
Cours de Python
Introduction à la programmation Python pour la biologie

https://python.sdv.u-paris.fr/

Patrick Fuchs et Pierre Poulain
prénom [point] nom [arobase] u-paris [point] fr

version du 29 septembre 2025

Université Paris Cité, France

Ce document est sous licence
Creative Commons Attribution - Partage dans les Mêmes Conditions 3.0 France
(CC BY-SA 3.0 FR)
https://creativecommons.org/licenses/by-sa/3.0/fr/

https://creativecommons.org/licenses/by-sa/3.0/fr/

Table des matières

Avant-propos 8
Quelques mots sur l’origine de ce cours . 8
Remerciements . 8
Le livre . 8

1 Introduction 10
1.1 Qu’est-ce que Python ? . 10
1.2 Conseils pour l’apprentissage de Python . 11
1.3 Conseils pour installer et configurer Python . 11
1.4 Notations utilisées . 11
1.5 Introduction au shell . 12
1.6 Premier contact avec Python . 12
1.7 Premier programme . 13
1.8 Commentaires . 14
1.9 Notion de bloc d’instructions et d’indentation . 14
1.10 Autres ressources . 15

2 Variables 16
2.1 Définition et création . 16
2.2 Les types de variables . 17
2.3 Nommage . 18
2.4 Écriture scientifique . 18
2.5 Opérations . 19
2.6 La fonction type() . 21
2.7 Conversion de types . 21
2.8 Note sur le vocabulaire et la syntaxe . 22
2.9 Minimum et maximum . 22
2.10 Exercices . 22

3 Affichage 24
3.1 La fonction print() . 24
3.2 Messages d’erreur . 25
3.3 Écriture formatée et f-strings . 26

2

Table des matières Table des matières

3.4 Écriture scientifique . 30
3.5 Exercices . 30

4 Listes 32
4.1 Définition . 32
4.2 Utilisation . 32
4.3 Opération sur les listes . 33
4.4 Indiçage négatif . 34
4.5 Tranches . 34
4.6 Fonction len() . 35
4.7 Les fonctions range() et list() . 35
4.8 Listes de listes . 36
4.9 Minimum, maximum et somme d’une liste . 36
4.10 Problème avec les copies de listes . 36
4.11 Note sur le vocabulaire et la syntaxe . 37
4.12 Exercices . 37

5 Boucles et comparaisons 39
5.1 Boucles for . 39
5.2 Comparaisons . 42
5.3 Boucles while . 43
5.4 Exercices . 44

6 Tests 49
6.1 Définition . 49
6.2 Tests à plusieurs cas . 49
6.3 Importance de l’indentation . 50
6.4 Tests multiples . 51
6.5 Instructions break et continue . 52
6.6 Tests de valeur sur des floats . 52
6.7 Exercices . 53

7 Fichiers 58
7.1 Lecture dans un fichier . 58
7.2 Écriture dans un fichier . 61
7.3 Ouvrir deux fichiers avec l’instruction with . 62
7.4 Note sur les retours à la ligne sous Unix et sous Windows . 62
7.5 Importance des conversions de types avec les fichiers . 63
7.6 Du respect des formats de données et de fichiers . 63
7.7 Exercices . 63

8 Dictionnaires et tuples 66
8.1 Dictionnaires . 66
8.2 Tuples . 70
8.3 Exercices . 73

9 Modules 76
9.1 Définition . 76
9.2 Importation de modules . 76
9.3 Obtenir de l’aide sur les modules importés . 78
9.4 Quelques modules courants . 79
9.5 Module random : génération de nombres aléatoires . 80
9.6 Module sys : passage d’arguments . 81
9.7 Module pathlib : gestion des fichiers et des répertoires . 83

Cours de Python / Université Paris Cité / UFR Sciences du Vivant 3

Table des matières Table des matières

9.8 Exercices . 84

10 Fonctions 88
10.1 Principe et généralités . 88
10.2 Définition . 89
10.3 Passage d’arguments . 90
10.4 Renvoi de résultats . 90
10.5 Arguments positionnels et arguments par mot-clé . 91
10.6 Variables locales et variables globales . 93
10.7 Principe DRY . 97
10.8 Exercices . 97

11 Plus sur les chaînes de caractères 102
11.1 Préambule . 102
11.2 Chaînes de caractères et listes . 102
11.3 Caractères spéciaux . 103
11.4 Préfixe de chaîne de caractères . 103
11.5 Méthodes associées aux chaînes de caractères . 105
11.6 Extraction de valeurs numériques d’une chaîne de caractères . 107
11.7 Fonction map() . 107
11.8 Test d’appartenance . 108
11.9 Conversion d’une liste de chaînes de caractères en une chaîne de caractères 108
11.10Method chaining . 109
11.11Exercices . 110

12 Plus sur les listes 116
12.1 Méthodes associées aux listes . 116
12.2 Construction d’une liste par itération . 119
12.3 Test d’appartenance . 119
12.4 Fonction zip() . 119
12.5 Copie de listes . 121
12.6 Initialisation d’une liste de listes . 122
12.7 Liste de compréhension . 123
12.8 Tris puissants de listes . 125
12.9 Exercices . 126

13 Plus sur les fonctions 129
13.1 Appel d’une fonction dans une fonction . 129
13.2 Fonctions récursives . 130
13.3 Portée des variables . 132
13.4 Portée des listes . 133
13.5 Règle LGI . 134
13.6 Recommandations . 135
13.7 Exercices . 136

14 Conteneurs 138
14.1 Généralités . 138
14.2 Plus sur les dictionnaires . 141
14.3 Plus sur les tuples . 144
14.4 Sets et frozensets . 148
14.5 Récapitulation des propriétés des conteneurs . 151
14.6 Dictionnaires et sets de compréhension . 152
14.7 Module collections . 153
14.8 Exercices . 154

4 Cours de Python / Université Paris Cité / UFR Sciences du Vivant

Table des matières Table des matières

15 Création de modules 158
15.1 Pourquoi créer ses propres modules ? . 158
15.2 Création d’un module . 158
15.3 Utilisation de son propre module . 159
15.4 Les docstrings . 159
15.5 Visibilité des fonctions dans un module . 160
15.6 Module ou script ? . 161
15.7 Exercice . 162

16 Bonnes pratiques en programmation Python 163
16.1 De la bonne syntaxe avec la PEP 8 . 164
16.2 Les docstrings et la PEP 257 . 168
16.3 Outils de contrôle qualité du code . 169
16.4 Outil de formatage automatique du code . 171
16.5 Organisation du code . 172
16.6 Conseils sur la conception d’un script . 173
16.7 Pour terminer : la PEP 20 . 174

17 Expressions régulières et parsing 176
17.1 Définition et syntaxe . 176
17.2 Quelques ressources en ligne . 178
17.3 Le module re . 178
17.4 Exercices . 181

18 Jupyter et ses notebooks 184
18.1 Installation . 184
18.2 JupyterLab . 184
18.3 Création d’un notebook . 185
18.4 Le format Markdown . 188
18.5 Des graphiques dans les notebooks . 188
18.6 Les magic commands . 189
18.7 Lancement d’une commande Unix . 191

19 Module Biopython 194
19.1 Installation et convention . 194
19.2 Chargement du module . 194
19.3 Manipulation de séquences . 195
19.4 Interrogation de la base de données PubMed . 195
19.5 Exercices . 198

20 Module NumPy 201
20.1 Installation et convention . 201
20.2 Chargement du module . 201
20.3 Objets de type array . 201
20.4 Construction automatique de matrices . 212
20.5 Chargement d’un array depuis un fichier . 213
20.6 Concaténation d’arrays . 214
20.7 Un peu d’algèbre linéaire . 215
20.8 Parcours de matrice et affectation de lignes et colonnes . 217
20.9 Masques booléens . 218
20.10Quelques conseils . 221
20.11Exercices . 222

Cours de Python / Université Paris Cité / UFR Sciences du Vivant 5

Table des matières Table des matières

21 Module Matplotlib 226
21.1 Installation et convention . 226
21.2 Chargement du module . 226
21.3 Représentation en nuage de points . 226
21.4 Représentation sous forme de courbe . 228
21.5 Représentation en diagramme en bâtons . 231

22 Module Pandas 233
22.1 Installation et convention . 233
22.2 Chargement du module . 233
22.3 Series . 234
22.4 Dataframes . 235
22.5 Un exemple plus concret avec les kinases . 242
22.6 Exercices . 252

23 Avoir la classe avec les objets 254
23.1 Construction d’une classe . 255
23.2 Exercices . 263

24 Avoir plus la classe avec les objets 264
24.1 Espace de noms . 264
24.2 Polymorphisme . 268
24.3 Héritage . 270
24.4 Composition . 277
24.5 Différence entre les attributs de classe et d’instance . 279
24.6 Accès et modifications des attributs depuis l’extérieur . 283
24.7 Bonnes pratiques pour construire et manipuler ses classes . 290
24.8 Note finale de sémantique . 296
24.9 Exercices . 297

25 Fenêtres graphiques et Tkinter 300
25.1 Utilité d’une GUI . 300
25.2 Quelques concepts liés à la programmation graphique . 301
25.3 Notion de fonction callback . 302
25.4 Prise en main du module Tkinter . 303
25.5 Construire une application Tkinter avec une classe . 305
25.6 Le widget canvas . 306
25.7 Pour aller plus loin . 312
25.8 Exercices . 317

26 Remarques complémentaires 320
26.1 Différences Python 2 et Python 3 . 320
26.2 Anciennes méthodes de formatage des chaînes de caractères . 322
26.3 Fonctions lambda . 324
26.4 Itérables, itérateurs, générateurs et module itertools . 328
26.5 Gestion des exceptions . 338
26.6 Shebang et /usr/bin/env python3 . 341
26.7 Passage d’arguments avec *args et **kwargs . 342
26.8 Décorateurs . 344
26.9 Un peu de transformée de Fourier avec NumPy . 347
26.10Sauvegardez votre historique de commandes . 348

6 Cours de Python / Université Paris Cité / UFR Sciences du Vivant

Table des matières Table des matières

27 Mini-projets 349
27.1 Description des projets . 349
27.2 Accompagnement pas à pas . 351
27.3 Scripts de correction . 365

A Quelques formats de données en biologie 366
A.1 FASTA . 366
A.2 GenBank . 368
A.3 PDB . 370
A.4 Format XML, CSV et TSV . 376

B Installation de Python 383
B.1 Que recommande-t-on pour l’installation de Python ? . 383
B.2 Installation de Python avec Miniconda . 384
B.3 Utilisation de conda pour installer des modules complémentaires . 392
B.4 Choisir un bon éditeur de texte . 396
B.5 Comment se mettre dans le bon répertoire dans le shell . 399
B.6 Python web et mobile . 400

Cours de Python / Université Paris Cité / UFR Sciences du Vivant 7

Avant-propos

Quelques mots sur l’origine de ce cours
Ce cours, développé par Patrick Fuchs et Pierre Poulain, a été conçu à l’origine pour les étudiants débutants en

programmation Python des filières de biologie et de biochimie de l’université Paris Diderot - Paris 7, devenue Université
Paris Cité 1 ; et plus spécialement pour les étudiants du master Biologie Informatique.

Si vous relevez des erreurs à la lecture de ce document, merci de nous les signaler.
Le cours est disponible en version HTML 2 et PDF 3.

Remerciements
Merci à tous les contributeurs, occasionnels ou réguliers, entre autre : Jennifer Becq, Benoist Laurent, Hubert Santuz,

Virginie Martiny, Romain Laurent, Benjamin Boyer, Jonathan Barnoud, Amélie Bâcle, Thibault Tubiana, Romain Retu-
reau, Catherine Lesourd, Philippe Label, Rémi Cuchillo, Cédric Gageat, Philibert Malbranche, Mikaël Naveau, Alexandra
Moine-Franel, Dominique Tinel, et plus généralement les promotions des masters de biologie informatique et in silico
drug design, ainsi que du diplôme universitaire en bioinformatique intégrative.

Nous remercions tout particulièrement Sander Nabuurs pour la première version de ce cours remontant à 2003, Denis
Mestivier pour les idées de certains exercices et Philip Guo pour son site Python Tutor 4.

Enfin, merci à vous tous, les curieux de Python, qui avez été nombreux à nous envoyer des retours sur ce cours, à nous
suggérer des améliorations et à nous signaler des coquilles. Cela rend le cours vivant et dynamique, continuez comme ça !

De nombreuses personnes nous ont aussi demandé les corrections des exercices. Nous ne les mettons pas sur le site
afin d’éviter la tentation de les regarder trop vite, mais vous pouvez nous écrire et nous vous les enverrons.

Le livre
Ce cours est également publié aux éditions Dunod sous le titre « Programmation en Python pour les sciences de la

vie 5 ». Le livre en est à sa 2e édition, vous pouvez vous le procurer dans toutes les bonnes librairies.
Afin de promouvoir le partage des connaissances et le logiciel libre, nos droits d’auteurs provenant de la vente de cet

ouvrage sont reversés à deux associations : Wikimédia France 6 qui s’occupe notamment de l’encyclopédie libre Wikipédia

1. https://www.u-paris.fr/
2. https://python.sdv.u-paris.fr/index.html
3. https://python.sdv.u-paris.fr/cours-python.pdf
4. http://pythontutor.com/
5. https://www.dunod.com/sciences-techniques/programmation-en-python-pour-sciences-vie-0
6. https://www.wikimedia.fr/

8

https://www.u-paris.fr/
https://python.sdv.u-paris.fr/index.html
https://python.sdv.u-paris.fr/cours-python.pdf
http://pythontutor.com/
https://www.dunod.com/sciences-techniques/programmation-en-python-pour-sciences-vie-0
https://www.wikimedia.fr/

Table des matières Table des matières

Figure 1 – Couverture livre Dunod, 2e édition.

et NumFOCUS 7 qui soutient le développement de logiciels libres scientifiques et notamment l’écosystème scientifique
autour de Python.

7. https://numfocus.org/

Cours de Python / Université Paris Cité / UFR Sciences du Vivant 9

https://numfocus.org/

CHAPITRE 1

Introduction

1.1 Qu’est-ce que Python ?
Le langage de programmation Python a été créé en 1989 par Guido van Rossum, aux Pays-Bas. Le nom Python

vient d’un hommage à la série télévisée Monty Python’s Flying Circus dont G. van Rossum est fan. La première version
publique de ce langage a été publiée en 1991.

La dernière version de Python est la version 3. Plus précisément, la version 3.11 a été publiée en octobre 2022. La
version 2 de Python est obsolète et n’est plus maintenue, ne l’utilisez pas.

La Python Software Foundation 1 est l’association qui organise le développement de Python et anime la communauté
de développeurs et d’utilisateurs.

Ce langage de programmation présente de nombreuses caractéristiques intéressantes :
• Il est multiplateforme. C’est-à-dire qu’il fonctionne sur de nombreux systèmes d’exploitation : Windows, Mac OS

X, Linux, Android, iOS, depuis les mini-ordinateurs Raspberry Pi jusqu’aux supercalculateurs.
• Il est gratuit. Vous pouvez l’installer sur autant d’ordinateurs que vous voulez (même sur votre téléphone !).
• C’est un langage de haut niveau. Il demande relativement peu de connaissance sur le fonctionnement d’un ordinateur

pour être utilisé.
• C’est un langage interprété. Un script Python n’a pas besoin d’être compilé pour être exécuté, contrairement à des

langages comme le C ou le C++.
• Il est orienté objet. C’est-à-dire qu’il est possible de concevoir en Python des entités qui miment celles du monde

réel (une molécule d’ADN, une protéine, un atome, etc.) avec un certain nombre de règles de fonctionnement et
d’interactions.

• Il est relativement simple à prendre en main 2.
• C’est le langage de programmation le plus utilisé au monde (voir les classements TIOBE 3 et IEEE Spectrum 4).
• Enfin, il est très utilisé en bioinformatique, chimie-informatique et plus généralement en analyse de données.
Toutes ces caractéristiques font que Python est désormais enseigné dans de nombreuses formations, du lycée à

l’enseignement supérieur.

1. https://www.python.org/psf/
2. Nous sommes d’accord, cette notion est très relative.
3. https://www.tiobe.com/tiobe-index/
4. https://spectrum.ieee.org/the-top-programming-languages-2023

10

https://www.python.org/psf/
https://www.tiobe.com/tiobe-index/
https://spectrum.ieee.org/the-top-programming-languages-2023

1.2. Conseils pour l’apprentissage de Python Chapitre 1. Introduction

1.2 Conseils pour l’apprentissage de Python
Comme tout apprentissage, apprendre la programmation Python prend du temps et nécessite de pratiquer. Contrai-

rement à d’autres activités scientifiques expérimentales (biologie moléculaire, chimie organique, électronique, etc.), pro-
grammer en Python ne nécessite pas de matériel ou de réactifs coûteux, juste un ordinateur et une connexion internet.
Par ailleurs, Python est un programme informatique qui par définition ne se fatigue pas, est patient et toujours disponible.
N’hésitez donc pas à pratiquer, pratiquer et pratiquer encore.

1.3 Conseils pour installer et configurer Python
Pour pratiquer la programmation Python, il est préférable que Python soit installé sur votre ordinateur. La bonne

nouvelle est que vous pouvez installer gratuitement Python sur votre machine, que ce soit sous Windows, Mac OS X ou
Linux. Nous donnons ici un résumé des points importants concernant cette installation. La marche à suivre pas-à-pas est
détaillée à l’adresse https://python.sdv.u-paris.fr/ dans la rubrique B. Installation de Python.

1.3.1 Python 2 ou Python 3 ?
Ce cours est basé sur la version 3 de Python, qui est la version standard.
Si, néanmoins, vous deviez un jour travailler sur un ancien programme écrit en Python 2, sachez qu’il existe des

différences importantes entre Python 2 et Python 3. Le chapitre 26 Remarques complémentaires (en ligne) vous apportera
plus de précisions.

1.3.2 Miniconda
Nous vous conseillons d’installer Miniconda 5, logiciel gratuit, disponible pour Windows, Mac OS X et Linux, et qui

installera pour vous Python 3.
Avec le gestionnaire de paquets conda, fourni avec Miniconda, vous pourrez installer des modules supplémentaires

qui sont très utiles en bioinformatique (NumPy, scipy, matplotlib, pandas, Biopython), mais également Jupyter Lab qui
vous permettra d’éditer des notebooks Jupyter. Vous trouverez en ligne 6 une documentation pas-à-pas pour installer
Miniconda, Python 3 et les modules supplémentaires qui seront utilisés dans ce cours.

1.3.3 Éditeur de texte
L’apprentissage d’un langage informatique comme Python va nécessiter d’écrire des lignes de codes à l’aide d’un

éditeur de texte. Si vous êtes débutants, on vous conseille d’utiliser notepad++ sous Windows, BBEdit ou CotEditor
sous Mac OS X et gedit sous Linux. La configuration de ces éditeurs de texte est détaillée dans la rubrique Installation de
Python disponible en ligne. Bien sûr, si vous préférez d’autres éditeurs comme Visual Studio Code, Sublime Text, emacs,
vim, geany… utilisez-les !

À toute fin utile, on rappelle que les logiciels Microsoft Word, WordPad et LibreOffice Writer ne sont pas des
éditeurs de texte, ce sont des traitements de texte qui ne peuvent pas et ne doivent pas être utilisés pour écrire du code
informatique.

1.4 Notations utilisées
Dans cet ouvrage, les commandes, les instructions Python, les résultats et les contenus de fichiers sont indiqués avec

cette police pour les éléments ponctuels ou
1 sous cette forme,
2 sur plusieurs lignes,
3 pour les éléments les plus longs.

Pour ces derniers, le numéro à gauche indique le numéro de la ligne et sera utilisé pour faire référence à une instruction
particulière. Ce numéro n’est bien sûr là qu’à titre indicatif.

Par ailleurs, dans le cas de programmes, de contenus de fichiers ou de résultats trop longs pour être inclus dans leur
intégralité, la notation [...] indique une coupure arbitraire de plusieurs caractères ou lignes.

5. https://conda.io/miniconda.html
6. https://python.sdv.u-paris.fr/livre-dunod

Cours de Python / Université Paris Cité / UFR Sciences du Vivant 11

https://python.sdv.u-paris.fr/
https://conda.io/miniconda.html
https://python.sdv.u-paris.fr/livre-dunod

Chapitre 1. Introduction 1.5. Introduction au shell

1.5 Introduction au shell
Un shell est un interpréteur de commandes interactif permettant d’interagir avec l’ordinateur. On utilisera le shell

pour lancer l’interpréteur Python.
Pour approfondir la notion de shell, vous pouvez consulter les pages Wikipedia :
• du shell Unix 7 fonctionnant sous Mac OS X et Linux ;
• du shell PowerShell 8 fonctionnant sous Windows.
Un shell possède toujours une invite de commande, c’est-à-dire un message qui s’affiche avant l’endroit où on entre

des commandes. Dans tout cet ouvrage, cette invite est représentée par convention par le symbole dollar $ (qui n’a rien
à avoir ici avec la monnaie), et ce quel que soit le système d’exploitation.

Par exemple, si on vous demande de lancer l’instruction suivante :
$ python
il faudra taper seulement python sans le $ ni l’espace après le $.

1.6 Premier contact avec Python
Python est un langage interprété, c’est-à-dire que chaque ligne de code est lue puis interprétée afin d’être exécutée

par l’ordinateur. Pour vous en rendre compte, ouvrez un shell puis lancez la commande :
python
La commande précédente va lancer l’interpréteur Python. Vous devriez obtenir quelque chose de ce style pour

Windows :
PS C:\Users\pierre>python
Python 3.12.2 | packaged by Anaconda, Inc. | (main, Feb 27 2024, 17:28:07) [MSC v.1916 64 bit (AMD64)] on

win32
Type "help", "copyright", "credits" or "license" for more information.
>>>

pour Mac OS X :
iMac-de-pierre:Downloads$ python
Python 3.12.2 | packaged by Anaconda, Inc. | (main, Feb 27 2024, 12:57:28) [Clang 14.0.6] on darwin
Type "help", "copyright", "credits" or "license" for more information.
>>>

ou pour Linux :
pierre@jeera:~$ python
Python 3.12.2 | packaged by conda-forge | (main, Feb 16 2024, 20:50:58) [GCC 12.3.0] on linux
Type "help", "copyright", "credits" or "license" for more information.
>>>

Les blocs
• PS C:\Users\pierre> pour Windows,
• iMac-de-pierre:Downloads$ pour Mac OS X,
• pierre@jeera:~$ pour Linux.
représentent l’invite de commande de votre shell. Il se peut que vous ayez aussi le mot (base) qui indique que vous

avez un environnement conda activé. Par la suite, cette invite de commande sera représentée simplement par le caractère
$, que vous soyez sous Windows, Mac OS X ou Linux.

Le triple chevron >>> est l’invite de commande (prompt en anglais) de l’interpréteur Python. Ici, Python attend une
commande que vous devez saisir au clavier. Tapez par exemple l’instruction :

print("Hello world!")
puis, validez cette commande en appuyant sur la touche Entrée.
Python a exécuté la commande directement et a affiché le texte Hello world!. Il attend ensuite une nouvelle

instruction en affichant l’invite de l’interpréteur Python (>>>). En résumé, voici ce qui a dû apparaître sur votre écran :

7. https://fr.wikipedia.org/wiki/Shell_Unix
8. https://fr.wikipedia.org/wiki/Windows_PowerShell

12 Cours de Python / Université Paris Cité / UFR Sciences du Vivant

https://fr.wikipedia.org/wiki/Shell_Unix
https://fr.wikipedia.org/wiki/Windows_PowerShell

1.7. Premier programme Chapitre 1. Introduction

1 >>> print("Hello world!")
2 Hello world!
3 >>>

Vous pouvez refaire un nouvel essai en vous servant cette fois de l’interpréteur comme d’une calculatrice :
1 >>> 1+1
2 2
3 >>> 6*3
4 18

À ce stade, vous pouvez entrer une autre commande ou bien quitter l’interpréteur Python, soit en tapant la commande
exit() puis en validant en appuyant sur la touche Entrée, soit en pressant simultanément les touches Ctrl et D sous
Linux et Mac OS X ou Ctrl et Z puis Entrée sous Windows.

En résumant, l’interpréteur fonctionne sur le modèle :
1 >>> instruction python
2 résultat

où le triple chevron correspond à l’entrée (input) que l’utilisateur tape au clavier, et l’absence de chevron en début
de ligne correspond à la sortie (output) générée par Python. Une exception se présente toutefois : lorsqu’on a une longue
ligne de code, on peut la couper en deux avec le caractère \ (backslash) pour des raisons de lisibilité :

1 >>> Voici une longue ligne de code \
2 ... décrite sur deux lignes
3 résultat

En ligne 1 on a rentré la première partie de la ligne de code. On termine par un \, ainsi Python sait que la ligne de
code n’est pas finie. L’interpréteur nous l’indique avec les trois points En ligne 2, on rentre la fin de la ligne de code
puis on appuie sur Entrée. À ce moment, Python nous génère le résultat. Si la ligne de code est vraiment très longue, il
est même possible de la découper en trois voire plus :

1 >>> Voici une ligne de code qui \
2 ... est vraiment très longue car \
3 ... elle est découpée sur trois lignes
4 résultat

L’interpréteur Python est donc un système interactif dans lequel vous pouvez entrer des commandes, que Python
exécutera sous vos yeux (au moment où vous validerez la commande en appuyant sur la touche Entrée).

Il existe de nombreux autres langages interprétés comme Perl 9 ou R 10. Le gros avantage de ce type de langage est
qu’on peut immédiatement tester une commande à l’aide de l’interpréteur, ce qui est très utile pour débugger (c’est-à-dire
trouver et corriger les éventuelles erreurs d’un programme). Gardez bien en mémoire cette propriété de Python qui pourra
parfois vous faire gagner un temps précieux !

1.7 Premier programme
Bien sûr, l’interpréteur présente vite des limites dès lors que l’on veut exécuter une suite d’instructions plus complexe.

Comme tout langage informatique, on peut enregistrer ces instructions dans un fichier, que l’on appelle communément
un script (ou programme) Python.

Pour reprendre l’exemple précédent, ouvrez un éditeur de texte (pour choisir et configurer un éditeur de texte,
reportez-vous si nécessaire à la rubrique Installation de Python en ligne 11) et entrez le code suivant :

print("Hello world!")
Ensuite, enregistrez votre fichier sous le nom test.py, puis quittez l’éditeur de texte.

Remarque
L’extension de fichier standard des scripts Python est .py.

9. http://www.perl.org
10. http://www.r-project.org
11. https://python.sdv.u-paris.fr/livre-dunod

Cours de Python / Université Paris Cité / UFR Sciences du Vivant 13

http://www.perl.org
http://www.r-project.org
https://python.sdv.u-paris.fr/livre-dunod

Chapitre 1. Introduction 1.8. Commentaires

Pour exécuter votre script, ouvrez un shell et entrez la commande : python test.py
Vous devriez obtenir un résultat similaire à ceci :

$ python test.py
Hello world!

Si c’est bien le cas, bravo ! Vous avez exécuté votre premier programme Python.

1.8 Commentaires
Dans un script, tout ce qui suit le caractère # est ignoré par Python jusqu’à la fin de la ligne et est considéré comme

un commentaire.
Les commentaires doivent expliquer votre code dans un langage humain. L’utilisation des commentaires est discutée

en détail dans le chapitre 16 Bonnes pratiques en programmation Python.
Voici un exemple :

1 # Votre premier commentaire en Python.
2 print("Hello world!")
3
4 # D'autres commandes plus utiles pourraient suivre.

Remarque
On appelle souvent à tort le caractère # « dièse ». On devrait plutôt parler de « croisillon 12 ».

1.9 Notion de bloc d’instructions et d’indentation
En programmation, il est courant de répéter un certain nombre de choses (avec les boucles, voir le chapitre 5 Boucles

et comparaisons) ou d’exécuter plusieurs instructions si une condition est vraie (avec les tests, voir le chapitre 6 Tests).
Par exemple, imaginons que nous souhaitions afficher chacune des bases d’une séquence d’ADN, les compter puis

afficher le nombre total de bases à la fin. Nous pourrions utiliser l’algorithme présenté en pseudo-code dans la figure 1.1.

Figure 1.1 – Notion d’indentation et de bloc d’instructions.

Pour chaque base de la séquence ATCCGACTG, nous souhaitons effectuer deux actions : d’abord afficher la base
puis compter une base de plus. Pour indiquer cela, on décalera vers la droite ces deux instructions par rapport à la
ligne précédente (pour chaque base [...]). Ce décalage est appelé indentation et l’ensemble des lignes indentées
constitue un bloc d’instructions.

Une fois qu’on aura réalisé ces deux actions sur chaque base, on pourra passer à la suite, c’est-à-dire afficher la taille
de la séquence. Pour bien préciser que cet affichage se fait à la fin, donc une fois l’affichage puis le comptage de chaque
base terminés, la ligne correspondante n’est pas indentée (c’est-à-dire qu’elle n’est pas décalée vers la droite).

12. https://fr.wikipedia.org/wiki/Croisillon_(signe)

14 Cours de Python / Université Paris Cité / UFR Sciences du Vivant

https://fr.wikipedia.org/wiki/Croisillon_(signe)

1.10. Autres ressources Chapitre 1. Introduction

Pratiquement, l’indentation en Python doit être homogène (soit des espaces, soit des tabulations, mais pas un mélange
des deux). Une indentation avec 4 espaces est le style d’indentation recommandé (voir le chapitre 16 Bonnes pratiques
en programmation Python).

Si tout cela semble un peu complexe, ne vous inquiétez pas. Vous allez comprendre tous ces détails chapitre après
chapitre.

1.10 Autres ressources
Pour compléter votre apprentissage de Python, n’hésitez pas à consulter d’autres ressources complémentaires à cet

ouvrage. D’autres auteurs abordent l’apprentissage de Python d’une autre manière. Nous vous conseillons les ressources
suivantes en langue française :

• Le livre Apprendre à programmer avec Python 3 de Gérard Swinnen. Cet ouvrage est téléchargeable gratuitement
sur le site de Gérard Swinnen 13. Les éditions Eyrolles proposent également la version papier de cet ouvrage.

• Le livre Apprendre à programmer en Python avec PyZo et Jupyter Notebook de Bob Cordeau et Laurent Pointal,
publié aux éditions Dunod. Une partie de cet ouvrage est téléchargeable gratuitement sur le site de Laurent
Pointal 14.

• Le livre Apprenez à programmer en Python de Vincent Legoff 15 que vous trouverez sur le site Openclassroms.
Et pour terminer, une ressource incontournable en langue anglaise :
• Le site www.python.org 16. Il contient énormément d’informations et de liens sur Python. La page d’index des

modules 17 est particulièrement utile (et traduite en français).

13. http://www.inforef.be/swi/python.htm
14. https://perso.limsi.fr/pointal/python:courspython3
15. https://openclassrooms.com/fr/courses/235344-apprenez-a-programmer-en-python
16. http://www.python.org
17. https://docs.python.org/fr/3/py-modindex.html

Cours de Python / Université Paris Cité / UFR Sciences du Vivant 15

http://www.inforef.be/swi/python.htm
https://perso.limsi.fr/pointal/python:courspython3
https://openclassrooms.com/fr/courses/235344-apprenez-a-programmer-en-python
http://www.python.org
https://docs.python.org/fr/3/py-modindex.html

CHAPITRE 2

Variables

2.1 Définition et création

Définition
Une variable est une zone de la mémoire de l’ordinateur dans laquelle une valeur est stockée. Aux yeux du program-

meur, cette variable est définie par un nom, alors que pour l’ordinateur, il s’agit en fait d’une adresse, c’est-à-dire d’une
zone particulière de la mémoire.

En Python, la déclaration d’une variable et son initialisation (c’est-à-dire la première valeur que l’on va stocker
dedans) se font en même temps. Pour vous en convaincre, testez les instructions suivantes après avoir lancé l’interpréteur :

1 >>> x = 2
2 >>> x
3 2

Ligne 1. Dans cet exemple, nous avons déclaré, puis initialisé la variable x avec la valeur 2. Notez bien qu’en réalité,
il s’est passé plusieurs choses :

• Python a « deviné » que la variable était un entier. On dit que Python est un langage au typage dynamique.
• Python a alloué (réservé) l’espace en mémoire pour y accueillir un entier. Chaque type de variable prend plus ou

moins d’espace en mémoire. Python a aussi fait en sorte qu’on puisse retrouver la variable sous le nom x.
• Enfin, Python a assigné la valeur 2 à la variable x.
Dans d’autres langages (en C par exemple), il faut coder ces différentes étapes une par une. Python étant un langage

dit de haut niveau, la simple instruction x = 2 a suffi à réaliser les trois étapes en une fois !
Lignes 2 et 3. L’interpréteur nous a permis de connaître le contenu de la variable juste en tapant son nom. Retenez

ceci, car c’est une spécificité de l’interpréteur Python, très pratique pour chasser (debugger) les erreurs dans un
programme. En revanche, la ligne d’un script Python qui contient seulement le nom d’une variable (sans aucune autre
indication) n’affichera pas la valeur de la variable à l’écran lors de l’exécution (pour autant, cette instruction reste valide
et ne générera pas d’erreur).

Depuis la version 3.10, l’interpréteur Python a amélioré ses messages d’erreur. Il est ainsi capable de suggérer des
noms de variables existants lorsqu’on fait une faute de frappe :

16

2.2. Les types de variables Chapitre 2. Variables

1 >>> voyelles = "aeiouy"
2 >>> voyelle
3 Traceback (most recent call last):
4 File "<stdin>", line 1, in <module>
5 NameError: name 'voyelle' is not defined. Did you mean: 'voyelles'?

Si le mot qu’on tape n’est pas très éloigné, cela fonctionne également lorsqu’on se trompe à différents endroits du
mot !

1 pharmacie = "vente de médicaments"
2 >>> farmacia
3 Traceback (most recent call last):
4 File "<stdin>", line 1, in <module>
5 NameError: name 'farmacia' is not defined. Did you mean: 'pharmacie'?

Revenons sur le signe = ci-dessus.

Définition
Le symbole = est appelé opérateur d’affectation. Il permet d’assigner une valeur à une variable en Python. Cet

opérateur s’utilise toujours de la droite vers la gauche. Par exemple, dans l’instruction x = 2 ci-dessus, Python attribue
la valeur située à droite (ici, 2) à la variable située à gauche (ici, x). D’autres langages de programmation comme R
utilisent les symboles <- pour rendre l’affectation d’une variable plus explicite, par exemple x <- 2.

Voici d’autres cas de figures que vous rencontrerez avec l’opérateur = :
1 >>> x = 2
2 >>> y = x
3 >>> y
4 2
5 >>> x = 5 - 2
6 >>> x
7 3

Ligne 2. Ici on a un nom de variable à gauche et à droite de l’opérateur =. Dans ce cas, on garde la règle d’aller
toujours de la droite vers la gauche. C’est donc le contenu de la variable y qui est affecté à la variable x.

Ligne 5. Comme on le verra plus bas, si on a à droite de l’opérateur = une expression, ici la soustraction 4 - 2, celle-ci
est d’abord évaluée et c’est le résultat de cette opération qui sera affecté à la variable x. On pourra noter également que
la valeur de x précédente (2) a été écrasée.

Attention
L’opérateur d’affectation = écrase systématiquement la valeur de la variable située à sa gauche si celle-ci existe déjà.

2.2 Les types de variables

Définition
Le type d’une variable correspond à la nature de celle-ci. Les trois principaux types dont nous aurons besoin dans

un premier temps sont les entiers (integer ou int), les nombres décimaux que nous appellerons floats et les chaînes de
caractères (string ou str).

Bien sûr, il existe de nombreux autres types (par exemple, les booléens, les nombres complexes, etc.). Si vous n’êtes
pas effrayés, vous pouvez vous en rendre compte ici 1.

1. https://docs.python.org/fr/3.12/library/stdtypes.html

Cours de Python / Université Paris Cité / UFR Sciences du Vivant 17

https://docs.python.org/fr/3.12/library/stdtypes.html

Chapitre 2. Variables 2.3. Nommage

Dans l’exemple précédent, nous avons stocké un nombre entier (int) dans la variable x, mais il est tout à fait possible
de stocker des floats, des chaînes de caractères (string ou str) ou de nombreux autres types de variables que nous verrons
par la suite :

1 >>> y = 3.14
2 >>> y
3 3.14
4 >>> a = "bonjour"
5 >>> a
6 'bonjour'
7 >>> b = 'salut'
8 >>> b
9 'salut'

10 >>> c = """girafe"""
11 >>> c
12 'girafe'
13 >>> d = '''lion'''
14 >>> d
15 'lion'

Remarque
Python reconnaît certains types de variables automatiquement (entier, float). Par contre, pour une chaîne de carac-

tères, il faut l’entourer de guillemets (doubles, simples, voire trois guillemets successifs doubles ou simples) afin d’indiquer
à Python le début et la fin de la chaîne de caractères.

Dans l’interpréteur, l’affichage direct du contenu d’une chaîne de caractères se fait avec des guillemets simples, quel
que soit le type de guillemets utilisé pour définir la chaîne de caractères.

En Python, comme dans la plupart des langages de programmation, c’est le point qui est utilisé comme séparateur
décimal. Ainsi, 3.14 est un nombre reconnu comme un float en Python alors que ce n’est pas le cas de 3,14.

Il existe également des variables de type booléen. Un booléen 2 est une variable qui ne prend que deux valeurs : Vrai
ou Faux. En python, on utilise pour cela les deux mots réservés True et False :

1 >>> var = True
2 >>> var2 = False
3 >>> var
4 True
5 >>> var2
6 False

Nous verrons l’utilité des booléens dans les chapitres 5 Boucles et 6 Tests.

2.3 Nommage
Le nom des variables en Python peut être constitué de lettres minuscules (a à z), de lettres majuscules (A à Z), de

nombres (0 à 9) ou du caractère souligné (_). Vous ne pouvez pas utiliser d’espace dans un nom de variable.
Par ailleurs, un nom de variable ne doit pas débuter par un chiffre et il n’est pas recommandé de le faire débuter par

le caractère _ (sauf cas très particuliers).
De plus, il faut absolument éviter d’utiliser un mot « réservé » par Python comme nom de variable (par exemple :

print, range, for, from, etc.).
Dans la mesure du possible, il est conseillé de mettre des noms de variables explicites. Sauf dans de rares cas que

nous expliquerons plus tard dans le cours, évitez les noms de variables à une lettre.
Enfin, Python est sensible à la casse, ce qui signifie que les variables TesT, test et TEST sont différentes.

2.4 Écriture scientifique
On peut écrire des nombres très grands ou très petits avec des puissances de 10 en utilisant le symbole e :

2. https://fr.wikipedia.org/wiki/Bool%C3%A9en

18 Cours de Python / Université Paris Cité / UFR Sciences du Vivant

https://fr.wikipedia.org/wiki/Bool%C3%A9en

2.5. Opérations Chapitre 2. Variables

1 >>> 1e6
2 1000000.0
3 >>> 3.12e-3
4 0.00312

On appelle cela écriture ou notation scientifique. On pourra noter deux choses importantes :
• 1e6 ou 3.12e-3 n’implique pas l’utilisation du nombre exponentiel e, mais signifie 1×106 ou 3.12×10−3 respec-

tivement ;
• même si on ne met que des entiers à gauche et à droite du symbole e (comme dans 1e6), Python génère systéma-

tiquement un float.
Enfin, vous avez sans doute constaté qu’il est parfois pénible d’écrire des nombres composés de beaucoup de chiffres,

par exemple le nombre d’Avogradro 6.02214076×1023 ou le nombre d’humains sur Terre 3 8094752749 au 5 mars 2024
à 19h34. Pour s’y retrouver, Python autorise l’utilisation du caractère « souligné » (ou underscore) _ pour séparer des
groupes de chiffres. Par exemple :

1 >>> avogadro_number = 6.022_140_76e23
2 >>> print(avogadro_number)
3 6.02214076e+23
4 >>> humans_on_earth = 8_094_752_749
5 >>> print(humans_on_earth)
6 8094752749

Dans ces exemples, le caractère _ (underscore ou « souligné ») est utilisé pour séparer des groupes de trois chiffres,
mais on peut faire ce qu’on veut :

1 >>> print(80_94_7527_49)
2 8094752749

2.5 Opérations
2.5.1 Opérations sur les types numériques

Les quatre opérations arithmétiques de base se font de manière simple sur les types numériques (nombres entiers et
floats) :

1 >>> x = 45
2 >>> x + 2
3 47
4 >>> x - 2
5 43
6 >>> x * 3
7 135
8 >>> y = 2.5
9 >>> x - y

10 42.5
11 >>> (x * 10) + y
12 452.5

Remarquez toutefois que si vous mélangez les types entiers et floats, le résultat est renvoyé comme un float (car ce
type est plus général). Par ailleurs, l’utilisation de parenthèses permet de gérer les priorités.

