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Biological Motivation

I Promoters are DNA sequences located upstream of the gene
they regulate; regulation can be positive for enhancers or
negative for repressors.

I The promoters contain binding sites for regulatory proteins
such as Transcription Factors (TFs) that are short
stretches of DNA.

I Waiting time: how long it takes for a Transcription Factor
to appear in a promoter under a probabilistic model of
evolution helps understanding the overall evolution of
promoters within species and between species?
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From infinitesimal to discrete evolution model

I Q(t)dt evolution matrix for infinitesimal time
I P(t) evolution matrix from time x and time x+ t

P(t) = eQ(t) (Karlin-Taylor 1975)

I P(1) = (πα→β) evolution matrix for one generation (20
years), α, β ∈ {A, C, G, T}
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Initial ν(α) and Substitution Probabilities πα→β

α ν(α)

A 0.23889
C 0.26242
G 0.25865
T 0.24004

 
substitution
probability πα→β
for one generation
(20 years)

A  A 0.9999999763
A  C 4.54999994943× 10−9

A  G 1.57499995613× 10−8

A  T 3.40000001733× 10−9

C  A 6.14999993408× 10−9

C  C 0.99999996495
C  G 7.14999984731× 10−9

C  T 2.17499993935× 10−8

G  A 2.17499993935× 10−8

G  C 7.14999984731× 10−9

G  G 0.99999996495
G  T 6.14999993408× 10−9

T  A 3.40000001733× 10−9

T  C 1.57499995613× 10−8

T  G 4.54999994943× 10−9

T  T 0.9999999763
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Probability of occurrence of a k-mer at time 1
I Sn(0) random DNA sequence of length n at time 0
I Sn(1) sequence obtained from Sn(0) by evolution at time 1
I b a k-mer (word of length k over A = {A,C,G,T})

I Pn(b) probability that b
I occurs at time 1
I while not occurring at time 0

Pn(b) = P(b ∈ Sn(1) | b 6∈ Sn(0))

Expectation of the Waiting time En(b)
I

En(b) ≈ 1

Pn(b)
(geometric distribution− BehVin2010)
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Plan of the talk

Different computations of Pn

1. Behrens-Vingron (2010)
I Approach neglecting words correlation.
I Efficient computation of Pn with respect to this assumption.

2. Behrens-Nicaud-P.N. (2012)
I Rigorous and efficient approach by automata.
I Approach hiding the quasi-linear behaviour of Pn

3. P.N. (NCMA2012)
I Non-efficient approach by clump analysis, either by
combinatorics of words or by automata.

I Proof by singularity analysis of the quasi-linear behaviour
of Pn
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Behrens-Vingron 2010

I d+(b) neighbors of b by substitution

S(0)

 πα→β
S(1)  

ν(α)
d+(b) d+(b)

bb


Pn ≈

bn/kc∑
i=1

(−1)i+1

(
n− i(k − 1)

i

)
Φi

Φ =
∑

(a1,...,ak)∈Ak\{b1,...,bk}

ν(a1)× · · · × ν(ak) ·
k∏
j=1

πai→bi(1)
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Approximations of Behrens-Vingron 2010

I occurrences of b in S(1) do not overlap

I possible unwanted occurrences of b at junctions in S(0)

S(0)

 πα→β
S(1)  

ν(α)
d+(b) d+(b)

bb
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Behrens-Nicaud-P.N. 2012

Construct an automaton

I on the alphabet Σ = A×A with A = {A, C, G, T}
I recognizing sequences S(b) = S(0)⊗ S(1)

I such that

1. b 6∈ S(0)

2. b ∈ S(1)

November 24, 2012



Using the Knuth-Morris-Pratt automaton

0 1 2 3
A C C

C A

A

A,C

MACC = {Q, δ, s = 0, F}

0 1 2 3
A C C

C A

A

A,C

MACC = {Q, δ, s = 0, Q \ F}


Mb = (Q = {0, . . . , k}, δb, 0, {k})
Mb = (Q = {0, . . . , k}, δb, 0, {0, . . . , k − 1})
Nb =Mb ⊗Mb = (Q×Q,∆, q′0 = (0, 0), F ′ = {0,. . ., k−1} × {k})

∆((r, s), (α, β)) = (δb(r, α), δb(s, β))
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The automaton NACC =MACC ⊗MACC with matrix P

