

Asymptotics for the probability of labeled objects to be irreducible

Khaydar Nurligareev (with Thierry Monteil)

LIPN, Paris 13

Séminaire CALIN

6 October 2020

Graphs

Let f_n be the number of labeled graphs with n vertices.

$$f_n=2^{\binom{n}{2}}$$

Asymptotics for graphs

Connected graphs

Let g_n be the number of connected labeled graphs with n vertices.

$$(g_n) = 1, 1, 4, 38, 728, 26704, 1866256, \dots$$

Every graph is a disjoint union (SET) of connected graphs.

Question. What is the probability $p_n = \frac{g_n}{f_n}$ of a random graph with n vertices to be connected as $n \to \infty$?

Asymptotics for graphs

Probability of a graph to be connected

Question. What is the probability $p_n = \frac{g_n}{f_n}$ of a random graph with n vertices to be connected as $n \to \infty$?

• folklore: $p_n = 1 + o(1)$

Question. What is the probability $p_n = \frac{g_n}{f_n}$ of a random graph with n vertices to be connected as $n \to \infty$?

- folklore: $p_n = 1 + o(1)$
- Gilbert, 1959: $p_n = 1 \frac{2n}{2^n} + O\left(\frac{n^2}{2^{3n/2}}\right)$

Question. What is the probability $p_n = \frac{g_n}{f_n}$ of a random graph with n vertices to be connected as $n \to \infty$?

- folklore: $p_n = 1 + o(1)$
- Gilbert, 1959: $p_n = 1 \frac{2n}{2^n} + O\left(\frac{n^2}{2^{3n/2}}\right)$
- Wright, 1970:

$$p_n = 1 - \binom{n}{1} \frac{2}{2^n} - \binom{n}{3} \frac{2^7}{2^{3n}} - 3\binom{n}{4} \frac{2^{13}}{2^{4n}} + O\left(\frac{n^5}{2^{5n}}\right)$$

Question. What is the probability $p_n = \frac{g_n}{f_n}$ of a random graph with n vertices to be connected as $n \to \infty$?

- folklore: $p_n = 1 + o(1)$
- Gilbert, 1959: $p_n = 1 \frac{2n}{2^n} + O\left(\frac{n^2}{2^{3n/2}}\right)$
- Wright, 1970:

$$p_n = 1 - \binom{n}{1} \frac{2}{2^n} - \binom{n}{3} \frac{2^7}{2^{3n}} - 3\binom{n}{4} \frac{2^{13}}{2^{4n}} + O\left(\frac{n^5}{2^{5n}}\right)$$

• Can we have all terms at once? What is the interpretation?

Asymptotics for graphs

Asymptotics for p_n

■ Monteil, N., 2019:

as
$$n \to \infty$$
, for every $r \geqslant 1$

$$p_n = 1 - \sum_{k=1}^{r-1} h_k \cdot \binom{n}{k} \cdot \frac{2^{k(k+1)/2}}{2^{nk}} + O\left(\frac{n^r}{2^{nr}}\right),$$

Asymptotics for graphs

Asymptotics for p_n

■ Monteil, N., 2019:

as $n \to \infty$, for every $r \geqslant 1$

$$p_n = 1 - \sum_{k=1}^{r-1} h_k \cdot \binom{n}{k} \cdot \frac{2^{k(k+1)/2}}{2^{nk}} + O\left(\frac{n^r}{2^{nr}}\right),$$

where h_k counts irreducible labeled tournaments of size k.

$$(h_k) = 1, 0, 2, 24, 544, 22320, 1677488, \dots$$

Tournaments

A tournament is a complete directed graph.

The number of labeled tournaments with n vertices is equal to

$$f_n=2^{\binom{n}{2}}$$

Irreducible tournaments

A tournament is called irreducible (or strongly connected tournament),

if for every partition of vertices $V = A \sqcup B$

- \blacksquare there exist an edge from A to B and
- 2 there exist an edge from B to A.

$$V = \{1, 2, 3, 4, 5, 6\}$$

$$A = \{1, 2, 3, 6\}$$
$$B = \{4, 5\}$$

Irreducible tournaments

A tournament is called irreducible (or strongly connected tournament),

if for every partition of vertices $V = A \sqcup B$

- 1 there exist an edge from A to B and
- 2 there exist an edge from B to A.

