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Definitions

I A sequence {fn} is holonomic or P-recursive if

d∑
k=0

pk(n)fn−k = 0, pk(n) ∈ C[n], p0 6≡ 0;

I Its generating function f(z) is holonomic or D-finite if

q0(z)
dk

dzk
f(z) + q1(z)

dk−1

dzk−1k
f(z) + . . . qk(z)f(z) = 0,

qi(z) ∈ C[z], q0(z) 6≡ 0.



Holonomy and finiteness of number of singularities

q0(z)
dk

dzk
f(z) + q1(z)

dk−1

dzk−1k
f(z) + . . . qk(z)f(z) = 0,

Theorem
A holonomic function f(z) has only finitely many singularities.

I Assume that f(0) is analytic
I Integrate from 0 to z by a piecewise linear curve avoiding the
zeroes of the equation q0(z) = 0

I prove that the limit of the integral process converges when the
number of linear pieces tends to infinity

I prove that the limit is unique.



Examples of non-holonomicity
I Integer partitions

I(z) =
∏
n≥0

(1− zn)−1, unit circle as a natural boundary

In general, combinatorial classes defined by an unlabelled set or
multiset construction are not holonomic.

I Alternating permutation

A(z) = tan z + sec z, odd multiples of π/2 as set of poles

I Necklaces

N(z) =

∞∑
k=1

ψ(k)

k
log

1

1− 2zk
, ψ(k) Euler totient function,

infinite number of singularities; case of most unlabelled cycles.

The criterion is often too brutal; it does not apply to Cayley trees with
T (z) = zeT (z) (singularities at 0,∞, e−1 only).
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A Structure Theorem
for singularities of holonomic functions

The shape of the asymptotic expansion of a holonomic function at
a singularity z0 is strongly constrained, as it can only involve, in
sectors of C, finite linear combinations of “elements” of the form

exp
(
P (Z−1/r)

)
Zα

∞∑
j=0

Qj(logZ)Zjs, Z := (z − z0) (∗)
with
1. P a polynomial,
2. r ∈ Z≥0, α ∈ C,
3. s a rational of Q>0,
4. Qj a family of polynomials of uniformly bounded degree.

I For an expansion at infinity, change Z to Z = 1/z.

Therefore any function whose asymptotic structure at a (possibly
infinite) singularity is incompatible with elements of the form (∗)
must be non-holonomic.
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Elements of proof by example. . .
Euler equation of order 2:

w(2)(z) + b1z
−1w(1)(z) + b2z

−2w(z) = 0, w(i)(z) =
diw(z)

dzi

Equivalent equation:

z2w(2)(z) + zb1zw
(1)(z) + b2w(z) = 0 (∗)

Writing L(w) = z2w(2)(z) + zb1zw
(1)(z) + b2w(z), we have

L(zλ) = f(λ)zλ = (λ(λ− 1) + λb1 + b2)zλ, (f(λ) = 0 indicial equation)

This implies zµ is a solution of (∗) if f(µ) = 0,

L

(
∂

∂λ
zλ
)

= L(zλ log z) =
∂

∂λ
L(zλ) =

[
f ′(λ) + (log z)f(λ)

]
zλ

f ′(µ) = 0 implies zµ log z also solution of (∗)

Order n: Higher order roots of the indicial equation, higher powers of log
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Generalisation - Frobenius method

Solve L(w) = 0 with

L(w) = znw(n)(z) + zn−1b1w
(n−1)(z) + · · ·+ bnw(z),

bj =

∞∑
k=0

bjkz
k

Indicial equation

f(λ) = λ . . . (λ−n+1)+b10λ(λ−1) . . . (λ−n+2)+· · ·+. . . bn−1,0λ+bn0 = 0

Search for a solution φ(z) = zλ
∞∑
j=0

cjz
j such that L(φ) = f(λ)zλ

L(φ) = f(λ)zλ + [f(λ+ 1)c1 − g1]zλ+1 + . . .

+ [f(λj)cj − gj ]zλ+j + · · ·+ [f(λ+ j)cj − gj ]zλ+j + . . .

gj computable such that f(λ+ j)cj = gj (j = 1, 2, . . . )

I Further solutions when λ is an integer and when some roots of the
indicial polynomial differ by an integer.