0,0
C

1,0

A
2,0
C

0,1

C
1,1
A

2,1

C

0,2
C

0,3
C

1,2

A

1,3

A

2,2
C

2,3
C

sink

C,C

C,C

C,C

A,A

C,C

C,A

A,A

C,C

A,A

A,A,C,C

Notations for the transitions:{
A =

(A
A

)
, C =

(C
C

)
A =

(A
C

)
, C =

(C
A

)

a missing label of a transition is
set to the letter at the bottom
of its ending state

1,0

C
2,0
C

is labelled by C

Pn = P(Sn(1) ∈ A?bA?|Sn(0) 6∈ A?bA?) =
Vq′0P

nVF ′ t

1− Vq′0P
nV t

sink
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Results for 5-mers of DNA

BNN BV
EBNN(T1000)/106 Rank EBV(T1000)/106 Rank EBNN(T1000)

EBV(T1000)

CCCCC 9,105 1021 6,304 1 1.44
GGGGG 9,570 1022 6,666 142 1.44
TTTTT 10,401 1023 7,457 993 1.39
AAAAA 10,656 1024 7,654 1024 1.39
CGCGC 7,047 699 6,446 11 1.09
TCCCC 7,076 737 6,477 17 1.09
CCCCT 7,076 738 6,477 21 1.09
GCGCG 7,127 787 6,518 31 1.09
CTCTC 7,263 883 6,679 148 1.09
. . . . . . . . . . . . . . . . . .

4% of the 5-mers
0.2% of the 7-mers
0.002% of the 10-mers

∣∣∣∣∣∣ verify EBNN(T1000)

EBV(T1000)
> 1.05%
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Numerical remarks

I length of promoters n ∈ [500− 2000]

I Mutation probability π = max(πα→β) ≈ 10−9

We have
I pr: probability of Mutation to b from a r-neighbour of
b with r ≥ 2
pr ≤ n× πr ≤ 2000× 10−18 < 2.10−6 × π

I qs: probability that s 1-neighbours simultaneously
mutate to b with s ≥ 2
qs ≤ n× πs ≤ 2000× 10−18 < 2.10−6 × π

Therefore assuming a single mutation in the promoter
is numerically sound
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Putative-hit positions.
I Given a sequence S(0) not containing a k-mer b,
I a putative-hit position is any position of S(0) that can lead
by a mutation to an occurrence of b in S(1),

I where we assume that a single mutation has occurred.

S(0) = CCCAACAC, b = ACC  S(0) = CCCAACAC,

putative-hit positions underlined in S(0).

In a random sequence of length n with A = {A,C}, let
I H

(n)
A→C number of putative-hit-positions A→ C,

I H
(n)
C→A number of putative-hit-positions C→ A,

Then

Pn ≈ E(H
(n)
A→C)× πA→C + E(H

(n)
C→A)× πC→A
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Computing via generating functions
Aim:
Compute

Fb(z, tA→C, tC→A) =
∑
n≥0

∑
0≤i≤n−|b|

∑
0≤j≤n−|b|

fn,i,jt
i
A→C, t

j
C→Az

n

where fn,i,j is the probability that a sequence Sn(0) with no b, of
length n, contains
I i putative-hit positions A→ C

I and j putative-hit positions C→ A

We have

Pn = [zn]

(
πA→C

∂F (z, tA→C, 1)

∂tA→C

∣∣∣∣
tA→C=1

+ πC→A
∂F (z, 1, tC→A)

∂tC→A

∣∣∣∣
tC→A=1

)
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Putative-Hit-Positions and clump analysis
A = {A, C} b = ACC −→ d(ACC, 1) = {CCC, AAC, ACA}

CCCCAAACAAACAAACAAAACACAAC

CCC ACA ACA
ACA

AAC

CCC AAC AAC AAC AAC

I II III IV V

I (left) b = ACC - in clump I, when the right extension of a clump
adds a new putative-hit position, this position is not necessarily in
the extension, but possibly backwards left
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Putative-Hit-Positions and clump analysis
A = {A, C} b′= AAA −→ d(AAA, 1) = {CAA, ACA, AAC}

CCCAACAACAACCCCCCCCAACACCACA
CAA CAA ACA
AAC AAC
ACA ACA
CAA
AAC

CAA
AAC

I II III

I (right)b′ = AAA - clump I contains 7 occurrences of d(AAA), but only
4 putative-hit positions for b′ = AAA. The number of word
occurrences is not the relevant statistics for counting putative-hit
positions
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I - Automaton approach
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Clumps of the set of words U = {aabaa, baab}
Ew1,w2 correlation set from w1 to w2