L’opérateur / effectue une division. Contrairement aux opérateurs +, - et *, celui-ci renvoie systématiquement un
float :

1 >>> 3 / 4
2 0.75
3 >>> 2.5 / 2
4 1.25
5 >>> 6 / 3
6 2.0
7 >>> 10 / 2
8 5.0

3. https://thepopulationproject.org/

Cours de Python / Université Paris Cité / UFR Sciences du Vivant 19

https://thepopulationproject.org/

Chapitre 2. Variables 2.5. Opérations

L’opérateur puissance utilise les symboles ** :
1 >>> 2**3
2 8
3 >>> 2**4
4 16

Pour obtenir le quotient et le reste d’une division entière (voir ici 4 pour un petit rappel sur la division entière), on
utilise respectivement les symboles // et modulo % :

1 >>> 5 // 4
2 1
3 >>> 5 % 4
4 1
5 >>> 8 // 4
6 2
7 >>> 8 % 4
8 0

Les symboles +, -, *, /, **, // et % sont appelés opérateurs, car ils réalisent des opérations sur les variables.
Enfin, il existe des opérateurs « combinés » qui effectue une opération et une affectation en une seule étape :

1 >>> i = 0
2 >>> i = i + 1
3 >>> i
4 1
5 >>> i += 1
6 >>> i
7 2
8 >>> i += 2
9 >>> i

10 4

L’opérateur += effectue une addition puis affecte le résultat à la même variable. Cette opération s’appelle une «
incrémentation ».

Les opérateurs -=, *= et /= se comportent de manière similaire pour la soustraction, la multiplication et la division.

2.5.2 Opérations sur les chaînes de caractères
Pour les chaînes de caractères, deux opérations sont possibles, l’addition et la multiplication :

1 >>> chaine = "Salut"
2 >>> chaine
3 'Salut'
4 >>> chaine + " Python"
5 'Salut Python'
6 >>> chaine * 3
7 'SalutSalutSalut'

L’opérateur d’addition + concatène (assemble) deux chaînes de caractères. On parle de concaténation.
L’opérateur de multiplication * entre un nombre entier et une chaîne de caractères duplique (répète) plusieurs fois

une chaîne de caractères. On parle de duplication.

Attention
Vous observez que les opérateurs + et * se comportent différemment s’il s’agit d’entiers ou de chaînes de caractères.

Ainsi, l’opération 2 + 2 est une addition alors que l’opération "2" + "2" est une concaténation. On appelle ce compor-
tement redéfinition des opérateurs. Nous serons amenés à revoir cette notion dans le chapitre 24 Avoir plus la classe
avec les objets (en ligne).

4. https://fr.wikipedia.org/wiki/Division_euclidienne

20 Cours de Python / Université Paris Cité / UFR Sciences du Vivant

https://fr.wikipedia.org/wiki/Division_euclidienne

2.6. La fonction type() Chapitre 2. Variables

2.5.3 Opérations illicites
Attention à ne pas faire d’opération illicite, car vous obtiendriez un message d’erreur :

1 >>> "toto" * 1.3
2 Traceback (most recent call last):
3 File "<stdin>", line 1, in <module>
4 TypeError: can't multiply sequence by non-int of type 'float'
5 >>> "toto" + 2
6 Traceback (most recent call last):
7 File "<stdin>", line 1, in <module>
8 TypeError: can only concatenate str (not "int") to str

Notez que Python vous donne des informations dans son message d’erreur. Dans le second exemple, il indique que
vous devez utiliser une variable de type str, c’est-à-dire une chaîne de caractères et pas un int, c’est-à-dire un entier.

2.6 La fonction type()
Si vous ne vous souvenez plus du type d’une variable, utilisez la fonction type() qui vous le rappellera.

1 >>> x = 2
2 >>> type(x)
3 <class 'int'>
4 >>> y = 2.0
5 >>> type(y)
6 <class 'float'>
7 >>> z = '2'
8 >>> type(z)
9 <class 'str'>

10 >>> type(True)
11 <class 'bool'>

Nous verrons plus tard ce que signifie le mot class.

Attention
Pour Python, la valeur 2 (nombre entier) est différente de 2.0 (float) et est aussi différente de '2' (chaîne de

caractères).

2.7 Conversion de types
En programmation, on est souvent amené à convertir les types, c’est-à-dire passer d’un type numérique à une chaîne

de caractères ou vice-versa. En Python, rien de plus simple avec les fonctions int(), float() et str(). Pour vous en
convaincre, regardez ces exemples :

1 >>> i = 3
2 >>> str(i)
3 '3'
4 >>> i = '456'
5 >>> int(i)
6 456
7 >>> float(i)
8 456.0
9 >>> i = '3.1416'

10 >>> float(i)
11 3.1416

On verra au chapitre 7 Fichiers que ces conversions sont essentielles. En effet, lorsqu’on lit ou écrit des nombres dans
un fichier, ils sont considérés comme du texte, donc des chaînes de caractères.

Toute conversion d’une variable d’un type en un autre est appelé casting en anglais, il se peut que vous croisiez ce
terme si vous consultez d’autres ressources.

Cours de Python / Université Paris Cité / UFR Sciences du Vivant 21

Chapitre 2. Variables 2.8. Note sur le vocabulaire et la syntaxe

2.8 Note sur le vocabulaire et la syntaxe
Nous avons vu dans ce chapitre la notion de variable qui est commune à tous les langages de programmation.

Toutefois, Python est un langage dit « orienté objet », il se peut que dans la suite du cours, nous employions le mot
objet pour désigner une variable. Par exemple, « une variable de type entier » sera pour nous équivalent à « un objet de
type entier ». Nous verrons dans le chapitre 23 Avoir la classe avec les objets (en ligne) ce que le mot « objet » signifie
réellement (tout comme le mot « classe »).

Par ailleurs, nous avons rencontré plusieurs fois des fonctions dans ce chapitre, notamment avec type(), int(),
float() et str(). Dans le chapitre 1 Introduction, nous avons également vu la fonction print(). On reconnaît qu’il
s’agit d’une fonction, car son nom est suivi de parenthèses (par exemple, type()). En Python, la syntaxe générale est
fonction().

Ce qui se trouve entre les parenthèses d’une fonction est appelé argument et c’est ce que l’on « passe » à la fonction.
Dans l’instruction type(2), c’est l’entier 2 qui est l’argument passé à la fonction type(). Pour l’instant, on retiendra
qu’une fonction est une sorte de boîte à qui on passe un (ou plusieurs) argument(s), qui effectue une action et qui peut
renvoyer un résultat ou plus généralement un objet. Par exemple, la fonction type() renvoie le type de la variable qu’on
lui a passé en argument.

Si ces notions vous semblent obscures, ne vous inquiétez pas, au fur et à mesure que vous avancerez dans le cours,
tout deviendra limpide.

2.9 Minimum et maximum
Python propose les fonctions min() et max() qui renvoient respectivement le minimum et le maximum de plusieurs

entiers ou floats :
1 >>> min(1, -2, 4)
2 -2
3 >>> pi = 3.14
4 >>> e = 2.71
5 >>> max(e, pi)
6 3.14
7 >>> max(1, 2.4, -6)
8 2.4

Par rapport à la discussion de la rubrique précédente, min() et max() sont des exemples de fonctions prenant plusieurs
arguments. En Python, quand une fonction prend plusieurs arguments, on doit les séparer par une virgule. min() et max()
prennent en argument autant d’entiers et de floats que l’on veut, mais il en faut au moins deux.

2.10 Exercices

Conseil
Pour ces exercices, utilisez l’interpréteur Python.

2.10.1 Nombres de Friedman
Les nombres de Friedman 5 sont des nombres qui peuvent s’exprimer avec tous leurs chiffres dans une expression

mathématique.
Par exemple, 347 est un nombre de Friedman, car il peut s’écrire sous la forme 4+73. De même pour 127 qui peut

s’écrire sous la forme 27 −1.
Déterminez si les expressions suivantes correspondent à des nombres de Friedman. Pour cela, vous les écrirez en

Python puis exécuterez le code correspondant.
• 7+36

• (3+4)3

• 36 −5

5. https://fr.wikipedia.org/wiki/Nombre_de_Friedman

22 Cours de Python / Université Paris Cité / UFR Sciences du Vivant

https://fr.wikipedia.org/wiki/Nombre_de_Friedman

2.10. Exercices Chapitre 2. Variables

• (1+28)×5
• (2+18)7

2.10.2 Prédire le résultat : opérations
Essayez de prédire le résultat de chacune des instructions suivantes, puis vérifiez-le dans l’interpréteur Python :
• (1+2)**3
• "Da" * 4
• "Da" + 3
• ("Pa"+"La") * 2
• ("Da"*4) / 2
• 5 / 2
• 5 // 2
• 5 % 2

2.10.3 Prédire le résultat : opérations et conversions de types
Essayez de prédire le résultat de chacune des instructions suivantes, puis vérifiez-le dans l’interpréteur Python :
• str(4) * int("3")
• int("3") + float("3.2")
• str(3) * float("3.2")
• str(3/4) * 2

Cours de Python / Université Paris Cité / UFR Sciences du Vivant 23

CHAPITRE 3

Affichage

3.1 La fonction print()
Dans le chapitre 1 Introduction, nous avons rencontré la fonction print() qui affiche une chaîne de caractères (le

fameux "Hello world!"). En fait, la fonction print() affiche l’argument qu’on lui passe entre parenthèses et un
retour à ligne. Ce retour à ligne supplémentaire est ajouté par défaut. Si toutefois, on ne veut pas afficher ce retour à la
ligne, on peut utiliser l’argument par « mot-clé » end :

1 >>> print("Hello world!")
2 Hello world!
3 >>> print("Hello world!", end="")
4 Hello world!>>>

Ligne 1. On a utilisé l’instruction print() classiquement en passant la chaîne de caractères "Hello world!" en
argument.

Ligne 3. On a ajouté un second argument end="", en précisant le mot-clé end. Nous aborderons les arguments
par mot-clé dans le chapitre 10 Fonctions. Pour l’instant, dites-vous que cela modifie le comportement par défaut des
fonctions.

Ligne 4. L’effet de l’argument end="" est que les trois chevrons >>> se retrouvent collés après la chaîne de caractères
"Hello world!".

Une autre manière de s’en rendre compte est d’utiliser deux fonctions print() à la suite. Dans la portion de code
suivante, le caractère « ; » sert à séparer plusieurs instructions Python sur une même ligne :

1 >>> print("Hello") ; print("Joe")
2 Hello
3 Joe
4 >>> print("Hello", end="") ; print("Joe")
5 HelloJoe
6 >>> print("Hello", end=" ") ; print("Joe")
7 Hello Joe

La fonction print() peut également afficher le contenu d’une variable quel que soit son type. Par exemple, pour un
entier :

1 >>> var = 3
2 >>> print(var)
3 3

24

3.2. Messages d’erreur Chapitre 3. Affichage

Il est également possible d’afficher le contenu de plusieurs variables (quel que soit leur type) en les séparant par des
virgules :

1 >>> x = 32
2 >>> nom = "John"
3 >>> print(nom, "a", x, "ans")
4 John a 32 ans

Python a écrit une phrase complète en remplaçant les variables x et nom par leur contenu. Vous remarquerez que
pour afficher plusieurs éléments de texte sur une seule ligne, nous avons utilisé le séparateur « , » entre les différents
éléments. Python a également ajouté un espace à chaque fois que l’on utilisait le séparateur « , ». On peut modifier ce
comportement en passant à la fonction print() l’argument par mot-clé sep :

1 >>> x = 32
2 >>> nom = "John"
3 >>> print(nom, "a", x, "ans", sep="")
4 Johna32ans
5 >>> print(nom, "a", x, "ans", sep="-")
6 John-a-32-ans
7 >>> print(nom, "a", x, "ans", sep="_")
8 John_a_32_ans

Pour afficher deux chaînes de caractères l’une à côté de l’autre, sans espace, on peut soit les concaténer, soit utiliser
l’argument par mot-clé sep avec une chaîne de caractères vide :

1 >>> ani1 = "chat"
2 >>> ani2 = "souris"
3 >>> print(ani1, ani2)
4 chat souris
5 >>> print(ani1 + ani2)
6 chatsouris
7 >>> print(ani1, ani2, sep="")
8 chatsouris

3.2 Messages d’erreur
Nous avons déjà croisé des messages d’erreur dans le chapitre précédent sur les variables. Nous vous expliquons ici

comment les lire.
Depuis la version 3.10 de Python, l’interpréteur renvoie des messages explicites lorsqu’on fait une erreur de syntaxe.

Par exemple, on considère le script suivant (enregistré dans un fichier nommé test.py) qui contient plusieurs erreurs.
Les voyez-vous ?

1 print("chat"
2 print("souris")
3 print(1 / 0)
4 print(int("deux"))

Vous avez sans doute repéré l’oubli d’une parenthèse fermante en ligne 1. Lorsqu’on lance le script, on obtient :
$ python test.py
File "test.py", line 1

print("chat"
^

SyntaxError: '(' was never closed

Comment doit-on lire ce message d’erreur ? Et bien cela se fait toujours du bas vers le haut. Le message s’appelle
une Traceback et contient plusieurs types d’information :

• Tout en bas : On a le type d’erreur qui a été généré (on verra plus tard que cela s’appelle en réalité une exception).
Ici une erreur de syntaxe appelée SyntaxError. Puis sur la même ligne, un indice supplémentaire (ici l’absence
d’une parenthèse).

• Un peu plus haut : une description de l’erreur où on voit la parenthèse ouverte qui n’a jamais été fermée.
• Encore plus haut : le numéro de ligne dans le code où l’erreur a été détectée.
Avec cette Traceback il devient facile de corriger l’erreur.

Cours de Python / Université Paris Cité / UFR Sciences du Vivant 25

Chapitre 3. Affichage 3.3. Écriture formatée et f-strings

Attention
Dans les vieilles versions de Python (< 3.10), la même erreur conduisait à une Traceback beaucoup moins claire :

$ python3.5 test.py
File "test.py", line 2

print("souris")
^

SyntaxError: invalid syntax

L’interpréteur vous indiquait une erreur de syntaxe en ligne 2 alors que l’oubli de parenthèse était en ligne 1 ! Pour
cette raison, utilisez dans la mesure du possible une version récente de Python (3.12 ou 3.13).

Si nous corrigeons la ligne 1 en mettant la parenthèse finale et que nous relançons le script, nous aurons cette fois-ci
une erreur due à une division par zéro :
$ python test.py
chat
souris
Traceback (most recent call last):
File "test.py", line 3, in <module>

print(1 / 0)
~~^~~

ZeroDivisionError: division by zero

Si nous corrigeons cette erreur en ligne 3 en évitant la division par zéro (par exemple en mettant print(1 / 1)),
l’exécution donnera un autre message d’erreur dû à la ligne 4 où la transformation d’une chaîne de caractères en entier
n’est pas possible :
$ python test.py
chat
souris
1
Traceback (most recent call last):
File "test.py", line 4, in <module>

print(int("deux"))
^^^^^^^^^^^

ValueError: invalid literal for int() with base 10: 'deux'

À nouveau dans ces deux derniers exemples de Traceback, vous voyez qu’on a la même construction. Tout en bas, le
type d’erreur, puis en remontant une description du problème et le numéro de ligne où l’erreur a été détectée.

Conseil
Il est important de bien lire chaque message d’erreur généré par Python. En général, la clé du problème est mentionnée

dans ce message vous donnant des éléments pour le corriger.

3.3 Écriture formatée et f-strings
3.3.1 Définitions

Définition
L’écriture formatée est un mécanisme permettant d’afficher des variables avec un format précis, par exemple justifiées

à gauche ou à droite, ou encore avec un certain nombre de décimales pour les floats. L’écriture formatée est incontournable
lorsqu’on veut créer des fichiers organisés en « belles colonnes » comme par exemple les fichiers PDB (pour en savoir
plus sur ce format, reportez-vous à l’annexe A Quelques formats de données en biologie).

Depuis la version 3.6, Python a introduit les f-strings pour mettre en place l’écriture formatée que nous allons décrire
en détail dans cette rubrique. Il existe d’autres manières pour formater des chaînes de caractères qui étaient utilisées

26 Cours de Python / Université Paris Cité / UFR Sciences du Vivant

3.3. Écriture formatée et f-strings Chapitre 3. Affichage

avant la version 3.6, nous expliquons cela dans le chapitre 26 Remarques complémentaires (en ligne). Toutefois, nous
vous conseillons vivement l’utilisation des f-strings si vous débutez l’apprentissage de Python. Il est inutile d’apprendre
les anciennes manières.

Définition
f-string est le diminutif de formatted string literals. Mais encore ? Dans le chapitre précédent, nous avons vu les

chaînes de caractères ou encore strings qui étaient représentées par un texte entouré de guillemets simples ou doubles.
Par exemple :

1 "Ceci est une chaîne de caractères"

L’équivalent en f-string est la même chaîne de caractères précédée du caractère f sans espace entre les deux :
1 f"Ceci est une chaîne de caractères"

Ce caractère f avant les guillemets va indiquer à Python qu’il s’agit d’une f-string mettant en place le mécanisme de
l’écriture formatée, contrairement à une string normale.

Nous expliquons plus en détail dans le chapitre 11 Plus sur les chaînes de caractères pourquoi on doit mettre ce f et
quel est le mécanisme sous-jacent.

3.3.2 Prise en main des f-strings
Les f-strings permettent une meilleure organisation de l’affichage des variables. Reprenons l’exemple ci-dessus à propos

de notre ami John :
1 >>> x = 32
2 >>> nom = "John"
3 >>> print(f"{nom} a {x} ans")
4 John a 32 ans

Il suffit de passer un nom de variable au sein de chaque couple d’accolades et Python les remplace par leur contenu.
La syntaxe apparait plus lisible que l’équivalent vu précédemment :

1 >>> print(nom, "a", x, "ans")
2 John a 32 ans

Bien sûr, il ne faut pas omettre le f avant le premier guillemet, sinon Python prendra cela pour une chaîne de
caractères normale et ne mettra pas en place le mécanisme de remplacement entre les accolades :

1 >>> print("{nom} a {x} ans")
2 {nom} a {x} ans

Remarque
Une variable est utilisable plus d’une fois pour une f-string donnée :

1 >>> var = "to"
2 >>> print(f"{var} et {var} font {var}{var}")
3 to et to font toto
4 >>>

Enfin, il est possible de mettre entre les accolades des valeurs numériques ou des chaînes de caractères :
1 >>> print(f"J'affiche l'entier {10} et le float {3.14}")
2 J'affiche l'entier 10 et le float 3.14
3 >>> print(f"J'affiche la chaine {'Python'}")
4 J'affiche la chaine Python

Même si cela ne présente que peu d’intérêt pour l’instant, il s’agit d’une commande Python parfaitement valide. Nous
verrons des exemples plus pertinents par la suite. Cela fonctionne avec n’importe quel type de variable (entiers, chaînes

Cours de Python / Université Paris Cité / UFR Sciences du Vivant 27

Chapitre 3. Affichage 3.3. Écriture formatée et f-strings

de caractères, floats, etc.). Attention toutefois pour les chaînes de caractères, utilisez des guillemets simples au sein des
accolades si vous définissez votre f-string avec des guillemets doubles.

3.3.3 Spécification de format

Les f-strings permettent de remplacer des variables au sein d’une chaîne de caractères. On peut également spécifier
le format de leur affichage.

Prenons un exemple. Imaginez que vous vouliez calculer, puis afficher, la proportion de GC d’un génome. La proportion
de GC s’obtient comme la somme des bases Guanine (G) et Cytosine (C) divisée par le nombre total de bases (A, T, C,
G) du génome considéré. Si on a, par exemple, 4 500 bases G et 2 575 bases C, pour un total de 14 800 bases, vous
pourriez procéder comme suit (notez bien l’utilisation des parenthèses pour gérer les priorités des opérateurs) :

1 >>> prop_GC = (4500 + 2575) / 14800
2 >>> print("La proportion de GC est", prop_GC)
3 La proportion de GC est 0.4780405405405405

Le résultat obtenu présente trop de décimales (seize dans le cas présent). Pour écrire le résultat plus lisiblement, vous
pouvez spécifier dans les accolades {} le format qui vous intéresse. Dans le cas présent, vous voulez formater un float
pour l’afficher avec deux puis trois décimales :

1 >>> print(f"La proportion de GC est {prop_GC:.2f}")
2 La proportion de GC est 0.48
3 >>> print(f"La proportion de GC est {prop_GC:.3f}")
4 La proportion de GC est 0.478

Détaillons le contenu des accolades de la première ligne ({prop_GC:.2f}) :
• D’abord on a le nom de la variable à formatter, prop_GC, c’est indispensable avec les f-strings.
• Ensuite on rencontre les deux-points :, ceux-ci indiquent que ce qui suit va spécifier le format dans lequel on veut

afficher la variable prop_GC.
• À droite des deux-points on trouve .2f qui indique ce format : la lettre f indique qu’on souhaite afficher la variable

sous forme d’un float, les caractères .2 indiquent la précision voulue, soit ici deux chiffres après la virgule.
Notez enfin que le formatage avec .xf (x étant un entier positif) renvoie un résultat arrondi.
Vous pouvez aussi formater des entiers avec la lettre d (ici d veut dire decimal integer) :

1 >>> nb_G = 4500
2 >>> print(f"Ce génome contient {nb_G:d} guanines")
3 Ce génome contient 4500 guanines

ou mettre plusieurs nombres dans une même chaîne de caractères :
1 >>> nb_G = 4500
2 >>> nb_C = 2575
3 >>> print(f"Ce génome contient {nb_G:d} G et {nb_C:d} C, "
4 ... f"soit une proportion de {prop_GC:.2f}")
5 Ce génome contient 4500 G et 2575 C, soit une proportion de 0.48
6 >>> perc_GC = prop_GC * 100
7 >>> print(f"Ce génome contient {nb_G:d} G et {nb_C:d} C, "
8 ... f"soit un %GC de {perc_GC:.2f} %")
9 Ce génome contient 4500 G et 2575 C, soit un %GC de 47.80 %

Les instructions étant longues dans cet exemple, nous avons coupé chaque chaîne de caractères sur deux lignes. Il faut
mettre à chaque fois le f pour préciser à Python qu’on utilise une f-string. Les ... indiquent que l’interpréteur attend
que l’on ferme la parenthèse du print entamé sur la ligne précédente. Nous reverrons cette syntaxe dans le chapitre 11
Plus sur les chaînes de caractères.

Enfin, il est possible de préciser sur combien de caractères vous voulez qu’un résultat soit écrit et comment se fait
l’alignement (à gauche, à droite), ou si vous voulez centrer le texte. Dans la portion de code suivante, le caractère ; sert
de séparateur entre les instructions sur une même ligne :

28 Cours de Python / Université Paris Cité / UFR Sciences du Vivant

3.3. Écriture formatée et f-strings Chapitre 3. Affichage

1 >>> print(10) ; print(1000)
2 10
3 1000
4 >>> print(f"{10:>6d}") ; print(f"{1000:>6d}")
5 10
6 1000
7 >>> print(f"{10:<6d}") ; print(f"{1000:<6d}")
8 10
9 1000

10 >>> print(f"{10:^6d}") ; print(f"{1000:^6d}")
11 10
12 1000
13 >>> print(f"{10:*^6d}") ; print(f"{1000:*^6d}")
14 **10**
15 *1000*
16 >>> print(f"{10:0>6d}") ; print(f"{1000:0>6d}")
17 000010
18 001000

Notez que > spécifie un alignement à droite, < spécifie un alignement à gauche et ^ spécifie un alignement centré.
Il est également possible d’indiquer le caractère qui servira de remplissage lors des alignements (l’espace est le caractère
par défaut).

Ce formatage est également possible sur des chaînes de caractères avec la lettre s (comme string) :
1 >>> print("atom HN") ; print("atom HDE1")
2 atom HN
3 atom HDE1
4 >>> print(f"atom {'HN':>4s}") ; print(f"atom {'HDE1':>4s}")
5 atom HN
6 atom HDE1

Vous voyez tout de suite l’énorme avantage de l’écriture formatée. Elle vous permet d’écrire en colonnes parfaitement
alignées. Nous verrons que ceci est très pratique si l’on veut écrire les coordonnées des atomes d’une molécule au format
PDB (pour en savoir plus sur ce format, reportez-vous à l’annexe A Quelques formats de données en biologie).

Pour les floats, il est possible de combiner le nombre de caractères à afficher avec le nombre de décimales :
1 >>> print(f"{perc_GC:7.3f}")
2 47.804
3 >>> print(f"{perc_GC:10.3f}")
4 47.804

L’instruction 7.3f signifie que l’on souhaite écrire un float avec 3 décimales et formaté sur 7 caractères (par défaut
justifiés à droite). L’instruction 10.3f fait la même chose sur 10 caractères. Remarquez que le séparateur décimal .
compte pour un caractère. De même, si on avait un nombre négatif, le signe - compterait aussi pour un caractère.

3.3.4 Autres détails sur les f-strings
Si on veut afficher des accolades littérales avec les f-strings, il faut les doubler pour échapper au formatage :

1 >>> print(f"Accolades littérales {{}} ou {{ ou }} "
2 ... f"et pour le formatage {10}")
3 Accolades littérales {} ou { ou } et pour le formatage 10

Une remarque importante, si on ne met pas de variable à formater entre les accolades dans une f-string, cela conduit
à une erreur :

1 >>> print(f"accolades sans variable {}")
2 File "<stdin>", line 1
3 SyntaxError: f-string: empty expression not allowed

Enfin, il est important de bien comprendre qu’une f-string est indépendante de la fonction print(). Si on donne
une f-string à la fonction print(), Python évalue d’abord la f-string et c’est la chaîne de caractères qui en résulte qui
est affichée à l’écran. Tout comme dans l’instruction print(5*5), c’est d’abord la multiplication (5*5) qui est évaluée,
puis son résultat qui est affiché à l’écran. On peut s’en rendre compte de la manière suivante dans l’interpréteur :

Cours de Python / Université Paris Cité / UFR Sciences du Vivant 29

Chapitre 3. Affichage 3.4. Écriture scientifique

1 >>> f"{perc_GC:10.3f}"
2 ' 47.804'
3 >>> type(f"{perc_GC:10.3f}")
4 <class 'str'>

Python considère le résultat de l’instruction f"{perc_GC:10.3f}" comme une chaîne de caractères et la fonction
type() nous le confirme.

3.3.5 Expressions dans les f-strings
Une fonctionnalité extrêmement puissante des f-strings est de supporter des expressions Python au sein des accolades.

Ainsi, il est possible d’y mettre directement une opération ou encore un appel à une fonction :
1 >>> print(f"Le résultat de 5 * 5 vaut {5 * 5}")
2 Le résultat de 5 * 5 vaut 25
3 >>> print(f"Résultat d'une opération avec des floats : {(4.1 * 6.7)}")
4 Résultat d'une opération avec des floats : 27.47
5 >>> print(f"Le minimum est {min(1, -2, 4)}")
6 Le minimum est -2
7 >>> entier = 2
8 >>> print(f"Le type de {entier} est {type(entier)}")
9 Le type de 2 est <class 'int'>

Nous aurons l’occasion de revenir sur cette fonctionnalité au fur et à mesure de ce cours.
Les possibilités offertes par les f-strings sont nombreuses. Pour vous y retrouver dans les différentes options de

formatage, nous vous conseillons de consulter ce mémo 1 (en anglais).

3.4 Écriture scientifique
Pour les nombres très grands ou très petits, l’écriture formatée permet d’afficher un nombre en notation scientifique

(sous forme de puissance de 10) avec la lettre e :
1 >>> print(f"{1_000_000_000:e}")
2 1.000000e+09
3 >>> print(f"{0.000_000_001:e}")
4 1.000000e-09

Il est également possible de définir le nombre de chiffres après la virgule. Dans l’exemple ci-dessous, on affiche un
nombre avec aucun, 3 et 6 chiffres après la virgule :

1 >>> avogadro_number = 6.022_140_76e23
2 >>> print(f"{avogadro_number:.0e}")
3 6e+23
4 >>> print(f"{avogadro_number:.3e}")
5 6.022e+23
6 >>> print(f"{avogadro_number:.6e}")
7 6.022141e+23

3.5 Exercices

Conseil
Pour les exercices 2 à 6, utilisez l’interpréteur Python.

3.5.1 Affichage dans l’interpréteur et dans un programme
Ouvrez l’interpréteur Python et tapez l’instruction 1+1. Que se passe-t-il ?
Écrivez la même chose dans un script test.py que vous allez créer avec un éditeur de texte. Exécutez ce script en

tapant python test.py dans un shell. Que se passe-t-il ? Pourquoi ? Faites en sorte d’afficher le résultat de l’addition
1+1 en exécutant le script dans un shell.

1. https://fstring.help/cheat/

30 Cours de Python / Université Paris Cité / UFR Sciences du Vivant

https://fstring.help/cheat/

3.5. Exercices Chapitre 3. Affichage

3.5.2 Poly-A
Générez une chaîne de caractères représentant un brin d’ADN poly-A (c’est-à-dire qui ne contient que des bases A)

de 20 bases de longueur, sans taper littéralement toutes les bases.

3.5.3 Poly-A et poly-GC
Sur le modèle de l’exercice précédent, générez en une ligne de code un brin d’ADN poly-A (AAAA…) de 20 bases

suivi d’un poly-GC régulier (GCGCGC…) de 40 bases.

3.5.4 Écriture formatée
En utilisant l’écriture formatée, affichez en une seule ligne les variables a, b et c dont les valeurs sont respectivement

la chaîne de caractères "salut", le nombre entier 102 et le float 10.318. La variable c sera affichée avec deux décimales.

3.5.5 Écriture formatée 2
Dans un script percGC.py, calculez un pourcentage de GC avec l’instruction suivante :
perc_GC = ((4500 + 2575)/14800)*100
Ensuite, affichez le contenu de la variable perc_GC à l’écran avec 0, 1, 2 puis 3 décimales sous forme arrondie en

utilisant l’écriture formatée et les f-strings. On souhaite que le programme affiche la sortie suivante :
Le pourcentage de GC est 48 %
Le pourcentage de GC est 47.8 %
Le pourcentage de GC est 47.80 %
Le pourcentage de GC est 47.804 %

3.5.6 Décomposition de fractions
Utilisez l’opérateur modulo (%) et l’opérateur division entière (//) pour simplifier des fractions, connaissant leur

numérateur et leur dénominateur, et afficher le résultat avec des f-strings.
Par exemple pour la fraction 7

3 , le numérateur vaut 7 et le dénominateur vaut 3, et le résultat s’affichera sous la
forme :
7/3 = 2 + 1/3

Ici, 2 est le quotient de la division entière du numérateur par le dénominateur et 1 est le reste de la division entière
du numérateur par le dénominateur.

Faites de même pour les fractions suivantes :

9
4
,

23
5
,

21
8

et7
2

Aide : Pour chaque fraction, créez les variables numerateur et denominateur pour stocker les valeurs du numérateur
et du dénominateur. Créez ensuite les variables quotient et reste à partir des variables numerateur et denominateur
en utilisant les opérateurs // et %. Utilisez enfin ces quatre variables pour afficher le résultat dans la forme demandée
avec une f-string.

Cours de Python / Université Paris Cité / UFR Sciences du Vivant 31

CHAPITRE 4

Listes

4.1 Définition

Définition
Une liste est une structure de données qui contient une collection d’objets Python. Il s’agit d’un nouveau type par

rapport aux entiers, float, booléens et chaînes de caractères que nous avons vus jusqu’à maintenant. On parle aussi
d’objet séquentiel en ce sens qu’il contient une séquence d’autres objets.

Python autorise la construction de liste contenant des valeurs de types différents (par exemple entier et chaîne de
caractères), ce qui leur confère une grande flexibilité. Une liste est déclarée par une série de valeurs (n’oubliez pas les
guillemets, simples ou doubles, s’il s’agit de chaînes de caractères) séparées par des virgules, et le tout encadré par des
crochets. En voici quelques exemples :

1 >>> animaux = ["girafe", "tigre", "singe", "souris"]
2 >>> tailles = [5, 2.5, 1.75, 0.15]
3 >>> mixte = ["girafe", 5, "souris", 0.15]
4 >>> animaux
5 ['girafe', 'tigre', 'singe', 'souris']
6 >>> tailles
7 [5, 2.5, 1.75, 0.15]
8 >>> mixte
9 ['girafe', 5, 'souris', 0.15]

Lorsque l’on affiche une liste, Python la restitue telle qu’elle a été saisie.

4.2 Utilisation
Un des gros avantages d’une liste est que vous accédez à ses éléments par leur position. Ce numéro est appelé indice

(ou index) de la liste.
liste : ["girafe", "tigre", "singe", "souris"]
indice : 0 1 2 3

Soyez très attentif au fait que les indices d’une liste de n éléments commencent à 0 et se terminent à n−1. Voyez
l’exemple suivant :

32

4.3. Opération sur les listes Chapitre 4. Listes

1 >>> animaux = ["girafe", "tigre", "singe", "souris"]
2 >>> animaux[0]
3 'girafe'
4 >>> animaux[1]
5 'tigre'
6 >>> animaux[3]
7 'souris'

Par conséquent, si on appelle l’élément d’indice 4 de notre liste, Python renverra un message d’erreur :
1 >>> animaux[4]
2 Traceback (innermost last):
3 File "<stdin>", line 1, in ?
4 IndexError: list index out of range

N’oubliez pas ceci ou vous risquez d’obtenir des bugs inattendus !

4.3 Opération sur les listes
Tout comme les chaînes de caractères, les listes supportent l’opérateur + de concaténation, ainsi que l’opérateur *

pour la duplication :
1 >>> ani1 = ["girafe", "tigre"]
2 >>> ani2 = ["singe", "souris"]
3 >>> ani1 + ani2
4 ['girafe', 'tigre', 'singe', 'souris']
5 >>> ani1 * 3
6 ['girafe', 'tigre', 'girafe', 'tigre', 'girafe', 'tigre']

L’opérateur + est très pratique pour concaténer deux listes.
Vous pouvez aussi utiliser la méthode .append() lorsque vous souhaitez ajouter un seul élément à la fin d’une liste.

Remarque
La notion de méthode est introduite dans la rubrique Note sur le vocabulaire et la syntaxe à la fin de ce chapitre.

Dans l’exemple suivant, nous allons créer une liste vide :
1 >>> liste1 = []
2 >>> liste1
3 []

puis lui ajouter deux éléments, l’un après l’autre, d’abord avec la concaténation :
1 >>> liste1 = liste1 + [15]
2 >>> liste1
3 [15]
4 >>> liste1 = liste1 + [-5]
5 >>> liste1
6 [15, -5]

puis avec la méthode .append() :
1 >>> liste1.append(13)
2 >>> liste1
3 [15, -5, 13]
4 >>> liste1.append(-3)
5 >>> liste1
6 [15, -5, 13, -3]

Dans cet exemple, nous ajoutons des éléments à une liste en utilisant l’opérateur de concaténation + ou la méthode
.append().

Conseil

Cours de Python / Université Paris Cité / UFR Sciences du Vivant 33

Chapitre 4. Listes 4.4. Indiçage négatif

Nous vous conseillons dans ce cas précis d’utiliser la méthode .append(), dont la syntaxe est plus élégante.

Nous reverrons en détail la méthode .append() dans le chapitre 12 Plus sur les listes.

4.4 Indiçage négatif
La liste peut également être indexée avec des nombres négatifs selon le modèle suivant :

liste : ["girafe", "tigre", "singe", "souris"]
indice positif : 0 1 2 3
indice négatif : -4 -3 -2 -1

ou encore :
liste : ["A", "B", "C", "D", "E", "F"]
indice positif : 0 1 2 3 4 5
indice négatif : -6 -5 -4 -3 -2 -1

Les indices négatifs reviennent à compter à partir de la fin. Leur principal avantage est que vous pouvez accéder au
dernier élément d’une liste à l’aide de l’indice -1 sans pour autant connaître la longueur de cette liste. L’avant-dernier
élément a lui l’indice -2, l’avant-avant dernier l’indice -3, etc. :

1 >>> animaux = ["girafe", "tigre", "singe", "souris"]
2 >>> animaux[-1]
3 'souris'
4 >>> animaux[-2]
5 'singe'

Pour accéder au premier élément de la liste avec un indice négatif, il faut par contre connaître le bon indice :

1 >>> animaux[-4]
2 'girafe'

Dans ce cas, on utilise plutôt animaux[0].

4.5 Tranches
Un autre avantage des listes est la possibilité de sélectionner une partie d’une liste en utilisant un indiçage construit

sur le modèle [m:n+1] pour récupérer tous les éléments, du émième au énième (de l’élément m inclu à l’élément n+1
exclu). On dit alors qu’on récupère une tranche de la liste, par exemple :

1 >>> animaux = ["girafe", "tigre", "singe", "souris"]
2 >>> animaux[0:2]
3 ['girafe', 'tigre']
4 >>> animaux[0:3]
5 ['girafe', 'tigre', 'singe']
6 >>> animaux[0:]
7 ['girafe', 'tigre', 'singe', 'souris']
8 >>> animaux[:]
9 ['girafe', 'tigre', 'singe', 'souris']

10 >>> animaux[1:]
11 ['tigre', 'singe', 'souris']
12 >>> animaux[1:-1]
13 ['tigre', 'singe']

Notez que lorsqu’aucun indice n’est indiqué à gauche ou à droite du symbole deux-points :, Python prend par défaut
tous les éléments depuis le début ou tous les éléments jusqu’à la fin respectivement.

On peut aussi préciser le pas en ajoutant un symbole deux-points supplémentaire et en indiquant le pas par un entier :

34 Cours de Python / Université Paris Cité / UFR Sciences du Vivant

4.6. Fonction len() Chapitre 4. Listes

1 >>> animaux = ["girafe", "tigre", "singe", "souris"]
2 >>> animaux[0:3:2]
3 ['girafe', 'singe']
4 >>> x = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
5 >>> x
6 [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
7 >>> x[::1]
8 [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
9 >>> x[::2]

10 [0, 2, 4, 6, 8]
11 >>> x[::3]
12 [0, 3, 6, 9]
13 >>> x[1:6:3]
14 [1, 4]

Finalement, on se rend compte que l’accès au contenu d’une liste fonctionne sur le modèle liste[début:fin:pas].

4.6 Fonction len()
L’instruction len() vous permet de connaître la longueur d’une liste, c’est-à-dire le nombre d’éléments que contient

la liste. Voici un exemple d’utilisation :
1 >>> animaux = ["girafe", "tigre", "singe", "souris"]
2 >>> len(animaux)
3 4
4 >>> len([1, 2, 3, 4, 5, 6, 7, 8])
5 8

4.7 Les fonctions range() et list()
L’instruction range() est une fonction spéciale en Python qui génère des nombres entiers compris dans un intervalle.

Lorsqu’elle est utilisée en combinaison avec la fonction list(), on obtient une liste d’entiers. Par exemple :
1 >>> list(range(10))
2 [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

La commande list(range(10)) a généré une liste contenant tous les nombres entiers de 0 inclus à 10 exclu. Nous
verrons l’utilisation de la fonction range() toute seule dans le chapitre 5 Boucles et comparaisons.

Dans l’exemple ci-dessus, la fonction range() a pris un argument, mais elle peut également prendre deux ou trois
arguments, voyez plutôt :

1 >>> list(range(0, 5))
2 [0, 1, 2, 3, 4]
3 >>> list(range(15, 20))
4 [15, 16, 17, 18, 19]
5 >>> list(range(0, 1000, 200))
6 [0, 200, 400, 600, 800]
7 >>> list(range(2, -2, -1))
8 [2, 1, 0, -1]

L’instruction range() fonctionne sur le modèle range([début,] fin[, pas]). Les arguments entre crochets sont
optionnels. Pour obtenir une liste de nombres entiers, il faut l’utiliser systématiquement avec la fonction list().

Enfin, prenez garde aux arguments optionnels par défaut (0 pour début et 1 pour pas) :
1 >>> list(range(10,0))
2 []

Ici la liste est vide car Python a pris la valeur du pas par défaut qui est de 1. Ainsi, si on commence à 10 et qu’on
avance par pas de 1, on ne pourra jamais atteindre 0. Python génère ainsi une liste vide. Pour éviter ça, il faudrait, par
exemple, préciser un pas de -1 pour obtenir une liste d’entiers décroissants :

1 >>> list(range(10,0,-1))
2 [10, 9, 8, 7, 6, 5, 4, 3, 2, 1]

Cours de Python / Université Paris Cité / UFR Sciences du Vivant 35

Chapitre 4. Listes 4.8. Listes de listes

4.8 Listes de listes
Pour finir, sachez qu’il est tout à fait possible de construire des listes de listes. Cette fonctionnalité peut parfois être

très pratique. Par exemple :
1 >>> prairie1 = ["girafe", 4]
2 >>> prairie2 = ["tigre", 2]
3 >>> prairie3 = ["singe", 5]
4 >>> savane = [prairie1, prairie2, prairie3]
5 >>> savane
6 [['girafe', 4], ['tigre', 2], ['singe', 5]]

Dans cet exemple, chaque sous-liste contient une catégorie d’animal et le nombre d’animaux pour chaque catégorie.
Pour accéder à un élément de la liste, on utilise l’indiçage habituel :

1 >>> savane[1]
2 ['tigre', 2]

Pour accéder à un élément de la sous-liste, on utilise un double indiçage :
1 >>> savane[1][0]
2 'tigre'
3 >>> savane[1][1]
4 2

On verra un peu plus loin qu’il existe en Python des dictionnaires qui sont également très pratiques pour stocker
de l’information structurée. On verra aussi qu’il existe un module nommé NumPy qui permet de créer des listes ou des
tableaux de nombres (vecteurs et matrices) et de les manipuler.