I Logarithms in case of multiple roots of the indicial equation
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x−qY ′(x) = A(x)Y (x) - Irregular singular points - Airy
Y ′(x) = C(x)Y (x) =

(
y′

y”

)
=

(
0 1
x 0

)(
y
y′

)
Equivalently x−1Y ′(x) = x−1C(x)Y (x) =

(
0 1

x
1 0

)
Y (x)

Use a shearing transformation Y (x) = S(x)Z(x) with

S(x) =

(
1 0
0 x−g

)
to cope with fractional powers of x.

x−1Z ′(x) = B(x)Z(x) with B(x) = S−1(x)C(x)S(x)−x−1S−1(x)
dS(x)

dx

B(x, g) =

(
0 x−g−1

x−g gx−2

)
, B(x,−1/2) =

(
0 1/

√
x

1/
√
x − 1

2x2

)
We diagonalize the leading term and turn to integral powers.

D+ =

(
1 −1/2
−1 −1/2

)
, D− =

(
1/2 −1/2
−1 −1

)
D+D− = I =

(
1 0
0 1

)
{
x = 2−2/3t2,
Z1 = D+Z

∣∣∣∣ gives
1

t2
Z ′1 =

(
−1− 1

2t3 − 1
4t3

− 1
4t3 1− 1

2t3

)
Z1
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Airy . . .
1

t2
Z′1 = H(t)Z1(t) with H(t) =

(
−1− 1

2t3
− 1

4t3

− 1
4t3

1− 1
2t3

)
We want to get some diagonal form Z ′2 = K(t)Z2 by Z1 = P (t)Z2

t−2 × dP (t)

dt
−H(t)P (t)− P (t)K(t) = 0 (Eq*)

H(t) = H0 +
1

t3
H3, with H0 =

(
−1 0
0 1

)
, H3 =

(
− 1

2t3
− 1

4t3

− 1
4t3

− 1
2t3

)
We take P (t) = I+

∑
j>1

1

t3j
Pj , and K(t) = H0 +

∑
j>1

1

t3j
Kj

Pj =

(
0 pj,12

pj,21 0

)
, Kj =

(
kj,11 0
0 kj,22

)
(Eq**)

Plugging Eq** in Eq* allows to compute iteratively the expansions of K(t) and
H(t).

1

t2
Z′2 =

(
−1− 1

2t3
− 1

8t6
+ 3

16t9
+ . . . 0

0 1− 1
2t3

+ 1
8t6

+ 3
16t9

+ . . .

)
Z2

P (t) =

(
1 − 1

8t3
− 3

16t6
− 71

128t9
+ . . .

1
2t3
− 3

4t6
+ 73

32t9
+ . . . 1

)
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Airy . . .

Z ′2 = t2
(
−1− 1

2t3 −
1
8t6 + 3

16t9 + . . . 0
0 1− 1

2t3 + 1
8t6 + 3

16t9 + . . .

)
Z2

Integration with respect to t:

Z2 = exp


− 1

3 t
3 − 1

2 log(t)

+
∫ t
a
s2
(
− 1

8s6 + 3
16s9 + . . .

)
ds

0

0

1
3 t

3 − 1
2 log(t)

+
∫ t
a
s2
(

1
8s6 + 3

16s9 + . . .
)
ds



Final result (t = 21/3x1/2):

Y =

(
1 0
0 x1/2

)
D+Q(x)x−I/4exp

(
− 2

3x
3/2 − 1

6 log(2) 0
0 2

3x
3/2 − 1

6 log(2)

)

P (x) =

(
1 − 1

16x3/2 − 3
64x3 + . . .

1
4x3/2 − 3

16x3 + . . . 1

)
I =

(
1 0
0 1

)
Q(x) = P (x)T (x), T (x) = exp

(∫ t
a
. . . ds 0

0
∫ t
a
. . . ds

)∣∣∣∣
t=21/3x1/2
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Wasow theorem

I A(z) an n-by-n matrix holomorphic for |z| ≥ z0, z ∈ S, a sector
with vertex at the origin.