Eaabaa,aabaa = {baa, abaa} Ebaab,baab = {aab}
Eaabaa,baab = {b} Ebaab,aabaa = {aa}

Algorithm

1. Build the set of strings
X = {aabaa.(ε+ Eaabaa,aabaa)} ∪ {aabaa.Eaabaa,baab}

∪ {baab.(ε+ Ebaab,baab)} ∪ {baab.Ebaab,aabaa}

2. Build a trie T on X

3. Build a Aho-Corasick like automaton upon T . For each node ν
of T with “access word” v, use the transition function δ
δ(ν, `) = node accessed by the longuest prefix in X that is suffix
of v.`

November 24, 2012
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X = {aabaa, aabaabaa, aabaaabaa, aabaab }

a

a b a a

a
b

a a

b

a

a

An automaton for V = {v1 = aabaa, v2 = baab}. All transitions labeled by a and b
ending respectively on state A and B are omitted.
I → the corresponding prefix (or state) ends with some occurrence of V.

I “double circle” → states where we know that we have entered a new clump

Formal weights on transitions
I γ → the number of clumps
I τ → total length of clumps
I xi → occurrences of vi
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A

a

a b a a

a
b

a a

b

a

a

B

b

a a b a a
b

a

b
b

a

a

a

An automaton for V = {v1 = aabaa, v2 = baab}. All transitions labeled by a and b
ending respectively on state A and B are omitted.

I • → the corresponding prefix (or state) ends with some occurrence of V.

I “double circle” → states where we know that we have entered a new clump

Formal weights on transitions
I γ → the number of clumps
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I xi → occurrences of vi



A •

a

a b a a •

a
b

a a

•

•b

a

a

B • •

•
b

a a b a a
b

a

b
b

a

a

a

An automaton for V = {v1 = aabaa, v2 = baab}. All transitions labeled by a and b
ending respectively on state A and B are omitted.
I •, • → the corresponding prefix (or state) ends with some occurrence of

aabaa, baab.
I red states → states where we have entered a new clump

Formal weights on transitions
I γ → the number of clumps
I τ → total length of clumps
I xi → occurrences of vi
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A •

a

a b a
a(γτ5x1)

•

a
b

a a(τ4x1)

•

•

b(τx2)

a
a(τ2x1)

B • •

•
b

a a
b(γτ4x2)

a a(τ2x1)
b(τx2)

a

b(τx2) b(τx2)

a

a

a

An automaton for V = {v1 = aabaa, v2 = baab}. All transitions labeled by a and b
ending respectively on state A and B are omitted.
I •, • → the corresponding prefix (or state) ends with some occurrence of

aabaa, baab.
I red states → states where we have entered a new clump

Formal weights on transitions
I γ → the number of clumps
I τ → total length of clumps
I x1, x2 → occurrences of aabaa, baab



F (a, b, γ, x1, x2, τ)

= (1, 0, . . . )
(

I − T(a, b, γ, x1, x2, τ)
)

−1









1

1









A •

a

a b a
a(γτ5x1)

•

a
b

a a(τ4x1)

•

•

b(τx2)

a
a(τ2x1)

B • •

•
b

a a
b(γτ4x2)

a a(τ2x1)
b(τx2)

a

b(τx2) b(τx2)

a

a

a
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F (a, b, γ, x1, x2, τ)

= (1, 0, . . . )
(

I − T(a, b, γ, x1, x2, τ)
)

−1









1

1









a  πaz, b  πbz

[zn]F (πaz, πbz, . . . ) → ()Tn(πa, πb, . . . )()

A •

a

a b a
a(γτ5x1)

•

a
b

a a(τ4x1)

•

•

b(τx2)

a
a(τ2x1)

B • •

•
b

a a
b(γτ4x2)

a a(τ2x1)
b(τx2)

a

b(τx2) b(τx2)

a

a

a

An automaton for V = {v1 = aabaa, v2 = baab}. All transitions labeled by a and b
ending respectively on state A and B are omitted.
I •, • → the corresponding prefix (or state) ends with some occurrence of

aabaa, baab.
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Automaton for constrained clumps of
d(AAA) = {AAC, ACA, CAA}

(χ = 16)

0start
1

2

3

4 5

6 7

8 9

χ
10 11

12

13

14 15

A

A

C•
A

A

C•C•

C•

A
A

C•

C•

A

A

C•
C•

C
A

A

C•

C•
A

A

C•

I Double circles signals an occurrence of a word of d(aaa).
I Avoiding AAA leads to missing transitions A