4.9 Minimum, maximum et somme d’une liste
Les fonctions min(), max() et sum() renvoient respectivement le minimum, le maximum et la somme d’une liste

passée en argument :
1 >>> liste1 = list(range(10))
2 >>> liste1
3 [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
4 >>> sum(liste1)
5 45
6 >>> min(liste1)
7 0
8 >>> max(liste1)
9 9

Même si en théorie ces fonctions peuvent prendre en argument une liste de strings, on les utilisera la plupart du temps
avec des types numériques (liste d’entiers et / ou de floats).

Nous avions déjà croisé min(), max() dans le chapitre 2 Variables. Ces deux fonctions pouvaient prendre plusieurs
arguments entiers et / ou floats, par exemple :

1 >>> min(3, 4)
2 3

Attention toutefois à ne pas mélanger entiers et floats d’une part avec une liste d’autre part, car cela renvoie une
erreur :

1 >>> min(liste1, 3, 4)
2 Traceback (most recent call last):
3 File "<stdin>", line 1, in <module>
4 TypeError: '<' not supported between instances of 'int' and 'list'

Soit on passe plusieurs entiers et / ou floats en argument, soit on passe une liste unique.

4.10 Problème avec les copies de listes
Nous attirons votre attention sur un comportement de Python qui peut paraitre étrange lorsqu’on copie une liste :

36 Cours de Python / Université Paris Cité / UFR Sciences du Vivant

4.11. Note sur le vocabulaire et la syntaxe Chapitre 4. Listes

1 >>> liste1 = list(range(5))
2 >>> list(range(5))
3 >>> liste1
4 [0, 1, 2, 3, 4]
5 >>> liste2 = liste1
6 >>> liste2
7 [0, 1, 2, 3, 4]
8 >>> liste1[3] = -50
9 >>> liste1

10 [0, 1, 2, -50, 4]
11 >>> liste2
12 [0, 1, 2, -50, 4]

Comme vous voyez en ligne 8, la modification de liste1 a modifié également liste2. Cela vient du fait que Python
a effectué la copie de liste en ligne 5 par référence. Ainsi, les deux listes pointent vers le même objet dans la mémoire.
Pour contrer ce problème et faire en sorte que liste2 soit bien distincte de liste1, on peut utiliser la fonction list() :

1 >>> liste1 = list(range(5))
2 >>> liste1
3 [0, 1, 2, 3, 4]
4 >>> liste2 = list(liste1)
5 >>> liste2
6 [0, 1, 2, 3, 4]
7 >>> liste1[3] = -50
8 >>> liste1
9 [0, 1, 2, -50, 4]

10 >>> liste2
11 [0, 1, 2, 3, 4]

Attention
Cette astuce ne fonctionne que pour des listes à une dimension (c’est-à-dire pour des listes qui ne contiennent que

des éléments de type simple comme des entiers, des floats, des chaînes de caractères et des booléens), mais pas pour des
listes de listes. Le chapitre 12 Plus sur les listes explique l’origine de ce comportement et comment s’en sortir à tous les
coups.

4.11 Note sur le vocabulaire et la syntaxe
Revenons quelques instants sur la notion de méthode abordée dans ce chapitre avec .append(). En Python, on peut

considérer chaque variable comme un objet sur lequel on peut appliquer des méthodes. Une méthode est simplement une
fonction qui utilise et/ou agit sur l’objet lui-même, les deux étant connectés par un point. La syntaxe générale est de la
forme objet.méthode().

Dans l’exemple suivant :
1 >>> liste1 = [1, 2]
2 >>> liste1.append(3)
3 >>> liste1
4 [1, 2, 3]

la méthode .append() est liée à liste1 qui est un objet de type liste. La méthode modifie l’objet liste en lui
ajoutant un élément.

Nous aurons de nombreuses occasions de revoir cette notation objet.méthode().

4.12 Exercices

Conseil
Pour ces exercices, utilisez l’interpréteur Python.

Cours de Python / Université Paris Cité / UFR Sciences du Vivant 37

Chapitre 4. Listes 4.12. Exercices

4.12.1 Prédire la sortie
Soit les trois lignes de code suivantes :

1 liste1 = list(range(10, 15))
2 var = 0
3 var2 = 10

Prédisez le comportement de chaque instruction ci-dessous, sans les recopier dans un script ni dans l’interpréteur
Python :

• print(liste1[2])
• print(liste1[var])
• print(liste1[var2])
• print(liste1["var"])
Lorsqu’une instruction produit une erreur, identifiez pourquoi.

4.12.2 Jours de la semaine
Constituez une liste semaine contenant les sept jours de la semaine.
1. À partir de cette liste, comment récupérez-vous seulement les cinq premiers jours de la semaine d’une part, et ceux

du week-end d’autre part ? Utilisez pour cela l’indiçage.
2. Cherchez un autre moyen pour arriver au même résultat (en utilisant un autre indiçage).
3. Trouvez deux manières pour accéder au dernier jour de la semaine.
4. Inversez les jours de la semaine en une commande.

4.12.3 Saisons
Créez quatre listes hiver, printemps, ete et automne contenant les mois correspondants à ces saisons. Créez

ensuite une liste saisons contenant les listes hiver, printemps, ete et automne. Prévoyez ce que renvoient les
instructions suivantes, puis vérifiez-le dans l’interpréteur :

1. saisons[2]
2. saisons[1][0]
3. saisons[1:2]
4. saisons[:][1]. Comment expliquez-vous ce dernier résultat ?

4.12.4 Table de multiplication par 9
Affichez la table de multiplication par 9 en une seule commande avec les instructions range() et list().

4.12.5 Nombres pairs
Répondez à la question suivante en une seule commande. Combien y a-t-il de nombres pairs dans l’intervalle [2,

10000] inclus ?

38 Cours de Python / Université Paris Cité / UFR Sciences du Vivant

CHAPITRE 5

Boucles et comparaisons

5.1 Boucles for
5.1.1 Principe

En programmation, on est souvent amené à répéter plusieurs fois une instruction. Incontournables à tout langage de
programmation, les boucles vont nous aider à réaliser cette tâche répétitive de manière compacte et efficace.

Imaginez par exemple que vous souhaitiez afficher les éléments d’une liste les uns après les autres. Dans l’état actuel
de vos connaissances, il faudrait taper quelque chose du style :

1 animaux = ["girafe", "tigre", "singe", "souris"]
2 print(animaux[0])
3 print(animaux[1])
4 print(animaux[2])
5 print(animaux[3])

Si votre liste ne contient que 4 éléments, ceci est encore faisable mais imaginez qu’elle en contienne 100 voire 1 000 !
Pour remédier à cela, il faut utiliser les boucles . Regardez l’exemple suivant :

1 >>> animaux = ["girafe", "tigre", "singe", "souris"]
2 >>> for animal in animaux:
3 ... print(animal)
4 ...
5 girafe
6 tigre
7 singe
8 souris

Commentons en détails ce qu’il s’est passé dans cet exemple :
La variable animal est appelée variable d’itération , elle prend successivement les différentes valeurs de la liste

animaux à chaque itérations (ou tour) de boucle. On verra un peu plus loin dans ce chapitre que l’on peut choisir le
nom que l’on veut pour cette variable. Celle-ci est créée par Python la première fois que la ligne contenant le for est
exécutée (si elle existait déjà son contenu serait écrasé). Une fois la boucle terminée, cette variable d’itération animal
n’est pas détruite et conserve la dernière valeur de la liste animaux (ici la chaîne de caractères "souris").

Notez bien les types des variables utilisées ici :
• animaux est une liste sur laquelle on itère ;
• animal est une chaîne de caractères car chaque élément de la liste animaux est une chaîne de caractères.

39

Chapitre 5. Boucles et comparaisons 5.1. Boucles for

Nous verrons plus loin que la variable d’itération peut être de n’importe quel type selon la liste parcourue. En Python,
une boucle itère la plupart du temps sur un objet dit séquentiel (c’est-à-dire un objet constitué d’autres objets) tel
qu’une liste. De tels objets sont dits itérables car on peut effectuer une boucle dessus. Nous verrons aussi plus tard
d’autres objets séquentiels sur lesquels on peut itérer dans une boucle.

D’ores et déjà, prêtez attention au caractère deux-points « : » à la fin de la ligne débutant par for. Cela signifie
que la boucle for attend un bloc d’instructions, en l’occurrence toutes les instructions que Python répétera à chaque
itération de la boucle. On appelle ce bloc d’instructions le corps de la boucle. Comment indique-t-on à Python où ce
bloc commence et se termine ? Cela est signalé uniquement par l’indentation, c’est-à-dire le décalage vers la droite de
la (ou des) ligne(s) du bloc d’instructions.

Remarque
Les notions de bloc d’instruction et d’indentations ont été introduites dans le chapitre 1 Introduction.

Dans l’exemple suivant, le corps de la boucle contient deux instructions (ligne 2 et ligne 3) car elles sont indentées
par rapport à la ligne débutant par for :

1 for animal in animaux:
2 print(animal)
3 print(animal*2)
4 print("C'est fini")

La ligne 4 ne fait pas partie du corps de la boucle car elle est au même niveau que le for (c’est-à-dire non indentée par
rapport au for). Notez également que chaque instruction du corps de la boucle doit être indentée de la même manière
(ici 4 espaces).

Remarque
Outre une meilleure lisibilité, les deux-points et l’indentation sont formellement requis en Python. Même si on

peut indenter comme on veut (plusieurs espaces ou plusieurs tabulations, mais pas une combinaison des deux), les
développeurs recommandent l’utilisation de quatre espaces. Vous pouvez consulter à ce sujet le chapitre 16 Bonnes
pratiques de programmation en Python.

Faites en sorte de configurer votre éditeur de texte favori de façon à écrire quatre espaces lorsque vous tapez sur la
touche Tab (tabulation).

Si on oublie l’indentation, Python renvoie un message d’erreur :
1 >>> for animal in animaux:
2 ... print(animal)
3 File "<stdin>", line 2
4 print(animal)
5 ^
6 IndentationError: expected an indented block

Dans les exemples ci-dessus, nous avons exécuté une boucle en itérant directement sur une liste. Une tranche d’une
liste étant elle même une liste, on peut également itérer dessus :

1 >>> animaux = ["girafe", "tigre", "singe", "souris"]
2 >>> for animal in animaux[1:3]:
3 ... print(animal)
4 ...
5 tigre
6 singe

On a vu que les boucles for pouvaient utiliser une liste contenant des chaînes de caractères, mais elles peuvent tout
aussi bien utiliser des listes contenant des entiers (ou n’importe quel type de variable) :

40 Cours de Python / Université Paris Cité / UFR Sciences du Vivant

5.1. Boucles for Chapitre 5. Boucles et comparaisons

1 >>> for i in [1, 2, 3]:
2 ... print(i)
3 ...
4 1
5 2
6 3

5.1.2 Fonction range()
Python possède la fonction range() que nous avons rencontrée précédemment dans le chapitre 4 Listes, pratique

pour faire une boucle sur une liste d’entiers de manière automatique :
1 >>> for i in range(4):
2 ... print(i)
3 ...
4 0
5 1
6 2
7 3

Dans cet exemple, nous pouvons faire plusieurs remarques importantes :
• Contrairement à la création de liste avec list(range(4)), la fonction range() peut être utilisée telle quelle dans

une boucle. Il n’est pas nécessaire de taper for i in list(range(4)): même si cela fonctionnerait également.
• Comment cela est possible ? range() est une fonction qui a été spécialement conçue pour cela 1, c’est-à-dire

que l’on peut itérer directement dessus. Pour Python, il s’agit d’un nouveau type : par exemple dans l’instruction
x = range(3), la variable x est de type range (tout comme on avait les types int, float, str ou list) à utiliser
spécialement avec les boucles.

• L’instruction list(range(4)) se contente de transformer un objet de type range en un objet de type list. Si vous
vous souvenez bien, il s’agit d’une fonction de casting, qui convertit un type en un autre (voir chapitre 2 Variables).
Il n’y aucun intérêt à utiliser dans une boucle la construction for i in list(range(4)):. C’est même contre-
productif. En effet, range() se contente de stocker l’entier actuel, le pas pour passer à l’entier suivant, et le
dernier entier à parcourir, ce qui revient à stocker seulement 3 nombres entiers et ce quelle que soit la longueur
de la séquence, même avec un range(1000000). Si on utilisait list(range(1000000)), Python construirait
d’abord une liste de 1 million d’éléments dans la mémoire puis itérerait dessus, d’où une énorme perte de temps !

5.1.3 Nommage de la variable d’itération
Dans l’exemple précédent, nous avons choisi le nom i pour la variable d’itération. Ceci est une habitude en informatique

et indique en général qu’il s’agit d’un entier (le nom i vient sans doute du mot indice ou index en anglais). Nous vous
conseillons de suivre cette convention afin d’éviter les confusions. Si vous itérez sur les indices, vous pouvez appeler la
variable d’itération i (par exemple dans for i in range(4):).

Si, par contre, vous itérez sur une liste comportant des chaînes de caractères (ou tout autre type de variable), utilisez
un nom explicite pour la variable d’itération. Par exemple :

for prenom in ["Joe", "Bill", "John"]:
ou
for proportion in [0.12, 0.53, 0.07, 0.28]:

5.1.4 Itération sur les indices ou les éléments
Revenons à notre liste animaux. Nous allons maintenant parcourir cette liste, mais cette fois par une itération sur

ses indices :
1 >>> animaux = ["girafe", "tigre", "singe", "souris"]
2 >>> for i in range(4):
3 ... print(animaux[i])
4 ...
5 girafe
6 tigre
7 singe
8 souris

1. https://docs.python.org/fr/3/library/stdtypes.html#typesseq-range

Cours de Python / Université Paris Cité / UFR Sciences du Vivant 41

https://docs.python.org/fr/3/library/stdtypes.html#typesseq-range

Chapitre 5. Boucles et comparaisons 5.2. Comparaisons

La variable i prendra les valeurs successives 0, 1, 2 et 3 et on accèdera à chaque élément de la liste animaux par son
indice (i.e. animaux[i]). Notez à nouveau le nom i de la variable d’itération car on itère sur les indices.

Quand utiliser l’une ou l’autre des deux méthodes ? La plus efficace est celle qui réalise les itérations directement
sur les éléments :

1 >>> animaux = ["girafe", "tigre", "singe", "souris"]
2 >>> for animal in animaux:
3 ... print(animal)
4 ...
5 girafe
6 tigre
7 singe
8 souris

Remarque
Dans le chapitre 18 Jupyter et ses notebooks, nous mesurerons le temps d’exécution de ces deux méthodes pour vous

montrer que l’itération sur les éléments est la méthode la plus rapide.

Toutefois, il se peut qu’au cours d’une boucle vous ayez besoin des indices, auquel cas vous devrez itérer sur les
indices :

1 >>> animaux = ["girafe", "tigre", "singe", "souris"]
2 >>> for i in range(len(animaux)):
3 ... print(f"L'animal {i} est un(e) {animaux[i]}")
4 ...
5 L'animal 0 est un(e) girafe
6 L'animal 1 est un(e) tigre
7 L'animal 2 est un(e) singe
8 L'animal 3 est un(e) souris

Enfin, Python possède la fonction enumerate() qui vous permet d’itérer sur les indices et les éléments eux-mêmes :
1 >>> animaux = ["girafe", "tigre", "singe", "souris"]
2 >>> for i, animal in enumerate(animaux):
3 ... print(f"L'animal {i} est un(e) {animal}")
4 ...
5 L'animal 0 est un(e) girafe
6 L'animal 1 est un(e) tigre
7 L'animal 2 est un(e) singe
8 L'animal 3 est un(e) souris

5.2 Comparaisons
Avant de passer aux boucles while, abordons tout de suite les comparaisons. Celles-ci seront reprises dans le chapitre

6 Tests.
Python est capable d’effectuer toute une série de comparaisons entre le contenu de deux variables, telles que :

Opérateur de comparaison Signification
== égal à
!= différent de
> strictement supérieur à
>= supérieur ou égal à
< strictement inférieur à
<= inférieur ou égal à

Observez les exemples suivants avec des nombres entiers :

42 Cours de Python / Université Paris Cité / UFR Sciences du Vivant

5.3. Boucles while Chapitre 5. Boucles et comparaisons

1 >>> x = 5
2 >>> x == 5
3 True
4 >>> x > 10
5 False
6 >>> x < 10
7 True

Python renvoie la valeur True si la comparaison est vraie et False si elle est fausse. True et False sont des booléens
comme nous avions vu au chapitre 2 Variables.

Faites bien attention à ne pas confondre l’opérateur d’affectation = qui affecte une valeur à une variable et
l’opérateur de comparaison == qui compare les valeurs de deux variables.

Vous pouvez également effectuer des comparaisons sur des chaînes de caractères.
1 >>> animal = "tigre"
2 >>> animal == "tig"
3 False
4 >>> animal != "tig"
5 True
6 >>> animal == "tigre"
7 True

Dans le cas des chaînes de caractères, a priori seuls les tests == et != ont un sens. En fait, on peut aussi utiliser les
opérateurs <, >, <= et >=. Dans ce cas, l’ordre alphabétique est pris en compte, par exemple :

1 >>> "a" < "b"
2 True

"a" est inférieur à "b" car le caractère a est situé avant le caractère b dans l’ordre alphabétique. En fait, c’est
l’ordre ASCII 2 des caractères qui est pris en compte (à chaque caractère correspond un code numérique), on peut donc
aussi comparer des caractères spéciaux (comme # ou ~) entre eux. Enfin, on peut comparer des chaînes de caractères de
plusieurs caractères :

1 >>> "ali" < "alo"
2 True
3 >>> "abb" < "ada"
4 True

Dans ce cas, Python compare les deux chaînes de caractères, caractère par caractère, de la gauche vers la droite (le
premier caractère avec le premier, le deuxième avec le deuxième, etc). Dès qu’un caractère est différent entre l’une et
l’autre des deux chaînes, il considère que la chaîne la plus petite est celle qui présente le caractère ayant le plus petit
code ASCII (les caractères suivants de la chaîne de caractères sont ignorés dans la comparaison), comme dans l’exemple
"abb" < "ada" ci-dessus.

5.3 Boucles while
Une alternative à l’instruction for couramment utilisée en informatique est la boucle while. Avec ce type de boucle,

une série d’instructions est exécutée tant qu’une condition est vraie. Par exemple :
1 >>> i = 1
2 >>> while i <= 4:
3 ... print(i)
4 ... i = i + 1
5 ...
6 1
7 2
8 3
9 4

Remarquez qu’il est encore une fois nécessaire d’indenter le bloc d’instructions correspondant au corps de la boucle
(ici, les instructions lignes 3 et 4).

2. http://fr.wikipedia.org/wiki/American_Standard_Code_for_Information_Interchange

Cours de Python / Université Paris Cité / UFR Sciences du Vivant 43

http://fr.wikipedia.org/wiki/American_Standard_Code_for_Information_Interchange

Chapitre 5. Boucles et comparaisons 5.4. Exercices

Une boucle while nécessite généralement trois éléments pour fonctionner correctement :
1. Initialisation de la variable d’itération avant la boucle (ligne 1).
2. Test de la variable d’itération associée à l’instruction while (ligne 2).
3. Mise à jour de la variable d’itération dans le corps de la boucle (ligne 4).
Faites bien attention aux tests et à l’incrémentation que vous utilisez, car une erreur mène souvent à des « boucles

infinies » qui ne s’arrêtent jamais. Vous pouvez néanmoins toujours stopper l’exécution d’un script Python à l’aide de la
combinaison de touches Ctrl-C (c’est-à-dire en pressant simultanément les touches Ctrl et C). Par exemple :

1 i = 0
2 while i < 10:
3 print("Le Python c'est cool !")

Ici, nous avons omis de mettre à jour la variable i dans le corps de la boucle. Par conséquent, la boucle ne s’arrêtera
jamais (sauf en pressant Ctrl-C) puisque la condition i < 10 sera toujours vraie.

La boucle while combinée à la fonction input() peut s’avérer commode lorsqu’on souhaite demander à l’utilisateur
une valeur numérique. Par exemple :

1 >>> i = 0
2 >>> while i < 10:
3 ... reponse = input("Entrez un entier supérieur à 10 : ")
4 ... i = int(reponse)
5 ...
6 Entrez un entier supérieur à 10 : 4
7 Entrez un entier supérieur à 10 : -3
8 Entrez un entier supérieur à 10 : 15
9 >>> i

10 15

La fonction input() prend en argument un message (sous la forme d’une chaîne de caractères), demande à l’utilisateur
d’entrer une valeur et renvoie celle-ci sous forme d’une chaîne de caractères, qu’il faut ensuite convertir en entier (avec
la fonction int() ligne 4). Si on reprend les trois éléments d’une boucle while, on trouve l’initialisation de la variable
d’itération en ligne 1, le test de sa valeur en ligne 2, et sa mise à jour en ligne 4.

Conseil
Comment choisir entre la boucle while et la boucle for ? La boucle while s’utilisera généralement lorsqu’on ne sait pas

à l’avance le nombre d’itérations (comme dans le dernier exemple). Si on connait à l’avance le nombre d’itérations, par
exemple si on veut écrire 10 fois Le Python c'est cool, nous vous conseillons la boucle for.

5.4 Exercices

Conseil
Pour ces exercices, créez des scripts puis exécutez-les dans un shell.

5.4.1 Boucles de base
Soit la liste ["vache", "souris", "levure", "bacterie"]. Affichez l’ensemble des éléments de cette liste (un

élément par ligne) de trois façons différentes (deux méthodes avec for et une avec while).

5.4.2 Boucles et jours de la semaine
Constituez une liste semaine contenant les 7 jours de la semaine.
Écrivez une série d’instructions affichant les jours de la semaine (en utilisant une boucle for), ainsi qu’une autre série

d’instructions affichant les jours du week-end (en utilisant une boucle while).

44 Cours de Python / Université Paris Cité / UFR Sciences du Vivant

5.4. Exercices Chapitre 5. Boucles et comparaisons

5.4.3 Nombres de 1 à 10 sur une ligne
Avec une boucle, affichez les nombres de 1 à 10 sur une seule ligne.

Conseil
Pensez à relire le début du chapitre 3 Affichage qui discute de la fonction print().

5.4.4 Nombres pairs et impairs
Soit impairs la liste de nombres [1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21]. Écrivez un programme qui, à

partir de la liste impairs, construit une liste pairs dans laquelle tous les éléments de impairs sont incrémentés de 1.

5.4.5 Calcul de la moyenne
Voici les notes d’un étudiant [14, 9, 6, 8, 12]. Calculez la moyenne de ces notes. Utilisez l’écriture formatée

pour afficher la valeur de la moyenne avec deux décimales.

5.4.6 Produit de nombres consécutifs
Avec les fonctions list() et range(), créez la liste entiers contenant les nombres entiers pairs de 2 à 20 inclus.
Calculez ensuite le produit des nombres consécutifs deux à deux de entiers en utilisant une boucle. Exemple pour

les premières itérations :
8
24
48
[...]

5.4.7 Triangle
Créez un script qui dessine un triangle comme celui-ci :

*
**

5.4.8 Triangle inversé
Créez un script qui dessine un triangle comme celui-ci :

**
*

5.4.9 Triangle gauche
Créez un script qui dessine un triangle comme celui-ci :

Cours de Python / Université Paris Cité / UFR Sciences du Vivant 45

Chapitre 5. Boucles et comparaisons 5.4. Exercices

*
**

5.4.10 Pyramide
Créez un script pyra.py qui dessine une pyramide comme celle-ci :

*

Essayez de faire évoluer votre script pour dessiner la pyramide à partir d’un nombre arbitraire de lignes N. Vous
pourrez demander à l’utilisateur le nombre de lignes de la pyramide avec les instructions suivantes qui utilisent la fonction
input() :

1 reponse = input("Entrez un nombre de lignes (entier positif): ")
2 N = int(reponse)

5.4.11 Parcours de matrice
Imaginons que l’on souhaite parcourir tous les éléments d’une matrice carrée, c’est-à-dire d’une matrice qui est

constituée d’autant de lignes que de colonnes.
Créez un script qui parcourt chaque élément de la matrice et qui affiche le numéro de ligne et de colonne uniquement

avec des boucles for.
Pour une matrice de dimensions 2 × 2, le schéma de la figure 5.1 vous indique comment parcourir une telle matrice.

L’affichage attendu est :
ligne colonne

1 1
1 2
2 1
2 2

Attention à bien respecter l’alignement des chiffres qui doit être justifié à droite sur 4 caractères. Testez avec une
matrice de dimensions 3 × 3, puis 5 × 5, et enfin 10 × 10.

Créez une seconde version de votre script, cette fois-ci avec deux boucles while.

5.4.12 Parcours de demi-matrice sans la diagonale (exercice ++)
En se basant sur le script précédent, on souhaite réaliser le parcours d’une demi-matrice carrée sans la diagonale. On

peut noter que cela produit tous les couples possibles une seule fois (1 et 2 est équivalent à 2 et 1), en excluant par
ailleurs chaque élément avec lui même (1 et 1, 2 et 2, etc). Pour mieux comprendre ce qui est demandé, la figure 5.2
indique les cases à parcourir en gris :

Créez un script qui affiche le numéro de ligne et de colonne, puis la taille de la matrice N ×N et le nombre total de
cases parcourues. Par exemple pour une matrice 4 × 4 (N=4) :

46 Cours de Python / Université Paris Cité / UFR Sciences du Vivant

5.4. Exercices Chapitre 5. Boucles et comparaisons

Figure 5.1 – Parcours d’une matrice.

Figure 5.2 – Demi-matrice sans la diagonale (en gris).

ligne colonne
1 2
1 3
1 4
2 3
2 4
3 4

Pour une matrice 4x4, on a parcouru 6 cases

Testez votre script avec N=3, puis N=4 et enfin N=5.
Concevez une seconde version à partir du script précédent, où cette fois on n’affiche plus tous les couples possibles,

mais simplement la valeur de N et le nombre de cases parcourues. Affichez cela pour des valeurs de N allant de 2 à 10.
Pouvez-vous trouver une formule générale reliant le nombre de cases parcourues à N ?

5.4.13 Sauts de puce
On imagine une puce qui se déplace aléatoirement sur une ligne, en avant ou en arrière, par pas de 1 ou -1. Par

exemple, si elle est à l’emplacement 0, elle peut sauter à l’emplacement 1 ou -1 ; si elle est à l’emplacement 2, elle peut
sauter à l’emplacement 3 ou 1, etc.

Avec une boucle while, simulez le mouvement de cette puce de l’emplacement initial 0 à l’emplacement final 5 (voir
le schéma de la figure 5.3). Combien de sauts sont nécessaires pour réaliser ce parcours ? Relancez plusieurs fois le
programme. Trouvez-vous le même nombre de sauts à chaque exécution ?

Conseil
Utilisez l’instruction random.choice([-1,1]) qui renvoie au hasard les valeurs -1 ou 1 avec la même probabilité.

Cours de Python / Université Paris Cité / UFR Sciences du Vivant 47

Chapitre 5. Boucles et comparaisons 5.4. Exercices

Figure 5.3 – Sauts de puce.

Avant d’utiliser cette instruction, mettez au tout début de votre script la ligne
import random
Nous verrons la signification de cette syntaxe particulière dans le chapitre 9 Modules.

5.4.14 Suite de Fibonacci (exercice +++)
La suite de Fibonacci 3 est une suite mathématique qui porte le nom de Leonardo Fibonacci, un mathématicien italien

du XIIIe siècle. Initialement, cette suite a été conçue pour décrire la croissance d’une population de lapins, mais elle
peut également être utilisée pour décrire certains motifs géométriques retrouvés dans la nature (coquillages, fleurs de
tournesol…).

Pour la suite de Fibonacci (xn), le terme au rang n (avec n > 1) est la somme des nombres aux rangs n−1 et n−2 :
xn = xn−1 + xn−2
Par définition, les deux premiers termes sont x0 = 0 et x1 = 1.
À titre d’exemple, les 10 premiers termes de la suite de Fibonacci sont donc 0, 1, 1, 2, 3, 5, 8, 13, 21 et 34.
Créez un script qui construit une liste fibo avec les 15 premiers termes de la suite de Fibonacci puis l’affiche.
Améliorez ce script en affichant, pour chaque élément de la liste fibo avec n > 1, le rapport entre l’élément de rang

n et l’élément de rang n−1. Ce rapport tend-il vers une constante ? Si oui, laquelle ?

3. https://fr.wikipedia.org/wiki/Suite_de_Fibonacci

48 Cours de Python / Université Paris Cité / UFR Sciences du Vivant

https://fr.wikipedia.org/wiki/Suite_de_Fibonacci

CHAPITRE 6

Tests

6.1 Définition
Les tests sont un élément essentiel à tout langage informatique si on veut lui donner un peu de complexité car ils

permettent à l’ordinateur de prendre des décisions. Pour cela, Python utilise l’instruction if ainsi qu’une comparaison
que nous avons abordée au chapitre précédent. Voici un premier exemple :

1 >>> x = 2
2 >>> if x == 2:
3 ... print("Le test est vrai !")
4 ...
5 Le test est vrai !

et un second :
1 >>> x = "souris"
2 >>> if x == "tigre":
3 ... print("Le test est vrai !")
4 ...

Il y a plusieurs remarques à faire concernant ces deux exemples :
• Dans le premier exemple, l’instruction print("Le test est vrai !") est exécutée, car le test est vrai. Dans le

second exemple, le test est faux et rien n’est affiché.
• Les blocs d’instructions dans les tests doivent forcément être indentés comme pour les boucles for et while.

L’indentation indique la portée des instructions à exécuter si le test est vrai.
• Comme avec les boucles for et while, la ligne qui contient l’instruction if se termine par le caractère deux-points

« : ».

6.2 Tests à plusieurs cas
Parfois, il est pratique de tester si la condition est vraie ou si elle est fausse dans une même instruction if. Plutôt

que d’utiliser deux instructions if, on peut se servir des instructions if et else :

49

Chapitre 6. Tests 6.3. Importance de l’indentation

1 >>> x = 2
2 >>> if x == 2:
3 ... print("Le test est vrai !")
4 ... else:
5 ... print("Le test est faux !")
6 ...
7 Le test est vrai !
8 >>> x = 3
9 >>> if x == 2:

10 ... print("Le test est vrai !")
11 ... else:
12 ... print("Le test est faux !")
13 ...
14 Le test est faux !

On peut utiliser une série de tests dans la même instruction if, notamment pour tester plusieurs valeurs d’une même
variable.

Par exemple, on se propose de tirer au sort une base d’ADN puis d’afficher le nom de cette dernière. Dans le code
suivant, nous utilisons l’instruction random.choice(liste) qui renvoie un élément choisi au hasard dans une liste.
L’instruction import random sera vue plus tard dans le chapitre 9 Modules, admettez pour le moment qu’elle est
nécessaire :

1 >>> import random
2 >>> base = random.choice(["a", "t", "c", "g"])
3 >>> if base == "a":
4 ... print("choix d'une adénine")
5 ... elif base == "t":
6 ... print("choix d'une thymine")
7 ... elif base == "c":
8 ... print("choix d'une cytosine")
9 ... elif base == "g":

10 ... print("choix d'une guanine")
11 ...
12 choix d'une cytosine

Dans cet exemple, Python teste la première condition puis, si et seulement si elle est fausse, teste la deuxième et ainsi
de suite… Le code correspondant à la première condition vérifiée est exécuté puis Python sort du bloc d’instructions du
if. Il est également possible d’ajouter une condition else supplémentaire qui est exécutée si aucune des conditions du
if et des elif n’est vraie.

6.3 Importance de l’indentation

De nouveau, faites bien attention à l’indentation ! Vous devez être très rigoureux sur ce point. Pour vous en convaincre,
exécutez ces deux exemples de code :

Code 1

1 nombres = [4, 5, 6]
2 for nb in nombres:
3 if nb == 5:
4 print("Le test est vrai")
5 print(f"car la variable nb vaut {nb}")

Résultat :

Le test est vrai
car la variable nb vaut 5

50 Cours de Python / Université Paris Cité / UFR Sciences du Vivant

6.4. Tests multiples Chapitre 6. Tests

Code 2

1 nombres = [4, 5, 6]
2 for nb in nombres:
3 if nb == 5:
4 print("Le test est vrai")
5 print(f"car la variable nb vaut {nb}")

Résultat :
car la variable nb vaut 4
Le test est vrai
car la variable nb vaut 5
car la variable nb vaut 6

Les deux codes pourtant très similaires produisent des résultats très différents. Si vous observez avec attention
l’indentation des instructions sur la ligne 5, vous remarquerez que dans le code 1, l’instruction est indentée deux fois,
ce qui signifie qu’elle appartient au bloc d’instructions du test if. Dans le code 2, l’instruction de la ligne 5 n’est
indentée qu’une seule fois, ce qui fait qu’elle n’appartient plus au bloc d’instructions du test if, d’où l’affichage de
car la variable nb vaut xx pour toutes les valeurs de nb.

6.4 Tests multiples
Les tests multiples permettent de tester plusieurs conditions en même temps en utilisant des opérateurs booléens. Les

deux opérateurs les plus couramment utilisés sont OU et ET. Voici un petit rappel sur le fonctionnement de l’opérateur
OU :

Condition 1 Opérateur Condition 2 Résultat
Vrai OU Vrai Vrai
Vrai OU Faux Vrai
Faux OU Vrai Vrai
Faux OU Faux Faux

et de l’opérateur ET :

Condition 1 Opérateur Condition 2 Résultat
Vrai ET Vrai Vrai
Vrai ET Faux Faux
Faux ET Vrai Faux
Faux ET Faux Faux

En Python, on utilise le mot réservé and pour l’opérateur ET et le mot réservé or pour l’opérateur OU. Respectez
bien la casse des opérateurs and et or qui, en Python, s’écrivent en minuscule. En voici un exemple d’utilisation :

1 >>> x = 2
2 >>> y = 2
3 >>> if x == 2 and y == 2:
4 ... print("le test est vrai")
5 ...
6 le test est vrai

Notez que le même résultat serait obtenu en utilisant deux instructions if imbriquées :
1 >>> x = 2
2 >>> y = 2
3 >>> if x == 2:
4 ... if y == 2:
5 ... print("le test est vrai")
6 ...
7 le test est vrai

Cours de Python / Université Paris Cité / UFR Sciences du Vivant 51

Chapitre 6. Tests 6.5. Instructions break et continue

Conseil
Nous vous conseillons la syntaxe avec un and qui est plus compacte. De manière générale, moins il y a de niveau

d’indentations mieux c’est pour la lisibilité.

Vous pouvez aussi tester directement l’effet de ces opérateurs à l’aide de True et False (attention à respecter la
casse) :

1 >>> True or False
2 True

Enfin, on peut utiliser l’opérateur logique de négation not qui inverse le résultat d’une condition :
1 >>> not True
2 False
3 >>> not False
4 True
5 >>> not (True and True)
6 False

6.5 Instructions break et continue
Ces deux instructions modifient le comportement d’une boucle (for ou while) avec un test. Ainsi, l’instruction

break stoppe la boucle en cours :
1 >>> for nombre in range(4):
2 ... if nombre > 1:
3 ... break
4 ... print(nombre)
5 ...
6 0
7 1

L’instruction continue saute à l’itération suivante, sans exécuter la suite du bloc d’instructions de la boucle :
1 >>> for nombre in range(4):
2 ... if nombre == 2:
3 ... continue
4 ... print(nombre)
5 ...
6 0
7 1
8 3

6.6 Tests de valeur sur des floats
Lorsque l’on souhaite tester la valeur d’une variable de type float, le premier réflexe serait d’utiliser l’opérateur d’égalité

comme :
1 >>> 1/10 == 0.1
2 True

Toutefois, nous vous le déconseillons formellement. Pourquoi ? Python stocke les valeurs numériques des floats sous
forme de nombres flottants (d’où leur nom), et cela mène à certaines limitations 1. Observez l’exemple suivant :

1 >>> (3 - 2.7) == 0.3
2 False
3 >>> 3 - 2.7
4 0.2999999999999998

Nous voyons que le résultat de l’opération 3 - 2.7 n’est pas exactement 0.3 d’où le résultat False en ligne 2.
En fait, ce problème ne vient pas de Python, mais plutôt de la manière dont un ordinateur traite les nombres flottants

(comme un rapport de nombres binaires). Ainsi certaines valeurs de float ne peuvent être qu’approchées. Une manière

1. https://docs.python.org/fr/3/tutorial/floatingpoint.html

52 Cours de Python / Université Paris Cité / UFR Sciences du Vivant

https://docs.python.org/fr/3/tutorial/floatingpoint.html

6.7. Exercices Chapitre 6. Tests

de s’en rendre compte est d’utiliser l’écriture formatée en demandant l’affichage d’un grand nombre de décimales :
1 >>> 0.3
2 0.3
3 >>> f"{0.3:.5f}"
4 '0.30000'
5 >>> f"{0.3:.60f}"
6 '0.299999999999999988897769753748434595763683319091796875000000'
7 >>> var = 3 - 2.7
8 >>> f"{var:.60f}"
9 '0.299999999999999822364316059974953532218933105468750000000000'

10 >>> abs(var - 0.3)
11 1.6653345369377348e-16

On observe que lorsqu’on tape 0.3, Python affiche une valeur arrondie. En réalité, le nombre réel 0.3 ne peut être
qu’approché lorsqu’on le code en nombre flottant. Il est essentiel d’avoir cela en tête lorsque l’on compare deux floats.
Même si 0.3 et 3 - 2.7 ne donnent pas le même résultat, la différence est toutefois infinétisimale, de l’ordre de 1e-16
soit la 16me décimale !

Pour ces raisons, il ne faut surtout pas utiliser l’opérateur == pour tester si un float est égal à une certaine valeur, car
cet opérateur correspond à une égalité stricte. La bonne pratique est de vérifier si un float est compris dans un intervalle
avec une certaine précision. Si on appelle cette précision delta, on peut procéder ainsi :

1 >>> delta = 1e-5
2 >>> var = 3.0 - 2.7
3 >>> 0.3 - delta < var < 0.3 + delta
4 True
5 >>> abs(var - 0.3) < delta
6 True

Ici on teste si var est compris dans l’intervalle 0.3±delta. En choisissant delta à 1e-5, on teste jusqu’à la cinquième
décimale. Les deux méthodes mènent à un résultat strictement équivalent :

• La ligne 3 est plus intuitive car elle ressemble à un encadrement mathématique.
• La ligne 5 utilise la fonction valeur absolue abs() et est plus compacte.
Une dernière manière pour tester la valeur d’un float, apparue en Python 3.5, est d’utiliser la fonction math.isclose

() :
1 >>> import math
2 >>> var = 3.0 - 2.7
3 >>> math.isclose(var, 0.3, abs_tol=1e-5)
4 True

Cette fonction prend en argument les deux floats à comparer, ainsi que l’argument par mot-clé abs_tol correspondant
à la précision souhaitée (que nous avions appelée delta ci-dessus). Nous vous conseillons de toujours préciser cet argument
abs_tol. Comme vu au dessus pour tirer une base au hasard, l’instruction import math sera vue dans le chapitre 9
Modules, admettez pour le moment qu’elle est nécessaire.

Conseil
Sur les trois manières de procéder pour comparer un float à une valeur, nous vous conseillons celle avec math.

isclose() qui nous parait la plus lisible.

6.7 Exercices

Conseil
Pour ces exercices, créez des scripts puis exécutez-les dans un shell.

Cours de Python / Université Paris Cité / UFR Sciences du Vivant 53

Chapitre 6. Tests 6.7. Exercices

6.7.1 Jours de la semaine
Constituez une liste semaine contenant le nom des sept jours de la semaine.
En utilisant une boucle, écrivez chaque jour de la semaine ainsi que les messages suivants :
• Au travail s’il s’agit du lundi au jeudi ;
• Chouette c'est vendredi s’il s’agit du vendredi ;
• Repos ce week-end s’il s’agit du samedi ou du dimanche.
Ces messages ne sont que des suggestions, vous pouvez laisser libre cours à votre imagination.

6.7.2 Séquence complémentaire d’un brin d’ADN
La liste ci-dessous représente la séquence d’un brin d’ADN :
["A", "C", "G", "T", "T", "A", "G", "C", "T", "A", "A", "C", "G"]
Créez un script qui transforme cette séquence en sa séquence complémentaire.
Rappel : la séquence complémentaire s’obtient en remplaçant A par T, T par A, C par G et G par C.

6.7.3 Minimum d’une liste
La fonction min() de Python renvoie l’élément le plus petit d’une liste constituée de valeurs numériques ou de chaînes

de caractères. Sans utiliser cette fonction, créez un script qui détermine le plus petit élément de la liste [8, 4, 6, 1, 5].