I A(z) =
∑
j≥0 Ajz−j converging as z →∞ in S

Then the equation
z−qY ′ = A(z)Y

possesses a fundamental matrix solution of the form

Y (z) = Ŷ (z)zGeP (z)

I P (z) diagonal matrix, elements polynomials in z1/p, p ∈ Z+

I G a constant matrix over C
I Ŷ admits in a subsector of S an asymptotic series in powers of
z−1/p as z →∞

Y =

(
1 0

0 x1/2

)
D+P (x)T (x)x−I/4exp

(
− 2

3
x3/2 − 1

6
log(2) 0

0 2
3
x3/2 − 1

6
log(2)

)



Versions of Wasow theorem
Matrix version
I A(z) an n-by-n matrix holomorphic for |z| ≥ z0, z ∈ S, a sector with vertex at

the origin.
I A(z) =

∑
j≥0 Ajz−j converging as z →∞ in S

Then the equation
z−qY ′ = A(z)Y

possesses a fundamental matrix solution of the form

Y (z) = Ŷ (z)zGeP (z)

I P (z) diagonal matrix, elements polynomials in z1/p, p ∈ Z+

I G a constant matrix over C
I Ŷ admits in a subsector of S an asymptotic series in powers of z−1/p as z →∞

Scalar version used by [FGS..] A holonomic function at a singularity z0 can only
involve, in sectors of C, finite linear combinations of “elements” of the form

exp
(
P (Z−1/r)

)
Zα
∞∑
j=0

Qj(logZ)Zjs, Z := (z − z0) (∗)
with

1. P a polynomial,
2. r ∈ Z≥0, α ∈ C,
3. s a rational of Q>0,
4. Qj a family of polynomials of uniformly bounded degree.

I For an expansion at infinity, change Z to Z = 1/z.



Counter-example: Cayley trees

Generating function of the Cayley trees:

T (z) = zT (z) =
∑
n≥0

tn

n!
zn tn = nn−1

Writing T (z) = −W (−z) gives W (z) = −ze−W (z)

Bootstrapping provides:

W (x) =
x→∞

log x− log log x+O(1)

I The transformation T (z) −W (−z) and its reciprocal
preserve holonomicity.

I The term log log x in Lambert W (x) function contradicts the
criterium of holonomicity.

I T (z) is not holonomic
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Generating function of the Cayley trees:

T (z) = zT (z) =
∑
n≥0

tn

n!
zn tn = nn−1

Writing T (z) = −W (−z) gives W (z) = −ze−W (z)

Bootstrapping provides:

W (x) =
x→∞

log x− log log x+O(1)
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Counter-Examples of holonomicity

I Stanley’s children rounds F (z) = (1− z)−z =
∑
fn
zn

n!

(1− z)−z ∼
z→1

1

1− z

(
1 + (1− z)log(1− z) +

(1− z)2log2(1− z)
2!

+ . . .

)
The logarithms can only happen with bounded degrees in
holonomic functions

I Bell numbers B(z) = ee
z−1 =

∑
bnz

n

double exponential behaviour as z →∞ no holonomicity.



Singularity analysis through Abelian theorems

Theorem (Basic Abelian theorem)
Let φ(x) be any of the functions

xα(log x)β(log log x)γ , α ≥ 0, β, γ ∈ C

If the sequence (un) verifies

un ∼
n→∞

φ(n),

then

u(z) =
∑
n≥0

unz
n ∼
z→1−

Γ(α+ 1)
1

(1− z)
φ

(
1

1− z

)
.

This estimates remains valid when z → 1
in any sector z ∈ 1 + reiθ with θ ∈ ]− π/2, π/2[



Proof of the Abelian theorem for φ = log log x

un = φ(n) = log log n for n ≥ 2, with u0 = u1 = 0

We need to prove that u(z) ∼
z→1−

1

1− z
log log

(
1

1− z

)
Set z = e−t where z ∈ R+ and t→ 0 as z → 1.

u(z) =
∑
n≥2

φ(n)zn =
∑
n≥2

φ(n)e−nt =
∑
n≥2

log log n e−nt

I n1 = b 1t
/

log 1
t c

etn1 =
t→0+

1 +O

(
1

log(1/t)

)
⇒

n1∑
n=2

φ(n)ent < n1 log logn1 ∼
1

log 1
1−z

u(z)