I The missing transitions C point to the state χ.
I • characters mark putative-hit-positions

I Transitions covered by tildes (Ã, C̃) emits a signal counting a putative-hit
position.
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0start
1

2

3

4 5

6 7

8 9

χ
10 11

12

13

14 15

A

C̃•
A

C̃•
A

A

C•

C•

Ã
A

C•

C̃•

A

Ã

C•
C•

C
A

Ã

C•

C̃• A

A

C•
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I The missing transitions C point to the state χ.
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Automaton for constrained clumps of
d(AAA) = {AAC, ACA, CAA}

(χ = 16)

0start
1

2

3

4 5

6 7

8 9

χ
10 11

12

13

14 15

A

C•
A

C̃•
A

A

C•

C•

Ã
A

C•

C̃•

A

Ã

C•
C•

C
A

Ã

C•

C̃• A

A

C•

I O = {q, δ(0, w) = q, w ∈ X}, (occurrence of a word of d(aaa)).

I E = {q, δ(0, w) = q, w ∈ P̂ref(d(b))}, with P̂ref(d(b)) set of strict
prefixes of words of d(b).
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Definition of an auxiliary function θ
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Formal definition of θ

For each state o ∈ O (recognizing an occurrence of d(b)),

θ(o) =



w with |w| ≤ |b|, of maximal length,

verifying

∣∣∣∣∣∣∣∣
(a) there exists q such that δ(q, w) = o,

(b) there is no u ∈ P̂ref(w)
such that δ(q, u) ∈ O

By the Markov property, θ(o) defines a unique word
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Adjacency matrix H(t) = (hij(t))
d(AAA) = {AAC, ACA, CAA}

(χ = 16)
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I h6,7(tC→A) = νAtC→A (θ(7) = AC•A)
I h3,4(tC→A) = h4,5(tC→A) = νA (θ(5) = AA)
I h13,14(tC→A) = νCtC→A (θ(14) = C•)
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Formal definition of the adjacency matrix H(t)

(a) hij(t) = 0 if there is no transition from i to j

(b) With δ(i, α) = j,

hi,j(t) =


ν(α) if

∣∣∣∣j 6∈ O,j ∈ O and θ(j) contains no putative-hit position

ν(α)× t elsewhere

From matrix to generating function

Fb(z, t) = (1, 0, . . . , 0)×
(
I + zH(t) + · · ·+ znHn(t) + . . .

)
× 1t

= (1, 0, . . . , 0)× (I− zH(t))−1 × 1t.

Entries of (I− zH(t))−1 rational functions in z and t
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Rational functions and gfun

rational function
f(z)

g(z)
→ gfun[diffeqtorec] → recurrence equations

recurrence equations → gfun[rectoproc] → procedure Proc(n)=[zn]
f(z)

g(z)
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Rational functions, Taylor coefficient of order n and gfun

rational function
f(z)

g(z)
→ gfun[diffeqtorec] → recurrence equations

recurrence equations → gfun[rectoproc] → procedure Proc(n)=[zn]
f(z)

g(z)

Fb(z, t) =
P (z, t)

Q(z, t)
and Fb(z, 1) =

∑
n≥0

f̂ (b)n zn =
P (z, 1)

Q(z, 1)
,

E(z) =
∑
n

ηnz
n =

∂

∂t
Fb(z, t)

∣∣∣∣
t=1

=
P ′t(z, 1)

Q(z, 1)
− P (z, 1)Q′t(z, 1)

Q2(z, 1)

I f̂
(b)
n = P(Sn(0)) = P(not going into sink)

I ηn is the unconditionned probability of the expectation of
the count of putative-hit positions

I Conditionned expectation: η̃n = ηn
/
f̂
(b)
n
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An unexpected behaviour

n
n

ηn = E(H
(A→C)
n ) +E(H

(C→A)
n ) f̂

(y)
n = P(|Sn(0)|y = 0)

(y is b or b′)

b = ACAC b′ = AACC

ν(A) = ν(C) =
1

2

πA→C = πC→A

πA→A = πC→C

E(H
(A→C)
n ) + E(H

(C→A)
n ) =

∂Fb(z, t)

∂t

∣∣∣∣
t=1

t = tA→C = tC→A

η̃n = ηn
/
f̂
(y)
n

n
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A proof by singularity analysis
Fb(z, t) =

P (z, t)

Q(z, t)
P (z, t) and Q(z, t) polynomials

Fb(z, 1) =
∑
n≥0

f̂ (b)n zn =
P (z, 1)

Q(z, 1)

f̂
(b)
n probability that Sn(0) has no occurrence of b.