6.7.4 Fréquence des acides aminés
La liste ci-dessous représente une séquence d’acides aminés :
["R", "A", "W", "W", "A", "W", "A", "R", "W", "W", "R", "A", "G"]
Calculez la fréquence des acides aminés alanine (A), arginine (R), tryptophane (W) et glycine (G) dans cette séquence.

6.7.5 Notes et mention d’un étudiant
Voici les notes d’un étudiant : 14, 9, 13, 15 et 12. Créez un script qui affiche la note maximum (utilisez la fonction

max()), la note minimum (utilisez la fonction min()) et qui calcule la moyenne.
Affichez la valeur de la moyenne avec deux décimales. Affichez aussi la mention obtenue sachant que la mention est

« passable » si la moyenne est entre 10 inclus et 12 exclus, « assez bien » entre 12 inclus et 14 exclus et « bien » au-delà
de 14.

6.7.6 Nombres pairs
Construisez une boucle qui parcourt les nombres de 0 à 20 et qui affiche les nombres pairs inférieurs ou égaux à 10

d’une part, et les nombres impairs strictement supérieurs à 10 d’autre part.
Pour cet exercice, vous pourrez utiliser l’opérateur modulo % qui renvoie le reste de la division entière entre deux

nombres et dont voici quelques exemples d’utilisation :
1 >>> 4 % 3
2 1
3 >>> 5 % 3
4 2
5 >>> 4 % 2
6 0
7 >>> 6 % 2
8 0

Vous remarquerez qu’un nombre est pair lorsque le reste de sa division entière par 2 est nul.

6.7.7 Conjecture de Syracuse (exercice +++)
La conjecture de Syracuse 2 est une conjecture mathématique qui reste improuvée à ce jour et qui est définie de la

manière suivante.
Soit un entier positif n. Si n est pair, alors le diviser par 2. S’il est impair, alors le multiplier par 3 et lui ajouter 1.

En répétant cette procédure, la suite de nombres atteint la valeur 1 puis se prolonge indéfiniment par une suite de trois
valeurs triviales appelée cycle trivial.

2. http://fr.wikipedia.org/wiki/Conjecture_de_Syracuse

54 Cours de Python / Université Paris Cité / UFR Sciences du Vivant

http://fr.wikipedia.org/wiki/Conjecture_de_Syracuse

6.7. Exercices Chapitre 6. Tests

Jusqu’à présent, la conjecture de Syracuse, selon laquelle depuis n’importe quel entier positif la suite de Syracuse
atteint 1, n’a pas été mise en défaut.

Par exemple, les premiers éléments de la suite de Syracuse si on prend comme point de départ 10 sont : 10, 5, 16, 8,
4, 2, 1…

Créez un script qui, partant d’un entier positif n (par exemple 10 ou 20), crée une liste des nombres de la suite de
Syracuse. Avec différents points de départ (c’est-à-dire avec différentes valeurs de n), la conjecture de Syracuse est-elle
toujours vérifiée ? Quels sont les nombres qui constituent le cycle trivial ?

Conseil
1. Pour cet exercice, vous avez besoin de faire un nombre d’itérations inconnu pour que la suite de Syracuse atteigne le

chiffre 1 puis entame son cycle trivial. Vous pourrez tester votre algorithme avec un nombre arbitraire d’itérations,
typiquement 20 ou 100, suivant votre nombre n de départ.

2. Un nombre est pair lorsque le reste de sa division entière (opérateur modulo %) par 2 est nul.

6.7.8 Attribution de la structure secondaire des acides aminés d’une protéine (exercice
+++)

Dans une protéine, les différents acides aminés sont liés entre eux par une liaison peptidique. Les angles phi et psi sont
deux angles mesurés autour de cette liaison peptidique. Leurs valeurs sont utiles pour définir la conformation spatiale
(appelée « structure secondaire ») adoptée par les acides aminés.

Par exemple, les angles phi et psi d’une conformation en « hélice alpha » parfaite ont une valeur de -57 degrés et -47
degrés respectivement. Bien sûr, il est très rare que l’on trouve ces valeurs parfaites dans une protéine, et il est habituel
de tolérer une déviation de ± 30 degrés autour des valeurs idéales de ces angles.

Vous trouverez ci-dessous une liste de listes contenant les valeurs des angles phi et psi de 15 acides aminés de la
protéine 1TFE 3 :

1 [[48.6, 53.4],[-124.9, 156.7],[-66.2, -30.8], \
2 [-58.8, -43.1],[-73.9, -40.6],[-53.7, -37.5], \
3 [-80.6, -26.0],[-68.5, 135.0],[-64.9, -23.5], \
4 [-66.9, -45.5],[-69.6, -41.0],[-62.7, -37.5], \
5 [-68.2, -38.3],[-61.2, -49.1],[-59.7, -41.1]]

Pour le premier acide aminé, l’angle phi vaut 48.6 et l’angle psi 53.4. Pour le deuxième, l’angle phi vaut -124.9 et
l’angle psi 156.7, etc.

En utilisant cette liste, créez un script qui teste, pour chaque acide aminé, s’il est ou non en hélice et affiche les
valeurs des angles phi et psi et le message adapté est en hélice ou n’est pas en hélice.

Par exemple, pour les trois premiers acides aminés :
[48.6, 53.4] n'est pas en hélice
[-124.9, 156.7] n'est pas en hélice
[-66.2, -30.8] est en hélice

D’après vous, quelle est la structure secondaire majoritaire de ces 15 acides aminés ?

Remarque
Pour en savoir plus sur le monde merveilleux des protéines, n’hésitez pas à consulter la page Wikipedia sur la structure

secondaire des protéines 4.

6.7.9 Détermination des nombres premiers inférieurs à 100 (exercice +++)
Voici un extrait de l’article sur les nombres premiers tiré de l’encyclopédie en ligne Wikipédia 5 :

3. https://www.rcsb.org/structure/1TFE
4. https://fr.wikipedia.org/wiki/Structure_des_prot%C3%A9ines#Angles_di%C3%A8dres_et_structure_

secondaire
5. http://fr.wikipedia.org/wiki/Nombre_premier

Cours de Python / Université Paris Cité / UFR Sciences du Vivant 55

https://www.rcsb.org/structure/1TFE
https://fr.wikipedia.org/wiki/Structure_des_prot%C3%A9ines#Angles_di%C3%A8dres_et_structure_secondaire
https://fr.wikipedia.org/wiki/Structure_des_prot%C3%A9ines#Angles_di%C3%A8dres_et_structure_secondaire
http://fr.wikipedia.org/wiki/Nombre_premier

Chapitre 6. Tests 6.7. Exercices

Un nombre premier est un entier naturel qui admet exactement deux diviseurs distincts entiers et positifs (qui sont
alors 1 et lui-même). Cette définition exclut 1, qui n’a qu’un seul diviseur entier positif. Par opposition, un nombre non
nul produit de deux nombres entiers différents de 1 est dit composé. Par exemple 6 = 2× 3 est composé, tout comme
21 = 3× 7, mais 11 est premier car 1 et 11 sont les seuls diviseurs de 11. Les nombres 0 et 1 ne sont ni premiers ni
composés.

Déterminez tous les nombres premiers inférieurs à 100. Combien y a-t-il de nombres premiers entre 0 et 100 ? Pour
vous aider, nous vous proposons plusieurs méthodes.

Méthode 1 (peu optimale, mais assez intuitive)

Pour chaque nombre N de 2 à 100, calculez le reste de la division entière (avec l’opérateur modulo %) depuis 1 jusqu’à
lui-même. Si N est premier, il aura exactement deux nombres pour lesquels le reste de la division entière est égal à 0 (1
et lui-même). Si N n’est pas premier, il aura plus de deux nombres pour lesquels le reste de la division entière est égal à
0.

Méthode 2 (quelques petites optimisations qui font gagner du temps)

On reprend la méthode 1 avec deux petites optimisations. On sait que tout entier N supérieur à 1 est divisible par
1 et par lui-même. Ainsi, il est inutile de tester ces deux diviseurs. On propose donc de tester tous les diviseurs de 2 à
N − 1. Si on ne trouve aucun diviseur, alors N est premier. À partir du moment où on trouve un diviseur, il est inutile
de continuer à chercher d’autres diviseurs car N ne sera pas premier. On suggère ainsi de stopper la boucle (pensez à
break). Vous pourrez aussi utiliser une variable drapeau comme est_premier qui sera à True si N est premier, sinon
à False.

Méthode 3 (plus optimale et rapide, mais un peu plus compliquée)

Parcourez tous les nombres N de 2 à 100 et vérifiez si ceux-ci sont composés, c’est-à-dire s’ils sont le produit de deux
nombres premiers. Pratiquement, cela consiste à vérifier que le reste de la division entière (opérateur modulo %) entre N
et chaque nombre premier déterminé jusqu’à maintenant est nul. Le cas échéant, N n’est pas premier.

6.7.10 Recherche d’un nombre par dichotomie (exercice +++)
La recherche par dichotomie 6 est une méthode qui consiste à diviser (en général en parties égales) un problème pour

en trouver la solution. À titre d’exemple, voici une discussion entre Pierre et Patrick dans laquelle Pierre essaie de deviner
le nombre (compris entre 1 et 100 inclus) auquel Patrick a pensé :

• [Patrick] « C’est bon, j’ai pensé à un nombre entre 1 et 100. »
• [Pierre] « OK, je vais essayer de le deviner. Est-ce que ton nombre est plus petit ou plus grand que 50 ? »
• [Patrick] « Plus grand. »
• [Pierre] « Est-ce que ton nombre est plus petit, plus grand ou égal à 75 ? »
• [Patrick] « Plus grand. »
• [Pierre] « Est-ce que ton nombre est plus petit, plus grand ou égal à 87 ? »
• [Patrick] « Plus petit. »
• [Pierre] « Est-ce que ton nombre est plus petit, plus grand ou égal à 81 ? »
• [Patrick] « Plus petit. »
• [Pierre] « Est-ce que ton nombre est plus petit, plus grand ou égal à 78 ? »
• [Patrick] « Plus grand. »
• [Pierre] « Est-ce que ton nombre est plus petit, plus grand ou égal à 79 ? »
• [Patrick] « Égal. C’est le nombre auquel j’avais pensé. Bravo ! »
Pour arriver rapidement à deviner le nombre, l’astuce consiste à prendre à chaque fois la moitié de l’intervalle dans

lequel se trouve le nombre. Voici le détail des différentes étapes :
1. Le nombre se trouve entre 1 et 100, on propose 50 (100 / 2).
2. Le nombre se trouve entre 50 et 100, on propose 75 (50 + (100-50)/2).
3. Le nombre se trouve entre 75 et 100, on propose 87 (75 + (100-75)/2).

6. https://fr.wikipedia.org/wiki/Dichotomie

56 Cours de Python / Université Paris Cité / UFR Sciences du Vivant

https://fr.wikipedia.org/wiki/Dichotomie

6.7. Exercices Chapitre 6. Tests

4. Le nombre se trouve entre 75 et 87, on propose 81 (75 + (87-75)/2).
5. Le nombre se trouve entre 75 et 81, on propose 78 (75 + (81-75)/2).
6. Le nombre se trouve entre 78 et 81, on propose 79 (78 + (81-78)/2).
Créez un script qui reproduit ce jeu de devinettes. Vous pensez à un nombre entre 1 et 100 et l’ordinateur essaie de

le deviner par dichotomie en vous posant des questions.
Votre programme utilisera la fonction input() pour interagir avec l’utilisateur. Voici un exemple de son fonctionne-

ment :
1 >>> lettre = input("Entrez une lettre : ")
2 Entrez une lettre : P
3 >>> print(lettre)
4 P

Pour vous guider, voici ce que donnerait le programme avec la conversation précédente :
Pensez à un nombre entre 1 et 100.
Est-ce votre nombre est plus grand, plus petit ou égal à 50 ? [+/-/=] +
Est-ce votre nombre est plus grand, plus petit ou égal à 75 ? [+/-/=] +
Est-ce votre nombre est plus grand, plus petit ou égal à 87 ? [+/-/=] -
Est-ce votre nombre est plus grand, plus petit ou égal à 81 ? [+/-/=] -
Est-ce votre nombre est plus grand, plus petit ou égal à 78 ? [+/-/=] +
Est-ce votre nombre est plus grand, plus petit ou égal à 79 ? [+/-/=] =
J'ai trouvé en 6 questions !

Les caractères [+/-/=] indiquent à l’utilisateur comment il doit interagir avec l’ordinateur, c’est-à-dire entrer soit le
caractère + si le nombre choisi est plus grand que le nombre proposé par l’ordinateur, soit le caractère - si le nombre
choisi est plus petit que le nombre proposé par l’ordinateur, soit le caractère = si le nombre choisi est celui proposé par
l’ordinateur (en appuyant ensuite sur la touche Entrée).

Cours de Python / Université Paris Cité / UFR Sciences du Vivant 57

CHAPITRE 7

Fichiers

7.1 Lecture dans un fichier
Une grande partie de l’information en biologie est stockée sous forme de texte dans des fichiers. Pour traiter cette

information, vous devez le plus souvent lire ou écrire dans un ou plusieurs fichiers. Python possède pour cela de nombreux
outils qui vous simplifient la vie.

7.1.1 Méthode .readlines()
Avant de passer à un exemple concret, créez un fichier dans l’éditeur de texte de votre choix avec le contenu suivant :

girafe
tigre
singe
souris

Enregistrez ce fichier dans votre répertoire courant avec le nom animaux.txt. Puis, testez le code suivant dans
l’interpréteur Python :

1 >>> filin = open("animaux.txt", "r")
2 >>> filin
3 <_io.TextIOWrapper name='animaux.txt' mode='r' encoding='UTF-8'>
4 >>> filin.readlines()
5 ['girafe\n', 'tigre\n', 'singe\n', 'souris\n']
6 >>> filin.close()
7 >>> filin.readlines()
8 Traceback (most recent call last):
9 File "<stdin>", line 1, in <module>

10 ValueError: I/O operation on closed file.

Il y a plusieurs commentaires à faire sur cet exemple :
• Ligne 1. La fonction open() ouvre le fichier animaux.txt. Ce fichier est ouvert en lecture seule, comme l’indique

le second argument r (pour read) de open(). Remarquez que le fichier n’est pas encore lu, mais simplement ouvert
(un peu comme lorsqu’on ouvre un livre, mais qu’on ne l’a pas encore lu). Le curseur de lecture est prêt à lire le
premier caractère du fichier. L’instruction open("animaux.txt", "r") suppose que le fichier animaux.txt est
dans le répertoire depuis lequel l’interpréteur Python a été lancé. Si ce n’est pas le cas, il faut préciser le chemin
d’accès au fichier. Par exemple, /home/pierre/animaux.txt pour Linux ou Mac OS X ou C:\Users\pierre
\animaux.txt pour Windows.

58

7.1. Lecture dans un fichier Chapitre 7. Fichiers

• Ligne 2. Lorsqu’on affiche le contenu de la variable filin, on se rend compte que Python la considère comme un
objet de type fichier ouvert (ligne 3).

• Ligne 4. Nous utilisons à nouveau la syntaxe objet.méthode() (présentée dans le chapitre 3 Affichage). Ici la
méthode .readlines() agit sur l’objet filin en déplaçant le curseur de lecture du début à la fin du fichier, puis
elle renvoie une liste contenant toutes les lignes du fichier (dans notre analogie avec un livre, ceci correspondrait à
lire toutes les lignes du livre).

• Ligne 6. Enfin, on applique la méthode .close() sur l’objet filin, ce qui, vous vous en doutez, ferme le fichier
(ceci reviendrait à fermer le livre). Vous remarquerez que la méthode .close() ne renvoie rien, mais modifie l’état
de l’objet filin en fichier fermé. Ainsi, si on essaie de lire à nouveau les lignes du fichier, Python renvoie une
erreur, car il ne peut pas lire un fichier fermé (lignes 7 à 10).

Voici maintenant un exemple complet de lecture d’un fichier avec Python :

1 >>> filin = open("animaux.txt", "r")
2 >>> lignes = filin.readlines()
3 >>> lignes
4 ['girafe\n', 'tigre\n', 'singe\n', 'souris\n']
5 >>> for ligne in lignes:
6 ... print(ligne)
7 ...
8 girafe
9

10 tigre
11
12 singe
13
14 souris
15
16 >>> filin.close()

Vous voyez qu’en cinq lignes de code, vous avez lu, parcouru le fichier et affiché son contenu.

Remarque

• Chaque élément de la liste lignes est une chaîne de caractères. C’est en effet sous forme de chaînes de caractères
que Python lit le contenu d’un fichier.

• Chaque élément de la liste lignes se termine par le caractère \n. Ce caractère un peu particulier correspond au «
saut de ligne 1 » qui permet de passer d’une ligne à la suivante (en anglais line feed). Ceci est codé par un caractère
spécial que l’on représente par \n. Vous pourrez parfois rencontrer également la notation octale \012. Dans la
suite de cet ouvrage, nous emploierons aussi l’expression « retour à la ligne » que nous trouvons plus intuitive.

• Par défaut, l’instruction print() affiche quelque chose puis revient à la ligne. Ce retour à la ligne dû à print()
se cumule alors avec celui de la fin de ligne (\n) de chaque ligne du fichier et donne l’impression qu’une ligne est
sautée à chaque fois.

Il existe en Python le mot-clé with qui permet d’ouvrir et de fermer un fichier de manière efficace. Si pour une raison
ou une autre l’ouverture ou la lecture du fichier conduit à une erreur, l’utilisation de with garantit la bonne fermeture
du fichier, ce qui n’est pas le cas dans le code précédent. Voici donc le même exemple avec with :

1. https://fr.wikipedia.org/wiki/Saut_de_ligne

Cours de Python / Université Paris Cité / UFR Sciences du Vivant 59

https://fr.wikipedia.org/wiki/Saut_de_ligne

Chapitre 7. Fichiers 7.1. Lecture dans un fichier

1 >>> with open("animaux.txt", 'r') as filin:
2 ... lignes = filin.readlines()
3 ... for ligne in lignes:
4 ... print(ligne)
5 ...
6 girafe
7
8 tigre
9

10 singe
11
12 souris
13
14 >>>

Remarque
• L’instruction with introduit un bloc d’instructions qui doit être indenté. C’est à l’intérieur de ce bloc que nous

effectuons toutes les opérations sur le fichier.
• Une fois sorti du bloc d’instructions, Python fermera automatiquement le fichier. Vous n’avez donc plus besoin

d’utiliser la méthode .close().

7.1.2 Méthode .read()

Il existe d’autres méthodes que .readlines() pour lire (et manipuler) un fichier. Par exemple, la méthode .read()
lit tout le contenu d’un fichier et renvoie une chaîne de caractères unique :

1 >>> with open("animaux.txt", "r") as filin:
2 ... filin.read()
3 ...
4 'girafe\ntigre\nsinge\nsouris\n'
5 >>>

7.1.3 Méthode .readline()

La méthode .readline() (sans s à la fin) lit une ligne d’un fichier et la renvoie sous forme de chaîne de caractères.
À chaque nouvel appel de .readline(), la ligne suivante est renvoyée. Associée à la boucle while, cette méthode
permet de lire un fichier ligne par ligne :

1 >>> with open("animaux.txt", "r") as filin:
2 ... ligne = filin.readline()
3 ... while ligne != "":
4 ... print(ligne)
5 ... ligne = filin.readline()
6 ...
7 girafe
8
9 tigre

10
11 singe
12
13 souris
14
15 >>>

7.1.4 Itérations directes sur le fichier

Python essaie de vous faciliter la vie au maximum. Voici un moyen à la fois simple et élégant de parcourir un fichier :

60 Cours de Python / Université Paris Cité / UFR Sciences du Vivant

7.2. Écriture dans un fichier Chapitre 7. Fichiers

1 >>> with open("animaux.txt", "r") as filin:
2 ... for ligne in filin:
3 ... print(ligne)
4 ...
5 girafe
6
7 tigre
8
9 singe

10
11 souris
12
13 >>>

L’objet filin est « itérable », ainsi la boucle for va demander à Python d’aller lire le fichier ligne par ligne.

Conseil
Privilégiez cette méthode par la suite.

Remarque
Les méthodes abordées précédemment permettent d’accéder au contenu d’un fichier, soit ligne par ligne (méthode

.readline()), soit globalement en une seule chaîne de caractères (méthode .read()), soit globalement avec les lignes
différenciées sous forme d’une liste de chaînes de caractères (méthode .readlines()). Il est également possible en
Python de se rendre à un endroit particulier d’un fichier avec la méthode .seek() mais qui sort du cadre de cet ouvrage.

7.2 Écriture dans un fichier
Écrire dans un fichier est aussi simple que de le lire. Voyez l’exemple suivant :

1 >>> animaux2 = ["poisson", "abeille", "chat"]
2 >>> with open("animaux2.txt", "w") as filout:
3 ... for animal in animaux2:
4 ... filout.write(animal)
5 ...
6 7
7 7
8 4

Quelques commentaires sur cet exemple :
• Ligne 1. Création d’une liste de chaînes de caractères animaux2.
• Ligne 2. Ouverture du fichier animaux2.txt en mode écriture, avec le caractère w pour write. L’instruction with

crée un bloc d’instructions qui doit être indenté.
• Ligne 3. Parcours de la liste animaux2 avec une boucle for.
• Ligne 4. À chaque itération de la boucle, nous avons écrit chaque élément de la liste dans le fichier. La méthode
.write() s’applique sur l’objet filout. Notez qu’à chaque utilisation de la méthode .write(), celle-ci nous
affiche le nombre d’octets (équivalent au nombre de caractères) écrits dans le fichier (lignes 6 à 8). Ceci est
valable uniquement dans l’interpréteur. Si vous créez un programme avec les mêmes lignes de code, ces valeurs ne
s’afficheront pas à l’écran.

Si nous ouvrons le fichier animaux2.txt avec un éditeur de texte, voici ce que nous obtenons :
poissonabeillechat
Ce n’est pas exactement le résultat attendu car implicitement nous voulions le nom de chaque animal sur une ligne.

Nous avons oublié d’ajouter le caractère fin de ligne après chaque nom d’animal.
Pour ce faire, nous pouvons utiliser l’écriture formatée :

Cours de Python / Université Paris Cité / UFR Sciences du Vivant 61

Chapitre 7. Fichiers 7.3. Ouvrir deux fichiers avec l’instruction with

1 >>> animaux2 = ["poisson", "abeille", "chat"]
2 >>> with open("animaux2.txt", "w") as filout:
3 ... for animal in animaux2:
4 ... filout.write(f"{animal}\n")
5 ...
6 8
7 8
8 5

• Ligne 4. L’écriture formatée, vue au chapitre 3 Affichage, permet d’ajouter un retour à la ligne (\n) après le nom
de chaque animal.

• Lignes 6 à 8. Le nombre d’octets écrits dans le fichier est augmenté de 1 par rapport à l’exemple précédent, car
le caractère retour à la ligne compte pour un seul octet.

Le contenu du fichier animaux2.txt est alors :
poisson
abeille
chat

Vous voyez qu’il est relativement simple en Python de lire ou d’écrire dans un fichier.

7.3 Ouvrir deux fichiers avec l’instruction with
On peut avec l’instruction with ouvrir deux fichiers (ou plus) en même temps. Voyez l’exemple suivant :

1 with open("animaux.txt", "r") as fichier1, open("animaux2.txt", "w") as fichier2:
2 for ligne in fichier1:
3 fichier2.write("* " + ligne)

Si le fichier animaux.txt contient le texte suivant :
souris
girafe
lion
singe

alors le contenu de animaux2.txt sera :
* souris
* girafe
* lion
* singe

Dans cet exemple, with permet une notation très compacte en s’affranchissant de deux méthodes .close().
Si vous souhaitez aller plus loin, sachez que l’instruction with est plus générale et peut être utilisée dans d’autres

contextes 2.

7.4 Note sur les retours à la ligne sous Unix et sous Windows

Conseil
Si vous êtes débutant, vous pouvez sauter cette rubrique.

On a vu plus haut que le caractère spécial \n correspondait à un retour à la ligne. C’est le standard sous Unix (Mac
OS X et Linux).

Toutefois, Windows utilise deux caractères spéciaux pour le retour à la ligne : \r correspondant à un retour chariot
(hérité des machines à écrire) et \n comme sous Unix.

Si vous avez commencé à programmer en Python 2, vous aurez peut-être remarqué que, selon les versions, la lecture
de fichier supprimait parfois les \r et d’autres fois les laissait. Heureusement, la fonction open() dans Python 3 3 gère

2. https://docs.python.org/fr/3/reference/compound_stmts.html#the-with-statement
3. https://docs.python.org/fr/3/library/functions.html#open

62 Cours de Python / Université Paris Cité / UFR Sciences du Vivant

https://docs.python.org/fr/3/reference/compound_stmts.html#the-with-statement
https://docs.python.org/fr/3/library/functions.html#open

7.5. Importance des conversions de types avec les fichiers Chapitre 7. Fichiers

tout ça automatiquement et renvoie uniquement des sauts de ligne sous forme d’un seul \n (même si le fichier a été
conçu sous Windows et qu’il contient initialement des \r).

7.5 Importance des conversions de types avec les fichiers
Vous avez sans doute remarqué que les méthodes qui lisent un fichier (par exemple .readlines()) vous renvoient

systématiquement des chaînes de caractères. De même, pour écrire dans un fichier, il faut fournir une chaîne de caractères
à la méthode .write().

Pour tenir compte de ces contraintes, il faudra utiliser les fonctions de conversion de types vues au chapitre 2
Variables : int(), float() et str(). Ces fonctions de conversion sont essentielles lorsqu’on lit ou écrit des nombres
dans un fichier.

En effet, les nombres dans un fichier sont considérés comme du texte, donc comme des chaînes de caractères, par la
méthode .readlines(). Par conséquent, il faut les convertir (en entier ou en float) si on veut effectuer des opérations
numériques avec.

7.6 Du respect des formats de données et de fichiers
Maintenant que vous savez lire et écrire des fichiers en Python, vous êtes capables de manipuler beaucoup d’information

en biologie. Prenez garde cependant aux formats de fichiers, c’est-à-dire à la manière dont est stockée l’information
biologique dans des fichiers. Nous vous renvoyons pour cela à l’annexe A Quelques formats de données en biologie.

7.7 Exercices

Conseil
Pour ces exercices, créez des scripts puis exécutez-les dans un shell.

7.7.1 Moyenne des notes
Le fichier notes.txt 4 contient les notes obtenues par des étudiants pour le cours de Python. Chaque ligne du fichier

ne contient qu’une note.
Téléchargez le fichier notes.txt et enregistrez-le dans votre répertoire de travail. N’hésitez pas à l’ouvrir avec un

éditeur de texte pour voir à quoi il ressemble.
Créez un script Python qui lit chaque ligne de ce fichier, extrait les notes sous forme de float et les stocke dans une

liste.
Terminez le script en calculant et affichant la moyenne des notes avec deux décimales.

7.7.2 Admis ou recalé
Téléchargez le fichier notes.txt de l’exercice précédent et enregistrez-le dans votre répertoire de travail. N’hésitez

pas l’ouvrir avec un éditeur de texte pour voir à quoi il ressemble.
Créez un script Python qui lit chaque ligne de ce fichier, extrait les notes sous forme de float et les stocke dans une

liste.
Le script réécrira ensuite les notes dans le fichier notes2.txt avec une note par ligne suivie de « recalé » si la note

est inférieure à 10 et « admis » si la note est supérieure ou égale à 10. Toutes les notes seront écrites avec une décimale.
À titre d’exemple, voici les trois premières lignes attendues pour le fichier notes2.txt :
13.5 admis
17.0 admis
9.5 recalé

7.7.3 Spirale (exercice +++)
Créez un script spirale.py qui calcule les coordonnées cartésiennes d’une spirale à deux dimensions.

4. https://python.sdv.u-paris.fr/data-files/notes.txt

Cours de Python / Université Paris Cité / UFR Sciences du Vivant 63

https://python.sdv.u-paris.fr/data-files/notes.txt

Chapitre 7. Fichiers 7.7. Exercices

Les coordonnées cartésiennes xA et yA d’un point A sur un cercle de rayon r s’expriment en fonction de l’angle θ
représenté sur la figure 7.1 comme :

xA = cos(θ)× r

yA = sin(θ)× r

Figure 7.1 – Point A de coordonnées (xA,yA) sur le cercle de rayon r.

Pour calculer les coordonnées cartésiennes qui décrivent la spirale, vous allez faire varier deux variables en même
temps :

• l’angle θ , qui va prendre des valeurs de 0 à 4π radians par pas de 0,1, ce qui correspond à deux tours complets ;
• le rayon du cercle r, qui va prendre comme valeur initiale 0,5 puis que vous allez incrémenter (c’est-à-dire augmenter)

par pas de 0,1.
Les fonctions trigonométriques sinus et cosinus sont disponibles dans le module math que vous découvrirez plus en

détails dans le chapitre 9 Modules. Pour les utiliser, vous ajouterez au début de votre script l’instruction :
import math
La fonction sinus sera math.sin() et la fonction cosinus math.cos(). Ces deux fonctions prennent comme argument

une valeur d’angle en radian. La constante mathématique π sera également accessible grâce à ce module via math.pi.
Par exemple :

1 >>> math.sin(0)
2 0.0
3 >>> math.sin(math.pi/2)
4 1.0
5 >>> math.cos(math.pi)
6 -1.0

Sauvegardez ensuite les coordonnées cartésiennes dans le fichier spirale.dat en respectant le format suivant :
• un couple de coordonnées (xA et yA) par ligne ;
• au moins un espace entre les deux coordonnées xA et yA ;
• les coordonnées affichées sur 10 caractères avec 5 chiffres après la virgule.
Les premières lignes de spirale.dat devrait ressembler à :

64 Cours de Python / Université Paris Cité / UFR Sciences du Vivant

7.7. Exercices Chapitre 7. Fichiers

0.50000 0.00000
0.59700 0.05990
0.68605 0.13907
0.76427 0.23642
0.82895 0.35048
0.87758 0.47943
[...] [...]

Une fois que vous avez généré le fichier spirale.dat, visualisez votre spirale avec le code suivant (que vous pouvez
recopier dans un autre script ou à la suite de votre script spirale.py) :

1 import matplotlib.pyplot as plt
2
3 x = []
4 y = []
5 with open("spirale.dat", "r") as f_in:
6 for line in f_in:
7 coords = line.split()
8 x.append(float(coords[0]))
9 y.append(float(coords[1]))

10
11 fig, ax = plt.subplots(figsize=(8,8))
12 mini = min(x+y) - 2
13 maxi = max(x+y) + 2
14 ax.set_xlim(mini, maxi)
15 ax.set_ylim(mini, maxi)
16 ax.plot(x, y)
17 fig.savefig("spirale.png")

Visualisez l’image spirale.png ainsi créée.

Remarque
Le module matplotlib est utilisé ici pour la visualisation de la spirale. Son utilisation est détaillée dans le chapitre 21

Module matplotlib.

Essayez de jouer sur les paramètres θ et r, et leur pas d’incrémentation, pour construire de nouvelles spirales.

Cours de Python / Université Paris Cité / UFR Sciences du Vivant 65

CHAPITRE 8

Dictionnaires et tuples

Dans ce chapitre, nous allons voir deux nouveaux types d’objet qui s’avèrent extrêmement utiles : les dictionnaires et
les tuples. Comme les listes vues dans le chapitre 4, les dictionnaires et tuples contiennent une collection d’autres objets.
Toutefois, nous verrons que ces trois types sont régis par des règles différentes pour accéder à leur contenu, ainsi que
dans leur fonctionnement.

8.1 Dictionnaires
8.1.1 Définition et fonctionnement

Définition
Un dictionnaire contient une collection d’objets Python auxquels on accède à l’aide d’une clé de correspondance

plutôt qu’un indice. Ainsi, il ne s’agit pas d’objets séquentiels comme les listes, mais plutôt d’objets dits de correspondance
(mapping objects en anglais) ou tableaux associatifs.

Ceci étant défini, comment fonctionnent-ils exactement ? Regardons un exemple :
1 >>> animal1 = {}
2 >>> animal1["nom"] = "girafe"
3 >>> animal1["taille"] = 5.0
4 >>> animal1["poids"] = 1100
5 >>> animal1
6 {'nom': 'girafe', 'taille': 5.0, 'poids': 1100}

• Ligne 1. On définit un dictionnaire vide avec les accolades {} (tout comme on peut le faire pour les listes avec
[]).

• Lignes 2 à 4. On remplit le dictionnaire avec plusieurs clés ("nom", "taille", "poids") auxquelles on affecte
des valeurs ("girafe", 5.0, 1100).

• Ligne 5. On affiche le contenu du dictionnaire. Les accolades nous montrent qu’il s’agit bien d’un dictionnaire,
et pour chaque élément séparé par une virgule on a une association du type clé: valeur. Ici, les clés sont des
chaînes de caractères (ce qui sera souvent le cas), et les valeurs peuvent être n’importe quel objet Python.

Une fois le dictionnaire créé, on récupère la valeur associée à une clé donnée avec une syntaxe du type dictionnaire
["clé"]. Par exemple :

66

8.1. Dictionnaires Chapitre 8. Dictionnaires et tuples

1 >>> animal1["nom"]
2 'girafe'
3 >>> animal1["taille"]
4 5.0

On se souvient que pour accéder à l’élément d’une liste, il fallait utiliser un indice (par exemple, liste[2]). Ici,
l’utilisation d’une clé (qui est souvent une chaîne de caractères) rend les choses plus explicites.

Vous pouvez mettre autant de couples clé / valeur que vous voulez dans un dictionnaire (tout comme vous pouvez
ajouter autant d’éléments que vous le souhaitez dans une liste).

Remarque
Jusqu’à la version 3.6 de Python, un dictionnaire était affiché sans ordre particulier. L’ordre d’affichage des éléments

n’était pas forcément le même que celui dans lequel il avait été rempli. De même, lorsqu’on itérait dessus, l’ordre n’était
pas garanti. Depuis Python 3.7 (inclus), ce comportement a changé : un dictionnaire est toujours affiché dans le même
ordre que celui utilisé pour le remplir. Et si on itère sur un dictionnaire, cet ordre est aussi respecté. Ce détail provient de
l’implémentation interne des dictionnaires dans Python, mais cela nous concerne peu. Ce qui importe, c’est de se rappeler
qu’on accède aux éléments par leur clé, et non par leur position telle que le dictionnaire est affiché. Cet ordre n’a pas
d’importance, sauf dans de rares cas.

On peut aussi initialiser toutes les clés et les valeurs d’un dictionnaire en une seule opération :
1 >>> animal2 = {"nom": "singe", "poids": 70, "taille": 1.75}

Mais rien ne nous empêche d’ajouter une clé et une valeur supplémentaire :
1 >>> animal2["age"] = 15
2 >>> animal2
3 {'nom': 'singe', 'poids': 70, 'taille': 1.75, 'age': 15}

Après ce premier tour d’horizon, on perçoit l’avantage des dictionnaires : pouvoir retrouver des éléments par des noms
(clés) plutôt que par des indices.

Les humains retiennent mieux les noms que les chiffres. Ainsi, les dictionnaires se révèlent très pratiques lorsque vous
devez manipuler des structures complexes à décrire et que les listes présentent leurs limites. L’usage des dictionnaires
rend en général le code plus lisible. Par exemple, si nous souhaitions stocker les coordonnées (x,y,z) d’un point dans
l’espace, nous pourrions utiliser coors = [0, 1, 2] pour la version liste et coors = {"x": 0, "y": 1, "z": 2}
pour la version dictionnaire. Quelqu’un qui lit le code comprendra tout de suite que coors["z"] contient la coordonnée
z, ce sera moins intuitif avec coors[2].

Conseil
Nous verrons dans le chapitre 14 Conteneurs que plusieurs types d’objets sont utilisables en tant que clé de dictionnaire.

Malgré cela, nous conseillons de n’utiliser que des chaînes de caractères lorsque vous débutez.

8.1.2 Fonction len()
Comme pour les listes, l’instruction len() renvoie la longueur du dictionnaire, sauf qu’ici il s’agit du nombre de

couples clé / valeur. Voici un exemple d’utilisation :
1 ani3 = {"nom": "pinson", "poids": 0.02, "taille": 0.15}
2 >>> len(ani3)
3 3

8.1.3 Itération sur les clés pour obtenir les valeurs
Si on souhaite voir toutes les associations clés / valeurs, on peut itérer sur un dictionnaire de la manière suivante :

Cours de Python / Université Paris Cité / UFR Sciences du Vivant 67

Chapitre 8. Dictionnaires et tuples 8.1. Dictionnaires

1 >>> animal2 = {'nom': 'singe', 'poids': 70, 'taille': 1.75}
2 >>> for key in animal2:
3 ... print(key, animal2[key])
4 ...
5 poids 70
6 nom singe
7 taille 1.75

Par défaut, l’itération sur un dictionnaire se fait sur les clés. Dans cet exemple, la variable d’itération key prend
successivement la valeur de chaque clé, animal2[key] donne la valeur correspondant à chaque clé.

8.1.4 Méthodes .keys() et .values()
Les méthodes .keys() et .values() renvoient, comme vous vous en doutez, les clés et les valeurs d’un dictionnaire :

1 >>> animal2.keys()
2 dict_keys(['poids', 'nom', 'taille'])
3 >>> animal2.values()
4 dict_values([70, 'singe', 1.75])

Les mentions dict_keys et dict_values indiquent que nous avons à faire à des objets un peu particuliers. Ils ne
sont pas indexables (on ne peut pas retrouver un élément par indice, par exemple dico.keys()[0] renverra une erreur).
Si besoin, nous pouvons les transformer en liste avec la fonction list() :

1 >>> animal2.values()
2 dict_values(['singe', 70, 1.75])
3 >>> list(animal2.values())
4 ['singe', 70, 1.75]

Toutefois, on peut itérer dessus dans une boucle (on dit qu’ils sont itérables) :
1 >>> for cle in animal2.keys():
2 ... print(cle)
3 ...
4 nom
5 poids
6 taille

8.1.5 Méthode .items()
La méthode .items() renvoie un nouvel objet dict_items :

1 >>> dico = {0: "t", 1: "o", 2: "t", 3: "o"}
2 >>> dico.items()
3 dict_items([(0, 't'), (1, 'o'), (2, 't'), (3, 'o')])

On ne peut pas retrouver un élément par son indice dans un objet dict_items, toutefois on peut itérer dessus :
1 >>> dico.items()[2]
2 Traceback (most recent call last):
3 File "<stdin>", line 1, in <module>
4 TypeError: 'dict_items' object is not subscriptable
5 >>> for key, val in dico.items():
6 ... print(key, val)
7 ...
8 0 t
9 1 o

10 2 t
11 3 o

Notez la syntaxe particulière qui ressemble à la fonction enumerate() vue au chapitre 5 Boucles et comparaisons.
On itère à la fois sur key et sur val. Nous aurons l’explication de ce mécanisme dans la rubrique sur les tuples ci-après.

8.1.6 Existence d’une clé ou d’une valeur
Pour vérifier si une clé existe dans un dictionnaire, on peut utiliser le test d’appartenance avec l’opérateur in qui

renvoie un booléen :

68 Cours de Python / Université Paris Cité / UFR Sciences du Vivant

8.1. Dictionnaires Chapitre 8. Dictionnaires et tuples

1 >>> animal2 = {'nom': 'singe', 'poids': 70, 'taille': 1.75}
2 >>> "poids" in animal2
3 True
4 >>> if "poids" in animal2:
5 ... print("La clé 'poids' existe pour animal2")
6 ...
7 La clé 'poids' existe pour animal2
8 >>> "age" in animal2
9 False

10 >>> if "age" in animal2:
11 ... print("La clé 'age' existe pour animal2")
12 ...

Dans le second test (lignes 10 à 12), le message n’est pas affiché car la clé age n’est pas présente dans le dictionnaire
animal2.

Si on souhaite tester si une valeur existe dans un dictionnaire, on peut utiliser l’opérateur in avec l’objet renvoyé par
la méthode .values() :

1 >>> animal2 = {'nom': 'singe', 'poids': 70, 'taille': 1.75}
2 >>> animal2.values()
3 dict_values(['singe', 70, 1.75])
4 >>> "singe" in animal2.values()
5 True

8.1.7 Méthode .get()
Par défaut, si on demande la valeur associée à une clé qui n’existe pas, Python renvoie une erreur :

1 >>> animal2 = {'nom': 'singe', 'poids': 70, 'taille': 1.75}
2 >>> animal2["age"]
3 Traceback (most recent call last):
4 File "<stdin>", line 1, in <module>
5 KeyError: 'age'

La méthode .get() s’affranchit de ce problème. Elle extrait la valeur associée à une clé mais ne renvoie pas d’erreur
si la clé n’existe pas :

1 >>> animal2.get("nom")
2 'singe'
3 >>> animal2.get("age")
4 >>>

Ici, la valeur associée à la clé nom est singe, mais la clé age n’existe pas. On peut également indiquer à .get() une
valeur par défaut si la clé n’existe pas :

1 >>> animal2.get("age", 42)
2 42

8.1.8 Liste de dictionnaires
En créant une liste de dictionnaires qui possèdent les mêmes clés, on obtient une structure qui ressemble à une base

de données :
1 >>> animaux = [animal1, animal2]
2 >>> animaux
3 [{'nom': 'girafe', 'poids': 1100, 'taille': 5.0}, {'nom': 'singe',
4 'poids': 70, 'taille': 1.75}]
5 >>>
6 >>> for ani in animaux:
7 ... print(ani["nom"])
8 ...
9 girafe

10 singe

Vous constatez ainsi que les dictionnaires permettent de gérer des structures complexes de manière plus explicite que
les listes.

