イロト イロト イヨト イヨト

3

Correlation functions in the Abelian Sandpile Model

Khaydar Nurligareev

Research Seminar of Master's programme «Mathematics»

1 February 2018

Khaydar Nurligareev

Graphs G and G^*

- Let G = (V, E) be an undirected connected graph which may have multiple edges but loops are not allowed.
- Let N = |V|, that is G contains N vertices v_1, \ldots, v_N .
- Define an extended graph $G^* = (V^*, E^*)$ such that $V^* = V \cup \{v^*\}$ and $E \subset E^*$. The vertex v^* is called the *root* or the *sink*.

Graphs G and G^*

- Let G = (V, E) be an undirected connected graph which may have multiple edges but loops are not allowed.
- Let N = |V|, that is G contains N vertices v_1, \ldots, v_N .
- Define an extended graph $G^* = (V^*, E^*)$ such that $V^* = V \cup \{v^*\}$ and $E \subset E^*$. The vertex v^* is called the *root* or the *sink*.

Our typical example will be a square lattice $m \times n$, $N = m \cdot n$.

Khaydar Nurligareev

Toppling matrix

- For every pair of vertices v_i and v_j we will denote by x_{ij} the number of edges that connect these vertices.
- Define a *toppling matrix* Δ by the formula below:

$$\Delta_{ij} = \begin{cases} -x_{ij}, & \text{if } i \neq j, \\ \deg v_i, & \text{if } i = j, \end{cases}$$
(1)

Here the size of matrix Δ is $N \times N$ though by deg v_i we mean the degree of vertex v_i in graph G^* . The value deg v_i will be called a *capacity* of v_i .

Toppling matrix

- For every pair of vertices v_i and v_j we will denote by x_{ij} the number of edges that connect these vertices.
- Define a *toppling matrix* Δ by the formula below:

$$\Delta_{ij} = \begin{cases} -x_{ij}, & \text{if } i \neq j, \\ \deg v_i, & \text{if } i = j, \end{cases}$$
(1)

Here the size of matrix Δ is $N \times N$ though by deg v_i we mean the degree of vertex v_i in graph G^* . The value deg v_i will be called a *capacity* of v_i .

Khaydar Nurligareev

Height configurations and topplings

- A height configuration is a map η: V → N, and the set of all height configurations will be denoted by H = H(G).
- A height configuration $\eta \in \mathcal{H}$ is *stable* if $\eta(x) \leq \Delta_{xx}$ for every $x \in V$.
- A site (vertex) $x \in V$ is called an *unstable site* if $\eta(x) > \Delta_{xx}$.
- The *toppling* of a site $x \in V$ is defined by

$$T_{x}(\eta)(z) = \eta(z) - \Delta_{xz}$$
(2)

The toppling is called *legal* if the site x is unstable, otherwise it is called illegal. It is easy to see that result of the legal toppling is a height configuration again.

• The «elementary abelian property»: $T_x T_y = T_y T_x$.

5	6
2	4

Khaydar Nurligareev

Toppling numbers

Defining the *toppling numbers* of a sequence T_{x_1}, \ldots, T_{x_k} of legal topplings to be $n_x = \sum_{i=1}^k \mathbb{I}_{x_i=x}$ we can write the result of topplings in a following way

$$T_{x_1}\ldots T_{x_k}(\eta) = \eta - \Delta n, \qquad (3)$$

where *n* is the column indexed by $x \in V$ with elements n_x .

Toppling numbers

Defining the *toppling numbers* of a sequence T_{x_1}, \ldots, T_{x_k} of legal topplings to be $n_x = \sum_{i=1}^k \mathbb{I}_{x_i=x}$ we can write the result of topplings in a following way

$$T_{x_1}\ldots T_{x_k}(\eta) = \eta - \Delta n, \qquad (3)$$

where *n* is the column indexed by $x \in V$ with elements n_x .

 $\underbrace{\text{Example:}}_{V_{v_{4}}} \underbrace{\begin{array}{c} 5 & 6 \\ 2 & 4 \end{array}}_{V_{v_{1}}} \underbrace{\begin{array}{c} 1 & 7 \\ 3 & 4 \end{array}}_{V_{v_{2}}} \underbrace{\begin{array}{c} 2 & 3 \\ 3 & 5 \end{array}}_{V_{v_{4}}} \underbrace{\begin{array}{c} 2 & 4 \\ 4 & 1 \end{array}}_{V_{v_{4}}} \\ T_{v_{4}} T_{v_{2}} T_{v_{1}}(\eta) = \begin{pmatrix} 5 \\ 6 \\ 2 \\ 4 \end{pmatrix} - \begin{pmatrix} 4 & -1 & -1 & 0 \\ -1 & 4 & 0 & -1 \\ -1 & 0 & 4 & -1 \\ 0 & -1 & -1 & 4 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \\ 0 \\ 1 \end{pmatrix} = \begin{pmatrix} 2 \\ 4 \\ 4 \\ 1 \end{pmatrix}.$