E(z) =
∑
n≥0

E(Hn)zn =
P ′x(z, 1)

Q(z, 1)
− P (z, 1)Q′x(z, 1)

Q2(z, 1)

The dominant singularity τ is the smallest positive solution of
Q(z, 1) = 0. Use suitable Cauchy integrals f̂

(b)
n = ψ × τ−(n−1) (1 +O (Bn)) , (B < 1)

E(Hn) = [zn]E(z) = τ−n(φ1×n+ φ2)× (1 +O (Bn))

=⇒ E(H̃n) =
E(Hn)

f̂
(b)
n

= (c1 × n+ c2)× (1 +O (Bn)) , (B < 1).
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General case

Compute Fb(z, tA→C, tA→G, tA→T, tC→A, . . . , tT→C, tT→G)

f̂
(b)
n = [zn]Fb(z, 1, 1, . . . , 1, 1)

Pn ≈ [zn]
∑

α 6=β∈{A,C,G,T}

∂Fb(z, 1, . . . , 1, πα→βtα→β, 1, . . . )

∂tα→β

∣∣∣∣
tα→β=1

/
f̂ (b)n

I The dominant singularities of all the terms of the sum are
equal to the dominant singularity of Fb(z, 1, 1, . . . , 1, 1)

I Pn behaves quasi-linearly
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II - Formal Languages Approach
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Guibas-Odlyzko decomposition - occurrences of a word u

U = (aaaa, aaab)

{
u1 = aaaa
u2 = aaab

aaaa
aaaa

aaab
aaaa aaaa

∈ R1 ∈ u1M12

∈ u2M21

∈ u1 U1
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Guibas-Odlyzko decomposition - occurrences of a word u
U = (aaaa, aaab)

{
u1 = aaaa
u2 = aaab

aaaa
aaaa

aaab
aaaa aaaa

∈ R1 ∈ u1M12

∈ u2M21

∈ u1 U1

I The “Right” language Ri associated to the word ui is the set of words
Ri = {r | r = e · ui and there is no υ ∈ U such that r = xυy with |y| > 0}.

I The “Minimal” languageMij leading from a word ui to a word uj is the set of
wordsMij = {m |ui ·m = e · uj and there is no υ ∈ U such that ui ·m =
xυy with |x| > 0, |y| > 0}.

I The “Ultimate” language Ui of words following the last occurrence of the word
ui (such that this occurrence is the last occurrence of U in the text) is the set
of words Ui = {u | there is no υ ∈ U such that ui · u = xυy with |x| > 0}.

I The “Not” language N is the set of words with no occurrences of U ,
N = {n | there is no υ ∈ U such that n = xυy}.
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Guibas-Odlyzko decomposition - occurrences of a word u
U = (aaaa, aaab)

{
u1 = aaaa
u2 = aaab

aaaa
aaaa

aaab
aaaa aaaa

∈ R1 ∈ u1M12

∈ u2M21

∈ u1 U1

F (z, x1, x2)

= N (z) + (R1(z)x1,R2(z)x2)

(
M11(z)x1 M12(z)x2
M21(z)x1 M22(z)x2

)(
U1(z)
U2(z)

)
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Computing the languages
I Cu1,u2 correlation set of two words u1 and u2
Cu1,u2 = { e | ∃ e′ ∈ A+, u1e = e′u2 with |e| < |u2| }.

I Cu = Cu,u autocorrelation set (ε ∈ Cu)

I Régnier-Szpankowski Equations⋃
k≥1

(
Mk
)
i,j

= A? ·uj + Cij − δijε, Ui ·A =
⋃
j

Mij + Ui − ε,

A·Rj − (Rj − uj) =
⋃
i

uiMij , N ·uj = Rj +
⋃
i

Ri (Cij − δijε) ,

I Automaton Computation

Ri =
⊗

1≤r≤k

A?urA? · A
⊗
A?ui

uiMij = uiA?
⊗
A?uj

⊗
1≤r≤k

AA?urA?A

ujUj = ujA?
⊗

1≤r≤k

A · A?urA?