Equivalently, for each two vertices u and v

- \blacksquare there is a path from u to v and
- 2 there is a path from v to u.

$$V = \{1, 2, 3, 4, 5, 6\}$$

$$u = 4$$

$$v = 6$$

Tournaments as a sequence

<u>Lemma.</u> Every labeled tournament can be uniquely decomposed into a sequence (SEQ) of irreducible labeled tournaments.

Tournaments as a sequence

<u>Lemma.</u> Every labeled tournament can be uniquely decomposed into a sequence (SEQ) of irreducible labeled tournaments.

Tournaments as a sequence

<u>Lemma.</u> Every labeled tournament can be uniquely decomposed into a sequence (SEQ) of irreducible labeled tournaments.

Khaydar Nurligareev (with Thierry Monteil)

Results

SET vs SEQ

Results

Notations

•
$$\mathcal{F} = SET(\mathcal{G}), \qquad G(x) = \log(F(x));$$

•
$$\mathcal{F} = SEQ(\mathcal{H}), \qquad H(x) = 1 - \frac{1}{F(x)};$$

$$T^{(m)} = SEQ_m(\mathcal{H}), \qquad T^{(m)}(x) = (H(x))^m;$$

$$H^{(m)}(x) = 1 - \frac{1}{(F(x))^m} = 1 - (1 - H(x))^m.$$

General result

Let
$$G(x) = \log(F(x))$$
, $H(x) = 1 - \frac{1}{F(x)}$, $H^{(2)}(x) = 1 - \frac{1}{F^2(x)}$.

Theorem (Monteil, N., 2019+)

If $f_n \neq 0$ for all $n \in \mathbb{N}$ and there exists $r \geqslant 1$ such that

(i)
$$n \cdot \frac{f_{n-1}}{f_n} \to 0$$
 and (ii) $\sum_{k=r}^{n-r} \binom{n}{k} f_k f_{n-k} = O(n^r f_{n-r}),$

Then

(a)
$$p_n = \frac{g_n}{f_n} = 1 - \sum_{k=1}^{r-1} h_k \cdot \binom{n}{k} \cdot \frac{f_{n-k}}{f_n} + O\left(n^r \cdot \frac{f_{n-r}}{f_n}\right).$$

(b)
$$p_n^{(1)} := \frac{h_n}{f_n} = 1 - \sum_{k=1}^{r-1} h_k^{(2)} \cdot \binom{n}{k} \cdot \frac{f_{n-k}}{f_n} + O\left(n^r \cdot \frac{f_{n-r}}{f_n}\right).$$

Results

General result

Let
$$G(x) = \log(F(x))$$
, $H(x) = 1 - \frac{1}{F(x)}$, $H^{(m)}(x) = 1 - \frac{1}{F^m(x)}$.

Theorem (Monteil, N., 2019+)

If $f_n \neq 0$ for all $n \in \mathbb{N}$ and there exists $r \geqslant 1$ such that

(i)
$$n \cdot \frac{f_{n-1}}{f_n} \to 0$$
 and (ii) $\sum_{k=r}^{n-r} \binom{n}{k} f_k f_{n-k} = O(n^r f_{n-r}),$

Then for all $m \geqslant 1$

(a)
$$p_n = \frac{g_n}{f_n} = 1 - \sum_{k=1}^{r-1} h_k \cdot \binom{n}{k} \cdot \frac{f_{n-k}}{f_n} + O\left(n^r \cdot \frac{f_{n-r}}{f_n}\right).$$

(c)
$$\frac{1}{m}\frac{h_n^{(m)}}{f_n} = 1 - \sum_{k=1}^{r-1}h_k^{(m+1)} \cdot \binom{n}{k} \cdot \frac{f_{n-k}}{f_n} + O\left(n^r \cdot \frac{f_{n-r}}{f_n}\right).$$

General result

Let
$$H(x) = 1 - \frac{1}{F(x)}$$
, $T^{(m)} = (H(x))^m$.