Khaydar Nurligareev

Height configurations and topplings

- For a general height configuration we define its *stabilization* $S(\eta) = T_{x_1} \dots T_{x_k}(\eta)$ by the requirement that every toppling is legal and that $S(\eta)$ is stable.
- One can prove that the stabilization is well-defined, that is:
 - for every height configuration η there exists a sequence of legal topplings leading to a stable configuration,
 - the resulting stable configuration doesn't depend on the order of topplings.

Khaydar Nurligareev

Markov chain

- Let Ω be the set of all stable configurations. Then for every x ∈ V we can define an additional operator a_x: Ω → Ω by a_x(η) = S(η + δ_x).
- Let p = p(x) be a probability distribution on V. Starting from $\eta_0 \in \Omega$, the state at time k is given by the random variable $\eta_k = \prod_{i=1}^k a_{X_i} \eta_0.$ (5)

where X_1, \ldots, X_k are i.i.d.r.v. with distribution p.

The Markov transition operator defined on functions $f: \Omega \to \mathbb{R}$ is given by

$$Pf(\eta) = \sum_{x \in V} p(x)f(a_x\eta).$$
 (6)

Khaydar Nurligareev

Group structure

- \blacksquare Let ${\mathcal R}$ be the set of all recurrent configurations of the Markov chain.
- Let \mathcal{A} be the semi-group of all additional-operator products. In other words, $\mathcal{A} = \left\{ \prod_{i=1}^{k} a_{x_i} \middle| x_i \in V \right\}$.
- \blacksquare Define the equivalence relation on ${\mathcal A}$ by

$$g_1 \sim g_2$$
 iff $g_1(\eta) = g_2(\eta) \quad \forall \eta \in \mathbb{R}.$ (7)

Then $\mathcal{G} = \mathcal{A} / \sim$ turns out to be a group acting on \mathcal{R} .

Khaydar Nurligareev

Properties of the group ${\mathfrak G}$ and the set ${\mathfrak R}$

- The group \mathcal{G} acts on \mathcal{R} transitively, that is, for all $\eta \in \mathcal{G}$ the orbit $U_{\eta} = \{g\eta \mid g \in \mathcal{G}\} = \mathcal{R}$.
- The group \mathcal{G} acts on \mathcal{R} freely, that is, if $g\eta = g'\eta$ for some $g, g' \in \mathcal{G}$ and $\eta \in \mathcal{R}$ then g = g'.
- The stationary measure μ of Markov chain is uniform on \mathcal{R} . In other words,

$$\mu = \frac{1}{|\mathcal{R}|} \sum_{\eta \in \mathcal{R}} \delta_{\eta}.$$

• For every graph G^* we have $|\mathfrak{G}| = |\mathfrak{R}| = \det \Delta$.

Khaydar Nurligareev

◆□ > ◆□ > ◆臣 > ◆臣 > ○ 臣 ○ ○ ○ ○

$$\Omega = \left\{ \begin{pmatrix} 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 2 \end{pmatrix}, \begin{pmatrix} 2 \\ 1 \end{pmatrix}, \begin{pmatrix} 2 \\ 2 \end{pmatrix} \right\}$$

▲□▶ ▲圖▶ ▲目▶ ▲目▶ 目 のへで

イロト 不得下 イヨト イヨト

An example of group action

Khaydar Nurligareev

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = 三 - のへ⊙

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへの

◆□▶ ◆□▶ ◆注▶ ◆注▶ → 注 − のへで

Khaydar Nurligareev

Matrix Tree Theorem and burning algorithm

- <u>Matrix Tree Theorem</u>: The number of spanning trees of graph G* is det Δ.
- There is explicit bijection between recurrent configurations and spanning trees of G^* . This bijection is called *the burning algorithm* and proceed as follows. Given a height configuration $\eta \in \mathcal{R}$, in the first step remove («burn») from V all sites x from V which have a height $\eta(x)$ strictly bigger than the number of neighbors of x in V. After the first burning we are left with the set V_1 , and we then repeat the same procedure with V replaced by V_1 , and so on until no more sites can be burnt. We say that the site has *burning time* k if it is removed on the step k.