I n2 = b 1t log 1
t c

log log n2 e
−n2t −→

t→0+
log log

(
1

t

)
t×
(

1 +O

(
1

log(1/t)

))
log log n e−nt exponentially decreasing for n > n2

Therefore
∑
n≥n2

log log n e−nt = O(1)
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Proof of the Abelian theorem for φ = log log x

I
⌊

1
t

/
log
(

1
t

)⌋
= n1 ≤ n ≤ n2 =

⌊
1
t × log

(
1
t

)⌋
φ(n) varies slowly within the interval [n1, n2]

and φ(n1) ∼ φ(n2) ∼ φ(1/t)

Approximation of the sum by an integral + Euler-Maclaurin summation formula

n2∑
n=n1

φ(n)e−nt ∼ φ(1/t)

t

∫ log t−1

1/ log t−1

e−xdx ∼
log
(
log(1− z)−1

)
1− z

The proof applies when

z = e−t+iθ, with|θ| < θ0 and θ0 <
π

2

by integration along a line of angle θ and shifting to the real line
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Proof of the Abelian theorem

I Powers of logarithms and iterated logarithms
Slow variations again: similar lines of proof

I Powers of n as nα

we get an integral
∫ ∞

0
tαe−tdt = Γ(α+ 1)

I Sequences of smaller variations

if vn = o
(
nα(log x)β(log(log x))γ

)
as n→∞

then v(z) = o

(
Γ(α+ 1)

1

1− z
φ

(
1

1− z

))
as z → 1−

Decompose un = φ(n) + v(n) and apply the results.

Note: stating the Abelian theorem in a cone permits to avoid hardships
due to the Stokes phenomenon.
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Prime numbers

π(x) = number of primes numbers ≤ x
I Prime number theorem

π(n) ∼ n

log n

I Abelian theorem∑
n≥1

π(n)zn ∼
z→1−

1

(1− z)2 log

(
1

1− z

) ,
which contradicts the Structure Theorem.

The sequence π(n) is non-holonomic



Galois theory approach (Singer and others)

I (Singer). A holonomic function f has to be algebraic if any of
the exp f or φ(f) is holonomic, with φ an algebraic function
of genus ≥ 1

I (van der Put, Singer). If both fn and 1/fn are holonomic,
then fn is an interlacing of hypergeometric sequences.

I (Harris, Sibuya). The reciprocal (1/f) of an holonomic
function f is holonomic if and only if f ′/f is algebraic. (Proof
by power series)



The logarithmic sequence fn = log n

f(z) =
∑
n≥1

(log n)zn with log(0) ≡ 0

Abelian theorem:{
φ(x) = log x

fn ∼
n→∞

φ(n)

∣∣∣∣∣ =⇒ f(z) =
∑
n≥1

(log n)zn ∼
z→1−

1

1− z
log

(
1

1− z

)

The singularities are in agreement with Wasow theorem.

I However we cannot conclude.

I There could be nasty singularities (i.e. log log ones) in a further
asymptotic development of f(z)

This approach allows only to exclude holonomicity
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The logarithmic sequence fn = log n

f(z) =
∑
n≥1

(log n)zn with log(0) ≡ 0

I Holonomic functions are closed under substitutions such as product,
and algebraic transformations (hence, also rational)

I Consider a variant f̂n of the nth difference of fn,

f̂n :=

n∑
k=1

(
n

k

)
(−1)k log k, f̂(z) :=

∑
n≥1

f̂nz
n =

1

1− z
f

(
− z

1− z

)
f̂(z) has positive radius of convergence.

I Holonomic functions closed under product and algebraic (rational) substitutions.

Both of fn and f̂n are holonomic or none of them is.

I Nörlund-Rice integral and Hankel contour:

f̂n =
(−1)n

2iπ

∫
H

(log s)
n!

s(s− 1) . . . (s− n)
ds = log log n+O(1)

I Abelian estimate contradicting holonomicity:

f̂(z) ∼
log
(
log(1− z)−1

)
1− z

,
(
z → 1, z ∈ {1 + reiθ}, with θ ∈

]
−π

2
..
π

2

])
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Seq. of Powers nα holonomic if - only if α ∈ Z≥0

Flajolet-Sedgewick (1995) Mellin and Rice integral:

wn(α) :=

n∑
k=1

(
n

k

)
(−1)kkα =

(log n)−α

Γ(1− α)

(
1 +O

(
1

log n

))
.