Cours de Python / Université Paris Cité / UFR Sciences du Vivant 69

Chapitre 8. Dictionnaires et tuples 8.2. Tuples

8.2 Tuples
8.2.1 Définition

Définition
Les tuples (« n-uplets » en français) sont des objets séquentiels correspondant aux listes, mais ils sont toutefois

non modifiables. On dit aussi qu’ils sont immuables. Vous verrez ci-dessous que nous les avons déjà croisés à plusieurs
reprises !

Pratiquement, on utilise les parenthèses au lieu des crochets pour les créer :
1 >>> tuple1 = (1, 2, 3)
2 >>> tuple1
3 (1, 2, 3)
4 >>> type(tuple1)
5 <class 'tuple'>
6 >>> tuple1[2]
7 3
8 >>> tuple1[0:2]
9 (1, 2)

10 >>> tuple1[2] = 15
11 Traceback (most recent call last):
12 File "<stdin>", line 1, in <module>
13 TypeError: 'tuple' object does not support item assignment

L’affectation et l’indiçage fonctionnent comme avec les listes. Mais si on essaie de modifier un des éléments du tuple
(en ligne 10), Python renvoie un message d’erreur car les tuples sont non modifiables. Si vous voulez ajouter un élément
(ou le modifier), vous devez créer un nouveau tuple :

1 >>> tuple1 = (1, 2, 3)
2 >>> tuple1
3 (1, 2, 3)
4 >>> tuple1 = tuple1 + (2,)
5 >>> tuple1
6 (1, 2, 3, 2)

Conseil
Cet exemple montre que les tuples sont peu adaptés lorsqu’on a besoin d’ajouter, retirer, modifier des éléments. La

création d’un nouveau tuple à chaque étape s’avère lourde et il n’y a aucune méthode pour faire cela puisque les tuples
sont non modifiables. Pour ce genre de tâche, les listes sont clairement mieux adaptées.

Remarque
Pour créer un tuple d’un seul élément comme ci-dessus, utilisez une syntaxe avec une virgule (element,), pour

éviter une ambiguïté avec une simple expression. Par exemple, (2) équivaut à l’entier 2, alors que l’expression (2,) est
un tuple contenant l’élément 2.

Autre particularité des tuples, il est possible de les créer sans les parenthèses, dès lors que ceci ne pose pas d’ambiguïté
avec une autre expression :

1 >>> tuple1 = (1, 2, 3)
2 >>> tuple1
3 (1, 2, 3)
4 >>> tuple1 = 1, 2, 3
5 >>> tuple1
6 (1, 2, 3)

70 Cours de Python / Université Paris Cité / UFR Sciences du Vivant

8.2. Tuples Chapitre 8. Dictionnaires et tuples

Toutefois, afin d’éviter les confusions, nous vous conseillons d’utiliser systématiquement les parenthèses lorsque vous
débutez.

Les opérateurs + et * fonctionnent comme pour les listes (concaténation et duplication) :
1 >>> (1, 2) + (3, 4)
2 (1, 2, 3, 4)
3 >>> (1, 2) * 4
4 (1, 2, 1, 2, 1, 2, 1, 2)

Enfin, on peut utiliser la fonction tuple(sequence) qui fonctionne exactement comme la fonction list(), c’est-
à-dire qu’elle prend en argument un objet et renvoie le tuple correspondant (opération de casting) :

1 >>> tuple([1,2,3])
2 (1, 2, 3)
3 >>> tuple("ATGCCGCGAT")
4 ('A', 'T', 'G', 'C', 'C', 'G', 'C', 'G', 'A', 'T')
5 >>> tuple(range(5))
6 (0, 1, 2, 3, 4)

Remarque
Comme la fonction list(), la fonction tuple() prend en argument un objet contenant d’autres objets. Elle ne

fonctionne pas avec les entiers, floats ou booléens. Par exemple, tuple(2) renvoie une erreur. On en verra plus sur ces
questions dans le chapitre 14 Conteneurs.

8.2.2 Affectation multiple
Les tuples sont souvent utilisés pour l’affectation multiple, c’est-à-dire, affecter des valeurs à plusieurs variables en

même temps :
1 >>> x, y, z = 1, 2, 3
2 >>> x
3 1
4 >>> y
5 2
6 >>> z
7 3

Attention, le nombre de variables et de valeurs doit être cohérents à gauche et à droite de l’opérateur = :
1 >>> x, y = 1, 2, 3
2 Traceback (most recent call last):
3 File "<stdin>", line 1, in <module>
4 ValueError: too many values to unpack (expected 2)

Il est aussi possible de faire des affectations multiples avec des listes, par exemple :
[x, y, z] = [1, 2, 3].
Toutefois, cette syntaxe est alourdie par la présence des crochets. On préfèrera donc la syntaxe avec les tuples sans

parenthèses.

Remarque
Nous avons appelé l’opération x, y, z = 1, 2, 3 affectation multiple pour signifier que l’on affectait des valeurs

à plusieurs variables en même temps.
Vous pourrez rencontrer aussi l’expression tuple unpacking que l’on pourrait traduire par « désempaquetage de tuple

». De même, il existe le list unpacking.

Ce terme tuple unpacking provient du fait que l’on peut décomposer un tuple initial de n éléments en autant de
variables différentes en une seule instruction.

Par exemple, si on crée un tuple de trois éléments :

Cours de Python / Université Paris Cité / UFR Sciences du Vivant 71

Chapitre 8. Dictionnaires et tuples 8.2. Tuples

1 >>> tuple1 = (1, 2, 3)
2 >>> tuple1
3 (1, 2, 3)

On peut « désempaqueter » le tuple en une seule instruction :
1 >>> x, y, z = tuple1
2 >>> x
3 1

Cela serait possible également avec l’indiçage, mais il faudrait utiliser autant d’instruction que d’éléments :
1 >>> x = tuple1[0]
2 >>> y = tuple1[1]
3 >>> z = tuple1[2]

Dans les deux cas, x vaudra 1, y vaudra 2 et z vaudra 3.

Conseil
La syntaxe x, y, z = tuple1 pour désempaqueter un tuple est plus élégante, plus lisible et plus compacte. Elle

sera donc à privilégier.

L’affectation multiple est un mécanisme très puissant et important en Python. Nous verrons qu’il est particulièrement
utile avec les fonctions dans les chapitres 10 Fonctions et 13 Plus sur les fonctions.

8.2.3 Itérations sur plusieurs valeurs à la fois
Nous avons déjà croisé les tuples avec la fonction enumerate() dans le chapitre 5 Boucles et comparaisons. Cette

dernière permettait d’itérer en même temps sur les indices et les éléments d’une liste :
1 >>> for indice, element in enumerate([75, -75, 0]):
2 ... print(indice, element)
3 ...
4 0 75
5 1 -75
6 2 0
7 >>> for bidule in enumerate([75, -75, 0]):
8 ... print(bidule, type(bidule))
9 ...

10 (0, 75) <class 'tuple'>
11 (1, -75) <class 'tuple'>
12 (2, 0) <class 'tuple'>

Lignes 7 à 12. La fonction enumerate() itère sur une série de tuples. Pouvoir séparer indice et element dans la
boucle est possible avec l’affectation multiple, par exemple : indice, element = 0, 75 (voir rubrique précédente).

Dans le même ordre d’idée, nous avons déjà vu la méthode .items() qui permettait d’itérer sur des couples clé /
valeur d’un dictionnaire :

1 >>> dico = {"pinson": 2, "merle": 3}
2 >>> for cle, valeur in dico.items():
3 ... print(cle, valeur)
4 ...
5 pinson 2
6 merle 3
7 >>> for bidule in dico.items():
8 ... print(bidule, type(bidule))
9 ...

10 ('pinson', 2) <class 'tuple'>
11 ('merle', 3) <class 'tuple'>

La méthode .items() itère, comme enumerate(), sur une série de tuples.
Enfin, on peut itérer sur trois valeurs en même temps à partir d’une liste de tuples de trois éléments :

72 Cours de Python / Université Paris Cité / UFR Sciences du Vivant

8.3. Exercices Chapitre 8. Dictionnaires et tuples

1 >>> liste = [(5, 6, 7), (6, 7, 8), (7, 8, 9)]
2 >>> for x, y, z in liste:
3 ... print(x, y, z)
4 ...
5 5 6 7
6 6 7 8
7 7 8 9

On pourrait concevoir la même chose sur quatre ou cinq éléments, voire plus. La seule contrainte est d’avoir une
correspondance systématique entre le nombre de variables d’itération (par exemple trois variables dans l’exemple ci-dessus
avec x, y, z) et la longueur de chaque sous-tuple de la liste sur laquelle on itère (dans l’exemple ci-dessus, chaque
sous-tuple a trois éléments).

8.2.4 Fonction divmod()
Dans le chapitre 2 Variables, on a vu les opérateurs // et % qui renvoient respectivement le quotient et le reste d’une

division entière. La fonction divmod() prend en argument deux valeurs, le numérateur et le dénominateur d’une division,
et renvoie le quotient et le reste de la division entière correspondante :

1 >>> 3 / 4
2 0.75
3 >>> 3 // 4
4 0
5 >>> 3 % 4
6 3
7 >>> divmod(3, 4)
8 (0, 3)

En utilisant l’affectation multiple, on peut ainsi récupérer à la volée le quotient et le reste en une seule ligne :
1 >>> quotient, reste = divmod(3, 4)
2 >>> quotient
3 0
4 >>> reste
5 3

Cette fonction est très pratique, notamment quand on souhaite convertir des secondes en minutes et secondes
résiduelles. Par exemple, si on veut convertir 754 secondes en minutes :

1 >>> 754 / 60
2 12.566666666666666
3 >>> divmod(754, 60)
4 (12, 34)

La division normale nous donne un float en minutes qui n’est pas très pratique, il faut encore convertir 0.566666666666666
minute en secondes et gérer les problèmes d’arrondi. La fonction divmod() renvoie le résultat directement : 12 min et

34 s. On pourrait raisonner de manière similaire pour convertir des minutes en heures, des heures en jours, etc.

8.2.5 Remarque finale
Les listes, les dictionnaires et les tuples sont tous des objets contenant une collection d’autres objets. En Python,

on peut construire des listes qui contiennent des dictionnaires, des tuples ou d’autres listes, mais aussi des dictionnaires
contenant des tuples, des listes, etc. Les combinaisons sont infinies !

8.3 Exercices

Conseil
Pour le premier exercice, utilisez l’interpréteur Python. Pour les suivants, créez des scripts puis exécutez-les dans un

shell.

Cours de Python / Université Paris Cité / UFR Sciences du Vivant 73

Chapitre 8. Dictionnaires et tuples 8.3. Exercices

8.3.1 Prédire la sortie
Soit les deux lignes de code suivantes :

1 dico = {"nom": "Joe", "age": 24, "taille": 181}
2 var = "nom"

Prédisez le comportement de chaque instruction ci-dessous, sans les recopier dans un script ni dans l’interpréteur
Python :

• print(dico["age"])
• print(dico[var])
• print(dico[24])
• print(dico["var"])
• print(dico["taille"])
Lorsqu’une instruction produit une erreur, identifiez pourquoi. Vérifiez ensuite vos prédictions en recopiant les ins-

tructions dans l’interpréteur Python.

8.3.2 Moyennes des notes
Soit le dictionnaire suivant donnant les notes d’un étudiant :

1 dico_notes = {
2 "math": 14, "programmation": 12,
3 "anglais": 16, "biologie": 10,
4 "sport": 19
5 }

Calculez la moyenne de ses notes de deux manières différentes. Calculez à nouveau la moyenne sans la note de biologie.

8.3.3 Composition en acides aminés
En utilisant un dictionnaire, déterminez le nombre d’occurrences de chaque acide aminé dans la séquence AGWPSGGASAGLAILWGASAIMPGALW

. Le dictionnaire ne doit contenir que les acides aminés présents dans la séquence.
Vous ne pouvez pas utiliser autant d’instructions if que d’acides aminés différents. Pensez au test d’appartenance.

8.3.4 Convertisseur de secondes
Un athlète court un marathon, malheureusement sa montre ne mesure son temps qu’en secondes. Celle-ci affiche 11

905. Aidez-le à convertir son temps en heures, minutes et secondes avec la fonction divmod().

8.3.5 Convertisseur de jours
L’âge de Camille et Céline en jours est respectivement de 8 331 jours et 8 660 jours. Quel est leur âge en années,

mois et jours, en supposant qu’une année compte 365 jours et qu’un mois compte 30 jours ? La fonction divmod() vous
aidera à nouveau.

8.3.6 Propriétés des acides aminés
Les acides aminés peuvent être séparés en quatre grandes catégories : apolaires (a), polaires (p), chargés positivement

(+) et chargés négativement (-). Le dictionnaire suivant implémente cette classification :
1 aa2prop = {'A': 'a', 'V': 'a', 'L': 'a', 'G': 'a', 'I': 'a', 'M': 'a',
2 'W': 'a', 'F': 'a', 'P': 'a',
3 'S': 'p', 'C': 'p', 'N': 'p', 'Q': 'p', 'T': 'p', 'Y': 'p',
4 'D': '-', 'E': '-',
5 'K': '+', 'R': '+', 'H': '+' }

On souhaite convertir la séquence en acide aminé du domaine transmembranaire d’une intégrine humaine SNADVVYEKQMLYLYVLSGIGGLLLLLLIFIVLYKVGFFKRNLKEKMEAG
en une série de signes indiquant la nature des acides aminés (a, p, + et -). Affichez tout d’abord la séquence sur une

ligne, puis la nature des acides aminés sur une seconde ligne.
La séquence contient une hélice transmembranaire, donc une succession de résidus apolaires, essayez de la retrouver

visuellement.

74 Cours de Python / Université Paris Cité / UFR Sciences du Vivant

8.3. Exercices Chapitre 8. Dictionnaires et tuples

Pour cet exercice, nous vous conseillons d’itérer sur la chaîne de caractères contenant la séquence. Nous reverrons
cela dans le chapitre 11 Plus sur les chaînes de caractères.

8.3.7 Boucle sur plusieurs éléments simultanément
À partir de la liste de tuples suivante :
[("chien", 3), ("chat", 4), ("souris", 16)]
affichez chaque animal et son nombre en utilisant qu’une seule boucle for. Attention, pour cet exercice, il est interdit

d’utiliser l’indiçage des listes.

Cours de Python / Université Paris Cité / UFR Sciences du Vivant 75

CHAPITRE 9

Modules

9.1 Définition
Les modules sont des programmes Python qui contiennent des fonctions que l’on est amené à souvent réutiliser (on

les appelle aussi bibliothèques, ou libraries en anglais). Ce sont des « boîtes à outils » qui vous seront très utiles.
Les développeurs de Python ont mis au point de nombreux modules qui effectuent différentes tâches. Pour cette

raison, prenez toujours le réflexe de vérifier si une partie du code que vous souhaitez écrire n’existe pas déjà sous forme
de module.

La plupart de ces modules sont déjà installés dans les versions standards de Python. Vous pouvez accéder à une
documentation exhaustive 1 sur le site de Python. N’hésitez pas à explorer un peu ce site, la quantité de modules
disponibles est impressionnante (plus de 300 modules).

9.2 Importation de modules
Dans les chapitres précédents, nous avons rencontré la notion de module plusieurs fois, notamment lorsque nous avons

voulu tirer un nombre aléatoire :
1 >>> import random
2 >>> random.randint(0, 10)
3 4

Regardons de plus près cet exemple :
• Ligne 1. L’instruction import donne accès à toutes les fonctions du module random 2.
• Ligne 2. Nous utilisons la fonction randint(0, 10) du module random. Cette fonction renvoie un nombre entier

tiré aléatoirement entre 0 inclus et 10 inclus.
Nous avons également croisé le module math lors de l’exercice sur la spirale (voir le chapitre 7 Fichiers). Ce module

nous a donné accès aux fonctions trigonométriques sinus et cosinus, et à la constante π :
1 >>> import math
2 >>> math.cos(math.pi / 2)
3 6.123233995736766e-17
4 >>> math.sin(math.pi / 2)
5 1.0

1. https://docs.python.org/fr/3/py-modindex.html
2. https://docs.python.org/fr/3/library/random.html#module-random

76

https://docs.python.org/fr/3/py-modindex.html
https://docs.python.org/fr/3/library/random.html#module-random

9.2. Importation de modules Chapitre 9. Modules

En résumé, l’utilisation de la syntaxe import module permet d’importer tout une série de fonctions organisées par
« thèmes ». Par exemple, les fonctions gérant les nombres aléatoires avec random et les fonctions mathématiques avec
math. Python possède de nombreux autres modules internes (c’est-à-dire présent de base lorsqu’on installe Python).

Remarque
Dans le chapitre 3 Affichage, nous avons introduit la syntaxe truc.bidule() avec truc étant un objet et .bidule()

une méthode. Nous vous avions expliqué qu’une méthode était une fonction un peu particulière :
• elle était liée à un objet par un point ;
• en général, elle agissait sur ou utilisait l’objet auquel elle était liée.
Par exemple, la méthode .append() vue dans le chapitre 4 Listes. Dans l’instruction liste1.append(3), la méthode

.append() ajoute l’entier 3 à l’objet liste1 auquel elle est liée.
Avec les modules, nous rencontrons une syntaxe similaire. Par exemple, dans l’instruction math.cos(), on pourrait

penser que .cos() est aussi une méthode. En fait la documentation officielle de Python 3 précise bien que dans ce cas
.cos() est une fonction. Dans cet ouvrage, nous utiliserons ainsi le mot fonction lorsqu’on évoquera des fonctions issues
de modules.

Si cela vous parait encore ardu, ne vous inquiétez pas : c’est à force de pratiquer et de lire que vous vous approprierez
le vocabulaire. La syntaxe module.fonction() est là pour rappeler de quel module provient la fonction en un coup
d’œil.

Il existe un autre moyen d’importer une ou plusieurs fonctions d’un module :
1 >>> from random import randint
2 >>> randint(0,10)
3 7

À l’aide du mot-clé from, on peut importer une fonction spécifique d’un module donné. Remarquez bien qu’il est
inutile de répéter le nom du module dans ce cas : seul le nom de la fonction en question est requis.

On peut également importer toutes les fonctions d’un module :
1 >>> from random import *
2 >>> randint(0,50)
3 46
4 >>> uniform(0,2.5)
5 0.64943174760727951

L’instruction from random import * importe toutes les fonctions du module random. On peut utiliser toutes ses
fonctions directement, comme par exemple randint() et uniform() qui renvoient des nombres aléatoires entiers et
floats.

Dans la pratique, plutôt que de charger toutes les fonctions d’un module en une seule fois :
1 from random import *

Nous vous conseillons de charger le module seul de la manière suivante :
1 import random

puis d’appeler explicitement les fonctions voulues, par exemple :
1 >>> import random
2 >>> random.randint(1, 10)
3 4
4 >>> random.uniform(1, 3)
5 1.8645753676306085

Il est également possible de définir un alias (un nom plus court) pour un module :

3. https://docs.python.org/fr/3/tutorial/modules.html

Cours de Python / Université Paris Cité / UFR Sciences du Vivant 77

https://docs.python.org/fr/3/tutorial/modules.html

Chapitre 9. Modules 9.3. Obtenir de l’aide sur les modules importés

1 >>> import random as rand
2 >>> rand.randint(1, 10)
3 6
4 >>> rand.uniform(1, 3)
5 2.643472616544236

Dans cet exemple, les fonctions du module random sont accessibles via l’alias rand.
Enfin, pour vider de la mémoire un module déjà chargé, on peut utiliser l’instruction del :

1 >>> import random
2 >>> random.randint(0,10)
3 2
4 >>> random.uniform(1, 3)
5 2.825594756352219
6 >>> del random
7 >>> random.randint(0,10)
8 Traceback (most recent call last):
9 File "<stdin>", line 1, in ?

10 NameError: name 'random' is not defined. Did you forget to import 'random'?

On constate alors qu’un rappel (ligne 7) d’une fonction du module random, après l’avoir vidé de la mémoire (ligne 6),
retourne un message d’erreur (lignes 8-10). Dans le cas présent, le message d’erreur est explicite et demande à l’utilisateur
s’il n’a pas oublié d’importer le module random.

9.3 Obtenir de l’aide sur les modules importés
Pour obtenir de l’aide sur un module, rien de plus simple : il suffit d’utiliser la commande help() :

1 >>> import random
2 >>> help(random)
3 [...]

Ce qui renvoie :
Help on module random:

NAME
random - Random variable generators.

MODULE REFERENCE
https://docs.python.org/3.7/library/random

The following documentation is automatically generated from the Python
source files. It may be incomplete, incorrect or include features that
are considered implementation detail and may vary between Python
implementations. When in doubt, consult the module reference at the
location listed above.

DESCRIPTION
integers

uniform within range

sequences

pick random element
pick random sample

Remarque
• Pour vous déplacer dans l’aide, utilisez les flèches du haut et du bas pour le parcourir ligne par ligne, ou les touches

Page-up et Page-down pour faire défiler l’aide page par page.
• Pour quitter l’aide, appuyez sur la touche Q.
• Pour chercher du texte, tapez le caractère / puis le texte que vous cherchez, puis la touche Entrée. Par exemple,

pour chercher l’aide sur la fonction randint(), tapez /randint puis Entrée.

78 Cours de Python / Université Paris Cité / UFR Sciences du Vivant

9.4. Quelques modules courants Chapitre 9. Modules

• Vous pouvez également obtenir de l’aide sur une fonction particulière d’un module avec :
help(random.randint)

La commande help() est en fait une commande plus générale, permettant d’avoir de l’aide sur n’importe quel objet
chargé en mémoire :

1 >>> t = [1, 2, 3]
2 >>> help(t)
3 Help on list object:
4
5 class list(object)
6 | list() -> new list
7 | list(sequence) -> new list initialized from sequence's items
8 |
9 | Methods defined here:

10 |
11 | __add__(...)
12 | x.__add__(y) <==> x+y
13 |
14 |
15 ...

Enfin, pour connaître d’un seul coup d’œil toutes les méthodes ou variables associées à un objet, utilisez la fonction
dir() :

1 >>> import random
2 >>> dir(random)
3 ['BPF', 'LOG4', 'NV_MAGICCONST', 'RECIP_BPF', 'Random', 'SG_MAGICCONST',
4 'SystemRandom', 'TWOPI', 'WichmannHill', '_BuiltinMethodType', '_MethodT
5 ype', '__all__', '__builtins__', '__doc__', '__file__', '__name__', '_ac
6 os', '_ceil', '_cos', '_e', '_exp', '_hexlify', '_inst', '_log', '_pi',
7 '_random', '_sin', '_sqrt', '_test', '_test_generator', '_urandom', '_wa
8 rn', 'betavariate', 'choice', 'expovariate', 'gammavariate', 'gauss', 'g
9 etrandbits', 'getstate', 'jumpahead', 'lognormvariate', 'normalvariate',

10 'paretovariate', 'randint', 'random', 'randrange', 'sample', 'seed', 's
11 etstate', 'shuffle', 'uniform', 'vonmisesvariate', 'weibullvariate']
12 >>>

9.4 Quelques modules courants
Il existe une série de modules que vous serez probablement amenés à utiliser si vous programmez en Python. En voici

une liste non exhaustive (pour la liste complète, reportez-vous à la page des modules 4 sur le site de Python) :
• math 5 : fonctions et constantes mathématiques de base (sin, cos, exp, pi…).
• sys 6 : interaction avec l’interpréteur Python, notamment pour le passage d’arguments (voir plus bas).
• pathlib 7 : gestion des fichiers et des répertoires (voir plus bas).
• random 8 : génération de nombres aléatoires.
• time 9 : accès à l’heure de l’ordinateur et aux fonctions gérant le temps.
• urllib 10 : récupération de données sur internet depuis Python.
• Tkinter 11 : interface python avec Tk. Création d’objets graphiques (voir chapitre 25 Fenêtres graphiques et Tkinter

(en ligne)).
• re 12 : gestion des expressions régulières (voir chapitre 17 Expressions régulières et parsing).
Nous vous conseillons d’aller explorer les pages de ces modules pour découvrir toutes leurs potentialités.

4. https://docs.python.org/fr/3/py-modindex.html
5. https://docs.python.org/fr/3/library/math.html#module-math
6. https://docs.python.org/fr/3/library/sys.html#module-sys
7. https://docs.python.org/fr/3/library/os.html#module-os
8. https://docs.python.org/fr/3/library/random.html#module-random
9. https://docs.python.org/fr/3/library/time.html#module-time

10. https://docs.python.org/fr/3/library/urllib.html#module-urllib
11. https://docs.python.org/fr/3/library/tkinter.html#module-tkinter
12. https://docs.python.org/fr/3/library/re.html#module-re

Cours de Python / Université Paris Cité / UFR Sciences du Vivant 79

https://docs.python.org/fr/3/py-modindex.html
https://docs.python.org/fr/3/library/math.html#module-math
https://docs.python.org/fr/3/library/sys.html#module-sys
https://docs.python.org/fr/3/library/os.html#module-os
https://docs.python.org/fr/3/library/random.html#module-random
https://docs.python.org/fr/3/library/time.html#module-time
https://docs.python.org/fr/3/library/urllib.html#module-urllib
https://docs.python.org/fr/3/library/tkinter.html#module-tkinter
https://docs.python.org/fr/3/library/re.html#module-re

Chapitre 9. Modules 9.5. Module random : génération de nombres aléatoires

Vous verrez dans le chapitre 15 Création de modules comment créer votre propre module lorsque vous souhaitez
réutiliser souvent vos propres fonctions.

Enfin, notez qu’il existe de nombreux autres modules externes qui ne sont pas installés de base dans Python, mais
qui sont très utilisés en bioinformatique et en analyse de données. Par exemple : NumPy (manipulations de vecteurs
et de matrices), Biopython (manipulation de séquences ou de structures de biomolécules), matplotlib (représentations
graphiques), pandas (analyse de données tabulées), etc. Ces modules vous serons présentés dans les chapitres 19 à 22.

9.5 Module random : génération de nombres aléatoires
Comme indiqué précédemment, le module random 13 contient des fonctions pour la génération de nombres aléatoires :

1 >>> import random
2 >>> random.randint(0, 10)
3 4
4 >>> random.randint(0, 10)
5 10
6 >>> random.uniform(0, 10)
7 6.574743184892878
8 >>> random.uniform(0, 10)
9 1.1655547702189106

Le module random permet aussi de permuter aléatoirement des listes :
1 >>> x = [1, 2, 3, 4]
2 >>> random.shuffle(x)
3 >>> x
4 [2, 3, 1, 4]
5 >>> random.shuffle(x)
6 >>> x
7 [4, 2, 1, 3]

Mais aussi de tirer aléatoirement un élément dans une liste donnée :
1 >>> bases = ["A", "T", "C", "G"]
2 >>> random.choice(bases)
3 'A'
4 >>> random.choice(bases)
5 'G'

La fonction choices() (avec un s à la fin) réalise plusieurs tirages aléatoires (avec remise, c’est-à-dire qu’on peut
piocher plusieurs fois le même élément) dans une liste donnée. Le nombre de tirages est précisé par le paramètre k :

1 >>> random.choices(bases, k=5)
2 ['G', 'A', 'A', 'T', 'G']
3 >>> random.choices(bases, k=5)
4 ['A', 'T', 'A', 'A', 'C']
5 >>> random.choices(bases, k=10)
6 ['C', 'T', 'T', 'T', 'G', 'A', 'C', 'A', 'G', 'G']

Si vous exécutez vous-même les exemples précédents, vous devriez obtenir des résultats légèrement différents de ceux
indiqués.

Pour des besoins de reproductibilité des analyses en science, on a souvent besoin de retrouver les mêmes résultats
même si on utilise des nombres aléatoires. Pour cela, on peut définir ce qu’on appelle la « graine aléatoire ».

Définition
En informatique, la génération de nombres aléatoires est un problème complexe. On utilise plutôt des « générateurs

de nombres pseudo-aléatoires 14 ». Pour cela, une graine aléatoire 15 doit être définie. Cette graine est la plupart du temps
un nombre entier qu’on passe au générateur : celui-ci va alors produire une série donnée de nombres pseudo-aléatoires
qui dépendent de cette graine. Si on change la graine, la série de nombres change.

13. https://docs.python.org/fr/3/library/random.html#module-random
14. https://fr.wikipedia.org/wiki/G%C3%A9n%C3%A9rateur_de_nombres_pseudo-al%C3%A9atoires
15. https://fr.wikipedia.org/wiki/Graine_al%C3%A9atoire

80 Cours de Python / Université Paris Cité / UFR Sciences du Vivant

https://docs.python.org/fr/3/library/random.html#module-random
https://fr.wikipedia.org/wiki/G%C3%A9n%C3%A9rateur_de_nombres_pseudo-al%C3%A9atoires
https://fr.wikipedia.org/wiki/Graine_al%C3%A9atoire

9.6. Module sys : passage d’arguments Chapitre 9. Modules

En Python, la graine aléatoire se définit avec la fonction seed() :
1 >>> random.seed(42)
2 >>> random.randint(0, 10)
3 1
4 >>> random.randint(0, 10)
5 0
6 >>> random.randint(0, 10)
7 4

Ici, la graine aléatoire est fixée à 42. Si on ne précise pas la graine, par défaut Python utilise la date (plus précisément,
il s’agit du nombre de secondes écoulées depuis une date fixe passée). Ainsi, à chaque fois qu’on relance Python, la graine
sera différente, car ce nombre de secondes sera différent.

Si vous exécutez ces mêmes lignes de code (depuis l’instruction random.seed(42)), il se peut que vous ayez des
résultats différents selon la version de Python. Néanmoins, vous devriez systématiquement obtenir les mêmes résultats si
vous relancez plusieurs fois de suite ces instructions sur une même machine.

Remarque
Quand on utilise des nombres aléatoires, il est fondamental de connaitre la distribution de probablités utilisée par la

fonction.
Par exemple, la fonction de base du module random est random.random(), elle renvoie un float aléatoire entre 0 et

1 tiré dans une distribution uniforme. Si on tire beaucoup de nombres, on aura la même probabilité d’obtenir tous les
nombres possibles entre 0 et 1. La fonction random.randint() tire aussi un entier dans une distribution uniforme. La
fonction random.gauss() tire quant à elle un float aléatoire dans une distribution gaussienne.

9.6 Module sys : passage d’arguments
Le module sys 16 contient des fonctions et des variables spécifiques à l’interpréteur Python lui-même.
Ce module est particulièrement intéressant pour récupérer les arguments passés à un script Python lorsque celui-ci

est appelé en ligne de commande.
Dans cet exemple, créons le script suivant que l’on enregistrera sous le nom test.py :

1 import sys
2 print(sys.argv)

Ensuite, dans un shell, exécutons le script test.py suivi de plusieurs arguments :
$ python test.py salut girafe 42
['test.py', 'salut', 'girafe', '42']

• Ligne 1. Le caractère $ représente l’invite du shell, test.py est le nom du script Python, salut, girafe et 42
sont les arguments passés au script (tous séparés par un espace).

• Ligne 2. Le script affiche le contenu de la variable sys.argv. Cette variable est une liste qui contient tous les
arguments de la ligne de commande, y compris le nom du script Python lui-même qu’on retrouve comme premier
élément de cette liste dans sys.argv[0]. On peut donc accéder à chacun des différents arguments du script avec
sys.argv[1], sys.argv[2], etc.

Toujours dans le module sys, la fonction sys.exit() est utile pour quitter un script Python. On peut donner un
argument à cette fonction (en général une chaîne de caractères) qui sera renvoyé au moment où Python quittera le script.
Par exemple, si vous attendez au moins un argument en ligne de commande, vous pouvez renvoyer un message pour
indiquer à l’utilisateur ce que le script attend comme argument :

1 import sys
2
3 if len(sys.argv) != 2:
4 sys.exit("ERREUR : il faut exactement un argument.")
5
6 print(f"Argument vaut : {sys.argv[1]}")

16. https://docs.python.org/fr/3/library/sys.html#module-sys

Cours de Python / Université Paris Cité / UFR Sciences du Vivant 81

https://docs.python.org/fr/3/library/sys.html#module-sys

Chapitre 9. Modules 9.6. Module sys : passage d’arguments

Puis on l’exécute sans argument :
$ python test.py
ERREUR : il faut exactement un argument.

avec un seul argument :
$ python test.py 42
Argument vaut : 42

puis avec plusieurs :
$ python test.py 42 salut
ERREUR : il faut exactement un argument.

Remarque
On vérifie dans cet exemple que le script possède deux arguments, car le nom du script lui-même compte pour un

argument (le tout premier).
L’intérêt de récupérer des arguments passés dans la ligne de commande à l’appel du script est de pouvoir ensuite les

utiliser dans le script.

Voici comme nouvel exemple le script compte_lignes.py, qui prend comme argument le nom d’un fichier puis
affiche le nombre de lignes qu’il contient :

1 import sys
2
3 if len(sys.argv) != 2:
4 sys.exit("ERREUR : il faut exactement un argument.")
5
6 nom_fichier = sys.argv[1]
7 taille = 0
8 with open(nom_fichier, "r") as f_in:
9 taille = len(f_in.readlines())

10
11 print(f"{nom_fichier} contient {taille} lignes.")

Supposons que dans le même répertoire, nous ayons le fichier animaux1.txt dont voici le contenu :
girafe
tigre
singe
souris

et le fichier animaux2.txt qui contient :
poisson
abeille
chat

Utilisons maintenant le script compte_lignes.py :
$ python compte_lignes.py
ERREUR : il faut exactement un argument.
$ python compte_lignes.py animaux1.txt
animaux1.txt contient 4 lignes.
$ python compte_lignes.py animaux2.txt
animaux2.txt contient 3 lignes.
$ python compte_lignes.py animaux1.txt animaux2.txt
ERREUR : il faut exactement un argument.

Notre script est donc capable de :
• vérifier si un argument lui est donné et si ce n’est pas le cas d’afficher un message d’erreur ;
• d’ouvrir le fichier dont le nom est fourni en argument, de compter puis d’afficher le nombre de lignes.

82 Cours de Python / Université Paris Cité / UFR Sciences du Vivant

9.7. Module pathlib : gestion des fichiers et des répertoires Chapitre 9. Modules

Par contre, le script ne vérifie pas si le fichier fourni en argument existe bien :
$ python compte_lignes.py animaux3.txt
Traceback (most recent call last):
File "compte_lignes.py", line 8, in <module>

with open(nom_fichier, "r") as f_in:
^^^^^^^^^^^^^^^^^^^^^^

FileNotFoundError: [Errno 2] No such file or directory: 'animaux3.txt'

La lecture de la partie suivante va nous permettre d’améliorer notre script compte_lignes.py.

9.7 Module pathlib : gestion des fichiers et des répertoires
Le module pathlib 17 permet de manipuler les fichiers et les répertoires.
Le plus souvent, on utilise uniquement la classe Path du module pathlib, qu’on charge de cette manière :

1 >>> from pathlib import Path

La méthode .exists() vérifie la présence d’un fichier sur le disque dur :
1 >>> import sys
2 >>> from pathlib import Path
3 >>> if Path("toto.pdb").exists():
4 ... print("le fichier est présent")
5 ... else:
6 ... sys.exit("le fichier est absent")
7 ...
8 le fichier est absent

Dans cet exemple, si le fichier n’existe pas sur le disque dur, on quitte le programme avec la fonction exit() du
module sys que nous venons de voir.

La méthode .cwd() renvoie le chemin complet du répertoire depuis lequel est lancé Python (cwd signifiant current
working directory) :

1 >>> from pathlib import Path
2 >>> Path().cwd()
3 PosixPath('/home/pierre')

On obtient un objet de type PosixPath qu’il est possible de transformer si besoin en chaîne de caractères avec la
fonction str(), que nous avons vu dans le chapitre 2 Variables :

1 >>> str(Path().cwd())
2 '/home/pierre'

Mais l’intérêt de récupérer un objet de type PosixPath est qu’on peut ensuite utiliser les méthodes .name et .parent
pour obtenir respectivement le nom du répertoire (sans son chemin complet) et le répertoire parent :

1 >>> Path().cwd()
2 PosixPath('/home/pierre')
3 >>> Path().cwd().name
4 'pierre'
5 >>> Path().cwd().parent
6 PosixPath('/home')

Enfin, la méthode .iterdir() donne accès au contenu du répertoire depuis lequel est lancé Python :
1 >>> list(Path().iterdir())
2 [PosixPath('demo.py'), PosixPath('tests'), PosixPath('1BTA.pdb')]

Tout comme la fonction range() (voir le chapitre 4 Listes), la méthode .iterdir() est un itérateur. La fonction
list() permet d’obtenir une liste.

Toutefois, il est possible d’itérer très facilement sur le contenu d’un répertoire et de savoir s’il contient des fichiers
ou des sous-répertoires :

17. https://docs.python.org/fr/3/library/pathlib.html

Cours de Python / Université Paris Cité / UFR Sciences du Vivant 83

https://docs.python.org/fr/3/library/pathlib.html

Chapitre 9. Modules 9.8. Exercices

1 >>> for nom in Path().iterdir():
2 ... if nom.is_file():
3 ... print(f"{nom} est un fichier")
4 ... else:
5 ... print(f"{nom} n'est pas un fichier")
6 ...
7 demo.py est un fichier
8 tests n'est pas un fichier
9 1BTA.pdb est un fichier

La méthode .is_file() renvoie True si l’objet est un fichier, et False si ce n’est pas le cas.
La méthode .iterdir() parcourt le contenu d’un répertoire, sans en explorer les éventuels sous-répertoires. Si on

souhaite parcourir récursivement un répertoire, on utilise la méthode .glob(). Prenons l’arborescence suivante comme
exemple :
1BTA.pdb
demo.py
tests
├── results.csv
├── script1.py
└── script2.py

Le répertoire courant contient les fichiers 1BTA.pdb et demo.py, ainsi que le répertoire tests. Ce dernier contient
lui-même les fichiers results.csv, script1.py et script2.py.

On souhaite maintenant lister tous les scripts Python (dont l’extension est .py) présents dans le répertoire courant
et dans ses sous-répertoires :

1 >>> for nom in Path().glob("**/*.py"):
2 ... print(f"{nom}")
3 ...
4 demo.py
5 tests/script1.py
6 tests/script2.py

Dans la chaîne de caractères "**/*.py", ** recherche tous les sous-répertoires récursivement et *.py signifie
n’importe quel nom de fichier qui se termine par l’extension .py.

Il existe de nombreuse autres méthodes associées à la classe Path du module pathlib, n’hésitez pas à consulter la
documentation 18.

9.8 Exercices

Conseil
Pour les trois premiers exercices, utilisez l’interpréteur Python. Pour les exercices suivants, créez des scripts puis

exécutez-les dans un shell.

9.8.1 Racine carrée
Affichez sur la même ligne les nombres de 10 à 20 (inclus) ainsi que leur racine carrée avec trois décimales. Utilisez

pour cela le module math avec la fonction sqrt(). Exemple :
10 3.162
11 3.317
12 3.464
13 3.606
[...]

Consultez pour cela la documentation 19 de la fonction math.sqrt().

18. https://docs.python.org/3/library/pathlib.html
19. https://docs.python.org/fr/3/library/math.html#math.sqrt

84 Cours de Python / Université Paris Cité / UFR Sciences du Vivant

https://docs.python.org/3/library/pathlib.html
https://docs.python.org/fr/3/library/math.html#math.sqrt

9.8. Exercices Chapitre 9. Modules

9.8.2 Cosinus
Calculez le cosinus de π/2 en utilisant le module math avec la fonction cos() et la constante pi.
Consultez pour cela la documentation 20 de la fonction math.cos() et la documentation 21 de la constante math.pi.

9.8.3 Comparaison de floats
Montrez que √

5+
√

4+
√

3

est égale à e à 0,001 près.
Montrez ensuite que √

7+
√

6+
√

5

est égale à π à 0,0001 près.

Conseil
• Jetez un oeil à la rubrique sur la comparaison de floats abordée dans le chapitre 6 Tests.
• Les constantes π et e sont obtenues par math.pi et math.e.

9.8.4 Chemin et contenu du répertoire courant
Affichez le chemin et le contenu du répertoire courant (celui depuis lequel vous avez lancé l’interpréteur Python).
Déterminez également le nombre total de fichiers et de répertoires présents dans le répertoire courant.

9.8.5 Affichage temporisé
Affichez les nombres de 1 à 10 avec 1 seconde d’intervalle. Utilisez pour cela le module time et sa fonction sleep().
Consultez pour cela la documentation 22 de la fonction time.sleep().

