Non-local Correlation Functions in the Spanning Tree Model near the Boundary

Khaydar Nurligareev (LIPN, Paris-13)

joint with A. Povolotsky (HSE, Moscow)

4 March 2019

Khaydar Nurligareev (LIPN, Paris-13)

oint with A. Povolotsky (HSE, Moscow)

Motivation

- Kirchhoff theorem links Spanning Trees, Dimers, Abelian Sandpile Model, Loop-Erased Random Walks and other combinatorial models.
- Correlation functions in these models can be described by Conformal Field Theories in thermodynamical limit.
- <u>Goal</u>: confirm predictions from Conformal Field Theories using combinatorial methods.

Khaydar Nurligareev (LIPN, Paris-13)

Stating the problem

- Let G = (V, E) be an undirected connected graph with neither loops nor multiple edges.
- Take two non-intersecting subsets of vertices $I_k = \{i_1, \ldots, i_k\} \subset V$ and $J_k = \{j_1, \ldots, j_k\} \subset V$.
- Consider k totally disjoint loopless paths from Ik to Jk (such configurations of paths are called watermelons).
- Typical questions.

What is the number of different watermelon configurations? How does it change with the distance r between I_k and J_k ?

Khaydar Nurligareev (LIPN, Paris-13)

Let

- $A \subset V$ be a set of vertices,
- X_n be a simple random walk starting at X₀ = x,
- τ_A = min{n ≥ 0: ξ_n ∈ A} be a stopping time (hitting time for the set A),

Define *loop-erased random walk* as a path

$$\begin{split} & \textit{LERW}(x,A) = (y_0,\ldots,y_m) = (X_{n_0},\ldots,X_{n_m}), \\ & \text{where} \qquad n_0 = 0, \qquad n_{i+1} = \max\{j \colon \gamma(j) = \gamma(n_i)\} + 1. \end{split}$$

Khaydar Nurligareev (LIPN, Paris-13)

Let

- $A \subset V$ be a set of vertices,
- X_n be a simple random walk starting at X₀ = x,
- τ_A = min{n ≥ 0: ξ_n ∈ A} be a stopping time (hitting time for the set A),

Define *loop-erased random walk* as a path

$$\begin{split} & \textit{LERW}(x,A) = (y_0,\ldots,y_m) = (X_{n_0},\ldots,X_{n_m}), \\ & \text{where} \qquad n_0 = 0, \qquad n_{i+1} = \max\{j \colon \gamma(j) = \gamma(n_i)\} + 1. \end{split}$$

Khaydar Nurligareev (LIPN, Paris-13)

Let

- $A \subset V$ be a set of vertices,
- X_n be a simple random walk starting at X₀ = x,
- τ_A = min{n ≥ 0: ξ_n ∈ A} be a stopping time (hitting time for the set A),

•
$$\gamma = (X_0, X_1, \dots, X_{\tau_A})$$
 be a path corresponding to X_n .

Define *loop-erased random walk* as a path

$$\begin{split} & \textit{LERW}(x,A) = (y_0,\ldots,y_m) = (X_{n_0},\ldots,X_{n_m}), \\ & \text{where} \qquad n_0 = 0, \qquad n_{i+1} = \max\{j:\, \gamma(j) = \gamma(n_i)\} + 1. \end{split}$$

Let

- $A \subset V$ be a set of vertices,
- X_n be a simple random walk starting at X₀ = x,
- τ_A = min{n ≥ 0: ξ_n ∈ A} be a stopping time (hitting time for the set A),

•
$$\gamma = (X_0, X_1, \dots, X_{\tau_A})$$
 be a path corresponding to X_n .

Define *loop-erased random walk* as a path

$$\begin{split} & \textit{LERW}(x,A) = (y_0,\ldots,y_m) = (X_{n_0},\ldots,X_{n_m}), \\ & \text{where} \qquad n_0 = 0, \qquad n_{i+1} = \max\{j \colon \gamma(j) = \gamma(n_i)\} + 1. \end{split}$$

Let

- $A \subset V$ be a set of vertices,
- X_n be a simple random walk starting at X₀ = x,
- τ_A = min{n ≥ 0: ξ_n ∈ A} be a stopping time (hitting time for the set A),

•
$$\gamma = (X_0, X_1, \dots, X_{\tau_A})$$
 be a path corresponding to X_n .