Same lines of proof of non holonomicity as for f̂n previously, Abelian
theorem:

I α 6∈ Z,⇒ wα(z) =
∑
n≥1

wn(α)zn ∼
z→1−

(
log(1− z)−1

)−α
. . . ,

which contradicts the Structure Theorem of singularities.

I wn(1/2) =
1√

π log n
+O

(
(log n)−3/2

)
I w1/2(z) =

∞∑
n≥1

wn(1/2)zn ∼
z→1−1

1

π

1√
log(1− z)−1

1

1− z

I idem for n
√
17, ni = cos log n+ i sin log n, nπ, . . . ,

Note: the partial match query of a quadtree is holonomic and
asymptotic to n(

√
17−3)/2
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The nth Prime Function
Let n 7→ gn be the nth prime function.
g8 = 17 and reversely
π(17) = |{1, 2, 3, 5, 7, 11, 13, 17}| = 8, where π(x) = #primes ∈ [1, x]

I Prime Number Theorem:

π(x) = Li(x)+R(x),

{
R(x) = o(Li(x))
depends upon Riemann hypothesis

Li(x) =

∫ x

2

dt

log t
∼ x

log x

(
1 +

1!

log x
+

2!

(log x)2
+ . . .

)
I π(x) = y can be asymptotically inverted by considering only Li(x).

I `(z) =
∑
n

`nz
n =

z

(1− z)2
log

1

1− z
+

z

(1− z)2
is holonomic

I `n = nHn = n log n+O(n) (Hn nth Harmonic number)
I gn − `n = n log logn+O(n)

I g(z)− `(z) ∼
z→1−

log
(
log(1− z)−1

)
(1− z)2

⇒ g(z) non holonomic
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Asymptotic discrepancies
To conclude that a sequence (un) is non-holonomic, the following
conditions are sufficient:

1. the generating function of the sequence (un) (or of one of its
cognates) admits, near a singularity, an asymptotic expansion in a
scale that involves logarithms and iterated logarithms;

2. at least one term in the expansion is an iterated logarithm or a
power of a logarithm with an exponent not in Z≥0.

Non holonomic sequences:

√
n7 + 1,

1

Hn
,

√
log n

Hn
, log

p(2n)

p(n)
,

n√
n+ log n

, p(n2),

Hn harmonic number, p(n) the nth prime function.

Extension to slowly varying sequences, e
√

logn, log log log n



Lindelöf integral representation

Theorem
Let φ(s) be an analytic function in R(s) > 0 verifying

Growth Condition |φ(s)| < CeA|s| as |s| → ∞,
{
A ∈]0, π[, C > 0
R(s) ≥ 1/2.

Then F (z) =
∑
n≥1

φ(n)(−z)n

I is analytically continuable
in the sector −(π −A) < arg(z) < (π −A)

I where it admits the Lindelöf representation

F (z) =
∞∑
n=1

φ(n)(−z)n = − 1

2iπ

∫ 1/2+i∞

1/2−i∞
φ(s)zs

π

sinπs
ds

Remark:|φ(n)| = O
(
eAn

)
⇒ F (z) analytic in |z| < e−A (open disk)



Proof of Lindelöf Representation

F (z) =
∞∑
n=1

φ(n)(−z)n = −
1

2iπ

∫ 1/2+i∞

1/2−i∞
φ(s)zs

π

sinπs

{
|φ(s)| < CeA|s|

|s| → ∞

O
1 2 3 m

1
2

+N i

1
2
−N i

m + 1
2

+N i

m + 1
2
−N i

−→
Γm,N

(1)

∣∣∣∣ π

sinπs

∣∣∣∣ = O
(
e
−π|I(s)|

)
horizontal lines z ∈ ]0, e

−A
[

⇒ φ(s)z
s π

sinπs
= O

(
e
AN

e
−πN

)
(N →∞)