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 – のへで

An example of burning algorithm

イロト 不得下 イヨト イヨト

An example of burning algorithm

A site with burning time k + 1 has as an ancestor a site with burning time k. If there are several neighbours of burning time k we choose the ancestor according to preference-rule defined by the height $\eta(x)$. Say the left site has lower priority.

Khaydar Nurligareev

	η	
4	2	4
2	1	3
3	2	2

preference-rule: N<W<E<S

2

3

burning time

spanning tree

	η	
4	2	4
2	1	3
3	2	2

preference-rule: N<W<E<S

spanning tree

preference-rule: N<W<E<S

burning time

spanning tree

	η	
4	2	4
2	1	3
3	2	2

preference-rule: N<W<E<S

burning time

spanning tree

1 2 2

preference-rule: N<W<E<S

burning time

spanning tree

preference-rule: N<W<E<S

burning time

spanning tree

	η	
4	2	4
2	1	3
3	2	2

1	2	1
2	5	2
1	4	3

preference-rule: N<W<E<S

burning time

spanning tree

Khaydar Nurligareev

Forbidden subconfigurations

- Note that we can apply the burning procedure to any stable configuration (and obtain some tree). But for every $\eta \in \Omega \setminus \mathcal{R}$ there exist some sites that remain unburnt.
- The unburnt sites form so called *forbidden subconfigurations*, that is, pairs (W, η_W) (where $W \in V$ and $\eta_W = \eta|_W$) satisfied following requirement

$$\eta(x) \leqslant \sum_{y \in W \setminus \{x\}} (-\Delta_{xy}).$$
(8)

for all sites $x \in W$.

Examples of FSC:

	2	2	
1	1	2	Γ

2

Khaydar Nurligareev

The Bombey trick -1

- The set {η ∈ R | η(x) = 1} is in one-to-one correspondence with the set S₁ of spanning trees that satisfy deg x = 1, that is, x is a leaf of any spanning tree in S₁.
- The set S_1 can be considered as the set of all spanning trees for graph G' that is obtained from G^* by removing $(\deg x - 1)$ edges leading to site x.
- Denoting the toppling matrix of G' by Δ' with the Matrix Tree Theorem we have

$$P_1 = \mathbb{P}(\eta(x) = 1) = \frac{\det \Delta'}{\det \Delta}.$$
 (9)

 Defining by B the difference Δ' – Δ we can rewrite formula (9) in the form

$$P_1 = \det(E + \Delta^{-1}B). \tag{10}$$

Khaydar Nurligareev

The Bombey trick -2

The same idea is used to evaluate the probability

$$P_{11} = \mathbb{P}(\eta(x) = \eta(y) = 1).$$

- The set {η ∈ ℜ | η(x) = η(y) = 1} is in one-to-one correspondence with the set S₁₁ of spanning trees that satisfy deg x = deg y = 1.
- The set S₁ can be considered as the set of all spanning trees for graph G̃ that is obtained from G* by removing (deg x − 1) edges leading to site x and (deg y − 1) edges leading to site y.
- Defining the matrices $\tilde{\Delta}$ and \tilde{B} as above we obtain

$$P_{11} = rac{\det \tilde{\Delta}}{\det \Delta} = \det(E + \Delta^{-1}\tilde{B}).$$
 (11)

Khaydar Nurligareev

Correlation functions in the thermodynamic limit

- For the square lattice $m \times n$ with $m, n \to \infty$ $(m/n \to 1)$ the matrix Δ^{-1} turns out to be the Green function.
- Computations deliver following results.

$$\lim_{V \to \mathbb{Z}^2} \mathbb{P}(\eta(x) = 1) = \frac{2(\pi - 2)}{\pi^3}$$
(12)

$$\lim_{V \to \mathbb{Z}^2} (\mathbb{P}(\eta(x) = \eta(y) = 1) - (\mathbb{P}(\eta(x) = 1))^2) \simeq |x - y|^{-4}$$

• One can establish similar formulae for *d*-dimensional lattice. $\lim_{V \to \mathbb{Z}^d} (\mathbb{P}(\eta(x) = \eta(y) = 1) - (\mathbb{P}(\eta(x) = 1))^2) \simeq |x - y|^{-2d}$

Khaydar Nurligareev

Bibliography I

Nedig F.

Mathematical Aspects of the Abelian Sandpile Model. Les Houches lecture notes. -2005.

Priezzhev V B

> Structure of Two-Dimensional Sandpile. I. Height Probabilities. J. of Stat. Phys., 1994. Vol. 74. Nos. 5/6. P. 955-979.

Приезжев В.Б.

Задача о димерах и теорема Кирхгофа.

Успехи физических наук., 1985. Т. 147. Вып. 4. с. 747-765.

Khaydar Nurligareev