Theorem (Monteil, N., 2019+)

If $f_n \neq 0$ for all $n \in \mathbb{N}$ and there exists $r \geqslant 1$ such that

(i)
$$n \cdot \frac{f_{n-1}}{f_n} \to 0$$
 and (ii) $\sum_{k=r}^{n-r} \binom{n}{k} f_k f_{n-k} = O(n^r f_{n-r}),$

Then for all $m \geqslant 1$

$$(d) \quad p_n^{(m+1)} = \frac{t_n^{(m+1)}}{f_n} = \sum_{k=1}^{r-1} c_k^{(m+1)} \cdot \binom{n}{k} \cdot \frac{f_{n-k}}{f_n} + O\left(n^r \cdot \frac{f_{n-r}}{f_n}\right),$$

where
$$c_k^{(m+1)} = (m+1)(t_k^{(m)} - 2t_k^{(m+1)} + t_k^{(m+2)}).$$

- f_n counts labeled graphs / tournaments,
- \blacksquare g_n counts connected labeled graphs,
- \bullet h_n counts irreducible labeled tournaments.
- $t_n^{(m)}$ counts irreducible labeled tournaments with exactly $t_n^{(m)}$ irreducible components.

 $\mathbb{P}\{\mathsf{graph}\;\mathsf{is}\;\mathsf{connected}\} =$

$$= \frac{g_n}{f_n} = 1 - \sum_{k=1}^{r-1} h_k \cdot \binom{n}{k} \cdot \frac{2^{k(k+1)/2}}{2^{nk}} + O\left(\frac{n^r}{2^{nr}}\right).$$

$$(h_k) = 1, 0, 2, 24, 544, 22320, 1677488, \dots$$

- f_n counts labeled graphs / tournaments,
- \blacksquare g_n counts connected labeled graphs,
- \bullet h_n counts irreducible labeled tournaments.
- $t_n^{(m)}$ counts irreducible labeled tournaments with exactly $t_n^{(m)}$ irreducible components.

 $\mathbb{P}\{\text{tournament is irreducible}\} =$

$$= \frac{h_n}{f_n} = 1 - \sum_{k=1}^{r-1} h_k^{(2)} \cdot \binom{n}{k} \cdot \frac{2^{k(k+1)/2}}{2^{nk}} + O\left(\frac{n^r}{2^{nr}}\right),$$

$$(h_k^{(2)}) = 2, -2, 4, 32, 848, 38032...$$

- f_n counts labeled graphs / tournaments,
- \blacksquare g_n counts connected labeled graphs,
- $lackbox{\bullet} h_n$ counts irreducible labeled tournaments.
- $t_n^{(m)}$ counts irreducible labeled tournaments with exactly $t_n^{(m)}$ irreducible components.

 $\mathbb{P}\{\text{tournament has exactly 2 irreducible components}\} =$

$$=\frac{t_n^{(2)}}{f_n}=\sum_{k=1}^{r-1}c_k^{(2)}\cdot\binom{n}{k}\cdot\frac{2^{k(k+1)/2}}{2^{nk}}+O\left(\frac{n^r}{2^{nr}}\right),$$

$$(c_k^{(2)}) = 2, -8, 16, -16, 368, 22528...$$

- f_n counts labeled graphs / tournaments,
- \blacksquare g_n counts connected labeled graphs,
- \bullet h_n counts irreducible labeled tournaments.
- $t_n^{(m)}$ counts irreducible labeled tournaments with exactly $t_n^{(m)}$ irreducible components.