∫
−→
Γm,N

=

∫
−→
Γm,∞

=

m∑
n=1

φ(n)(−z)n

(2) z = e
−B

, B > A, s = m +
1

2
+ it, K,K

′constants∣∣∣∣φ(s)z
s π

sinπs

∣∣∣∣ < K exp

{
A
√

(m + 1/2)2 + t2
}
e
−Bm

e
−πt

< K
′
e
(A−B)m

e
(A−π)|t|

(A ∈ ]0, π[)

Therefore
∫ m+1/2+N i

s=m+1/2−N i
−→
m→∞

0

Domination property of φ(s) extends the proof to z complex in the
sector −(π −A) < arg(z) < (π −A)
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sinπs

∣∣∣∣ = O
(
e
−π|I(s)|

)
horizontal lines z ∈ ]0, e

−A
[

⇒ φ(s)z
s π

sinπs
= O

(
e
AN

e
−πN

)
(N →∞)

∫
−→
Γm,N

=

∫
−→
Γm,∞

=
m∑
n=1

φ(n)(−z)n

(2) z = e
−B

, B > A, s = m +
1

2
+ it, K,K

′constants∣∣∣∣φ(s)z
s π

sinπs

∣∣∣∣ < K exp

{
A
√

(m + 1/2)2 + t2
}
e
−Bm

e
−πt

< K
′
e
(A−B)m

e
(A−π)|t|

(A ∈ ]0, π[)

Therefore
∫ m+1/2+N i

s=m+1/2−N i
−→
m→∞

0

Domination property of φ(s) extends the proof to z complex in the
sector −(π −A) < arg(z) < (π −A)



Historical remarks

I Lindelöf (1905) - Prolongement analytique des séries de Taylor;
I Ford’s monograph (1936) - The asymptotic developments of

functions defined by Maclaurin series;
I Methods used in works of Wright (1940) about generalizations

of the exponential and Bessel functions,
I which provide a basis to Ramanujan’s “Master Theorem”:

Mellin transform of an analytic function as an analytic
expression - Hardy (1940)



Applications of Lindelöf representation

F (−z) =

∞∑
n=1

φ(n)(−z)n = − 1

2iπ

∫ 1/2+i∞

1/2−i∞
φ(s)zs

π

sinπs

I φ(s) provides singularities of F (−z)
I Use holonomicity criterion on singularities of F (−z)

I Disproving holonomicity of φ(n):

1. Polar singularities: poles of φ(s) lim
n→∞

φ(n)

1

2n − 1
,

1

n! + 1
, Γ(n

√
2) non-holonomic

2. Algebraic singularities: (use Hankel contours)
exponent −λ in φ(s) lim

n→∞
F (−z) contains (log z)λ−1

Non-holonomicity for e
√
n, or e±n

θ

(θ ∈]0, 1[)

3. Essential singularities: (use saddle-point integrals)
φ(s) = e±1/s  non-holonomicity of e±1/n
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Ford’s lemma - Polar case
Lemma
Assume
I φ(s) satisfies the conditions of Lindelöf representation

I φ(s) is

I meromorphic in R(s) ≥ −B
I analytic on R(s) = −B

I the Growth condition |φ(s)| < CeA|s| applies on R(s) ≥ −B
Then

F (z) =
∞∑
n=1

φ(n)(−z)n =
z→∞

−
∑

−B<R(s0)<1/2

Res
( π

sinπs
φ(s)zs; s = s0

)
+O

(
z−B

)
where
I Res is the residue operator
I all poles of φ(s)/ sinπs in the strip −B < R(s) < 1/2 are included in the sum

Remarks:
I Pole of order µ > 1 residue = zs0P (log(z)) deg(P ) = µ

I Poles farther to the right produce the dominant terms in the asymptotics
I Additional poles sk to the right can be included as long as R(sk) <∞ and

sk 6∈ N
I Asymptotics expansion holds on the real positive line
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Polar case: examples

fn =
1

1 + n!
 sk roots of Γ(s) = −1,

⇒
∑
n≥1

(−z)n

n! + 1
∼

z→∞
−
∑
k≥1

π

sinπsk

1

Γ′(sk + 1)
zsk

(sk)k ≈ −2.457024,−2.747682,−4.039361,−4.991544,−6.001385,−6.999801, . . .

