}}+O\left(\frac{n^{r}}{2^{n r}}\right),
$$

where

$$
\left(h_{k}^{(2)}\right)=2,-2,4,32,848,38032 \ldots
$$

Probability for graphs and tournaments

■ f_{n} counts labeled graphs / tournaments,

- g_{n} counts connected labeled graphs,
- h_{n} counts irreducible labeled tournaments.
- $t_{n}^{(m)}$ counts irreducible labeled tournaments with exactly m irreducible components.
$\mathbb{P}\{$ tournament has exactly 2 irreducible components $\}=$

$$
=\frac{t_{n}^{(2)}}{f_{n}}=\sum_{k=1}^{r-1} c_{k}^{(2)} \cdot\binom{n}{k} \cdot \frac{2^{k(k+1) / 2}}{2^{n k}}+O\left(\frac{n^{r}}{2^{n r}}\right)
$$

where

$$
\left(c_{k}^{(2)}\right)=2,-8,16,-16,368,22528 \ldots
$$

Probability for graphs and tournaments

■ f_{n} counts labeled graphs / tournaments,

- g_{n} counts connected labeled graphs,

■ h_{n} counts irreducible labeled tournaments.

- $t_{n}^{(m)}$ counts irreducible labeled tournaments with exactly m irreducible components.
$\mathbb{P}\{$ tournament has exactly 3 irreducible components $\}=$

$$
=\frac{t_{n}^{(3)}}{f_{n}}=\sum_{k=1}^{r-1} c_{k}^{(3)} \cdot\binom{n}{k} \cdot \frac{2^{k(k+1) / 2}}{2^{n k}}+O\left(\frac{n^{r}}{2^{n r}}\right)
$$

where

$$
\left(c_{k}^{(3)}\right)=0,6,-36,120,0,9744 \ldots
$$

Probability for graphs and tournaments

■ f_{n} counts labeled graphs / tournaments,

- g_{n} counts connected labeled graphs,
- h_{n} counts irreducible labeled tournaments.
- $t_{n}^{(m)}$ counts irreducible labeled tournaments with exactly m irreducible components.
$\mathbb{P}\{$ tournament has exactly 4 irreducible components $\}=$

$$
=\frac{t_{n}^{(4)}}{f_{n}}=\sum_{k=1}^{r-1} c_{k}^{(4)} \cdot\binom{n}{k} \cdot \frac{2^{k(k+1) / 2}}{2^{n k}}+O\left(\frac{n^{r}}{2^{n r}}\right)
$$

where

$$
\left(c_{k}^{(4)}\right)=0,0,24,-192,960,960 \ldots
$$

Probability for graphs and tournaments

- f_{n} counts labeled graphs / tournaments,
- g_{n} counts connected labeled graphs,
- h_{n} counts irreducible labeled tournaments.
- $t_{n}^{(m)}$ counts irreducible labeled tournaments with exactly m irreducible components.
$\mathbb{P}\{$ tournament has exactly $(m+1)$ irreducible components $\}=$

$$
=\frac{t_{n}^{(m+1)}}{f_{n}}=(n)_{m} \cdot \frac{2^{m(m+1) / 2}}{2^{n m}}+O\left(\frac{n^{m+1}}{2^{n(m+1)}}\right)
$$

where

$$
(n)_{m}=n(n-1)(n-2) \ldots(n-m+1) .
$$

Surface applications

$\left.$| | square-tiled surfaces | polygons model |
| :---: | :---: | :---: |
| | translation surfaces
 obtained by gluing squares
 $\left\{(\sigma, \tau) \mid \sigma, \tau \in S_{n}^{2}\right\}$ | surfaces obtained
 by gluing polygons
 $\{(\sigma, \tau) \mid \tau$ is perfect matching $\}$ |
| f_{n} | connected surfaces | connected surfaces |
| g_{n} | $\{(\sigma, \tau) \mid \tau$ is indecomposable | |
| permutation $\}$ | | | | $\{(\sigma, \tau) \mid \tau$ is indecomposable |
| :---: |
| perfect matching $\}$ | \right\rvert\,

Asymptotics for $G(n, p)$

Consider $G(n, p)$ model, $q=1-p$.
Question. What is the probability p_{n} of a random graph with n vertices to be connected as $n \rightarrow \infty$?

- Gilbert, 1959: $\quad p_{n}=1-n q^{n-1}+O\left(n^{2} q^{3 n / 2}\right)$

Asymptotics for $G(n, p)$

Consider $G(n, p)$ model, $q=1-p$.
Question. What is the probability p_{n} of a random graph with n vertices to be connected as $n \rightarrow \infty$?

- Gilbert, 1959: $\quad p_{n}=1-n q^{n-1}+O\left(n^{2} q^{3 n / 2}\right)$

■ Monteil, N., 2020:

$$
p_{n}=1-\sum_{k=1}^{r-1} c_{k}(q) \cdot\binom{n}{k} \cdot q^{n k-k^{2}}+O\left(n^{r} q^{n r}\right)
$$

where $c_{k}(q) \in \mathbb{Z}[q], \quad \operatorname{deg} c_{k} \leqslant\binom{ k}{2}$. Particularly, $c_{1}(q)=1, \quad c_{2}(q)=1-2 q, \quad c_{3}(q)=1-6 q^{2}+6 q^{3}$.

■ What is the interpretation of $c_{k}(q)$?

The end

Thank you for your attention!