9.8.6 Séquences aléatoires de chiffres
Générez une séquence aléatoire de six chiffres, ceux-ci étant des entiers tirés entre 1 et 4. Utilisez le module random

avec la fonction randint().
Consultez pour cela la documentation 23 de la fonction random.randint().

9.8.7 Compteur de points de jeu de belote
On considère un jeu de belote avec la variante sans-atout, où chaque carte vaut un certain nombre de points quelle

que soit sa couleur (trèfle, carreau, coeur, pique). Un dictionnaire permet de mettre la correspondance entre chaque carte
et son nombre de points :

1 # Nombre de points de chaque carte.
2 # (V = valet, D = dame, R = roi, # d = 10, A = as).
3 dico_points_sans_atouts = {"7": 0, "8": 0, "9": 0, "V": 2, "D": 3,
4 "R": 4, "d": 10, "A": 11}

Par ailleurs, on peut représenter un jeu de 32 cartes par une liste :
jeu_cartes = ["7", "8", "9", "d", "V", "D", "R", "A"] * 4
Créez un programme belote.py qui tire huit cartes au hasard sans remise et qui affiche le nombre de points

correspondant. Pour cela, vous pouvez utiliser la fonction random.sample() et son argument par mot-clé k. N’hésitez
pas à consulter la documentation 24. On souhaite une sortie de ce style :

20. https://docs.python.org/fr/3/library/math.html#math.cos
21. https://docs.python.org/fr/3/library/math.html#math.pi
22. https://docs.python.org/fr/3/library/time.html#time.sleep
23. https://docs.python.org/fr/3/library/random.html#random.randint
24. https://docs.python.org/fr/3/library/random.html#random.sample

Cours de Python / Université Paris Cité / UFR Sciences du Vivant 85

https://docs.python.org/fr/3/library/math.html#math.cos
https://docs.python.org/fr/3/library/math.html#math.pi
https://docs.python.org/fr/3/library/time.html#time.sleep
https://docs.python.org/fr/3/library/random.html#random.randint
https://docs.python.org/fr/3/library/random.html#random.sample

Chapitre 9. Modules 9.8. Exercices

$ python belote.py
La main est ['7', 'A', '9', 'A', 'R', 'd', 'V', 'D'].
7 --> 0 points
A --> 11 points
9 --> 0 points
A --> 11 points
R --> 4 points
d --> 10 points
V --> 2 points
D --> 3 points
Le nombre total de points de la main est 41.

9.8.8 Séquences aléatoires d’ADN
Générez une séquence aléatoire d’ADN de 20 bases de deux manières différentes. Utilisez le module random avec la

fonction choice() ou choices().

9.8.9 Séquences aléatoires d’ADN avec argument
Créez un script dna_random.py qui prend comme argument un nombre de bases, construit une séquence aléatoire

d’ADN dont la longueur est le nombre de bases fourni en argument, puis affiche cette séquence.
Le script devra vérifier qu’un argument est bien fourni et renvoyer un message d’erreur si ce n’est pas le cas.

Conseil
Pour générer la séquence d’ADN, utilisez la fonction random.choice() abordée dans l’exercice précédent.

9.8.10 Compteur de lignes
Améliorez le script compte_lignes.py, dont le code a été donné précédemment, de façon à ce qu’il renvoie un

message d’erreur si le fichier n’existe pas.
Par exemple, si les fichiers animaux1.txt et animaux2.txt sont bien dans le répertoire courant, mais pas animaux3

.txt :
$ python compte_lignes.py animaux1.txt
animaux1.txt contient 4 lignes.
$ python compte_lignes.py animaux2.txt
animaux2.txt contient 3 lignes.
$ python compte_lignes.py animaux3.txt
ERREUR : animaux3.txt n'existe pas.

9.8.11 Détermination du nombre pi par la méthode Monte Carlo (exercice +++)
Soit un cercle de rayon 1 (en trait plein sur la figure 9.1) inscrit dans un carré de côté 2 (en trait pointillé).
Avec R = 1, l’aire du carré vaut (2R)2 soit 4 et l’aire du disque délimité par le cercle vaut πR2 soit π.
En choisissant N points aléatoires (à l’aide d’une distribution uniforme) à l’intérieur du carré, la probabilité que ces

points se trouvent aussi dans le cercle est :

p =
aire du cercle
aire du carré =

π
4

Soit n, le nombre de points effectivement dans le cercle, il vient alors

p =
n
N

=
π
4
,

d’où

π = 4× n
N
.

Déterminez une approximation de π par cette méthode. Pour cela, pour N itérations :

86 Cours de Python / Université Paris Cité / UFR Sciences du Vivant

9.8. Exercices Chapitre 9. Modules

Figure 9.1 – Cercle de rayon 1 inscrit dans un carré de côté 2.

1. Choisissez aléatoirement les coordonnées x et y d’un point entre -1 et 1. Utilisez la fonction uniform() du module
random.

2. Calculez la distance entre le centre du cercle et ce point.
3. Déterminez si cette distance est inférieure au rayon du cercle, c’est-à-dire si le point est dans le cercle ou pas.
4. Si le point est effectivement dans le cercle, incrémentez le compteur n.
Finalement calculez le rapport entre n et N et proposez une estimation de π. Quelle valeur de π obtenez-vous pour

100 itérations ? 1000 itérations ? 10 000 itérations ? Comparez les valeurs obtenues à la valeur de π fournie par le module
math.

On rappelle que la distance d entre deux points A et B de coordonnées respectives (xA,yA) et (xB,yB) se calcule
comme :

d =
√

(xB − xA)2 +(yB − yA)2

Pour vous aider, consultez la documentation 25 de la fonction random.uniform().

25. https://docs.python.org/fr/3/library/random.html#random.uniform

Cours de Python / Université Paris Cité / UFR Sciences du Vivant 87

https://docs.python.org/fr/3/library/random.html#random.uniform

CHAPITRE 10

Fonctions

10.1 Principe et généralités
En programmation, les fonctions sont très utiles pour réaliser plusieurs fois la même opération au sein d’un programme.

Elles rendent également le code plus lisible et plus clair en le fractionnant en blocs logiques.
Vous connaissez déjà certaines fonctions Python. Par exemple math.cos(angle) du module math renvoie le cosinus

de la variable angle exprimé en radian. Vous connaissez aussi des fonctions internes à Python comme range() ou
len(). Pour l’instant, une fonction est à vos yeux une sorte de « boîte noire » :

1. À laquelle vous passez aucune, une ou plusieurs variable(s) entre parenthèses. Ces variables sont appelées argu-
ments. Il peut s’agir de n’importe quel type d’objet Python.

2. Qui effectue une action.
3. Qui renvoie un objet Python ou rien du tout.
Tout cela est illustré schématiquement dans la figure ci-dessous.

Figure 10.1 – Fonctionnement schématique d’une fonction.

Par exemple, si vous appelez la fonction len() de la manière suivante :

88

10.2. Définition Chapitre 10. Fonctions

1 >>> len([0, 1, 2])
2 3

voici ce qu’il se passe :
1. vous appelez len() en lui passant une liste en argument (ici la liste [0, 1, 2]) ;
2. la fonction calcule la longueur de cette liste ;
3. elle vous renvoie un entier égal à cette longueur.
Autre exemple, si vous appelez la méthode ma_liste.append() (n’oubliez pas, une méthode est une fonction qui

agit sur l’objet auquel elle est attachée par un point) :
1 >>> ma_liste.append(5)

1. Vous passez l’entier 5 en argument ;
2. la méthode append() ajoute l’entier 5 à l’objet ma_liste ;
3. et elle ne renvoie rien.
Aux yeux du programmeur, au contraire, une fonction est une portion de code effectuant une suite d’instructions bien

particulière. Mais avant de vous présenter la syntaxe et la manière de construire une fonction, revenons une dernière fois
sur cette notion de « boîte noire » :

• Une fonction effectue une tâche. Pour cela, elle reçoit éventuellement des arguments et renvoie éventuellement
quelque chose. L’algorithme utilisé au sein de la fonction n’intéresse pas directement l’utilisateur. Par exemple, il
est inutile de savoir comment la fonction math.cos() calcule un cosinus. On a juste besoin de savoir qu’il faut lui
passer en argument un angle en radian, et qu’elle renvoie le cosinus de cet angle. Ce qui se passe à l’intérieur de
la fonction ne regarde que le programmeur.

• Chaque fonction effectue en général une tâche unique et précise. Si cela se complique, il est plus judicieux d’écrire
plusieurs fonctions (qui peuvent éventuellement s’appeler les unes les autres). Cette modularité améliore la qualité
générale et la lisibilité du code. Vous verrez qu’en Python, les fonctions présentent une grande flexibilité.

Pour finir sur les généralités, nous avons utilisé dans la Figure ci-dessus le terme programme principal (main en
anglais), pour désigner l’endroit depuis lequel on appelle une fonction (on verra plus tard que l’on peut en fait appeler
une fonction de n’importe où). Le programme principal désigne le code qui est exécuté lorsqu’on lance le script Python,
c’est-à-dire toute la suite d’instructions en dehors des fonctions. En général, dans un script Python, on écrit d’abord les
fonctions, puis le programme principal. Nous aurons l’occasion de revenir sur cette notion de programme principal plus
tard dans ce chapitre, ainsi que dans le chapitre 13 Plus sur les fonctions.

10.2 Définition
Pour définir une fonction, Python utilise le mot-clé def. Si on souhaite que la fonction renvoie quelque chose, il faut

utiliser le mot-clé return. Par exemple :
1 >>> def carre(x):
2 ... return x**2
3 ...
4 >>> print(carre(2))
5 4

Notez que la syntaxe de def utilise les deux-points comme les boucles for et while ainsi que les tests if : un bloc
d’instructions est donc attendu. De même que pour les boucles et les tests, l’indentation de ce bloc d’instructions (qu’on
appelle le corps de la fonction) est obligatoire.

Dans l’exemple précédent, nous avons passé un argument à la fonction carre(), qui nous a renvoyé (ou retourné)
une valeur que nous avons immédiatement affichée à l’écran avec l’instruction print(). Que veut dire valeur renvoyée ?
Et bien cela signifie que cette dernière est récupérable dans une variable :

1 >>> res = carre(2)
2 >>> print(res)
3 4

Ici, le résultat renvoyé par la fonction est stocké dans la variable res. Notez qu’une fonction ne prend pas forcément
un argument et ne renvoie pas forcément une valeur, par exemple :

Cours de Python / Université Paris Cité / UFR Sciences du Vivant 89

Chapitre 10. Fonctions 10.3. Passage d’arguments

1 >>> def hello():
2 ... print("bonjour")
3 ...
4 >>> hello()
5 bonjour

Dans ce cas, la fonction hello() se contente d’afficher la chaîne de caractères "bonjour" à l’écran. Elle ne prend
aucun argument et ne renvoie rien. Par conséquent, cela n’a pas de sens de vouloir récupérer dans une variable le résultat
renvoyé par une telle fonction. Si on essaie tout de même, Python affecte la valeur None qui signifie rien en anglais :

1 >>> var = hello()
2 bonjour
3 >>> print(var)
4 None

Ceci n’est pas une faute car Python n’émet pas d’erreur, toutefois cela ne présente, la plupart du temps, guère
d’intérêt.

10.3 Passage d’arguments
Le nombre d’arguments que l’on peut passer à une fonction est variable. Nous avons vu ci-dessus des fonctions

auxquelles on passait zero ou un argument. Dans les chapitres précédents, vous avez rencontré des fonctions internes à
Python qui prenaient au moins deux arguments. Souvenez-vous par exemple de range(1, 10) ou encore range(1,
10, 2). Le nombre d’arguments est donc laissé libre à l’initiative du programmeur qui développe une nouvelle fonction.

Une particularité des fonctions en Python est que vous n’êtes pas obligé de préciser le type des arguments que vous
lui passez, dès lors que les opérations que vous effectuez avec ces arguments sont valides. Python est en effet connu
comme étant un langage au « typage dynamique », c’est-à-dire qu’il reconnaît pour vous le type des variables au moment
de l’exécution. Par exemple :

1 >>> def fois(x, y):
2 ... return x*y
3 ...
4 >>> fois(2, 3)
5 6
6 >>> fois(3.1415, 5.23)
7 16.430045000000003
8 >>> fois("to", 2)
9 'toto'

10 >>> fois([1,3], 2)
11 [1, 3, 1, 3]

L’opérateur * reconnaît plusieurs types (entiers, floats, chaînes de caractères, listes). Notre fonction fois() est donc
capable d’effectuer des tâches différentes ! Même si Python autorise cela, méfiez-vous tout de même de cette grande
flexibilité qui pourrait conduire à des surprises dans vos futurs programmes. En général, il est plus judicieux que chaque
argument ait un type précis (entiers, floats, chaînes de caractères, etc.) et pas l’un ou l’autre.

10.4 Renvoi de résultats
Un énorme avantage en Python est que les fonctions sont capables de renvoyer plusieurs objets à la fois, comme dans

cette fraction de code :
1 >>> def carre_cube(x):
2 ... return x**2, x**3
3 ...
4 >>> carre_cube(2)
5 (4, 8)

En réalité Python ne renvoie qu’un seul objet, mais celui-ci peut être séquentiel, c’est-à-dire contenir lui-même
d’autres objets. Dans notre exemple, Python renvoie un objet de type tuple, type que nous avons vu dans le chapitre
8 Dictionnaires et tuples (souvenez-vous, il s’agit d’une sorte de liste avec des propriétés différentes). Notre fonction
pourrait tout autant renvoyer une liste :

90 Cours de Python / Université Paris Cité / UFR Sciences du Vivant

10.5. Arguments positionnels et arguments par mot-clé Chapitre 10. Fonctions

1 >>> def carre_cube2(x):
2 ... return [x**2, x**3]
3 ...
4 >>> carre_cube2(3)
5 [9, 27]

Renvoyer un tuple ou une liste de deux éléments (ou plus) est très pratique en conjonction avec l’affectation multiple,
par exemple :

1 >>> z1, z2 = carre_cube2(3)
2 >>> z1
3 9
4 >>> z2
5 27

Cela permet de récupérer plusieurs valeurs renvoyées par une fonction et de les affecter à la volée à des variables
différentes.

Une fonction peut aussi renvoyer un booléen :
1 def est_pair(x):
2 if x % 2 == 0:
3 return True
4 else:
5 return False
6
7 # Programme principal.
8 for chiffre in range(1, 5):
9 if est_pair(chiffre):

10 print(f"{chiffre} est pair")

Comme la fonction renvoie un booléen, on peut utiliser la notation if est_pair(chiffre): qui équivaut à if
est_pair(chiffre) == True:. Il est courant d’appeler une fonction qui renvoie un booléen est_quelquechose()
car on comprend que ça pose la question si c’est vrai ou faux. En anglais, on trouvera la notation is_even(). Nous
reverrons ces notions dans le chapitre 13 Plus sur les fonctions.

10.5 Arguments positionnels et arguments par mot-clé
Jusqu’à maintenant, nous avons systématiquement passé le nombre d’arguments que la fonction attendait. Que se

passe-t-il si une fonction attend deux arguments et que nous ne lui en passons qu’un seul ?
1 >>> def fois(x, y):
2 ... return x*y
3 ...
4 >>> fois(2, 3)
5 6
6 >>> fois(2)
7 Traceback (most recent call last):
8 File "<stdin>", line 1, in <module>
9 TypeError: fois() missing 1 required positional argument: 'y'

On constate que passer un seul argument à une fonction qui en attend deux conduit à une erreur.

Définition
Lorsqu’on définit une fonction def fct(x, y): les arguments x et y sont appelés arguments positionnels (en

anglais, positional arguments). Il est strictement obligatoire de les préciser lors de l’appel de la fonction. De plus, il est
nécessaire de respecter le même ordre lors de l’appel que dans la définition de la fonction. Dans l’exemple ci-dessus, 2
correspondra à x et 3 correspondra à y. Finalement, tout dépendra de leur position, d’où leur qualification de positionnel.

Mais il est aussi possible de passer un ou plusieurs argument(s) de manière facultative et de leur attribuer une valeur
par défaut :

Cours de Python / Université Paris Cité / UFR Sciences du Vivant 91

Chapitre 10. Fonctions 10.5. Arguments positionnels et arguments par mot-clé

1 >>> def fct(x=1):
2 ... return x
3 ...
4 >>> fct()
5 1
6 >>> fct(10)
7 10

Définition
Un argument défini avec une syntaxe def fct(arg=val): est appelé argument par mot-clé (en anglais, keyword

argument). Le passage d’un tel argument lors de l’appel de la fonction est facultatif. Ce type d’argument ne doit pas être
confondu avec les arguments positionnels présentés ci-dessus, dont la syntaxe est def fct(arg):.

Il est bien sûr possible de passer plusieurs arguments par mot-clé :
1 >>> def fct(x=0, y=0, z=0):
2 ... return x, y, z
3 ...
4 >>> fct()
5 (0, 0, 0)
6 >>> fct(10)
7 (10, 0, 0)
8 >>> fct(10, 8)
9 (10, 8, 0)

10 >>> fct(10, 8, 3)
11 (10, 8, 3)

On observe que pour l’instant, les arguments par mot-clé sont pris dans l’ordre dans lesquels on les passe lors de
l’appel. Comment faire si l’on souhaitait préciser l’argument par mot-clé z et garder les valeurs de x et y par défaut ?
Simplement en précisant le nom de l’argument lors de l’appel :

1 >>> fct(z=10)
2 (0, 0, 10)

Python permet même de rentrer les arguments par mot-clé dans un ordre arbitraire :
1 >>> fct(z=10, x=3, y=80)
2 (3, 80, 10)
3 >>> fct(z=10, y=80)
4 (0, 80, 10)

Que se passe-t-il lorsque nous avons un mélange d’arguments positionnels et par mot-clé ? Et bien les arguments
positionnels doivent toujours être placés avant les arguments par mot-clé :

1 >>> def fct(a, b, x=0, y=0, z=0):
2 ... return a, b, x, y, z
3 ...
4 >>> fct(1, 1)
5 (1, 1, 0, 0, 0)
6 >>> fct(1, 1, z=5)
7 (1, 1, 0, 0, 5)
8 >>> fct(1, 1, z=5, y=32)
9 (1, 1, 0, 32, 5)

On peut toujours passer les arguments par mot-clé dans un ordre arbitraire à partir du moment où on précise leur
nom. Par contre, si les deux arguments positionnels a et b ne sont pas passés à la fonction, Python renvoie une erreur.

1 >>> fct(z=0)
2 Traceback (most recent call last):
3 File "<stdin>", line 1, in <module>
4 TypeError: fct() missing 2 required positional arguments: 'a' and 'b'

92 Cours de Python / Université Paris Cité / UFR Sciences du Vivant

10.6. Variables locales et variables globales Chapitre 10. Fonctions

Conseil
Préciser le nom des arguments par mot-clé lors de l’appel d’une fonction est une pratique que nous vous recommandons.

Cela les distingue clairement des arguments positionnels.

L’utilisation d’arguments par mot-clé est habituelle en Python. Elle permet de modifier le comportement par défaut
de nombreuses fonctions. Par exemple, si on souhaite que la fonction print() n’affiche pas un retour à la ligne, on peut
utiliser l’argument end :

1 >>> print("Message ", end="")
2 Message >>>

Nous verrons, dans le chapitre 25 Fenêtres graphiques et Tkinter (en ligne), que l’utilisation d’arguments par mot-clé
est systématique lorsqu’on crée un objet graphique (une fenêtre, un bouton, etc.).

10.6 Variables locales et variables globales
Lorsqu’on manipule des fonctions, il est essentiel de bien comprendre comment se comportent les variables. Une

variable est dite locale lorsqu’elle est créée dans une fonction. Elle n’existera et ne sera visible que lors de l’exécution de
ladite fonction.

Une variable est dite globale lorsqu’elle est créée dans le programme principal. Elle sera visible partout dans le
programme.

Ceci ne vous paraît pas clair ? Nous allons prendre un exemple simple qui vous aidera à mieux saisir ces concepts.
Observez le code suivant :

1 # Définition d'une fonction carre().
2 def carre(x):
3 y = x**2
4 return y
5
6 # Programme principal.
7 var = 5
8 resultat = carre(var)
9 print(resultat)

Pour la suite des explications, nous allons utiliser l’excellent site Python Tutor 1 qui permet de visualiser l’état des
variables au fur et à mesure de l’exécution d’un code Python. Avant de poursuivre, nous vous conseillons de prendre 5
minutes pour tester ce site.

Regardons maintenant ce qui se passe dans le code ci-dessus, étape par étape :
• Étape 1 : Python est prêt à lire la première ligne de code.

1. http://www.pythontutor.com

Cours de Python / Université Paris Cité / UFR Sciences du Vivant 93

http://www.pythontutor.com

Chapitre 10. Fonctions 10.6. Variables locales et variables globales

• Étape 2 : Python met en mémoire la fonction carre(). Notez qu’il ne l’exécute pas ! La fonction est mise dans
un espace de la mémoire nommé Global frame, il s’agit de l’espace du programme principal. Dans cet espace
seront stockées toutes les variables globales créées dans le programme. Python est maintenant prêt à exécuter le
programme principal.

• Étape 3 : Python lit et met en mémoire la variable var. Celle-ci étant créée dans le programme principal, il s’agira
d’une variable globale. Ainsi, elle sera également stockée dans le Global frame.

• Étape 4 : La fonction carre() est appelée et on lui passe en argument l’entier var. La fonction s’exécute et
un nouveau cadre est créé dans lequel Python Tutor va indiquer toutes les variables locales à la fonction. Notez
bien que la variable passée en argument, qui s’appelle x dans la fonction, est créée en tant que variable locale. On
remarquera aussi que les variables globales situées dans le Global frame sont toujours là.

94 Cours de Python / Université Paris Cité / UFR Sciences du Vivant

10.6. Variables locales et variables globales Chapitre 10. Fonctions

• Étape 5 : Python est maintenant prêt à exécuter chaque ligne de code de la fonction.

• Étape 6 : La variable y est créée dans la fonction. Celle-ci est donc stockée en tant que variable locale à la fonction.

• Étape 7 : Python s’apprête à renvoyer la variable locale y au programme principal. Python Tutor nous indique le
contenu de la valeur renvoyée.

Cours de Python / Université Paris Cité / UFR Sciences du Vivant 95

Chapitre 10. Fonctions 10.6. Variables locales et variables globales

• Étape 8 : Python quitte la fonction et la valeur renvoyée par celle-ci est affectée à la variable globale resultat.
Notez bien que lorsque Python quitte la fonction, l’espace des variables alloué à la fonction est détruit. Ainsi,
toutes les variables créées dans la fonction n’existent plus. On comprend pourquoi elles portent le nom de locales
puisqu’elles n’existent que lorsque la fonction est exécutée.

• Étape 9 : Python affiche le contenu de la variable resultat et l’exécution est terminée.

Nous espérons que cet exemple guidé facilitera la compréhension des concepts de variables locales et globales. Cela
viendra aussi avec la pratique. Nous irons un peu plus loin sur les fonctions dans le chapitre 13 Plus sur les fonctions.

96 Cours de Python / Université Paris Cité / UFR Sciences du Vivant

10.7. Principe DRY Chapitre 10. Fonctions

D’ici là, essayez de vous entraîner au maximum avec les fonctions. C’est un concept ardu, mais il est impératif de le
maîtriser.

Enfin, comme vous avez pu le constater, Python Tutor nous a grandement aidé à comprendre ce qui se passait.
N’hésitez pas à l’utiliser sur des exemples ponctuels, ce site vous aidera à visualiser ce qui se passe lorsqu’un code ne fait
pas ce que vous attendez.

10.7 Principe DRY
L’acronyme DRY 2 signifie Don’t Repeat Yourself. Les fonctions permettent de satisfaire ce principe en évitant la

duplication de code. En effet, plus un code est dupliqué plusieurs fois dans un programme, plus il sera source d’erreurs,
notamment lorsqu’il faudra le faire évoluer.

Considérons par exemple le code suivant qui convertit plusieurs températures des degrés Fahrenheit en degrés Celsius :
1 >>> temp_in_fahrenheit = 60
2 >>> (temp_in_fahrenheit - 32) * (5/8)
3 17.5
4 >>> temp_in_fahrenheit = 80
5 >>> (temp_in_fahrenheit - 32) * (5/8)
6 30.0
7 >>> temp_in_fahrenheit = 100
8 >>> (temp_in_fahrenheit - 32) * (5/8)
9 42.5

Malheureusement, il y a une erreur dans la formule de conversion. En effet, la formule exacte est :

temp_celsius = (temp_fahrenheit−32)× 5
9

Il faut alors reprendre les lignes 2, 5 et 8 précédentes et les corriger. Cela n’est pas efficace, surtout si le même code
est utilisé à différents endroits dans le programme.

En écrivant qu’une seule fois la formule de conversion dans une fonction, on applique le principe DRY :
1 >>> def convert_fahrenheit_to_celsius(temperature):
2 ... return (temperature - 32) * (5/9)
3 ...
4 >>> temp_in_fahrenheit = 60
5 >>> convert_fahrenheit_to_celsius(temp_in_fahrenheit)
6 15.555555555555557
7 >>> temp_in_fahrenheit = 80
8 >>> convert_fahrenheit_to_celsius(temp_in_fahrenheit)
9 26.666666666666668

10 >>> temp_in_fahrenheit = 100
11 >>> convert_fahrenheit_to_celsius(temp_in_fahrenheit)
12 37.77777777777778

Et s’il y a une erreur dans la formule, il suffira de ne la corriger qu’une seule fois, dans la fonction convert_fahrenheit_to_celsius
().

10.8 Exercices

Conseil
Pour le premier exercice, utilisez Python Tutor. Pour les exercices suivants, créez des scripts puis exécutez-les dans

un shell.

10.8.1 Carré et factorielle
Reprenez l’exemple précédent à l’aide du site Python Tutor 3 :

2. https://www.earthdatascience.org/courses/intro-to-earth-data-science/write-efficient-python-code/
intro-to-clean-code/dry-modular-code/

3. http://www.pythontutor.com

Cours de Python / Université Paris Cité / UFR Sciences du Vivant 97

https://www.earthdatascience.org/courses/intro-to-earth-data-science/write-efficient-python-code/intro-to-clean-code/dry-modular-code/
https://www.earthdatascience.org/courses/intro-to-earth-data-science/write-efficient-python-code/intro-to-clean-code/dry-modular-code/
http://www.pythontutor.com

Chapitre 10. Fonctions 10.8. Exercices

1 # Définition d'une fonction carre().
2 def carre(x):
3 y = x**2
4 return y
5
6 # Programme principal.
7 z = 5
8 resultat = carre(z)
9 print(resultat)

Analysez ensuite le code suivant et tentez de prédire sa sortie :
1 def calc_factorielle(n):
2 fact = 1
3 for i in range(2, n+1):
4 fact = fact * i
5 return fact
6
7 # Programme principal.
8 nb = 4
9 factorielle_nb = calc_factorielle(nb)

10 print(f"{nb}! = {factorielle_nb}")
11 nb2 = 10
12 print(f"{nb2}! = {calc_factorielle(nb2)}")

Testez ensuite cette portion de code avec Python Tutor, en cherchant à bien comprendre chaque étape. Avez-vous
réussi à prédire la sortie correctement ?

Remarque
Une remarque concernant l’utilisation des f-strings que nous avions abordées dans le chapitre 3 Affichage. On découvre

ici une autre possibilité des f-strings dans l’instruction f"{nb2}! = {calc_factorielle(nb2)}" : il est en effet
possible d’appeler entre les accolades une fonction (ici {calc_factorielle(nb2)}) ! Ainsi, il n’est pas nécessaire de
créer une variable intermédiaire dans laquelle on stocke ce que retourne la fonction.

10.8.2 Puissance
Créez une fonction calc_puissance(x, y) qui renvoie xy en utilisant l’opérateur **. Pour rappel :

1 >>> 2**2
2 4
3 >>> 2**3
4 8
5 >>> 2**4
6 16

Dans le programme principal, calculez et affichez à l’écran 2i avec i variant de 0 à 20 inclus. On souhaite que le
résultat soit présenté avec le formatage suivant :
2^ 0 = 1
2^ 1 = 2
2^ 2 = 4
[...]
2^20 = 1048576

10.8.3 Pyramide
Reprenez l’exercice du chapitre 5 Boucles et comparaisons qui dessine une pyramide.
Dans un script pyra.py, créez une fonction gen_pyramide() à laquelle vous passez un nombre entier N et qui

renvoie une pyramide de N lignes sous forme de chaîne de caractères. Le programme principal demandera à l’utilisateur
le nombre de lignes souhaitées (utilisez pour cela la fonction input()) et affichera la pyramide à l’écran.

98 Cours de Python / Université Paris Cité / UFR Sciences du Vivant

10.8. Exercices Chapitre 10. Fonctions

10.8.4 Nombres premiers
Reprenez l’exercice du chapitre 6 Tests sur les nombres premiers.
Créez une fonction est_premier() qui prend comme argument un nombre entier positif n (supérieur à 2), et qui

renvoie le booléen True si n est premier et False si n n’est pas premier. Déterminez tous les nombres premiers de 2 à
100. On souhaite avoir une sortie similaire à celle-ci :
2 est premier
3 est premier
4 n'est pas premier

[...]
100 n'est pas premier

10.8.5 Séquence complémentaire
Créez une fonction seq_comp() qui prend comme argument une liste de bases et qui renvoie la séquence complé-

mentaire d’une séquence d’ADN sous forme de liste.
Dans le programme principal, à partir de la séquence d’ADN
seq = ["A", "T", "C", "G", "A", "T", "C", "G", "A", "T", "C"]
affichez seq et sa séquence complémentaire (en utilisant votre fonction seq_comp()).
Rappel : la séquence complémentaire s’obtient en remplaçant A par T, T par A, C par G et G par C.

10.8.6 Distance 3D
Créez une fonction calc_distance_3D() qui calcule la distance euclidienne en trois dimensions entre deux atomes.

Testez votre fonction sur les 2 points A(0,0,0) et B(1,1,1). Trouvez-vous bien
√

3 ?
On rappelle que la distance euclidienne d entre deux points A et B de coordonnées cartésiennes respectives (xA,yA,zA)

et (xB,yB,zB) se calcule comme suit :

d =
√
(xB − xA)2 +(yB − yA)2 +(zB − zA)2

10.8.7 Distribution et statistiques
Créez une fonction gen_distrib() qui prend comme argument trois entiers : debut, fin et n. La fonction renverra

une liste de n floats aléatoires entre debut et fin. Pour générer un nombre aléatoire dans un intervalle donné, utilisez la
fonction uniform() du module random, dont voici quelques exemples d’utilisation :

1 >>> import random
2 >>> random.uniform(1, 10)
3 8.199672607202174
4 >>> random.uniform(1, 10)
5 2.607528561528022
6 >>> random.uniform(1, 10)
7 9.000404025130946

Avec la fonction random.uniform(), les bornes passées en argument sont incluses, c’est-à-dire qu’ici, le nombre
aléatoire renvoyé est dans l’intervalle [1, 10].

Créez une autre fonction calc_stat() qui prend en argument une liste de floats et qui renvoie une liste de trois
éléments contenant respectivement le minimum, le maximum et la moyenne de la liste.

Dans le programme principal, générez 20 listes aléatoires de 100 floats compris entre 0 et 100 et affichez le minimum
(min()), le maximum (max()) et la moyenne pour chacune d’entre elles. La moyenne pourra être calculée avec les
fonctions sum() et len().

Pour chacune des 20 listes, affichez les statistiques (valeur minimale, valeur maximale et moyenne) avec deux chiffres
après la virgule :
Liste 1 : min = 0.17 ; max = 99.72 ; moyenne = 57.38
Liste 2 : min = 1.25 ; max = 99.99 ; moyenne = 47.41
[...]
Liste 19 : min = 1.05 ; max = 99.36 ; moyenne = 49.43
Liste 20 : min = 1.33 ; max = 97.63 ; moyenne = 46.53

Cours de Python / Université Paris Cité / UFR Sciences du Vivant 99

Chapitre 10. Fonctions 10.8. Exercices

Les écarts sur les statistiques entre les différentes listes sont-ils importants ? Relancez votre script avec des listes de
1000 éléments, puis 10 000 éléments. Les écarts changent-ils quand le nombre d’éléments par liste augmente ?

10.8.8 Distance à l’origine (exercice +++)

En reprenant votre fonction de calcul de distance euclidienne en trois dimensions calc_distance_3D(), faites-en
une version pour deux dimensions que vous appellerez calc_distance_2D().

Créez une autre fonction calc_dist2ori(), à laquelle vous passez en argument deux listes de floats list_x et
list_y représentant les coordonnées d’une fonction mathématique (par exemple x et sin(x)). Cette fonction renverra
une liste de floats représentant la distance entre chaque point de la fonction et l’origine (de coordonnées (0,0)).

La figure 10.2 montre un exemple sur quelques points de la fonction sin(x) (courbe en trait épais). Chaque trait
pointillé représente la distance que l’on cherche à calculer entre les points de la courbe et l’origine du repère de coordonnées
(0,0).

Figure 10.2 – Illustration de la distance à l’origine.

Votre programme générera un fichier sin2ori.dat qui contiendra deux colonnes : la première représente les x, la
seconde la distance entre chaque point de la fonction sin(x) à l’origine.

Enfin, pour visualiser votre résultat, ajoutez le code suivant tout à la fin de votre script :

100 Cours de Python / Université Paris Cité / UFR Sciences du Vivant

10.8. Exercices Chapitre 10. Fonctions

1 # Création d'une image pour la visualisation du résultat.
2 import matplotlib.pyplot as plt
3
4 x = []
5 y = []
6 with open("sin2ori.dat", "r") as f_in:
7 for line in f_in:
8 coords = line.split()
9 x.append(float(coords[0]))

10 y.append(float(coords[1]))
11 fig, ax = plt.subplots(figsize=(6, 6))
12 ax.plot(x, y)
13 ax.set_xlabel("x")
14 ax.set_ylabel("Distance de sin(x) à l'origine")
15 fig.savefig("sin2ori.png")

Ouvrez l’image sin2ori.png.

Remarque
Le module matplotlib sera expliqué en détail dans le chapitre 21 Module matplotlib.

Cours de Python / Université Paris Cité / UFR Sciences du Vivant 101

CHAPITRE 11

Plus sur les chaînes de caractères

11.1 Préambule
Nous avons déjà abordé les chaînes de caractères dans les chapitres 2 Variables et 3 Affichage. Ici nous allons un peu

plus loin, notamment avec les méthodes associées aux chaînes de caractères 1.

11.2 Chaînes de caractères et listes
Les chaînes de caractères peuvent être considérées comme des listes (de caractères) un peu particulières :

1 >>> animaux = "girafe tigre"
2 >>> animaux
3 'girafe tigre'
4 >>> len(animaux)
5 12
6 >>> animaux[3]
7 'a'

Nous pouvons donc utiliser certaines propriétés des listes comme les tranches :
1 >>> animaux = "girafe tigre"
2 >>> animaux[0:4]
3 'gira'
4 >>> animaux[9:]
5 'gre'
6 >>> animaux[:-2]
7 'girafe tig'
8 >>> animaux[1:-2:2]
9 'iaetg'

Mais a contrario des listes, les chaînes de caractères présentent toutefois une différence notable, ce sont des listes
non modifiables. Une fois une chaîne de caractères définie, vous ne pouvez plus modifier un de ses éléments. Le cas
échéant, Python renvoie un message d’erreur :

1. https://docs.python.org/fr/3/library/string.html

102

https://docs.python.org/fr/3/library/string.html

11.3. Caractères spéciaux Chapitre 11. Plus sur les chaînes de caractères

1 >>> animaux = "girafe tigre"
2 >>> animaux[4]
3 'f'
4 >>> animaux[4] = "F"
5 Traceback (most recent call last):
6 File "<stdin>", line 1, in <module>
7 TypeError: 'str' object does not support item assignment

Par conséquent, si vous voulez modifier une chaîne de caractères, vous devez en construire une nouvelle. Pour cela,
n’oubliez pas que les opérateurs de concaténation (+) et de duplication (*) (introduits dans le chapitre 2 Variables)
peuvent vous aider. Vous pouvez également générer une liste, qui elle est modifiable, puis revenir à une chaîne de
caractères (voir plus bas).

11.3 Caractères spéciaux
Il existe certains caractères spéciaux comme \n que nous avons déjà vu (pour le retour à la ligne). Le caractère \t

produit une tabulation. Si vous voulez écrire des guillemets simples ou doubles et que ceux-ci ne soient pas confondus
avec les guillemets de déclaration de la chaîne de caractères, vous pouvez utiliser \' ou \" :

1 >>> print("Un backslash n\npuis un backslash t\t puis un guillemet\"")
2 Un backslash n
3 puis un backslash t puis un guillemet"
4 >>> print('J\'affiche un guillemet simple')
5 J'affiche un guillemet simple

Vous pouvez aussi utiliser astucieusement des guillemets doubles ou simples pour déclarer votre chaîne de caractères :
1 >>> print("Un brin d'ADN")
2 Un brin d'ADN
3 >>> print('Python est un "super" langage de programmation')
4 Python est un "super" langage de programmation

Quand on souhaite écrire un texte sur plusieurs lignes, il est très commode d’utiliser les guillemets triples qui conservent
le formatage (notamment les retours à la ligne) :

1 >>> x = """souris
2 ... chat
3 ... abeille"""
4 >>> x
5 'souris\nchat\nabeille'
6 >>> print(x)
7 souris
8 chat
9 abeille

Attention, les caractères spéciaux n’apparaissent intérprétés que lorsqu’ils sont utilisés avec la fonction print(). Par
exemple, le \n n’apparait comme un retour à la ligne que lorsqu’il est dans une chaîne de caractères passée à la fonction
print() :

1 >>> "bla\nbla"
2 'bla\nbla'
3 >>> print("bla\nbla")
4 bla
5 bla

11.4 Préfixe de chaîne de caractères
Nous avons vu au chapitre 3 Affichage la notion de f-string. Il s’agit d’un mécanisme pour formater du texte au sein

d’une chaîne de caractères. Par exemple :
1 >>> var = "f-string"
2 >>> f"voici une belle {var}"
3 'voici une belle f-string'

Cours de Python / Université Paris Cité / UFR Sciences du Vivant 103

Chapitre 11. Plus sur les chaînes de caractères 11.4. Préfixe de chaîne de caractères

Que signifie le f que l’on accole aux guillemets de la chaîne de caractères ? Celui-ci est appelé « préfixe de chaîne de
caractères » ou stringprefix.

Remarque
Un stringprefix modifie la manière dont Python va interpréter ladite string. Celui-ci doit être systématiquement «

collé » à la chaîne de caractères, c’est-à-dire sans espace entre les deux.

Il existe différents stringprefixes en Python, nous vous montrons ici les deux qui nous apparaissent les plus importants.
• Le préfixe r mis pour raw string, qui force la non-interprétation des caractères spéciaux :

1 >>> s = "Voici un retour à la ligne\nEt là une autre ligne"
2 >>> s
3 'Voici un retour à la ligne\nEt là une autre ligne'
4 >>> print(s)
5 Voici un retour à la ligne
6 Et là une autre ligne
7 >>> s = r"Voici un retour à la ligne\nEt là une autre ligne"
8 >>> s
9 'Voici un retour à la ligne\\nEt là une autre ligne'

10 >>> print(s)
11 Voici un retour à la ligne\nEt là une autre ligne

L’ajout du r va forcer Python à ne pas interpréter le \n comme un retour à la ligne, mais comme un backslash littéral
suivi d’un n. Quand on demande à l’interpréteur d’afficher cette chaîne de caractères, celui-ci met deux backslashes
pour signifier qu’il s’agit d’un backslash littéral (le premier échappe le second). Finalement, l’utilisation de la syntaxe
r"Voici un retour à la ligne\nEt là une autre ligne" renvoie une chaîne de caractères normale, puisqu’on
voit ensuite que le r a disparu lorsqu’on demande à Python d’afficher le contenu de la variable s. Comme dans var = 2
+ 2, d’abord Python évalue 2 + 2. Puis ce résultat est affecté à la variable var. Enfin, on notera que seule l’utilisation

du print() mène à l’interprétation des caractères spéciaux comme \n, comme expliqué dans la rubrique précédente.
Les caractères spéciaux non interprétés dans les raw strings sont de manière générale tout ce dont le backslash modifie

la signification, par exemple un \n, un \t, etc.
• Le préfixe f mis pour formatted string, qui met en place l’écriture formatée comme vue au chapitre 3 Affichage :

1 >>> animal = "renard"
2 >>> animal2 = "poulain"
3 >>> s = f"Le {animal} est un animal gentil\nLe {animal2} aussi"
4 >>> s
5 'Le renard est un animal gentil\nLe poulain aussi'
6 >>> print(s)
7 Le renard est un animal gentil
8 Le poulain aussi
9 >>> s = "Le {animal} est un animal gentil\nLe {animal2} aussi"

10 >>> s
11 'Le {animal} est un animal gentil\nLe {animal2} aussi'
12 >>> print(s)
13 Le {animal} est un animal gentil
14 Le {animal2} aussi

La f-string remplace le contenu des variables situées entre les accolades et interprète le \n comme un retour à la
ligne. Pour rappel, consultez le chapitre 3 si vous souhaitez plus de détails sur le fonctionnement des f-strings.