I for Γ(s) = −1 or Γ(1− s) =
−π

sinπs
and <(−s) very large,

Γ(1− s) becomes large ⇒ sinπs close to 0

sin(−4.991544) = 0.02656218347, sin(−6.999801) = 0.0006251750878

I sk ≈ −k +
(−1)k−1

k!
sk must differ from an integer −k by a very small quantity

Non-holonomicity because set of poles not included in

I a finite union of arithmetic progressions
I with rational common differences
I and this translates to a forbidden set of powers of Z = z − z0
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Polar case: examples
For fn = Γ(n

√
2) take φ(s) = Γ(s

√
2)/Γ(s)2

F (z) =
∑
n≥1

Γ(n
√

2)

Γ(n)2
(−z)n =

z→∞
−

∑
−B<R(s0)<1/2

Res

(
π

sinπs

Γ(s
√

2)

Γ(s)2
zs

)
+O

(
z−B

)

I analyticity of F (z) at 0

I and required growth conditions at infinity (|φ(s)| < CeA|s|)
The common differences (1/

√
2) of the poles is an irrational

number; fn is non-holonomic

Similar proof for
I Γ(αn), (α ∈ R \Q)

I Γ(n
√

2)/Γ(n
√

3)

Structure Theorem: finite linear combinations of

exp
(
P (Z−1/r)

)
Zα

∞∑
j=0

Qj(logZ)Zjs (α ∈ C, r ∈ Z≥0, s ∈ Q>0)
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Polar case: examples

The function φ(s) = 1/ζ(s+ 2)

I satisfies the growth condition
|φ(s)| < C eA|s|, |s| → ∞, A ∈]0, π[, C > 0

I but the Riemann zeta function has infinitely many non-trivial
zeroes

I 1/ζ(n+ 2) non holonomic

fn =
1

2n − 1
, gn = Γ(ni), hn =

1

ζ(n+ 2)

The generating functions corresponding to fn, gn and hn
I have an infinity of poles in a fixed-width vertical strip:

non-holonomic sequences;



Algebraic singularity

Definition
φ(s) has a singularity of algebraic type (λ, θ, ψ) at s0 if, locally,

φ(s) = (s− s0)−λψ
(

(s− s0)θ
)

in a slit neighborhood of s0, with λ ∈ C, R(θ) > 0

and ψ(s) =
∑
k≥0

pks
k is analytic at zero



Ford’s Lemma, algebraic case

φ(s) = (s− s0)
−λ

ψ
(
(s− s0)

θ
)
, ψ(s) =

∑
k≥0

pks
k
,

π

sinπs
=

∑
j≥−1

bj(s0)(s− s0)
j

I Let φ(s) be analytic ∈ C, except on algebraic singularities (λi, θi, ψi) at si with
1 ≤ i ≤ M <∞

I The mth branch cut is at angle ωm ∈
]
− 1

2
π, 0

[
∪
]

1
2
π, 0

[
with the real axis

I The cuts intersect neither each other nor the set Z>0

I Growth:
|φ(s)| < Ce

A|s| as s→∞, A < π × min
1≤m≤M

| sinωm|

I Let M be the dominant set of algebraic singularities,
M = {sm;m = 1, . . . ; sm ∈ M ; R(sm) < 1/2}

I Let P = {`j , j = 1, . . . ; `j ∈ N} be the set of polar singularities (due to 1/ sinπs) that lay in
the vertical strip [R(sm), 1/2]

Then

F (z) ∼
∑
`∈P

(−1)
`+1

φ(−`)z−`

−
∑

sm∈M
z
sm

∑
k≥0
j≥−1

pm,kbj(sm)

Γ(−θmk − j + λm)
(log z)

−θmk−j+λm−1



P = {0,−1, p1, p2}

M = {s1, s2, s3}

•p1

•p2

F (z) =
1

2iπ

∫ 1/2+i∞

s=1/2−i∞
φ(s)zs

π

sinπs
ds

∼
∑
`∈P

(−1)`+1φ(−`)z−`

−
∑

sm∈M
zsm

∑
k≥0
j≥−1

pm,kbj(sm)

Γ(−θmk − j + λm)
(log z)−θmk−j+λm−1

φ(s) = (s− s0)
−λ

ψ
(
(s− s0)