Define *loop-erased random walk* as a path

$$\begin{split} & \textit{LERW}(x,A) = (y_0,\ldots,y_m) = (X_{n_0},\ldots,X_{n_m}), \\ & \text{where} \qquad n_0 = 0, \qquad n_{i+1} = \max\{j:\, \gamma(j) = \gamma(n_i)\} + 1. \end{split}$$

Khaydar Nurligareev (LIPN, Paris-13)

Let

- $A \subset V$ be a set of vertices,
- X_n be a simple random walk starting at X₀ = x,
- τ_A = min{n ≥ 0: ξ_n ∈ A} be a stopping time (hitting time for the set A),

Define *loop-erased random walk* as a path

$$\begin{split} & \textit{LERW}(x,A) = (y_0,\ldots,y_m) = (X_{n_0},\ldots,X_{n_m}), \\ & \text{where} \qquad n_0 = 0, \qquad n_{i+1} = \max\{j:\, \gamma(j) = \gamma(n_i)\} + 1. \end{split}$$

Khaydar Nurligareev (LIPN, Paris-13)

Let

- $A \subset V$ be a set of vertices,
- X_n be a simple random walk starting at X₀ = x,
- τ_A = min{n ≥ 0: ξ_n ∈ A} be a stopping time (hitting time for the set A),

Define *loop-erased random walk* as a path

$$\begin{split} & \textit{LERW}(x,A) = (y_0,\ldots,y_m) = (X_{n_0},\ldots,X_{n_m}), \\ & \text{where} \qquad n_0 = 0, \qquad n_{i+1} = \max\{j \colon \gamma(j) = \gamma(n_i)\} + 1. \end{split}$$

Khaydar Nurligareev (LIPN, Paris-13)

Let

- $A \subset V$ be a set of vertices,
- X_n be a simple random walk starting at X₀ = x,
- τ_A = min{n ≥ 0: ξ_n ∈ A} be a stopping time (hitting time for the set A),

Define *loop-erased random walk* as a path

$$\begin{split} & \textit{LERW}(x,A) = (y_0,\ldots,y_m) = (X_{n_0},\ldots,X_{n_m}), \\ & \text{where} \qquad n_0 = 0, \qquad n_{i+1} = \max\{j \colon \gamma(j) = \gamma(n_i)\} + 1. \end{split}$$

Let

- $A \subset V$ be a set of vertices,
- X_n be a simple random walk starting at X₀ = x,
- τ_A = min{n ≥ 0: ξ_n ∈ A} be a stopping time (hitting time for the set A),

Define *loop-erased random walk* as a path

$$\begin{split} & \textit{LERW}(x,A) = (y_0,\ldots,y_m) = (X_{n_0},\ldots,X_{n_m}), \\ & \text{where} \qquad n_0 = 0, \qquad n_{i+1} = \max\{j \colon \gamma(j) = \gamma(n_i)\} + 1. \end{split}$$

Khaydar Nurligareev (LIPN, Paris-13)

Let

- $A \subset V$ be a set of vertices,
- X_n be a simple random walk starting at X₀ = x,
- τ_A = min{n ≥ 0: ξ_n ∈ A} be a stopping time (hitting time for the set A),

Define *loop-erased random walk* as a path

$$\begin{split} & \textit{LERW}(x,A) = (y_0,\ldots,y_m) = (X_{n_0},\ldots,X_{n_m}), \\ & \text{where} \qquad n_0 = 0, \qquad n_{i+1} = \max\{j \colon \gamma(j) = \gamma(n_i)\} + 1. \end{split}$$

Khaydar Nurligareev (LIPN, Paris-13)

Let

- $A \subset V$ be a set of vertices,
- X_n be a simple random walk starting at X₀ = x,
- τ_A = min{n ≥ 0: ξ_n ∈ A} be a stopping time (hitting time for the set A),

Define *loop-erased random walk* as a path

$$\begin{split} & \textit{LERW}(x,A) = (y_0,\ldots,y_m) = (X_{n_0},\ldots,X_{n_m}), \\ & \text{where} \qquad n_0 = 0, \qquad n_{i+1} = \max\{j \colon \gamma(j) = \gamma(n_i)\} + 1. \end{split}$$

Khaydar Nurligareev (LIPN, Paris-13)

Let

- $A \subset V$ be a set of vertices,
- X_n be a simple random walk starting at X₀ = x,
- τ_A = min{n ≥ 0: ξ_n ∈ A} be a stopping time (hitting time for the set A),

Define *loop-erased random walk* as a path

$$\begin{split} & \textit{LERW}(x,A) = (y_0,\ldots,y_m) = (X_{n_0},\ldots,X_{n_m}), \\ & \text{where} \qquad n_0 = 0, \qquad n_{i+1} = \max\{j \colon \gamma(j) = \gamma(n_i)\} + 1. \end{split}$$

Khaydar Nurligareev (LIPN, Paris-13)

Let

- $A \subset V$ be a set of vertices,
- X_n be a simple random walk starting at X₀ = x,
- τ_A = min{n ≥ 0: ξ_n ∈ A} be a stopping time (hitting time for the set A),

Define *loop-erased random walk* as a path

$$\begin{split} & \textit{LERW}(x,A) = (y_0,\ldots,y_m) = (X_{n_0},\ldots,X_{n_m}), \\ & \text{where} \qquad n_0 = 0, \qquad n_{i+1} = \max\{j \colon \gamma(j) = \gamma(n_i)\} + 1. \end{split}$$

Khaydar Nurligareev (LIPN, Paris-13)

- **1** Take any vertex $v_0 \in V$.
- **2** Define $U_0 = \{v_0\}$.
- **3** Take any vertex $v_1 \in V \setminus \mathcal{U}_0$.
- 4 Consider $LERW(v_1, U_0)$ and define $U_1 = LERW(v_1, U_0)$.
- 5 . . .
- **6** Take any vertex $v_k \in V \setminus \mathcal{U}_{k-1}$.