Conseil
Il existe de nombreux autres détails concernant les préfixes qui vont au-delà de ce cours. Pour en savoir plus, vous

pouvez consulter la documentations officielle 2.

2. https://docs.python.org/fr/3/reference/lexical_analysis.html#grammar-token-stringprefix

104 Cours de Python / Université Paris Cité / UFR Sciences du Vivant

https://docs.python.org/fr/3/reference/lexical_analysis.html#grammar-token-stringprefix

11.5. Méthodes associées aux chaînes de caractères Chapitre 11. Plus sur les chaînes de caractères

11.5 Méthodes associées aux chaînes de caractères
Voici quelques méthodes 3 spécifiques aux objets de type str :

1 >>> x = "girafe"
2 >>> x.upper()
3 'GIRAFE'
4 >>> x
5 'girafe'
6 >>> 'TIGRE'.lower()
7 'tigre'

Les méthodes .lower() et .upper() renvoient un texte en minuscule et en majuscule respectivement. On remarque
que l’utilisation de ces méthodes n’altère pas la chaîne de caractères de départ, mais renvoie une chaîne de caractères
transformée.

Pour mettre en majuscule la première lettre seulement, vous pouvez faire :
1 >>> x[0].upper() + x[1:]
2 'Girafe'

ou plus simplement utiliser la méthode adéquate :
1 >>> x.capitalize()
2 'Girafe'

Il existe une méthode associée aux chaînes de caractères qui est particulièrement pratique, la méthode .split() :
1 >>> animaux = "girafe tigre singe souris"
2 >>> animaux.split()
3 ['girafe', 'tigre', 'singe', 'souris']
4 >>> for animal in animaux.split():
5 ... print(animal)
6 ...
7 girafe
8 tigre
9 singe

10 souris

La méthode .split() découpe une chaîne de caractères en plusieurs éléments appelés champs, en utilisant comme
séparateur n’importe quelle combinaison « d’espace(s) blanc(s) ».

Définition
Un espace blanc 4 (whitespace en anglais) correspond aux caractères qui sont invisibles à l’œil, mais qui occupent de

l’espace dans un texte. Les espaces blancs les plus classiques sont l’espace, la tabulation et le retour à la ligne.

Il est possible de modifier le séparateur de champs, par exemple :
1 >>> animaux = "girafe:tigre:singe::souris"
2 >>> animaux.split(":")
3 ['girafe', 'tigre', 'singe', '', 'souris']

Attention, dans cet exemple, le séparateur est un seul caractères « : » (et non pas une combinaison de un ou plusieurs
:) conduisant ainsi à une chaîne vide entre singe et souris.

Il est également intéressant d’indiquer à .split() le nombre de fois qu’on souhaite découper la chaîne de caractères
avec l’argument maxsplit :

1 >>> animaux = "girafe tigre singe souris"
2 >>> animaux.split(maxsplit=1)
3 ['girafe', 'tigre singe souris']
4 >>> animaux.split(maxsplit=2)
5 ['girafe', 'tigre', 'singe souris']

3. https://docs.python.org/fr/3/library/string.html
4. https://en.wikipedia.org/wiki/Whitespace_character

Cours de Python / Université Paris Cité / UFR Sciences du Vivant 105

https://docs.python.org/fr/3/library/string.html
https://en.wikipedia.org/wiki/Whitespace_character

Chapitre 11. Plus sur les chaînes de caractères 11.5. Méthodes associées aux chaînes de caractères

La méthode .find(), quant à elle, recherche une chaîne de caractères passée en argument :
1 >>> animal = "girafe"
2 >>> animal.find("i")
3 1
4 >>> animal.find("afe")
5 3
6 >>> animal.find("z")
7 -1
8 >>> animal.find("tig")
9 -1

Si l’élément recherché est trouvé, alors l’indice du début de l’élément dans la chaîne de caractères est renvoyé. Si
l’élément n’est pas trouvé, alors la valeur -1 est renvoyée.

Si l’élément recherché est trouvé plusieurs fois, seul l’indice de la première occurrence est renvoyé :
1 >>> animaux = "girafe tigre"
2 >>> animaux.find("i")
3 1

On trouve aussi la méthode .replace() qui substitue une chaîne de caractères par une autre :
1 >>> animaux = "girafe tigre"
2 >>> animaux.replace("tigre", "singe")
3 'girafe singe'
4 >>> animaux.replace("i", "o")
5 'gorafe togre'

La méthode .count() compte le nombre d’occurrences d’une chaîne de caractères passée en argument :
1 >>> animaux = "girafe tigre"
2 >>> animaux.count("i")
3 2
4 >>> animaux.count("z")
5 0
6 >>> animaux.count("tigre")
7 1

La méthode .startswith() vérifie si une chaîne de caractères commence par une autre chaîne de caractères :
1 >>> chaine = "Bonjour monsieur le capitaine !"
2 >>> chaine.startswith("Bonjour")
3 True
4 >>> chaine.startswith("Au revoir")
5 False

Cette méthode est particulièrement utile lorsqu’on lit un fichier et que l’on veut récupérer certaines lignes commençant
par un mot-clé. Par exemple dans un fichier PDB, les lignes contenant les coordonnées des atomes commencent par le
mot-clé ATOM.

Enfin, la méthode .strip() permet de « nettoyer les bords » d’une chaîne de caractères :
1 >>> chaine = " Comment enlever les espaces au début et à la fin ? "
2 >>> chaine.strip()
3 'Comment enlever les espaces au début et à la fin ?'

La méthode .strip() enlève les espaces situés sur les bords de la chaîne de caractère mais pas ceux situés entre des
caractères visibles. En réalité, cette méthode enlève n’importe quel combinaison « d’espace(s) blanc(s) » sur les bords,
par exemple :

1 >>> chaine = " \tfonctionne avec les tabulations et les retours à la ligne\n"
2 >>> chaine.strip()
3 'fonctionne avec les tabulations et les retours à la ligne'

Cette méthode est utile pour se débarrasser des retours à la ligne quand on lit un fichier.

106 Cours de Python / Université Paris Cité / UFR Sciences du Vivant

11.6. Extraction de valeurs numériques d’une chaîne de caractères Chapitre 11. Plus sur les chaînes de caractères

11.6 Extraction de valeurs numériques d’une chaîne de caractères
Une tâche courante en Python est de lire une chaîne de caractères (provenant par exemple d’un fichier), d’en extraire

des valeurs pour ensuite les manipuler.
On considère par exemple la chaîne de caractères chaine1 :

1 >>> chaine1 = "3.4 17.2 atom"

On souhaite extraire les valeurs 3.4 et 17.2 pour ensuite les additionner.
D’abord, on découpe la chaîne de caractères avec la méthode .split() :

1 >>> liste1 = chaine1.split()
2 >>> liste1
3 ['3.4', '17.2', 'atom']
4 >>> nb1, nb2, nom = liste1
5 >>> nb1
6 '3.4'
7 >>> nb2
8 '17.2'

On obtient alors une liste de chaînes de caractères liste1. Avec l’affectation multiple, on récupère les nombres
souhaités dans nb1 et nb2, mais ils sont toujours sous forme de chaîne de caractères. Il faut ensuite les convertir en floats
pour pouvoir les additionner :

1 >>> float(nb1) + float(nb2)
2 20.599999999999998

Remarque
Retenez bien l’utilisation des instructions précédentes pour extraire des valeurs numériques d’une chaîne de caractères.

Elles sont régulièrement employées pour analyser des données extraites d’un fichier.

11.7 Fonction map()

Conseil
Si vous êtes débutant, vous pouvez sauter cette rubrique.

La fonction map() permet d’appliquer une fonction à plusieurs éléments d’un objet itérable. Par exemple, si on a une
chaîne de caractères avec trois entiers séparés par des espaces, on peut extraire et convertir les trois nombres en entier
en une seule ligne. La fonction map() produit un objet de type map qui est itérable et transformable en liste :

1 >>> ligne = "67 946 -45"
2 >>> ligne.split()
3 ['67', '946', '-45']
4 >>> map(int, ligne.split())
5 <map object at 0x7fa34e573b20>
6 >>> for entier in map(int, ligne.split()):
7 ... print(entier)
8 ...
9 67

10 946
11 -45
12 >>> list(map(int, ligne.split()))
13 [67, 946, -45]

Remarque

Cours de Python / Université Paris Cité / UFR Sciences du Vivant 107

Chapitre 11. Plus sur les chaînes de caractères 11.8. Test d’appartenance

La fonction map() prend deux arguments. Le second est un objet itérable, souvent une liste comme dans notre
exemple. Le premier argument est le nom d’une fonction qu’on souhaite appliquer à chaque élément de la liste, mais sans
les parenthèses (ici int et non pas int()). Une fonction passée en argument d’une autre fonction est appelée fonction
de rappel 5 ou callback en anglais. Nous reverrons cette notion dans le chapitre 25 Fenêtres graphiques et Tkinter (en
ligne).

La fonction map() est particulièrement utile lorsqu’on lit un fichier de valeurs numériques. Par exemple, si on a un
fichier data.dat contenant trois colonnes de nombres, map() en conjonction avec .split() permet de séparer les trois
nombres puis de les convertir en float en une seule ligne de code :

1 with open("data.dat", "r") as filin:
2 for line in filin:
3 x, y, z = map(float, line.split())
4 print(x + y + z)

Sans map(), il aurait fallu une ligne pour séparer les données x, y, z = line.split() et une autre pour les
transformer en float x, y, z = float(x), float(y), float(z).

Enfin, on peut utiliser map() avec ses propres fonctions :

1 >>> def calc_cube(x):
2 ... return x**3
3 ...
4 >>> list(map(calc_cube, [1, 2, 3, 4]))
5 [1, 8, 27, 64]

11.8 Test d’appartenance
L’opérateur in teste si une chaîne de caractères fait partie d’une autre chaîne de caractères :

1 >>> chaine = "Néfertiti"
2 >>> "toto" in chaine
3 False
4 >>> "titi" in chaine
5 True
6 >>> "ti" in chaine
7 True

Notez que la chaîne testée peut-être présente à n’importe quelle position dans l’autre chaîne. Par ailleurs, le test est
vrai si elle est présente une ou plusieurs fois.

La variation avec l’opérateur booléen not permet de vérifier qu’une chaîne n’est pas présente dans une autre chaîne :

1 >>> not "toto" in chaine
2 True
3 >>> not "fer" in chaine
4 False

11.9 Conversion d’une liste de chaînes de caractères en une chaîne de ca-
ractères

On a vu dans le chapitre 2 Variables la conversion d’un type simple (entier, float et chaîne de caractères) en un
autre avec les fonctions int(), float() et str(). La conversion d’une liste de chaînes de caractères en une chaîne de
caractères est moins intuitive. Elle fait appelle à la méthode .join() :

5. https://fr.wikipedia.org/wiki/Fonction_de_rappel

108 Cours de Python / Université Paris Cité / UFR Sciences du Vivant

https://fr.wikipedia.org/wiki/Fonction_de_rappel

11.10. Method chaining Chapitre 11. Plus sur les chaînes de caractères

1 >>> seq = ["A", "T", "G", "A", "T"]
2 >>> seq
3 ['A', 'T', 'G', 'A', 'T']
4 >>> "-".join(seq)
5 'A-T-G-A-T'
6 >>> " ".join(seq)
7 'A T G A T'
8 >>> "".join(seq)
9 'ATGAT'

Les éléments de la liste initiale sont concaténés les uns à la suite des autres et intercalés par un séparateur, qui peut
être n’importe quelle chaîne de caractères. Ici, on a utilisé un tiret, un espace et rien (une chaîne de caractères vide).

Attention, la méthode .join() ne s’applique qu’à une liste de chaînes de caractères :

1 >>> maliste = ["A", 5, "G"]
2 >>> " ".join(maliste)
3 Traceback (most recent call last):
4 File "<stdin>", line 1, in <module>
5 TypeError: sequence item 1: expected str instance, int found

On espère qu’après ce petit tour d’horizon vous serez convaincu de la richesse des méthodes associées aux chaînes de
caractères. Pour avoir une liste exhaustive de l’ensemble des méthodes associées à une variable particulière, vous pouvez
utiliser la fonction dir() :

1 >>> animaux = "girafe tigre"
2 >>> dir(animaux)
3 ['__add__', '__class__', '__contains__', '__delattr__', '__dir__',
4 ...,
5 'partition', 'replace', 'rfind', 'rindex', 'rjust', 'rpartition',
6 'rsplit', 'rstrip', 'split', 'splitlines', 'startswith', 'strip',
7 'swapcase', 'title', 'translate', 'upper', 'zfill']

Pour l’instant, vous pouvez ignorer les méthodes qui commencent et qui se terminent par deux tirets bas (underscores)
__. Nous n’avons pas mis l’ensemble de la sortie de cette commande dir() pour ne pas surcharger le texte, mais n’hésitez
pas à la tester dans l’interpréteur.

Vous pouvez également accéder à l’aide et à la documentation d’une méthode particulière avec help(), par exemple
pour la méthode .split() :

>>> help(animaux.split)
Help on built-in function split:

split(...)
S.split([sep [,maxsplit]]) -> list of strings

Return a list of the words in the string S, using sep as the
delimiter string. If maxsplit is given, at most maxsplit
splits are done. If sep is not specified or is None, any
whitespace string is a separator.

(END)

Attention à ne pas mettre les parenthèses à la suite du nom de la méthode. L’instruction correcte est help(animaux
.split) et non pas help(animaux.split()).

11.10 Method chaining
Il existe de nombreuses méthodes pour traiter les chaînes de caractères. Ces méthodes renvoient la plupart du temps

une chaîne de caractères modifiée.
Par exemple, si on souhaite mettre une majuscule à tous les mots d’une chaîne de caractères, puis remplacer un mot

par un autre, puis transformer cette chaîne de caractères en une liste de chaînes de caractères, on peut écrire :

Cours de Python / Université Paris Cité / UFR Sciences du Vivant 109

Chapitre 11. Plus sur les chaînes de caractères 11.11. Exercices

1 >>> message = "salut patrick salut pierre"
2 >>> message1 = message.title()
3 >>> message1
4 'Salut Patrick Salut Pierre'
5 >>> message2 = message1.replace("Salut", "Bonjour")
6 >>> message2
7 'Bonjour Patrick Bonjour Pierre'
8 >>> message2.split()
9 ['Bonjour', 'Patrick', 'Bonjour', 'Pierre']

On a créé deux variables intermédiaires message1 et message2 pour stocker les chaînes de caractères modifiées par
les méthodes .title() et .replace().

Il est possible de faire la même chose en une seule ligne, en utilisant le chaînage de méthodes ou method chaining :
1 >>> message = "salut patrick salut pierre"
2 >>> message.title().replace("Salut", "Bonjour").split()
3 ['Bonjour', 'Patrick', 'Bonjour', 'Pierre']

On évite ainsi de créer des variables intermédiaires.
Le method chaining peut créer des lignes de code très longues. On peut couper une ligne de code en plusieurs lignes

en utilisant le caractère \ en fin de ligne :
1 >>> message = "salut patrick salut pierre"
2 >>> message.title() \
3replace("Salut", "Bonjour") \
4title()
5 'Bonjour Patrick Bonjour Pierre'

On peut aussi utiliser des parenthèses pour couper une ligne de code en plusieurs lignes :
1 >>> message = "salut patrick salut pierre"
2 >>> (message
3title()
4replace("Salut", "Bonjour")
5split()
6 ...)
7 ['Bonjour', 'Patrick', 'Bonjour', 'Pierre']

L’utilisation de parenthèses permet aussi de couper une chaîne de caractères en plusieurs lignes :
1 >>> ma_chaine = (
2 ... "voici une chaine de caractères "
3 ... "très longue "
4 ... "sur plusieurs lignes")
5 >>> ma_chaine
6 'voici une chaine de caractères très longue sur plusieurs lignes'

Nous reverrons le method chaining dans le chapitre 22 Module Pandas.

11.11 Exercices

Conseil
Pour ces exercices, créez des scripts puis exécutez-les dans un shell.

11.11.1 Parcours d’une liste de chaînes de caractères
Soit la liste ['girafe', 'tigre', 'singe', 'souris']. Avec une boucle, affichez chaque élément ainsi que sa

taille (nombre de caractères).

110 Cours de Python / Université Paris Cité / UFR Sciences du Vivant

11.11. Exercices Chapitre 11. Plus sur les chaînes de caractères

11.11.2 Lecture d’une séquence à partir d’un fichier FASTA
Le fichier UBI4_SCerevisiae.fasta 6 contient une séquence d’ADN au format FASTA.
Créez une fonction lit_fasta() qui prend comme argument le nom d’un fichier FASTA sous la forme d’une chaîne

de caractères, lit la séquence dans le fichier FASTA et la renvoie sous la forme d’une chaîne de caractères.
Utilisez ensuite cette fonction pour récupérer la séquence d’ADN dans la variable sequence puis pour afficher les

informations suivantes :
• le nom du fichier FASTA,
• la longueur de la séquence (c’est-à-dire le nombre de bases qu’elle contient),
• un message vérifiant que le nombre de bases est (ou non) un multiple de 3,
• le nombre de codons (on rappelle qu’un codon est un bloc de 3 bases),
• les 10 premières bases,
• les 10 dernières bases.
La sortie produite par le script devrait ressembler à ça :

UBI4_SCerevisiae.fasta
La séquence contient WWW bases
La longueur de la séquence est un multiple de 3 bases
La séquence possède XXX codons
10 premières bases : YYYYYYYYYY
10 dernières bases : ZZZZZZZZZZ

où WWW et XXX sont des entiers et YYYYYYYYYY et ZZZZZZZZZZ sont des bases.

Conseil
Vous trouverez des explications sur le format FASTA et des exemples de code dans l’annexe A Quelques formats de

données en biologie.

11.11.3 Fréquence des bases dans une séquence d’ADN
Soit la séquence d’ADN ATATACGGATCGGCTGTTGCCTGCGTAGTAGCGT. On souhaite calculer la fréquence de chaque

base A, T, C et G dans cette séquence et afficher le résultat à l’écran.
Créez pour cela une fonction calc_composition() à laquelle vous passez en argument votre séquence d’ADN sous

forme d’une chaîne de caractères, et qui renvoie une liste de quatre floats indiquant respectivement la fréquence en bases
A, T, G et C.

11.11.4 Distance de Hamming
La distance de Hamming 7 mesure la différence entre deux séquences de même taille en comptant le nombre de

positions qui, pour chaque séquence, ne correspondent pas au même acide aminé.
Créez la fonction dist_hamming() qui prend en argument deux chaînes de caractères et qui renvoie la distance de

Hamming (sous la forme d’un entier) entre ces deux chaînes de caractères.
Calculez la distance de Hamming entre les séquences : AGWPSGGASAGLAIL et IGWPSAGASAGLWIL
puis entre les séquences : ATTCATACGTTACGATT et ATACTTACGTAACCATT.

11.11.5 Moyenne de notes
Le fichier notes.csv 8 contient des noms d’étudiant ainsi que leurs notes dans différentes matières. Chaque donnée

est séparée par une virgule. On trouve dans l’ordre le nom de l’étudiant, la note en géographie, la note en sport, la note
en anglais.
Jason,17,3,1
William,9,18,15
Susan,3,8,10
[...]

6. https://python.sdv.u-paris.fr/data-files/UBI4_SCerevisiae.fasta
7. https://fr.wikipedia.org/wiki/Distance_de_Hamming
8. https://python.sdv.u-paris.fr/data-files/notes.csv

Cours de Python / Université Paris Cité / UFR Sciences du Vivant 111

https://python.sdv.u-paris.fr/data-files/UBI4_SCerevisiae.fasta
https://fr.wikipedia.org/wiki/Distance_de_Hamming
https://python.sdv.u-paris.fr/data-files/notes.csv

Chapitre 11. Plus sur les chaînes de caractères 11.11. Exercices

Créez un programme qui lit chaque ligne du fichier et construit une liste de dictionnaire du style [{"nom": "Jason",
"geo": 17, "sport": 3, "anglais": 1}, ...]. Utilisez si possible la fonction map() pour convertir les nombres

lus dans le fichier en entiers. Réalisez ensuite une boucle sur cette liste de dictionnaires, et affichez le nom de l’étudiant,
sa note en sport et sa note en anglais. Affichez ensuite la moyenne des notes de sport et de géographie pour tous les
étudiants.

11.11.6 Conversion des acides aminés du code à trois lettres au code à une lettre
Créez une fonction convert_3_lettres_1_lettre() qui prend en argument une chaîne de caractères avec des

acides aminés en code à trois lettres et renvoie une chaîne de caractères avec les acides aminés en code à une lettre.
Vous pourrez tenter d’utiliser le method chaining dans cette fonction.

Utilisez cette fonction pour convertir la séquence protéique ALA GLY GLU ARG TRP TYR SER GLY ALA TRP.
Rappel de la nomenclature des acides aminés :

Acide aminé Code 3-lettres Code 1-lettre Acide aminé Code 3-lettres Code 1-lettre
Alanine Ala A Leucine Leu L
Arginine Arg R Lysine Lys K
Asparagine Asn N Méthionine Met M
Aspartate Asp D Phénylalanine Phe F
Cystéine Cys C Proline Pro P
Glutamate Glu E Sérine Ser S
Glutamine Gln Q Thréonine Thr T
Glycine Gly G Tryptophane Trp W
Histidine His H Tyrosine Tyr Y
Isoleucine Ile I Valine Val V

11.11.7 Palindrome
Un palindrome est un mot ou une phrase dont l’ordre des lettres reste le même si on le lit de gauche à droite ou de

droite à gauche. Par exemple, « ressasser » et « engage le jeu que je le gagne » sont des palindromes.
Créez la fonction est_palindrome() qui prend en argument une chaîne de caractères et qui renvoie un booléen

(True si l’argument est un palindrome, False si ce n’est pas le cas). Dans le programme principal, affichez xxx est
un palindrome si la fonction est_palindrome() renvoie True sinon xxx n'est pas un palindrome. Pensez à

vous débarrasser au préalable des majuscules, des signes de ponctuations et des espaces.
Testez ensuite si les expressions suivantes sont des palindromes :
• Radar
• Never odd or even
• Karine alla en Iran
• Un roc si biscornu
• Et la marine ira vers Malte
• Deer Madam, Reed
• rotator
• Was it a car or a cat I saw?

Conseil
Pour le nettoyage de la chaîne de caractères (retrait des majuscules, signes de ponctations et espaces), essayer d’utiliser

le method chaining.

11.11.8 Mot composable
Un mot est composable à partir d’une séquence de lettres si la séquence contient toutes les lettres du mot. Chaque

lettre de la séquence ne peut être utilisée qu’une seule fois. Par exemple, « coucou » est composable à partir de «
uocuoceokzefhu ».

112 Cours de Python / Université Paris Cité / UFR Sciences du Vivant

11.11. Exercices Chapitre 11. Plus sur les chaînes de caractères

Créez la fonction est_composable(), qui prend en argument un mot (sous la forme d’une chaîne de caractères) et
une séquence de lettres (aussi comme une chaîne de caractères), et qui renvoie True si le mot est composable à partir
de la séquence, sinon False.

Dans le programme principal, créez une liste de tuples contenant les couples mot / séquence, de la forme [('mot1',
'sequence1'), ('mot2', 'sequence2'), ...]. Utilisez ensuite une boucle sur tous les couples mot / séquence, et
appelez à chaque itération la fonction est_composable(). Affichez enfin Le mot xxx est composable à partir
de yyy si le mot xxx est composable à partir de la séquence de lettres (yyy). Affichez Le mot xxx n'est pas

composable à partir de yyy si ce n’est pas le cas.
Testez cette fonction avec les mots et les séquences suivantes :

Mot Séquence
python aophrtkny
python aeiouyhpq
coucou uocuoceokzezh
fonction nhwfnitvkloco

11.11.9 Alphabet et pangramme
Les codes ASCII des lettres minuscules de l’alphabet vont de 97 (lettre « a ») à 122 (lettre « z »). La fonction chr()

prend en argument un code ASCII sous la forme d’un entier et renvoie le caractère correspondant (sous la forme d’une
chaîne de caractères). Ainsi chr(97) renvoie 'a', chr(98) renvoie 'b' et ainsi de suite.

Créez la fonction get_alphabet() qui utilise une boucle et la fonction chr() et qui renvoie une chaîne de caractères
contenant toutes les lettres de l’alphabet.

Un pangramme 9 est une phrase comportant au moins une fois chaque lettre de l’alphabet. Par exemple, « Portez ce
vieux whisky au juge blond qui fume » est un pangramme.

Créez la fonction est_pangramme() qui utilise la fonction get_alphabet() précédente, qui prend en argument une
chaîne de caractères xxx, et qui renvoie True si la phrase est un pangramme et False sinon.

Le programme affichera finalement xxx est un pangramme ou xxx n'est pas un pangramme. Pensez à vous
débarrasser des majuscules le cas échéant.

Testez ensuite si les expressions suivantes sont des pangrammes :
• Portez ce vieux whisky au juge blond qui fume
• Monsieur Jack vous dactylographiez bien mieux que votre ami Wolf
• Buvez de ce whisky que le patron juge fameux
• Ceci n’est pas un pangramme

11.11.10 Lecture d’une séquence à partir d’un fichier GenBank (exercice +++)
On cherche à récupérer la séquence d’ADN du chromosome I de la levure Saccharomyces cerevisiae contenu dans le

fichier au format GenBank NC_001133.gbk 10.
Le format GenBank est présenté en détail dans l’annexe A Quelques formats de données en biologie. Pour cet exercice,

vous devez savoir que la séquence démarre après la ligne commençant par le mot ORIGIN et se termine avant la ligne
commençant par les caractères // :
ORIGIN

1 ccacaccaca cccacacacc cacacaccac accacacacc acaccacacc cacacacaca
61 catcctaaca ctaccctaac acagccctaa tctaaccctg gccaacctgt ctctcaactt

[...]
230101 tgttagtgtt agtattaggg tgtggtgtgt gggtgtggtg tgggtgtggg tgtgggtgtg
230161 ggtgtgggtg tgggtgtggt gtggtgtgtg ggtgtggtgt gggtgtggtg tgtgtggg

//

Pour extraire la séquence d’ADN, nous vous proposons d’utiliser un algorithme de « drapeau », c’est-à-dire une variable
qui sera à True lorsqu’on lira les lignes contenant la séquence et à False pour les autres lignes.

9. http://fr.wikipedia.org/wiki/Pangramme
10. https://python.sdv.u-paris.fr/data-files/NC_001133.gbk

Cours de Python / Université Paris Cité / UFR Sciences du Vivant 113

http://fr.wikipedia.org/wiki/Pangramme
https://python.sdv.u-paris.fr/data-files/NC_001133.gbk

Chapitre 11. Plus sur les chaînes de caractères 11.11. Exercices

Créez une fonction lit_genbank() qui prend comme argument le nom d’un fichier GenBank sous la forme d’une
chaîne de caractères, lit la séquence dans le fichier GenBank et la renvoie sous la forme d’une chaîne de caractères.

Utilisez ensuite cette fonction pour récupérer la séquence d’ADN dans la variable sequence dans le programme
principal. Le script affichera :
NC_001133.gbk
La séquence contient XXX bases
10 premières bases : YYYYYYYYYY
10 dernières bases : ZZZZZZZZZZ

où XXX est un entier et YYYYYYYYYY et ZZZZZZZZZZ sont des bases.
Vous avez toutes les informations pour effectuer cet exercice. Si toutefois vous coincez sur la mise en place du drapeau,

voici l’algorithme en pseudo-code pour vous aider :
drapeau <- Faux
seq <- chaîne de caractères vide
Lire toutes les lignes du fichier:

si la ligne contient //:
drapeau <- Faux

si drapeau est Vrai:
on ajoute à seq la ligne (sans espace, chiffre et retour à la ligne)

si la ligne contient ORIGIN:
drapeau <- Vrai

11.11.11 Affichage des carbones alpha d’une structure de protéine
Téléchargez le fichier 1bta.pdb 11 qui correspond à la structure tridimensionnelle de la protéine barstar 12 sur le site

de la Protein Data Bank (PDB).
Créez la fonction trouve_calpha() qui prend en argument le nom d’un fichier PDB (sous la forme d’une chaîne de

caractères), qui sélectionne uniquement les lignes contenant des carbones alpha, qui stocke ces lignes dans une liste et
les renvoie sous la forme d’une liste de chaînes de caractères.

Utilisez la fonction trouve_calpha() pour afficher à l’écran les carbones alpha des deux premiers résidus (acides
aminés).

Conseil
Vous trouverez des explications sur le format PDB et des exemples de code pour lire ce type de fichier en Python

dans l’annexe A Quelques formats de données en biologie.

11.11.12 Calcul des distances entre les carbones alpha consécutifs d’une structure de pro-
téine (exercice +++)

En utilisant la fonction trouve_calpha() précédente, calculez la distance interatomique entre les carbones alpha
des deux premiers résidus (avec deux chiffres après la virgule).

Rappel : la distance euclidienne d entre deux points A et B de coordonnées cartésiennes respectives (xA,yA,zA) et
(xB,yB,zB) se calcule comme suit :

d =
√
(xB − xA)2 +(yB − yA)2 +(zB − zA)2

Créez ensuite la fonction calcule_distance() qui prend en argument la liste renvoyée par la fonction trouve_calpha
(), qui calcule les distances interatomiques entre carbones alpha consécutifs et affiche ces distances sous la forme :

numero_calpha_1 numero_calpha_2 distance
Les numéros des carbones alpha seront affichés sur deux caractères. La distance sera affichée avec deux chiffres après

la virgule. Voici un exemple avec les premiers carbones alpha :

11. https://files.rcsb.org/download/1BTA.pdb
12. http://www.rcsb.org/pdb/explore.do?structureId=1BTA

114 Cours de Python / Université Paris Cité / UFR Sciences du Vivant

https://files.rcsb.org/download/1BTA.pdb
http://www.rcsb.org/pdb/explore.do?structureId=1BTA

11.11. Exercices Chapitre 11. Plus sur les chaînes de caractères

1 2 3.80
2 3 3.80
3 4 3.83
4 5 3.82

Modifiez maintenant la fonction calcule_distance() pour qu’elle affiche à la fin la moyenne des distances.
La distance inter-carbone alpha dans les protéines est très stable et de l’ordre de 3,8 angströms. Observez avec attention

les valeurs que vous avez calculées pour la protéine barstar. Repérez une valeur surprenante. Essayez de l’expliquer.

Conseil
Vous trouverez des explications sur le format PDB et des exemples de code pour lire ce type de fichier en Python

dans l’annexe A Quelques formats de données en biologie.

11.11.13 Compteur de gènes dans un fichier GenBank
Dans cet exercice, on souhaite compter le nombre de gènes du fichier GenBank NC_001133.gbk 13 (chromosome I

de la levure Saccharomyces cerevisiae) et afficher la longueur de chaque gène. Pour cela, il faudra récupérer les lignes
décrivant la position des gènes. Voici par exemple les cinq premières lignes concernées dans le fichier NC_001133.gbk :

gene complement(<1807..>2169)
gene <2480..>2707
gene complement(<7235..>9016)
gene complement(<11565..>11951)
gene <12046..>12426

[...]

Lorsque la ligne contient le mot complement le gène est situé sur le brin complémentaire, sinon il est situé sur le brin
direct. Votre code devra récupérer le premier et le second nombre indiquant respectivement la position du début et de
fin du gène. Attention à bien les convertir en entier afin de pouvoir calculer la longueur du gène. Notez que les caractères
> et < doivent être ignorés, et que les .. servent à séparer la position de début et de fin.

On souhaite obtenir une sortie de la forme :
gène 1 complémentaire -> 362 bases
gène 2 direct -> 227 bases
gène 3 complémentaire -> 1781 bases
[...]
gène 99 direct -> 611 bases
gène 100 direct -> 485 bases
gène 101 direct -> 1403 bases

Conseil
Vous trouverez des explications sur le format GenBank dans l’annexe A Quelques formats de données en biologie.

13. https://python.sdv.u-paris.fr/data-files/NC_001133.gbk

Cours de Python / Université Paris Cité / UFR Sciences du Vivant 115

https://python.sdv.u-paris.fr/data-files/NC_001133.gbk

CHAPITRE 12

Plus sur les listes

Nous avons vu les listes dès le chapitre 4 et les avons largement utilisées depuis le début de ce cours. Dans ce chapitre,
nous allons plus loin avec les méthodes associées aux listes, ainsi que d’autres caractéristiques très puissantes telles que
les tests d’appartenance ou les listes de compréhension.

12.1 Méthodes associées aux listes
Comme pour les chaînes de caractères, les listes possèdent de nombreuses méthodes qui leurs sont propres. On

rappelle qu’une méthode est une fonction qui agit sur l’objet auquel elle est attachée par un point.

12.1.1 .append()
La méthode .append(), que l’on a déjà vu au chapitre 4 Listes, ajoute un élément à la fin d’une liste :

1 >>> liste1 = [1, 2, 3]
2 >>> liste1.append(5)
3 >>> liste1
4 [1, 2, 3, 5]

qui est équivalent à :
1 >>> liste1 = [1, 2, 3]
2 >>> liste1 = liste1 + [5]
3 >>> liste1
4 [1, 2, 3, 5]

Conseil
Préférez la version avec .append() qui est plus compacte et facile à lire.

12.1.2 .insert()
La méthode .insert() insère un objet dans une liste à un indice déterminé :

116

12.1. Méthodes associées aux listes Chapitre 12. Plus sur les listes

1 >>> liste1 = [1, 2, 3]
2 >>> liste1.insert(2, -15)
3 >>> liste1
4 [1, 2, -15, 3]

12.1.3 del
L’instruction del supprime un élément d’une liste à un indice déterminé :

1 >>> liste1 = [1, 2, 3]
2 >>> del liste1[1]
3 >>> liste1
4 [1, 3]

Remarque
Contrairement aux méthodes associées aux listes présentées dans cette rubrique, del est une instruction générale de

Python, utilisable pour d’autres objets que des listes. Celle-ci ne prend pas de parenthèse.

12.1.4 .remove()
La méthode .remove() supprime un élément d’une liste à partir de sa valeur :

1 >>> liste1 = [1, 2, 3]
2 >>> liste1.remove(3)
3 >>> liste1
4 [1, 2]

S’il y a plusieurs fois la même valeur dans la liste, seule la première est retirée. Il faut appeler la méthode .remove()
autant de fois que nécessaire pour retirer toutes les occurences d’un même élément :

1 >>> liste1 = [1, 2, 3, 4, 3]
2 >>> liste1.remove(3)
3 >>> liste1
4 [1, 2, 4, 3]
5 >>> liste1.remove(3)
6 >>> liste1
7 [1, 2, 4]

12.1.5 .sort()
La méthode .sort() trie les éléments d’une liste du plus petit au plus grand :

1 >>> liste1 = [3, 1, 2]
2 >>> liste1.sort()
3 >>> liste1
4 [1, 2, 3]

L’argument reverse=True spécifie le tri inverse, c’est-à-dire du plus grand au plus petit élément :
1 >>> liste1 = [3, 1, 2]
2 >>> liste1.sort(reverse=True)
3 >>> liste1
4 [3, 2, 1]

12.1.6 sorted()
La fonction sorted() trie également une liste. Contrairement à la méthode précédente .sort(), cette fonction

renvoie la liste triée et ne modifie pas la liste initiale :
1 >>> liste1 = [3, 1, 2]
2 >>> sorted(liste1)
3 [1, 2, 3]
4 >>> liste1
5 [3, 1, 2]

Cours de Python / Université Paris Cité / UFR Sciences du Vivant 117

Chapitre 12. Plus sur les listes 12.1. Méthodes associées aux listes

La fonction sorted() supporte aussi l’argument reverse=True :
1 >>> liste1 = [3, 1, 2]
2 >>> sorted(liste1, reverse=True)
3 [3, 2, 1]
4 >>> liste1
5 [3, 1, 2]

12.1.7 .reverse()
La méthode .reverse() inverse une liste :

1 >>> liste1 = [3, 1, 2]
2 >>> liste1.reverse()
3 >>> liste1
4 [2, 1, 3]

12.1.8 .count()
La méthode .count() compte le nombre d’éléments (passés en argument) dans une liste :

1 >>> liste1 = [1, 2, 4, 3, 1, 1]
2 >>> liste1.count(1)
3 3
4 >>> liste1.count(4)
5 1
6 >>> liste1.count(23)
7 0

12.1.9 Particularités des méthodes associées aux listes
De nombreuses méthodes mentionnées précédemment (.append(), .sort(), etc.) modifient la liste, mais ne ren-

voient pas d’objet récupérable dans une variable. Il s’agit d’un exemple d’utilisation de méthode (donc de fonction
particulière) qui fait une action, mais qui ne renvoie rien. Pensez-y dans vos utilisations futures des listes. Ainsi, même si
l’instruction var = liste1.reverse() est une instruction Python valide, var ne contiendra que None c’est-à-dire un
objet vide en Python, préférez-lui directement l’instruction liste1.reverse() :

1 >>> liste1 = [1, 2, 3]
2 >>> var = liste1.reverse()
3 >>> var
4 >>> print(var)
5 None
6 >>> liste1
7 [3, 2, 1]
8 >>> liste2 = [5, 6, 7]
9 >>> liste2.reverse()

10 >>> liste2
11 [7, 6, 5]

Remarque
Pour exprimer la même idée, la documentation parle de modification de la liste « sur place » (in place en anglais) :

1 >>> liste1 = [1, 2, 3]
2 >>> help(liste1.reverse)
3 Help on built-in function reverse:
4
5 reverse() method of builtins.list instance
6 Reverse *IN PLACE*.

Cela signifie que la liste est modifiée « sur place », c’est-à-dire dans la méthode au moment où elle s’exécute. La liste
étant modifiée « en dur » dans la méthode, cette dernière ne renvoie donc rien. L’explication du mécanisme sous-jacent
vous sera donnée dans la rubrique 13.4 Portée des listes du chapitre 13 Plus sur les fonctions.

Par ailleurs, certaines méthodes ou instructions des listes décalent les indices d’une liste (par exemple .insert(),

118 Cours de Python / Université Paris Cité / UFR Sciences du Vivant

12.2. Construction d’une liste par itération Chapitre 12. Plus sur les listes

del, etc.).
Enfin, pour obtenir une liste exhaustive des méthodes disponibles pour les listes, utilisez la fonction dir(liste1)

(liste1 étant une liste).

12.2 Construction d’une liste par itération
La méthode .append() est très pratique car on peut l’utiliser pour construire une liste au fur et à mesure des

itérations d’une boucle.
Pour cela, il est commode de définir préalablement une liste vide avec l’instruction liste1 = []. Voici un exemple

où une chaîne de caractères est convertie en liste :
1 >>> seq = "CAAAGGTAACGC"
2 >>> seq_list = []
3 >>> seq_list
4 []
5 >>> for base in seq:
6 ... seq_list.append(base)
7 ...
8 >>> seq_list
9 ['C', 'A', 'A', 'A', 'G', 'G', 'T', 'A', 'A', 'C', 'G', 'C']

Remarquez que dans cet exemple, vous pouvez aussi utiliser directement la fonction list() qui prend n’importe quel
objet séquentiel (liste, chaîne de caractères, etc.) et qui renvoie une liste :

1 >>> seq = "CAAAGGTAACGC"
2 >>> list(seq)
3 ['C', 'A', 'A', 'A', 'G', 'G', 'T', 'A', 'A', 'C', 'G', 'C']

Cette méthode est certes plus simple, mais il arrive parfois qu’on doive utiliser des boucles tout de même, comme
lorsqu’on lit un fichier. Nous vous rappellons que l’instruction list(seq) convertit un objet de type chaîne de caractères
en un objet de type liste (il s’agit donc d’une opération de casting). De même que list(range(10)) convertit un objet
de type range en un objet de type list.

12.3 Test d’appartenance
L’opérateur in teste si un élément fait partie d’une liste :

1 liste1 = [1, 3, 5, 7, 9]
2 >>> 3 in liste1
3 True
4 >>> 4 in liste1
5 False
6 >>> 3 not in liste1
7 False
8 >>> 4 not in liste1
9 True

La variation avec not permet, a contrario, de vérifier qu’un élément n’est pas dans une liste.

12.4 Fonction zip()

Conseil
Si vous êtes débutant, vous pouvez sauter cette rubrique.

La fonction zip() de Python permet d’itérer sur plusieurs listes en parallèle :

Cours de Python / Université Paris Cité / UFR Sciences du Vivant 119

Chapitre 12. Plus sur les listes 12.4. Fonction zip()

1 >>> animaux = ["poulain", "renard", "python"]
2 >>> couleurs = ["alezan", "roux", "vert"]
3 >>> zip(animaux, couleurs)
4 <zip object at 0x7f6cf954a480>
5 >>> type(zip(animaux, couleurs))
6 <class 'zip'>
7 >>> for element in zip(animaux, couleurs):
8 ... print(element)
9 ...