N = NOT
( ⊗

1≤r≤k

A?urA?
)
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Computing the languages
I Cu1,u2 correlation set of two words u1 and u2
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Constrained Guibas-Odlyzko languages
Example: b = AA, d`(b) = (AC, CA)

I We need avoiding AA in S(0) and therefore in the Right,
Minimal and Ultimate languages

I Build the Régnier-Szpankowski languages
for the pattern (AC, CA, AA)

L = N + (R1,R2,R3)

 M11 M12 M13

M21 M22 M23

M31 M32 M33

 U1U2
U3



L̂ = N + (R1,R2)

(
M11 M12

M21 M22

)(
U1
U2

)

Notations: write N̂ , R̂i,M̂ij , Ûj for constrained languages
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Clump Analysis (Bassino-Clément-Fayolle-P.N. 2008)

aaaa
aaaa
aaaa aaaa aaaa

∈ R ∈ u C?

∈ uM

∈ uU

I residual language D = L.u−: D = {h, h · u ∈ L}
I L2 − L1 = L2 \ L1 = {h; h ∈ L2, h 6∈ L1}

Combinatorial decomposition (one word)

A? = N +Ru−u C?
(

(M−K)u−u C?
)?
U

= N +Ru−uK?
(

(M−K)u−uK?
)?
U

= N +Ru−S
(

(M−K)u−S
)?
U

Clumps: S = u C? = uK?
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Some combinatorial properties

u = aaaaa
C − {ε} = {a, aa, aaa, aaaa}
K = {a}
M = {a, b(b+ ab+ aab+ aaab+ aaaab)?aaaaa}

Properties
I K ⊂M
I M−K = Lu

Lemma.
Let C◦ = C − {ε} be the strict autocorrelation set of a word u

I the Prefix code K = C◦ − C◦A+ generates unambiguously
C+−{ε}, which implies that K? = C◦?
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Clumps of reduced sets of words

Minimal Correlation Language: Kij =
(
Cij − CijA+

)⋂
Mij

Lemma: Mij −Kij = Lvj

Decomposition of a text by clumps:

K =

(
K11 K12

K21 K22

)
, S = K? G =

(
v1S11 v1S12
v2S21 v2S22

)

A? = N + (R1v
−1
1 ,R2v

−1
2 )G

((
(Mij −Kij)v−1j

)
G
)
?
(
U1
U2

)
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Constrained clumps
I finite code languages Kij easy to compute
I we must however avoid the forbidden word b while
extending clumps

I vi, vj ∈ d`(b)  K̂ij = {h ∈ Kij ; |vi.h|b = 0}

sets Kij finite =⇒ computation of K̂ij by string-matching

I Decomposition by constrained clumps

Â?b = N̂ + (R̂1v
−
1 , . . ., R̂rv

−
r ) Ĝ

(
(M̂− K̂)−Ĝ

)?Û1...
Ûr



with


K̂ = (K̂ij),
Ŝ = K̂?,

Ĝ =
(
viŜij

)
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Generating function of the number of putative-hit positions
I vi(z, t) = ν(vi)tz

|vi| for each vi ∈ d(b).
I for each K̂ij , we can compute by string matching the number

of putative-hit positions in each word of vi.K̂ij .

K̂ij(z, t) =
∑
w∈K̂ij

ν(w)tput-hit-pos(vi.w)−1z|w|,

K̂(z, t) =
(
K̂ij(z, t)

)
, Ŝ(z, t) =

(
I− K̂(z, t)

)−1
,

Ĝ(z, t) =
(
vi(z, t)Ŝij(z, t)

)
.

Fb(z, t) = Â?
b(z, t)

= N̂ (z) + (R̂1v
−
1 (z), . . ., R̂rv

−
r (z)) Ĝ(z, t)

(
(M̂− K̂)−(z)Ĝ(z, t)

)?Û1(z)...
Ûr(z)


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Ûr(z)



November 24, 2012



Generating function of the number of putative-hit positions
I vi(z, t) = ν(vi)tz

|vi| for each vi ∈ d(b).
I for each K̂ij , we can compute by string matching the number

of putative-hit positions in each word of vi.K̂ij .

K̂ij(z, t) =
∑
w∈K̂ij

ν(w)tput-hit-pos(vi.w)−1z|w|,

K̂(z, t) =
(
K̂ij(z, t)

)
, Ŝ(z, t) =

(
I− K̂(z, t)

)−1
,
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r (z)) Ĝ(z, t)

(
(M̂− K̂)−(z)Ĝ(z, t)
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(from Behrens-Nicaud-P.N., JCB 19,5, 2012)


