Regular plane multi-tilings

Khaydar Nurligareev
Moscow 57-th School
Kolmogorov lecturings - XI
May 14-17, 2013

Table of content

1 Motivation and background

- Definitions and notions
- Stating the problem

2 Results

- List of results
- Ideas of proof

Tilings

- Tiling is a countable family of (regular) polygons which cover the plane without gaps or overlaps.
- Tiles are (regular) polygons constituting a tiling.
- Tiling is edge-to-edge if a non-empty intersection of two tiles is either an edge or a vertex for both tiles.
- Vertices and edges of a tiling are the vertices and the edges of its tiles respectively.

Regular tilings

■ Vertex type is the order of polygons around the vertex (up to cyclic shift and direction).

- Regular tiling has the symmetry group that acts transitively on the set of vertices.
- All the vertices of a regular tiling have the same type, that is, the type of the regular tiling.

Fact. There are exactly 11 regular tilings (Archimedean tilings).

Definitions and notions

Regular tiling types

- Tilings constituted of congruent tiles.

Definitions and notions

Regular tiling types

- Tilings constituted of tiles of two different kinds.

4, 8, 8

3, 12, 12

Regular tiling types

- Tilings constituted of tiles of two different kinds.

Definitions and notions

Regular tiling types

■ Tilings constituted of tiles of three different kinds.

Khaydar Nurligareev
Regular plane multi-tilings

Classification of regular tilings

■ A regular tiling is determined by the type of its vertices.

- Hence, for classifying regular tilings, we need to classify all possible vertices types.
- A vertex type corresponds to some solution of the Diophantine equation.

Stating the problem

Example

■ Let a k-gon, an l-gon, an m-gon and an n-gon meet in a vertex. Hence,

$$
\frac{(k-2) \pi}{k}+\frac{(l-2) \pi}{l}+\frac{(m-2) \pi}{m}+\frac{(n-2) \pi}{n}=2 \pi .
$$

- In other words, $\quad \frac{1}{k}+\frac{1}{l}+\frac{1}{m}+\frac{1}{n}=1$.
- This equation has a solution $(3,4,4,6)$.

Stating the problem

Example, continued

(a) Vertex type 3,4,6, 4 corresponds to a regular tilings.
(b) Vertex type $3,4,4,6$ cannot lead to a regular tiling.

(b)

Main problem

Consider multiple tilings determined by all possible types of vertices.

1 How many regular multiple tilings have a finite order of multiplicity?

2 What is the multiplicity, if it is finite?

Regular multiple tiling classification

Theorem (Nurligareev, 2012)
There are 21 regular multiple tiling. Among them,

- there are 11 tilings with multiplicity 1 :

$$
\begin{aligned}
& \text { (6)3; (4)4; (3)6; 3,12,12; 4,8,8; 3,6,3,6; (4)3,6; 3,4,6,4; } \\
& \text { (3)3,(2)4; (2)3,4,3,4; 4,6,12; }
\end{aligned}
$$

- there is 1 tiling with multiplicity 8: 3,3,6,6;

■ there are 9 tilings with infinite multiplicity: 3,7,42; 3,8,24; $3,9,18 ; 3,10,15 ; 4,5,20 ; 5,5,10 ; 3,3,4,12 ; 3,4,3,12 ; 3,4,4,6$.

Order of rotations

■ Denote E the set of all rigid motions of the plane.
■ Let $V \subset \mathbb{R}^{2}$ be a discrete subset with the property: $\forall a, b \in V \exists g \in E$ such that $g(a)=b$ and $g(V)=V$.

■ Let $G=\{g \in E \mid g(V)=V\}$.

■ Lemma 1 (Coxeter). If $g \in G$ is a rotation, then its order is in the set $\{2,3,4,6\}$.

Side number restriction

■ Lemma 2. If a regular n-gon is a tile of some regular multiple tiling, and the type of the tiling include n exactly once, then $n \in\{3,4,6,8,12\}$.

■ Corollary. Regular multiple tilings 3,7,42; 3,8,24; 3,9,18; 3,10,15; 4,5,20; 5,5,10 have infinite multiplicity.

Tilings 3,3,4,12; 3,4,3,12; 3,4,4,6

■ To show that tilings 3,3,4,12; 3,4,3,12; 3,4,4,6 have infinite multiplicity, it is enough to establish that their sets of vertices are not discrete.

- The idea is to find translations by incommensurable vectors in the symmetry group of each tiling.

Tiling 3,3,4,12

Neighbourhoods of tiles in $3,3,4,12$.

- Let the length of each edge equal 1.
- There are shifts by $\sqrt{3}$ and by $(1+\sqrt{3})$ in the same direction.

Tiling 3,4,3,12

Neighbourhoods of tiles in $3,4,3,12$.

Tiling 3,4,3,12

■ Let the length of each edge equal 1.

- There are shifts by $\sqrt{3}$ and by $(2+\sqrt{3})$ in the same direction.

Ideas of proof

Tiling 3,4,4,6

Neighbourhoods of tiles in $3,4,4,6$.

Tiling 3,4,4,6

■ Let the length of each edge equal 1.

- There are shifts by $\sqrt{3}$ and by $\frac{3+\sqrt{3}}{2}$ in the same direction.

Tiling 3,3,6,6

- The set of vertices of tiling 3,3,6,6 is discrete (it coincides with the set of vertices of tiling (6)3).
- Neighbourhoods of tiles in $3,3,6,6$:

Ideas of proof

Layers of tiling 3,3,6,6

Further problems

■ What are regular multiple tilings of the sphere?

- What are regular multiple tilings of the hyperbolic plane?
- Is it possible to generalize results for the 3-dimensional space?

Literature I

© Coxeter H.S.M.
Introduction to Geometry
Q Grünbaum Branko, Shephard G.C.
Tilings and Patterns
國 Nurligareev Kh.
Regular multiple tilings (rus)
Mathematical Education, 2012, 1(61), P. 23-29.