8 At the end, we obtain a spanning tree.

If $|V_0| > 0$, then we will get a spanning forest.

Non-local Correlation Functions in the Spanning Tree Model near the Boundary

Khaydar Nurligareev (LIPN, Paris-13)

int with A. Povolotsky (HSE, Moscow)

- **1** Take any vertex $v_0 \in V$.
- **2** Define $U_0 = \{v_0\}$.
- 3 Take any vertex $v_1 \in V \setminus \mathcal{U}_0$.
- 4 Consider $LERW(v_1, U_0)$ and define $U_1 = LERW(v_1, U_0)$.
- 5 . . .
- **6** Take any vertex $v_k \in V \setminus \mathcal{U}_{k-1}$.

- 8 At the end, we obtain a spanning tree.
- If $|V_0| > 0$, then we will get a spanning forest.

- **1** Take any vertex $v_0 \in V$.
- **2** Define $U_0 = \{v_0\}$.
- 3 Take any vertex $v_1 \in V \setminus \mathcal{U}_0$.
- 4 Consider $LERW(v_1, U_0)$ and define $U_1 = LERW(v_1, U_0)$.
- 5 . . .
- **6** Take any vertex $v_k \in V \setminus \mathcal{U}_{k-1}$.

8 At the end, we obtain a spanning tree.

If $|V_0| > 0$, then we will get a spanning forest.

Khaydar Nurligareev (LIPN, Paris-13)

int with A. Povolotsky (HSE, Moscow)

- **1** Take any vertex $v_0 \in V$.
- **2** Define $U_0 = \{v_0\}$.
- 3 Take any vertex $v_1 \in V \setminus \mathcal{U}_0$.
- Consider LERW(v₁, U₀) and define U₁ = LERW(v₁, U₀).
- 5 . . .
- **6** Take any vertex $v_k \in V \setminus \mathcal{U}_{k-1}$.

8 At the end, we obtain a spanning tree.

If $|V_0| > 0$, then we will get a spanning forest.

Khaydar Nurligareev (LIPN, Paris-13)

oint with A. Povolotsky (HSE, Moscow)

Context

- **1** Take any vertex $v_0 \in V$.
- **2** Define $U_0 = \{v_0\}$.
- 3 Take any vertex $v_1 \in V \setminus \mathcal{U}_0$.
- 4 Consider $LERW(v_1, U_0)$ and define $U_1 = LERW(v_1, U_0)$.
- 5 . . .
- **6** Take any vertex $v_k \in V \setminus \mathcal{U}_{k-1}$.

8 At the end, we obtain a spanning tree.

If $|V_0| > 0$, then we will get a spanning forest.

Non-local Correlation Functions in the Spanning Tree Model near the Boundary

Khaydar Nurligareev (LIPN, Paris-13)

- **1** Take any vertex $v_0 \in V$.
- **2** Define $U_0 = \{v_0\}$.
- 3 Take any vertex $v_1 \in V \setminus \mathcal{U}_0$.
- Consider LERW(v₁, U₀) and define U₁ = LERW(v₁, U₀).
- 5 . . .
- **6** Take any vertex $v_k \in V \setminus \mathcal{U}_{k-1}$.

8 At the end, we obtain a spanning tree.

If $|V_0| > 0$, then we will get a spanning forest.

Khaydar Nurligareev (LIPN, Paris-13)

- **1** Take any vertex $v_0 \in V$.
- **2** Define $U_0 = \{v_0\}$.
- 3 Take any vertex $v_1 \in V \setminus \mathcal{U}_0$.
- Consider LERW(v₁, U₀) and define U₁ = LERW(v₁, U₀).
- 5 . . .
- **6** Take any vertex $v_k \in V \setminus \mathcal{U}_{k-1}$.

8 At the end, we obtain a spanning tree.

If $|V_0| > 0$, then we will get a spanning forest.

