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Definitions and basic notions Calculating the correlation functions

Graphs G and G ∗

Let G = (V ,E ) be an undirected connected graph which may
have multiple edges but loops are not allowed.
Let N = |V |, that is G contains N vertices v1, . . . , vN .
Define an extended graph G ∗ = (V ∗,E ∗) such that
V ∗ = V ∪ {v∗} and E ⊂ E ∗. The vertex v∗ is called the root
or the sink.

Our typical example will be a square lattice m × n, N = m · n.

G G ∗

v∗
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Toppling matrix

For every pair of vertices vi and vj we will denote by xij the
number of edges that connect these vertices.
Define a toppling matrix ∆ by the formula below:

∆ij =

{
−xij , if i 6= j ,

deg vi , if i = j ,
(1)

Here the size of matrix ∆ is N × N though by deg vi we mean
the degree of vertex vi in graph G ∗. The value deg vi will be
called a capacity of vi .

Example:
m = n = 2

G ∗
∆ =


4 −1 −1 0
−1 4 0 −1
−1 0 4 −1
0 −1 −1 4
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Height configurations and topplings

A height configuration is a map η : V → N, and the set of all
height configurations will be denoted by H = H(G ).
A height configuration η ∈ H is stable if η(x) 6 ∆xx for every
x ∈ V .
A site (vertex) x ∈ V is called an unstable site if η(x) > ∆xx .
The toppling of a site x ∈ V is defined by

Tx(η)(z) = η(z)−∆xz (2)

The toppling is called legal if the site x is unstable, otherwise
it is called illegal. It is easy to see that result of the legal
toppling is a height configuration again.
The «elementary abelian property»: TxTy = TyTx .
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An example of topplings

v1 v2

v3 v4

G ∗
5 6

2 4

55 Tv1−→
1 7

3 4

77 Tv2−→
2 3

3 555
Tv4−→

2 4

4 1
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An example of topplings

v1 v2

v3 v4

G ∗
5 6

2 4

5

5 Tv1−→
1 7

3 4

77 Tv2−→
2 3

3 555
Tv4−→

2 4

4 1
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An example of topplings
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An example of topplings

v1 v2

v3 v4

G ∗
5 6

2 4

55 Tv1−→
1 7

3 4

77 Tv2−→
2 3

3 5

55
Tv4−→

2 4

4 1
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An example of topplings

v1 v2

v3 v4

G ∗
5 6

2 4

55 Tv1−→
1 7

3 4

77 Tv2−→
2 3

3 55
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Toppling numbers

Defining the toppling numbers of a sequence Tx1 , . . . ,Txk of legal

topplings to be nx =
k∑

i=1
Ixi=x we can write the result of topplings

in a following way
Tx1 . . .Txk (η) = η −∆n, (3)

where n is the column indexed by x ∈ V with elements nx .

Example: 5 6

2 4
Tv1−→

1 7

3 4
Tv2−→

2 3

3 5
Tv4−→

2 4

4 1

Tv4Tv2Tv1(η) =


5
6
2
4

−


4 −1 −1 0
−1 4 0 −1
−1 0 4 −1
0 −1 −1 4




1
1
0
1

 =


2
4
4
1

 .
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Height configurations and topplings

For a general height configuration we define its stabilization
S(η) = Tx1 . . .Txk (η) by the requirement that every toppling is
legal and that S(η) is stable.

One can prove that the stabilization is well-defined, that is:

for every height configuration η there exists a sequence of legal
topplings leading to a stable configuration,

the resulting stable configuration doesn’t depend on the order
of topplings.
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Markov chain

Let Ω be the set of all stable configurations. Then for every
x ∈ V we can define an additional operator ax : Ω→ Ω by

ax(η) = S(η + δx). (4)

Let p = p(x) be a probability distribution on V . Starting from
η0 ∈ Ω, the state at time k is given by the random variable

ηk =
k∏

i=1

aXi
η0. (5)

where X1, . . . ,Xk are i.i.d.r.v. with distribution p.
The Markov transition operator defined on functions
f : Ω→ R is given by

Pf (η) =
∑
x∈V

p(x)f (axη). (6)
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Group structure

Let R be the set of all recurrent configurations of the Markov
chain.

Let A be the semi-group of all additional-operator products. In

other words, A =

{
k∏

i=1
axi

∣∣∣∣ xi ∈ V

}
.

Define the equivalence relation on A by

g1 ∼ g2 iff g1(η) = g2(η) ∀ η ∈ R. (7)

Then G = A/ ∼ turns out to be a group acting on R.
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Properties of the group G and the set R

The group G acts on R transitively, that is, for all η ∈ G the
orbit Uη = {gη | g ∈ G} = R.

The group G acts on R freely, that is, if gη = g ′η for some
g , g ′ ∈ G and η ∈ R then g = g ′.

The stationary measure µ of Markov chain is uniform on R. In
other words,

µ =
1

|R|
∑
η∈R

δη.