θ
)
, ψ(s) =

∑
k≥0

pks
k
,

π

sinπs
=

∑
j≥−1

bj(s0)(s− s0)
j



Proof of Ford’s Lemma with φ(s) = s−λψ(sθ)

F (z) =
1

2iπ

∫
H
φ(s)zs

π

sinπs
ds ∼

∑
n≥0

(−1)n+1φ(−n)z−n

I Write φ(s)
π

sinπs
= s−λ

∑
k≥0, j≥−1

pkbjs
θk+j

I We have a sum of Hankel integrals of the type

1

2iπ

∫
H
sαslog zds =

s − y
log z

1

2iπ
(log z)−α−1

∫
−(log z)H

e−y(−y)αdy

TK(s) = s−λ
∑

k≥0, j≥−1
θk+j<K

pkbjs
θk+j 1

2iπ

∫
H
zsTK(s)ds =

∑
k≥0, j≥−1
θk+j<K

mkj(log z)
−θk−j+λ−1

I

∫
H
zs
(
φ(s)

π

sinπs
− TK(s)

)
ds = O

(
(log z)−K+λ−1

)
(growth assumption)
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π

sinπs
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Asymptotics for the Generalized Exponential

F (z) =
∑
n≥1

φ(n)(−z)n with φ(n) = ecn
θ
, and θ ∈ ]0, 1[

φ(s) = ψ(sθ)  ψ(s) = ecs =
∑
k≥0

ck

k!
sk

π

sinπs
=
s→0

∑
j≥−1

bjs
j =

1

s
+

1

6
π2s+

7

360
π4s3 + . . .

F (z) ∼ −
∑
k≥0
j≥−1

bjc
k/k!

Γ(−θk − j)
(log z)−θk−j as z →∞

θ =
1

2
, as z →∞

F±(z) =
∑
n≥0

e±
√
n(−z)n = −1∓ 1√

πlog z
+O

(
1

(log z)3/2

)
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Essential singularities - φ(s) = ecs
θ

I c = 1, θ = −1, φ(s) = e1/s

F1,−1(z) =
∑
n≥1

e1/n(−z)n = − 1

2iπ

∫ 1/2+i∞

1/2−i∞
e1/szs

π

sinπs
ds

∂

∂s
e1/szs =

(
log z − s−2

)
e1/szs saddle point near

1√
log |z|

F1,−1(z) = − e2
√

log z

2
√
π(log z)1/4

(
1 +O

(
1

(log z)1/−ε

))
I Valid also for c < 0 and θ > 1

I Generalization to c > 0 and θ < 0



Essential singularities - φ(s) = ecs
θ

I c = −1, θ = −1, φ(s) = e−1/s

F−1,−1(z) =
∑
n≥1

e−1/n(−z)n = − 1

2iπ

∫ 1/2+i∞

1/2−i∞
e−1/szs

π

sinπs
ds

Two saddle-points at ±i
1√

log |z|

F−1,−1 = − 1

π
(log z)−1/4 cos

(
2
√

log z − π

4

)
+O

(
1

(log z)1/2−ε

)
I Generalization to c < 0 and θ < 0.

I Set of pairs of conjugate saddle-points.
I One dominating pair



Essential singularities - φ(s) = ecs
θ

I c > 0, θ > 1, φ(s) = ecs
θ

Fc,θ(z) =
∑
n≥1

ecn
θ
(−z)n = − 1

2iπ

∫ 1/2+i∞

1/2−i∞
ecs

θ
zs

π

sinπs
ds

ecn
θ
grows faster that any power of n!

1. ⇒ incompatible with the growth of any holonomic function

2. Fc,θ cannot even satisfy an algebraic differential equation



Conclusion

Bell et al (2008) propose an alternative approach based on results
about the number of zeros of elementary and analytic functions.

As part of the conclusion of [FGS2009]:
“Bell et al (2008) also deal with sequences having an analytic
lifting. Roughly speaking, our approach is more versatile for
meromorphic functions, equivalent in the algebraic case, and less
flexible in the presence of essential singularities.”

Open problems:

Sequences like
I cos(

√
n)

I cosh(
√
n)

with analytic liftings
I cos(

√
s)

I cosh(
√
s)

have no singularity at finite distance.
Both methods fail to prove their non-holonomicity