Khaydar Nurligareev (LIPN, Paris-13)

- **1** Take any vertex $v_0 \in V$.
- **2** Define $U_0 = \{v_0\}$.
- 3 Take any vertex $v_1 \in V \setminus \mathcal{U}_0$.
- Consider LERW(v₁, U₀) and define U₁ = LERW(v₁, U₀).
- 5 . . .
- **6** Take any vertex $v_k \in V \setminus \mathcal{U}_{k-1}$.
- 7 Define $\mathcal{U}_k = LERW(v_k, \mathcal{U}_{k-1}) \cup \mathcal{U}_{k-1}$.
- 8 At the end, we obtain a spanning tree.
- If $|V_0| > 0$, then we will get a spanning forest.

Each k-leg watermelon can be considered as k loop-erased random walks from I_k to J_k .

Khaydar Nurligareev (LIPN, Paris-13)

Each k-leg watermelon can be considered as k loop-erased random walks from I_k to J_k .

Khaydar Nurligareev (LIPN, Paris-13)

Each k-leg watermelon can be considered as k loop-erased random walks from I_k to J_k .

Khaydar Nurligareev (LIPN, Paris-13)

Each k-leg watermelon can be considered as k loop-erased random walks from I_k to J_k .

Khaydar Nurligareev (LIPN, Paris-13)

Each k-leg watermelon can be considered as k loop-erased random walks from I_k to J_k .

Khaydar Nurligareev (LIPN, Paris-13)

Previous results: isotropic case

A. Gorsky, S. Nechaev, V. Poghosyan and V. Priezzhev studied this problem in 2013 for the following case:

- $\blacksquare \mathcal{G}$ is a square lattice,
- k is odd.

Context

 \blacksquare I_k and J_k have the form of *fence*.

Let r be the distance between I_k and J_k ,

Theorem:

J_k I_k

Khaydar Nurligareev (LIPN, Paris-13)

Previous results: anisotropic case

Another case studied by V. Priezzhev, A. Gorsky, S. Nechaev and V. Poghosyan is the following:

- \mathcal{G} is an elongated square lattice,
- k is odd,
- I_k and J_k have the form of *fence*.

Khaydar Nurligareev (LIPN, Paris-13)

New results: isotropic case, open boundary

- *G* is a square lattice on the half-plane,
- *I_k* and *J_k* have the form of segments located near the boundary,
- absorbing boundary conditions.

Khaydar Nurligareev (LIPN, Paris-13)

New results: isotropic case, closed boundary

- *G* is a square lattice on the half-plane,
- *I_k* and *J_k* have the form of segments located near the boundary,
- reflecting boundary conditions.

<u>Theorem 2</u> (N., Povolotsky):

$$W^{cl}(I_k, J_k) \sim C^{cl} \cdot r^{-k(k-1)} \cdot \ln r$$
, where $C^{cl} = \frac{1}{\pi^k \cdot (k-1)!} \cdot \prod_{s=1}^{l} (s!)^2$

Khaydar Nurligareev (LIPN, Paris-13)

Non-local Correlation Functions in the Spanning Tree Model near the Boundary

joint with A. Povolotsky (HSE, Moscow)

k

New results: anisotropic case, open boundary

- ${\cal G}$ is a horizontally elongated square lattice on the half-plane,
- *I_k* and *J_k* have the form of segments located near the boundary,
- absorbing boundary conditions.

$$W^{op}(I_k,J_k)\sim C^{op}\cdot r^{-k\left(k+rac{1}{2}
ight)},$$

where
$$C^{op} = rac{1}{\sqrt{2^{k^2} \cdot \pi^k}} \cdot \prod_{s=1}^{k-1} s! \cdot (2s+1)!!.$$

Khaydar Nurligareev (LIPN, Paris-13)

Non-local Correlation Functions in the Spanning Tree Model near the Boundary

vith A. Povolotsky (HSE, Mosc

New results: anisotropic case, closed boundary

- \blacksquare \mathcal{G} is a horizontally elongated square lattice on the half-plane,
- *I_k* and *J_k* have the form of segments located near the boundary,

reflecting boundary conditions.

<u>Theorem 4</u> (N., Povolotsky): if $\varepsilon \rightarrow 0$, then

$$W^{cl}(I_k,J_k)\sim C^{cl}\cdot r^{-k\left(k-rac{1}{2}
ight)},$$

where
$$C^{cl} = rac{1}{\sqrt{2^{k^2} \cdot \pi^k}} \cdot \prod_{s=1}^{k-1} s! \cdot (2s-1)!!.$$

Khaydar Nurligareev (LIPN, Paris-13)

Non-local Correlation Functions in the Spanning Tree Model near the Boundary

int with A. Povolotsky (HSE, Moscow)

Tools for proof

Matrix Tree Theorem,

Green functions,

Generating functions,

Symmetric (Schur) functions.

Khaydar Nurligareev (LIPN, Paris-13)

oint with A. Povolotsky (HSE, Moscow)

Thank you for your attention!

Khaydar Nurligareev (LIPN, Paris-13)

int with A. Povolotsky (HSE, Moscow)