For every graph G ∗ we have |G| = |R| = det ∆.
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An example of group action

v1 v2

v∗G ∗

∆ =

(
2 −1
−1 2

)

Ω =

{(
1
1

)
,

(
1
2

)
,

(
2
1

)
,

(
2
2

)}

(
1
1

) (
1
2

)

(
2
1

) (
2
2

)

q 0

p

0

q

p

p

q

q p

R =

{(
1
2

)
,

(
2
1

)
,

(
2
2

)}
, G ∼= Z3
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Another example of group action

v1 v2 v3 vN−1 vN

v∗

. . .

G ∗

∆ =


2 −1 0 . . . 0
−1 2 −1 0
0 −1 2 0
...

. . .
...

0 0 0 . . . 2


det ∆ = N + 1 G ∼= ZN+1

R =





2
2
2
. . .
2
2

 ,



2
2
2
. . .
2
1

 ,



2
2
2
. . .
1
2

 , . . . ,



2
2
1
. . .
2
2

 ,



2
1
2
. . .
2
2

 ,



1
2
2
. . .
2
2
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Matrix Tree Theorem and burning algorithm

Matrix Tree Theorem: The number of spanning trees of graph
G ∗ is det ∆.

There is explicit bijection between recurrent configurations and
spanning trees of G ∗. This bijection is called the burning
algorithm and proceed as follows. Given a height configuration
η ∈ R, in the first step remove («burn») from V all sites x
from V which have a height η(x) strictly bigger than the
number of neighbors of x in V . After the first burning we are
left with the set V1, and we then repeat the same procedure
with V replaced by V1, and so on until no more sites can be
burnt. We say that the site has burning time k if it is removed
on the step k .

Khaydar Nurligareev

Correlation functions in the Abelian Sandpile Model



Definitions and basic notions Calculating the correlation functions

An example of burning algorithm

v1 v2 v3

v∗G ∗
η = (122)

1 2 2

burning time spanning tree

2 12 121 233

A site with burning time k + 1 has as an ancestor a site with
burning time k . If there are several neighbours of burning
time k we choose the ancestor according to preference-rule
defined by the height η(x). Say the left site has lower priority.

η = (212)

burning time

1 2 1

spanning tree

η = (222)

burning time

1 2 1

spanning tree
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Another example of burning algorithm

G ∗

v∗

η

4 2 4
2 1 3
3 2 2

preference-rule: N<W<E<S

η

4 2 4
2 1 3
3 2 2

burning time spanning tree

3

4 4 1 1

1
2

2
3

1 1

1
2

2
2

2
2

2
2
32 34

1
4
55
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Another example of burning algorithm
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Forbidden subconfigurations

Note that we can apply the burning procedure to any stable
configuration (and obtain some tree). But for every η ∈ Ω \ R
there exist some sites that remain unburnt.
The unburnt sites form so called forbidden subconfigurations,
that is, pairs (W , ηW ) (where W ∈ V and ηW = η|W )
satisfied following requirement

η(x) 6
∑

y∈W \{x}

(−∆xy ). (8)

for all sites x ∈W .

Examples of FSC: 1 1
1
2 1

2 2
1 2

2 2
2 2
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The Bombey trick – 1

The set {η ∈ R | η(x) = 1} is in one-to-one correspondence
with the set S1 of spanning trees that satisfy deg x = 1, that
is, x is a leaf of any spanning tree in S1.
The set S1 can be considered as the set of all spanning trees
for graph G ′ that is obtained from G ∗ by removing (deg x − 1)
edges leading to site x .
Denoting the toppling matrix of G ′ by ∆′ with the Matrix Tree
Theorem we have

P1 = P(η(x) = 1) =
det ∆′

det ∆
. (9)

Defining by B the difference ∆′ −∆ we can rewrite
formula (9) in the form

P1 = det(E + ∆−1B). (10)
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The Bombey trick – 2

The same idea is used to evaluate the probability
P11 = P(η(x) = η(y) = 1).

The set {η ∈ R | η(x) = η(y) = 1} is in one-to-one
correspondence with the set S11 of spanning trees that satisfy
deg x = deg y = 1.
The set S1 can be considered as the set of all spanning trees
for graph G̃ that is obtained from G ∗ by removing (deg x − 1)
edges leading to site x and (deg y − 1) edges leading to site y .
Defining the matrices ∆̃ and B̃ as above we obtain

P11 =
det ∆̃

det ∆
= det(E + ∆−1B̃). (11)
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Correlation functions in the thermodynamic limit

For the square lattice m × n with m, n→∞ (m/n→ 1) the
matrix ∆−1 turns out to be the Green function.
Computations deliver following results.

lim
V→Z2

P(η(x) = 1) =
2(π − 2)

π3
(12)

lim
V→Z2

(P(η(x) = η(y) = 1)− (P(η(x) = 1))2) ' |x − y |−4

One can establish similar formulae for d-dimensional lattice.

lim
V→Zd

(P(η(x) = η(y) = 1)− (P(η(x) = 1))2) ' |x − y |−2d
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