 $\mathbb{P}\{\text{tournament has exactly 3 irreducible components}\} =$

$$=\frac{t_n^{(3)}}{f_n}=\sum_{k=1}^{r-1}c_k^{(3)}\cdot\binom{n}{k}\cdot\frac{2^{k(k+1)/2}}{2^{nk}}+O\left(\frac{n^r}{2^{nr}}\right),$$

$$(c_k^{(3)}) = 0, 6, -36, 120, 0, 9744...$$

- f_n counts labeled graphs / tournaments,
- \blacksquare g_n counts connected labeled graphs,
- \bullet h_n counts irreducible labeled tournaments.
- $t_n^{(m)}$ counts irreducible labeled tournaments with exactly $t_n^{(m)}$ irreducible components.

 $\mathbb{P}\{\text{tournament has exactly 4 irreducible components}\} =$

$$=\frac{t_n^{(4)}}{f_n}=\sum_{k=1}^{r-1}c_k^{(4)}\cdot\binom{n}{k}\cdot\frac{2^{k(k+1)/2}}{2^{nk}}+O\left(\frac{n^r}{2^{nr}}\right),$$

$$(c_k^{(4)}) = 0, 0, 24, -192, 960, 960...$$

- f_n counts labeled graphs / tournaments,
- \blacksquare g_n counts connected labeled graphs,
- \bullet h_n counts irreducible labeled tournaments.
- $t_n^{(m)}$ counts irreducible labeled tournaments with exactly $t_n^{(m)}$ irreducible components.

 $\mathbb{P}\{\text{tournament has exactly } (m+1) \text{ irreducible components}\} =$

$$=\frac{t_n^{(m+1)}}{f_n}=(n)_m\cdot\frac{2^{m(m+1)/2}}{2^{nm}}+O\left(\frac{n^{m+1}}{2^{n(m+1)}}\right),$$

where

$$(n)_m = n(n-1)(n-2)\dots(n-m+1).$$

Surface applications

	square-tiled surfaces	polygons model
	translation surfaces	surfaces obtained
f_n	obtained by gluing squares	by gluing polygons
	$\{(\sigma, \tau) \mid \sigma, \tau \in S_n^2\}$	$\{(\sigma, au)\mid au$ is perfect matching $\}$
gn	connected surfaces	connected surfaces
	$\{(\sigma, \tau) \mid \tau \text{ is indecomposable }$	$\{(\sigma, \tau) \mid \tau \text{ is indecomposable } \}$
h_n	$permutation\}$	perfect matching}
p _n	$\mathbb{P}\{surface\;is\;connected\}$	$\mathbb{P}\{surface\;is\;connected\}$
	$\mathbb{P}\{permutation\;is\;$	$\mathbb{P}\{perfect\ matching\ is$
$p_n^{(1)}$	$indecomposable\}$	indecomposable}
f_n	n!	n!(n-1)!!, n is even
gn	1, 3, 26, 426, 11064	0, 2, 0, 60, 0, 8880
	$h_n = n! \cdot m_n$	$h_n = n! \cdot m_n$
h_n	$(m_n) = 1, 1, 3, 13, 71, 461$	$(m_n) = 0, 1, 0, 2, 0, 10, 0, 74$

Asymptotics for G(n, p)

Consider G(n, p) model, q = 1 - p.

Question. What is the probability p_n of a random graph with n vertices to be connected as $n \to \infty$?

■ Gilbert, 1959: $p_n = 1 - nq^{n-1} + O(n^2q^{3n/2})$

Asymptotics for G(n, p)

Consider G(n, p) model, q = 1 - p.

Question. What is the probability p_n of a random graph with n vertices to be connected as $n \to \infty$?

- Gilbert, 1959: $p_n = 1 nq^{n-1} + O(n^2q^{3n/2})$
- Monteil, N., 2020:

$$p_n = 1 - \sum_{k=1}^{r-1} c_k(q) \cdot \binom{n}{k} \cdot q^{nk-k^2} + O(n^r q^{nr}),$$

where
$$c_k(q) \in \mathbb{Z}[q]$$
, $\deg c_k \leqslant {k \choose 2}$. Particularly, $c_1(q) = 1$, $c_2(q) = 1 - 2q$, $c_3(q) = 1 - 6q^2 + 6q^3$.

- What is the interpretation of $c_k(q)$?

Applications

The end

Thank you for your attention!