10 ('poulain', 'alezan')
11 ('renard', 'roux')
12 ('python', 'vert')
13 >>> for animal, couleur in zip(animaux, couleurs):
14 ... print(f"le {animal} est {couleur}")
15 ...
16 le poulain est alezan
17 le renard est roux
18 le python est vert

Lignes 3 et 6. On passe en argument deux listes à zip() qui génère un nouvel objet de type zip. Comme pour les
objets de type map vu au chapitre 11 Plus sur les chaînes de caractères, les objets zip sont itérables.

Lignes 7 à 12. Lorsqu’on itère sur un objet zip, la variable d’itération est un tuple. À la première itération, on a un
tuple avec le premier élément de chaque liste utilisée pour générer l’objet zip, à la deuxième itération, ce sera le deuxième
élément, et ainsi de suite.

Lignes 13 à 18. Avec l’affectation multiple, on peut affecter à la volée les éléments à des variables différentes, comme
on l’a fait avec la fonction enumerate() (chapitre 5 Boucles) et la méthode .items() des dictionnaires (chapitre 8
Dictionnaires et tuples).

Un objet zip est aussi utile pour générer facilement une liste de tuples.
1 >>> list(zip(animaux, couleurs))
2 [('poulain', 'alezan'), ('renard', 'roux'), ('python', 'vert')]

Si une des listes passée en argument n’a pas la même longueur, l’objet zip s’arrête sur la liste la plus courte :
1 >>> animaux = ["poulain", "renard", "python", "orque"]
2 >>> couleurs = ["alezan", "roux", "vert"]
3 >>> list(zip(animaux, couleurs))
4 [('poulain', 'alezan'), ('renard', 'roux'), ('python', 'vert')]

On peut empêcher ce comportement avec l’argument par mot-clé strict, qui renvoie une erreur si les listes n’ont
pas la même longueur :

1 >>> list(zip(animaux, couleurs, strict=True))
2 Traceback (most recent call last):
3 File "<stdin>", line 1, in <module>
4 ValueError: zip() argument 2 is shorter than argument 1

Enfin, il est possible de créer des objets zip avec autant de listes que l’on veut :
1 >>> animaux = ["poulain", "renard", "python"]
2 >>> couleurs = ["alezan", "roux", "vert"]
3 >>> numero = [1, 2, 3]
4 >>> list(zip(numero, animaux, couleurs))
5 [(1, 'poulain', 'alezan'), (2, 'renard', 'roux'), (3, 'python', 'vert')]

Remarque
La fonction zip() fonctionne sur n’importe quel objet itérable : listes, tuples, dictionnaires, objets range, etc.

Conseil
Pour les débutants, vous pouvez sauter cette remarque.

120 Cours de Python / Université Paris Cité / UFR Sciences du Vivant

12.5. Copie de listes Chapitre 12. Plus sur les listes

Un objet zip() comme présenté plus haut est ce qu’on appelle un itérateur. Cela implique un mode de fonctionnement
particulier, notamment le fait qu’on ne peut l’utiliser qu’une fois lorsqu’on l’a créé. Vous trouverez plus d’explications sur
la définition et le fonctionnement d’un itérateur dans le chapitre 26 Remarques complémentaires.

12.5 Copie de listes
Il est très important de savoir que l’affectation d’une liste (à partir d’une liste préexistante) crée en réalité une

référence et non une copie :
1 >>> liste1 = [1, 2, 3]
2 >>> liste2 = liste1
3 >>> liste2
4 [1, 2, 3]
5 >>> liste1[1] = -15
6 >>> liste1
7 [1, -15, 3]
8 >>> liste2
9 [1, -15, 3]

Vous voyez que la modification de liste1 modifie liste2 aussi ! Pour comprendre ce qu’il se passe, nous allons de
nouveau utiliser le site Python Tutor avec cet exemple (Figure 12.1) :

Figure 12.1 – Copie de liste.

Techniquement, Python utilise des pointeurs (comme dans le langage de programmation C) vers les mêmes objets.
Python Tutor l’illustre avec des flèches qui partent des variables liste1 et liste2 et qui pointent vers la même liste.
Donc, si on modifie la liste liste1, la liste liste2 est modifiée de la même manière. Rappelez-vous de ceci dans vos
futurs programmes, car cela pourrait avoir des effets désastreux !

Pour éviter ce problème, il va falloir créer une copie explicite de la liste initiale. Observez cet exemple :
1 >>> liste1 = [1, 2, 3]
2 >>> liste2 = liste1[:]
3 >>> liste1[1] = -15
4 >>> liste2
5 [1, 2, 3]

L’instruction liste1[:] a créé une copie « à la volée » de la liste liste1. Vous pouvez utiliser aussi la fonction
list(), qui renvoie explicitement une liste :

1 >>> liste1 = [1, 2, 3]
2 >>> liste2 = list(liste1)
3 >>> liste1[1] = -15
4 >>> liste2
5 [1, 2, 3]

Si on regarde à nouveau dans Python Tutor (Figure 12.2), on voit clairement que l’utilisation d’une tranche [:] ou
de la fonction list() crée des copies explicites. Chaque flèche pointe vers une liste différente, indépendante des autres.

Cours de Python / Université Paris Cité / UFR Sciences du Vivant 121

Chapitre 12. Plus sur les listes 12.6. Initialisation d’une liste de listes

Figure 12.2 – Copie de liste avec une tranche [:] et la fonction list().

Attention, les deux astuces précédentes ne fonctionnent que pour les listes à une dimension, autrement dit les listes
qui ne contiennent pas elles-mêmes d’autres listes. Voyez par exemple :

1 >>> liste1 = [[1, 2], [3, 4]]
2 >>> liste1
3 [[1, 2], [3, 4]]
4 >>> liste2 = liste1[:]
5 >>> liste1[1][1] = 55
6 >>> liste1
7 [[1, 2], [3, 55]]
8 >>> liste2
9 [[1, 2], [3, 55]]

et
1 >>> liste2 = list(liste1)
2 >>> liste1[1][1] = 77
3 >>> liste1
4 [[1, 2], [3, 77]]
5 >>> liste2
6 [[1, 2], [3, 77]]

La méthode de copie qui fonctionne à tous les coups consiste à appeler la fonction deepcopy() du module copy :
1 >>> import copy
2 >>> liste1 = [[1, 2], [3, 4]]
3 >>> liste1
4 [[1, 2], [3, 4]]
5 >>> liste2 = copy.deepcopy(liste1)
6 >>> liste1[1][1] = 99
7 >>> liste1
8 [[1, 2], [3, 99]]
9 >>> liste2

10 [[1, 2], [3, 4]]

12.6 Initialisation d’une liste de listes
Un dernier écueil que vous pourrez rencontrer concerne l’initialisation d’une liste de listes avec l’opérateur *. Imaginons

que l’on souhaite représenter un tableau de nombre et l’initialiser avec des 0. Nous pourrions être tentés d’utiliser la
duplication de listes :

1 >>> liste1 = [[0, 0, 0]] * 5
2 >>> liste1
3 [[0, 0, 0], [0, 0, 0], [0, 0, 0], [0, 0, 0], [0, 0, 0]]

Le problème est que si on modifie un élément d’une des sous-listes :

122 Cours de Python / Université Paris Cité / UFR Sciences du Vivant

12.7. Liste de compréhension Chapitre 12. Plus sur les listes

1 >>> liste1[2][0] = -12
2 >>> liste1
3 [[-12, 0, 0], [-12, 0, 0], [-12, 0, 0], [-12, 0, 0], [-12, 0, 0]]

Vous constatez qu’il est modifié dans chaque sous-liste ! À l’aide de Python Tutor on voit que Python crée une
référence vers la même sous-liste (Figure 12.3) :

Figure 12.3 – Initialisation d’une liste de listes avec l’opérateur de duplication.

Comme disent les auteurs dans la documentation officielle 1 : Note that items in the sequence are not copied ; they
are referenced multiple times. This often haunts new Python programmers. Pour éviter le problème, on peut utiliser une
boucle :

1 >>> liste1 = []
2 >>> for i in range(5):
3 ... liste1.append([0, 0, 0])
4 ...
5 >>> liste1
6 [[0, 0, 0], [0, 0, 0], [0, 0, 0], [0, 0, 0], [0, 0, 0]]
7 >>> liste1[2][0] = -12
8 >>> liste1
9 [[0, 0, 0], [0, 0, 0], [-12, 0, 0], [0, 0, 0], [0, 0, 0]]

On verra dans la rubrique suivante une manière très compacte de faire cela avec les listes de compréhension.

Attention
Même si une liste de listes peut représenter un tableau de nombres, il ne faut pas la voir comme un objet mathématique

de type matrice 2. En effet, le concept de lignes et colonnes n’est pas défini clairement, on ne peut pas faire d’opérations
matricielles simplement, etc. On verra dans le chapitre 20 Module Numpy qu’il existe des objets appelés arrays qui sont
faits pour ça.

12.7 Liste de compréhension

Conseil
Si vous êtes débutant, vous pouvez sauter cette rubrique.

En Python, la notion de liste de compréhension (ou compréhension de listes) représente une manière originale et très
puissante de générer des listes. La syntaxe de base consiste au moins en une boucle for au sein de crochets précédés
d’une variable (qui peut être la variable d’itération ou pas) :

1. https://docs.python.org/3/library/stdtypes.html#sequence-types-list-tuple-range
2. https://fr.wikipedia.org/wiki/Matrice

Cours de Python / Université Paris Cité / UFR Sciences du Vivant 123

https://docs.python.org/3/library/stdtypes.html#sequence-types-list-tuple-range
https://fr.wikipedia.org/wiki/Matrice

Chapitre 12. Plus sur les listes 12.7. Liste de compréhension

1 >>> [i for i in range(10)]
2 [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
3 >>> [2 for i in range(10)]
4 [2, 2, 2, 2, 2, 2, 2, 2, 2, 2]

Pour plus de détails, consultez à ce sujet le site de Python 3 et celui de Wikipédia 4.
Voici quelques exemples illustrant la puissance des listes de compréhension.

12.7.1 Initialisation d’une liste de listes
Une liste de compréhension permet l’initialisation d’une liste de listes en une ligne sans avoir l’inconvénient de faire

une référence vers la même sous-liste (voir rubrique précédente) :
1 >>> liste1 = [[0, 0, 0] for i in range(5)]
2 >>> liste1
3 [[0, 0, 0], [0, 0, 0], [0, 0, 0], [0, 0, 0], [0, 0, 0]]
4 >>> liste1[2][0] = -12
5 >>> liste1
6 [[0, 0, 0], [0, 0, 0], [-12, 0, 0], [0, 0, 0], [0, 0, 0]]

12.7.2 Nombres pairs compris entre 0 et 30

1 >>> print([i for i in range(31) if i % 2 == 0])
2 [0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30]

12.7.3 Jeu sur la casse des mots d’une phrase

1 >>> message = "C'est sympa la BioInfo"
2 >>> msg_lst = message.split()
3 >>> print([[m.upper(), len(m)] for m in msg_lst])
4 [["C'EST", 5], ['SYMPA', 5], ['LA', 2], ['BIOINFO', 7]]

12.7.4 Formatage d’une séquence avec 60 caractères par ligne
Exemple d’une séquence constituée de 150 alanines :

1 # Exemple d'une séquence de 150 alanines.
2 >>> seq = "A" * 150
3 >>> width = 60
4 >>> seq_split = [seq[i:i+width] for i in range(0, len(seq), width)]
5 >>> print("\n".join(seq_split))
6 AA
7 AA
8 AAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

12.7.5 Formatage FASTA d’une séquence
Exemple d’une séquence constituée de 150 alanines :

1 >>> com = "Séquence de 150 alanines"
2 >>> seq = "A" * 150
3 >>> width = 60
4 >>> seq_split = [seq[i:i+width] for i in range(0, len(seq), width)]
5 >>> print(">"+com+"\n"+"\n".join(seq_split))
6 >séquence de 150 alanines
7 AA
8 AA
9 AAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

3. http://www.python.org/dev/peps/pep-0202/
4. http://fr.wikipedia.org/wiki/Comprehension_de_liste

124 Cours de Python / Université Paris Cité / UFR Sciences du Vivant

http://www.python.org/dev/peps/pep-0202/
http://fr.wikipedia.org/wiki/Comprehension_de_liste

12.8. Tris puissants de listes Chapitre 12. Plus sur les listes

12.7.6 Sélection des carbones alpha dans un fichier PDB
Exemple avec la structure de la barstar 5 :

1 >>> with open("1bta.pdb", "r") as f_pdb:
2 ... CA_lines = [
3 ... line for line in f_pdb
4 ... if line.startswith("ATOM") and line[12:16].strip() == "CA"
5 ...]
6 ...
7 >>> print(len(CA_lines))
8 89

Conseil
Pour plus de lisiblité, il est possible de répartir la liste de compréhension sur plusieurs lignes.

12.7.7 Portée des variables dans une liste de compréhension
Contrairement à une boucle for, la variable d’itération d’une liste de compréhension n’est pas accessible en dehors

de la liste de compréhension elle-même. Par exemple :
1 >>> liste_a = []
2 >>> for idx_a in range(10):
3 ... liste_a.append(idx_a)
4 ...
5 >>> print(liste_a)
6 [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
7 >>> print(idx_a)
8 9
9 >>>

10 >>> liste_b = [idx_b for idx_b in range(10)]
11 >>> print(liste_b)
12 [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
13 >>> print(idx_b)
14 Traceback (most recent call last):
15 File "<stdin>", line 1, in <module>
16 NameError: name 'idx_b' is not defined. Did you mean: 'idx_a'?

La variable d’itération idx_a reste disponible en dehors de la boucle for. Par contre, la variable d’itération idx_b
n’est pas disponible en dehors de la liste de compréhension, car elle est créée « à la volée » par Python puis éliminée une
fois l’instruction exécutée.

12.8 Tris puissants de listes

Conseil
Si vous êtes débutant, vous pouvez sauter cette rubrique.

Un peu plus haut nous avons évoqué la méthode .sort() qui trie une liste sur place, ainsi que la fonction sorted()
qui renvoie une nouvelle liste triée. Nous avons également vu qu’elles supportaient l’argument par mot-clé reverse pour
trier dans le sens inverse (décroissant ou anti-ASCII). Il existe un autre argument par mot-clé nommé key permettant un
tri avec des règles alternatives que nous pouvons customiser. On doit passer à key une fonction callback (nous avions
déjà croisé cette notion avec la fonction map() dans le chapitre 11 Plus sur les chaînes de caractères, pour une définition
voir le chapitre 25 Fenêtres graphiques et Tkinter (en ligne)), c’est-à-dire, un nom de fonction sans les parenthèses. Par
exemple, si on passe la callback len comme ça :

5. http://www.rcsb.org/pdb/explore.do?structureId=1BTA

Cours de Python / Université Paris Cité / UFR Sciences du Vivant 125

http://www.rcsb.org/pdb/explore.do?structureId=1BTA

Chapitre 12. Plus sur les listes 12.9. Exercices

1 >>> mots = ["babar", "bar", "ba", "bababar"]
2 >>> sorted(mots, key=len)
3 ['ba', 'bar', 'babar', 'bababar']

Python trie la liste mots en considérant la longeur de chaque élément, donc ici le nombre de lettres de chaque chaîne
de caractères. Si plusieurs mots ont la même longueur (bar et bam dans l’exemple suivant), sorted() les laisse dans
l’ordre de la liste initiale.

1 >>> mots = ["bar", "babar", "bam", "ba", "bababar"]
2 >>> sorted(mots, key=len)
3 ['ba', 'bar', 'bam', 'babar', 'bababar']

Là où key va se révéler puissant est quand nous allons lui passer une fonction « maison ». Voici une exemple :
1 >>> def compte_b(chaine):
2 ... return chaine.count("b")
3 ...
4 >>> compte_b("babar")
5 2
6 >>> mots = ["bar", "babar", "bam", "ba", "bababar"]
7 >>> sorted(mots, key=compte_b)
8 ['bar', 'bam', 'ba', 'babar', 'bababar']

• Lignes 1 à 5. Comme son nom l’indique, la fonction compte_b() compte les lettres b dans une chaîne de
caractères.

• Lignes 7 et 8. En donnant compte_b (notez l’absence de parenthèses) à l’argument key, Python trie en fonction
du nombre de lettres b dans chaque mot ! Comme pour len, si plusieurs mots ont un nombre de lettres b identiques,
il conserve l’ordre de la liste initiale.

Remarque
L’argument key fonctionne de la même manière entre sorted() et la méthode .sort() qui trie sur place. Cet

argument existe aussi avec les fonctions min() et max(). Par exemple :
1 >>> mots = ["bar", "babar", "bam", "ba", "bababar"]
2 >>> min(mots, key=len)
3 'ba'
4 >>> max(mots, key=len)
5 'bababar'

Python renverra le premier élément avec min() ou le dernier élément avec max() après un tri sur la longueur de
chaque mot.

Pour aller plus loin
En Python, trier avec une fonction maison passée à l’argument key se fait plutôt avec ce qu’on appelle une fonction

lambda. Il s’agit d’une « petite » fonction que l’on écrit sur une ligne. Si vous voulez en savoir plus, vous pouvez consulter
le chapitre 26 Remarques complémentaires.

12.9 Exercices

Conseil
Pour ces exercices, créez des scripts puis exécutez-les dans un shell.

126 Cours de Python / Université Paris Cité / UFR Sciences du Vivant

12.9. Exercices Chapitre 12. Plus sur les listes

12.9.1 Tri de liste
Soit la liste de nombres [8, 3, 12.5, 45, 25.5, 52, 1]. Triez les nombres de cette liste par ordre croissant,

sans utiliser la fonction sort(). Les fonctions et méthodes min(), .append() et .remove() vous seront utiles.

12.9.2 Séquence d’ADN aléatoire
Créez une fonction seq_alea() qui prend comme argument un entier positif taille représentant le nombre de bases

de la séquence et qui renvoie une séquence d’ADN aléatoire sous forme d’une chaîne de caractères. Utilisez la fonction
random.choices() présentée dans le chapitre 9 Modules.

Utilisez la fonction seq_alea() pour générer aléatoirement une séquence d’ADN de 15 bases.

12.9.3 Séquence d’ADN complémentaire inverse
Créez une fonction gen_comp_inv() qui prend comme argument une séquence d’ADN sous la forme d’une chaîne de

caractères, qui renvoie la séquence complémentaire inverse sous la forme d’une autre chaîne de caractères et qui utilise
des méthodes associées aux listes. Dans cette fonction, utilisez un dictionnaire {"A": "T", "T": "A", "G": "C",
"C": "G"} donnant la correspondance entre nucléotides des brins direct et complémentaire.

Utilisez cette fonction pour transformer la séquence d’ADN TCTGTTAACCATCCACTTCG en sa séquence complémentaire
inverse.

Rappel : la séquence complémentaire inverse doit être « inversée ». Par exemple, la séquence complémentaire inverse
de la séquence ATCG est CGAT.

12.9.4 Doublons
Soit la liste de nombres liste1 = [5, 1, 1, 2, 5, 6, 3, 4, 4, 4, 2]. À partir de liste1, créez une nouvelle

liste sans les doublons, triez-la et affichez-la.

12.9.5 Séquence d’ADN aléatoire 2
Créez une fonction seq_alea_2() qui prend comme argument un entier et quatre floats, représentant respective-

ment la longueur de la séquence et les pourcentages de chacune des quatre bases A, T, G et C. La fonction générera
aléatoirement une séquence d’ADN qui prend en compte les contraintes fournies en arguments et renverra la séquence
sous forme d’une chaîne de caractères.

Utilisez cette fonction pour générer aléatoirement une séquence d’ADN de 50 bases contenant 10 % de A, 30 % de
T, 50 % de G et 10 % de C.

Conseil
Utilisez la fonction random.choises() avec les paramètres k et weights. Le paramètre k spécifie le nombre de

tirages aléatoires à réaliser et le paramètre weights indique les probabilités de tirage.
Par exemple, pour réaliser 10 tirages aléatoires entre les lettres A et B avec 80% de A et 20% de B, on utilise la

fonction random.choices() de la manière suivante :
1 >>> import random
2 >>> random.choices("AB", k=10, weights=[80, 20])
3 ['A', 'A', 'A', 'A', 'A', 'A', 'A', 'B', 'A', 'B']

N’hésitez pas à consulter la documentation 6 de la fonction random.choices() pour plus de détails.

12.9.6 Le nombre mystère
Trouvez le nombre mystère qui répond aux conditions suivantes :
• Il est composé de trois chiffres.
• Il est strictement inférieur à 300.
• Il est pair.
• Deux de ses chiffres sont identiques.

6. https://docs.python.org/fr/3/library/random.html#random.choices

Cours de Python / Université Paris Cité / UFR Sciences du Vivant 127

https://docs.python.org/fr/3/library/random.html#random.choices

Chapitre 12. Plus sur les listes 12.9. Exercices

• La somme de ses chiffres est égale à 7.
On vous propose d’employer une méthode dite « brute force », c’est-à-dire d’utiliser une boucle et à chaque itération

de tester les différentes conditions.

12.9.7 Codes une et trois lettres des acides aminés
On donne les deux listes suivantes décrivant quelques acides aminés en code une et trois lettres :

1 code_1_lettre = ["A", "V", "L", "M", "P"]
2 code_3_lettres = ["Ala", "Val", "Leu", "Met", "Pro"]

Avec la fonction zip() et une boucle, générez la sortie suivante :
L'acide aminé se note A ou Ala
L'acide aminé se note V ou Val
L'acide aminé se note L ou Leu
L'acide aminé se note M ou Met
L'acide aminé se note P ou Pro

12.9.8 Triangle de Pascal (exercice +++)
Voici le début du triangle de Pascal :

1
1 1
1 2 1
1 3 3 1
1 4 6 4 1
1 5 10 10 5 1
[...]

Déduisez comment une ligne est construite à partir de la précédente. Par exemple, à partir de la ligne 2 (1 1),
construisez la ligne suivante (ligne 3 : 1 2 1) et ainsi de suite.

Implémentez cette construction en Python. Généralisez à l’aide d’une boucle.
Écrivez dans un fichier pascal.out les 10 premières lignes du triangle de Pascal.

128 Cours de Python / Université Paris Cité / UFR Sciences du Vivant

CHAPITRE 13

Plus sur les fonctions

Avant d’aborder ce chapitre, nous vous conseillons de relire le chapitre 10 Fonctions et de bien en assimiler toutes les
notions (et aussi d’en faire les exercices). Nous avons vu dans ce chapitre 10 le concept incontournable que représentent
les fonctions. Nous avons également introduit la notion de variables locales et globales.

Dans ce chapitre, nous allons aller un peu plus loin sur la visibilité de ces variables dans et hors des fonctions, et
aussi voir ce qui se passe lorsque ces variables sont des listes. Attention, la plupart des lignes de code ci-dessous sont
données à titre d’exemple pour bien comprendre ce qui se passe, mais nombre d’entre elles sont des aberrations en terme
de programmation. Nous ferons un récapitulatif des bonnes pratiques à la fin du chapitre. Enfin, nous vous conseillons
de tester tous les exemples ci-dessous avec le site Python Tutor 1 afin de suivre l’état des variables lors de l’exécution des
exemples.

13.1 Appel d’une fonction dans une fonction
Dans le chapitre 10, nous avons vu des fonctions qui étaient appelées depuis le programme principal. Il est en fait

possible d’appeler une fonction depuis une autre fonction. Et plus généralement, on peut appeler une fonction de n’importe
où à partir du moment où elle est visible par Python (c’est-à-dire chargée dans la mémoire). Observez cet exemple :

1 # Définition des fonctions.
2 def est_pair(x):
3 if x % 2 == 0:
4 return True
5 else:
6 return False
7
8 def calc_somme_nb_pairs(debut, fin):
9 somme = 0

10 for nombre in range(debut, fin+1):
11 if est_pair(nombre):
12 somme += nombre
13 return somme
14
15 # Programme principal.
16 somme = calc_somme_nb_pairs(1, 5)
17 print(f"La somme des nombres pairs de 1 à 5 est {somme}")

Nous appelons la fonction calc_somme_nb_pairs() depuis le programme principal, puis à l’intérieur de celle-ci nous

1. http://www.pythontutor.com/

129

http://www.pythontutor.com/

Chapitre 13. Plus sur les fonctions 13.2. Fonctions récursives

appelons l’autre fonction est_pair(). Regardons ce que Python Tutor nous montre lorsque la fonction calc_somme_nb_pairs
() est exécutée dans la Figure 13.1.

Figure 13.1 – Appel d’une fonction dans une fonction.

L’espace mémoire alloué à est_pair() est grisé, indiquant que cette fonction est en cours d’exécution. La fonction
appelante calc_somme_nb_pairs() est toujours là (sur un fond blanc) car son exécution n’est pas terminée. Elle est
en quelque sorte figée dans le même état qu’avant l’appel de est_pair(), et on pourra ainsi noter que ses variables
locales (debut, fin) sont toujours là. De manière générale, les variables locales d’une fonction ne seront détruites que
lorsque l’exécution de celle-ci sera terminée. Dans notre exemple, les variables locales de calc_somme_nb_pairs() ne
seront détruites que lorsque la boucle sera terminée et que la variable somme sera retournée au programme principal.
Enfin, notez bien que la fonction calc_somme_nb_pairs() appelle la fonction est_pair() à chaque itération de la
boucle.

Ainsi, le programmeur est libre de faire tous les appels qu’il souhaite. Une fonction peut appeler une autre fonction,
cette dernière peut appeler une autre fonction et ainsi de suite (et autant de fois qu’on le veut). Une fonction peut même
s’appeler elle-même, cela s’appelle une fonction récursive (voir la rubrique suivante). Attention toutefois à retrouver vos
petits si vous vous perdez dans les appels successifs !

Conseil
Dans la fonction est_pair() on teste si le nombre est pair et on renvoie True, sinon on renvoie False. Cette

fonction pourrait être écrite de manière plus compacte :
1 def est_pair(x):
2 return x % 2

Comme l’expression x % 2 renvoie un booléen directement, elle revient au même que le if / else ci-dessus. C’est
bien sûr cette dernière notation plus compacte que nous vous recommandons.

13.2 Fonctions récursives

Conseil

130 Cours de Python / Université Paris Cité / UFR Sciences du Vivant

13.2. Fonctions récursives Chapitre 13. Plus sur les fonctions

Si vous êtes débutant, vous pouvez sauter cette rubrique.

Une fonction récursive est une fonction qui s’appelle elle-même. Les fonctions récursives permettent d’obtenir une
efficacité redoutable dans la résolution de certains algorithmes, comme le tri rapide 2 (en anglais, quicksort).

Oublions la recherche d’efficacité pour l’instant et concentrons-nous sur l’exemple de la fonction mathématique
factorielle. Nous vous rappelons que la factorielle s’écrit avec un ! et se définit de la manière suivante :

3! = 3×2×1 = 6

4! = 4×3×2×1 = 30

. . .

n! = n×n−1× . . .×2×1

Voici le code Python avec une fonction récursive :
1 def calc_factorielle(nb):
2 if nb == 1:
3 return 1
4 else:
5 return nb * calc_factorielle(nb - 1)
6
7 # Programme principal.
8 print(calc_factorielle(4))

Pas si facile à comprendre, n’est-ce pas ? À nouveau, aidons nous de Python Tutor pour visualiser ce qui se passe
dans la figure 13.2 (nous vous conseillons bien sûr de tester vous-même cet exemple) :

Figure 13.2 – Fonction récursive : factorielle.

Ligne 8, on appelle la fonction calc_factorielle() en passant comme argument l’entier 4. Dans la fonction, la
variable locale qui récupère cet argument est nb. Au sein de la fonction, celle-ci se rappelle elle-même (ligne 5), mais cette
fois-ci en passant la valeur 3. Au prochain appel, ce sera avec la valeur 2, puis finalement 1. Dans ce dernier cas, le test

2. https://fr.wikipedia.org/wiki/Tri_rapide

Cours de Python / Université Paris Cité / UFR Sciences du Vivant 131

https://fr.wikipedia.org/wiki/Tri_rapide

Chapitre 13. Plus sur les fonctions 13.3. Portée des variables

if nb == 1: est vrai et l’instruction return 1 sera exécutée. À ce moment précis de l’exécution, les appels successifs
forment une sorte de pile (voir la figure 13.2). La valeur 1 sera ainsi renvoyée au niveau de l’appel précédent, puis le
résultat 2×1 = 2 (où 2 correspond à nb et 1 provient de calc_factorielle(nb - 1), soit 1) va être renvoyé à l’appel
précédent, puis 3×2 = 6 (où 3 correspond à nb et 2 provient de calc_factorielle(nb - 1), soit 2) va être renvoyé
à l’appel précédent, pour finir par 4×6 = 24 (où 4 correspond à nb et 6 provient de calc_factorielle(nb - 1), soit
6), soit la valeur de 4!. Les appels successifs vont donc se « dépiler » et nous reviendrons dans le programme principal.

Même si les fonctions récursives peuvent être ardues à comprendre, notre propos est ici de vous illustrer qu’une
fonction qui en appelle une autre (ici il s’agit d’elle-même) reste « figée » dans le même état, jusqu’à ce que la fonction
appelée lui renvoie une valeur.

13.3 Portée des variables
Il est très important lorsque l’on manipule des fonctions de connaître la portée des variables (scope en anglais),

c’est-à-dire savoir là où elles sont visibles. On a vu que les variables créées au sein d’une fonction ne sont pas visibles à
l’extérieur de celle-ci car elles étaient locales à la fonction. Observez le code suivant :

1 >>> def ma_fonction():
2 ... x = 2
3 ... print(f"x vaut {x} dans la fonction")
4 ...
5 >>> ma_fonction()
6 x vaut 2 dans la fonction
7 >>> print(x)
8 Traceback (most recent call last):
9 File "<stdin>", line 1, in <module>

10 NameError: name 'x' is not defined

Lorsque Python exécute le code de la fonction, il connaît le contenu de la variable x. Par contre, de retour dans le
module principal (dans ce cas, il s’agit de l’interpréteur Python), il ne la connaît plus, d’où le message d’erreur.

De même, une variable passée en argument est considérée comme locale lorsqu’on arrive dans la fonction :
1 >>> def ma_fonction(x):
2 ... print(f"x vaut {x} dans la fonction")
3 ...
4 >>> ma_fonction(2)
5 x vaut 2 dans la fonction
6 >>> print(x)
7 Traceback (most recent call last):
8 File "<stdin>", line 1, in <module>
9 NameError: name 'x' is not defined

Lorsqu’une variable est déclarée dans le programme principal, elle est visible dans celui-ci ainsi que dans toutes les
fonctions. On a vu qu’on parlait de variable globale :

1 >>> def ma_fonction():
2 ... print(x)
3 ...
4 >>> x = 3
5 >>> ma_fonction()
6 3
7 >>> print(x)
8 3

Dans ce cas, la variable x est visible dans le module principal et dans toutes les fonctions du module. Toutefois,
Python ne permet pas la modification d’une variable globale dans une fonction :

1 >>> def ma_fonction():
2 ... x = x + 1
3 ...
4 >>> x = 1
5 >>> ma_fonction()
6 Traceback (most recent call last):
7 File "<stdin>", line 1, in <module>
8 File "<stdin>", line 2, in ma_fonction
9 UnboundLocalError: cannot access local variable 'x' where it is not associated with a value

132 Cours de Python / Université Paris Cité / UFR Sciences du Vivant

13.4. Portée des listes Chapitre 13. Plus sur les fonctions

L’erreur renvoyée montre que Python pense que x est une variable locale qui n’a pas été encore assignée. Si on veut
vraiment modifier une variable globale dans une fonction, il faut utiliser le mot-clé global :

1 >>> def ma_fonction():
2 ... global x
3 ... x = x + 1
4 ...
5 >>> x = 1
6 >>> ma_fonction()
7 >>> x
8 2

Dans ce dernier cas, le mot-clé global a forcé la variable x à être globale plutôt que locale au sein de la fonction.

13.4 Portée des listes

Attention
Les exemples de cette partie représentent des absurdités en termes de programmation. Ils sont donnés à titre indicatif

pour comprendre ce qui se passe, mais il ne faut surtout pas s’en inspirer !

Soyez extrêmement attentifs avec les types modifiables (tels que les listes) car vous pouvez les changer au sein d’une
fonction :

1 >>> def ma_fonction():
2 ... liste1[1] = -127
3 ...
4 >>> liste1 = [1,2,3]
5 >>> ma_fonction()
6 >>> liste1
7 [1, -127, 3]

De même, si vous passez une liste en argument, elle est modifiable au sein de la fonction :
1 >>> def ma_fonction(liste_tmp):
2 ... liste_tmp[1] = -15
3 ...
4 >>> liste1 = [1,2,3]
5 >>> ma_fonction(liste1)
6 >>> liste1
7 [1, -15, 3]

Pour bien comprendre l’origine de ce comportement, utilisons à nouveau le site Python Tutor 3. La figure 13.3 vous
montre le mécanisme à l’oeuvre lorsqu’on passe une liste à une fonction.

L’instruction pass dans la fonction est une instruction Python qui ne fait rien. Elle est là car une fonction ne peut
être vide et doit contenir au moins une instruction Python valide.

On voit très clairement que la variable liste1 passée en argument lors de l’appel de la fonction d’une part, et la
variable locale liste_tmp au sein de la fonction d’autre part, pointent vers le même objet dans la mémoire. Ainsi,
si on modifie liste_tmp, on modifie aussi liste1. C’est exactement le même mécanisme que pour la copie de listes
(cf. rubrique 11.4 Copie de listes du chapitre 12 Plus sur les listes).

Si vous voulez éviter les problèmes de modification malencontreuse d’une liste dans une fonction, utilisez des tuples (ils
ont présentés dans le chapitre 8 Dictionnaires et tuples), Python renverra une erreur car ces derniers sont non modifiables.

Une autre solution pour éviter la modification d’une liste, lorsqu’elle est passée comme argument à une fonction, est
de la passer explicitement (comme nous l’avons fait pour la copie de liste) afin qu’elle reste intacte dans le programme
principal :

3. http://www.pythontutor.com/

Cours de Python / Université Paris Cité / UFR Sciences du Vivant 133

http://www.pythontutor.com/

Chapitre 13. Plus sur les fonctions 13.5. Règle LGI

Figure 13.3 – Passage d’une liste à une fonction.

1 >>> def ma_fonction(liste_tmp):
2 ... liste_tmp[1] = -15
3 ...
4 >>> liste1 = [1, 2, 3]
5 >>> ma_fonction(liste1[:])
6 >>> liste1
7 [1, 2, 3]
8 >>> ma_fonction(liste1(y))
9 >>> liste1

10 [1, 2, 3]

Dans ces deux derniers exemples, une copie de y est créée à la volée lorsqu’on appelle la fonction, ainsi la liste y du
module principal reste intacte.

D’autres suggestions sur l’envoi de liste dans une fonction vous sont données dans la rubrique Recommandations
ci-dessous.

13.5 Règle LGI
Lorsque Python rencontre une variable, il va traiter la résolution de son nom avec des priorités particulières. D’abord

il va regarder si la variable est locale, puis si elle n’existe pas localement, il vérifiera si elle est globale et enfin si elle
n’est pas globale, il testera si elle est interne (par exemple la fonction len() est considérée comme une fonction interne
à Python, elle existe à chaque fois que vous lancez Python). On appelle cela la règle LGI pour locale, globale, interne.
En voici un exemple :

1 >>> def ma_fonction():
2 ... x = 4
3 ... print(f"Dans la fonction x vaut {x}")
4 ...
5 >>> x = -15
6 >>> ma_fonction()
7 Dans la fonction x vaut 4
8 >>> print(f"Dans le module principal x vaut {x}")
9 Dans le module principal x vaut -15

Dans la fonction, x a pris la valeur qui lui était définie localement en priorité sur la valeur définie dans le module
principal.

Conseil
Même si Python accepte qu’une variable ait le même nom que ses propres fonctions ou variables internes, évitez

134 Cours de Python / Université Paris Cité / UFR Sciences du Vivant

13.6. Recommandations Chapitre 13. Plus sur les fonctions

d’utiliser de tels noms, car ceci rendra votre code confus !

De manière générale, la règle LGI découle de la manière dont Python gère ce que l’on appelle « les espaces de noms ».
C’est cette gestion qui définit la portée (visibilité) de chaque variable. Nous en parlerons plus longuement dans le chapitre
24 Avoir plus la classe avec les objets (en ligne).

13.6 Recommandations
13.6.1 Évitez les variables globales

Dans ce chapitre nous avons joué avec les fonctions (et les listes) afin de vous montrer comment Python réagissait.
Toutefois, notez bien que l’utilisation de variables globales est à bannir définitivement de votre pratique de la
programmation.

Parfois on veut faire vite et on crée une variable globale visible partout dans le programme (donc dans toutes les
fonctions), car « Ça va plus vite, c’est plus simple ». C’est un très mauvais calcul, ne serait-ce que parce que vos fonctions
ne seront pas réutilisables dans un autre contexte si elles utilisent des variables globales ! Ensuite, arriverez-vous à vous
relire dans six mois ? Quelqu’un d’autre pourrait-il comprendre votre programme ? Il existe de nombreuses autres raisons 4

que nous ne développerons pas ici, mais libre à vous de consulter de la documentation externe.
Heureusement, Python est orienté objet et permet « d’encapsuler » des variables dans des objets et de s’affranchir

définitivement des variables globales (nous verrons cela dans le chapitre 23 Avoir la classe avec les objets). En attendant,
et si vous ne souhaitez pas aller plus loin sur les notions d’objet (on peut tout à fait « pythonner » sans cela), retenez la
chose suivante sur les fonctions et les variables globales :

Conseil
Plutôt que d’utiliser des variables globales, passez vos variables explicitement aux fonctions comme des argument(s).

13.6.2 Modification d’une liste dans une fonction
Concernant les fonctions qui modifient une liste, nous vous conseillons de l’indiquer clairement dans votre code. Pour

cela, faites en sorte que la fonction renvoie la liste modifiée et de récupérer cette liste renvoyée dans une variable portant
le même nom. Par exemple :

1 def ajoute_un(liste):
2 for indice in range(len(liste)):
3 liste[indice] += 1
4 return liste
5
6 # Programme principal.
7 liste_notes = [10, 8, 16, 7, 15]
8 liste_notes = ajoute_un(liste_notes)
9 print(liste_notes)

La ligne 8 indique que la liste liste_notes passée à la fonction est écrasée par la liste renvoyée par la fonction.
Le code suivant produirait la même sortie :

1 def ajoute_un(liste):
2 for indice in range(len(liste)):
3 liste[indice] += 1
4
5 # Programme principal.
6 liste_notes = [10, 8, 16, 7, 15]
7 ajoute_un(liste_notes)
8 print(liste_notes)

Cela reste toutefois moins intuitif, car il n’est pas évident de comprendre que la liste est modifiée dans la fonction
en lisant la ligne 7. Dans un tel cas, il serait essentiel d’indiquer dans la documentation de la fonction que la liste est

4. http://wiki.c2.com/?GlobalVariablesAreBad

Cours de Python / Université Paris Cité / UFR Sciences du Vivant 135

http://wiki.c2.com/?GlobalVariablesAreBad

Chapitre 13. Plus sur les fonctions 13.7. Exercices

modifiée « sur place » (in place en anglais) dans la fonction. Vous verrez dans le chapitre 15 Création de modules
comment documenter vos fonctions.

Conseil
Pour les raisons évoquées ci-dessus, nous vous conseillons de privilégier la première version :

1 liste_notes = ajoute_un(liste_notes)

13.6.3 Conclusion
Vous connaissez maintenant les fonctions sous tous leurs angles. Comme indiqué en introduction du chapitre 10, elles

sont incontournables et tout programmeur se doit de les maîtriser. Voici les derniers conseils que nous pouvons vous
donner :

• Lorsque vous débutez un nouveau projet de programmation, posez-vous la question : « Comment pourrais-je
décomposer en blocs chaque tâche à effectuer, chaque bloc pouvant être une fonction ? ». Et n’oubliez pas que si
une fonction s’avère trop complexe, vous pouvez la décomposer en d’autres fonctions.

• Au risque de nous répéter, forcez-vous à utiliser des fonctions en permanence. Pratiquez, pratiquez… et pratiquez
encore !

13.7 Exercices

Conseil
Pour le second exercice, créez un script puis exécutez-le dans un shell.

13.7.1 Prédire la sortie
Prédisez le comportement des codes suivants, sans les recopier dans un script ni dans l’interpréteur Python :

13.7.1.1 Code 1

1 def hello(prenom):
2 print(f"Bonjour {prenom}")
3
4
5 # Programme principal.
6 hello("Patrick")
7 print(x)

13.7.1.2 Code 2

1 def hello(prenom):
2 print(f"Bonjour {prenom}")
3
4
5 # Programme principal.
6 x = 10
7 hello("Patrick")
8 print(x)

136 Cours de Python / Université Paris Cité / UFR Sciences du Vivant

13.7. Exercices Chapitre 13. Plus sur les fonctions

13.7.1.3 Code 3

1 def hello(prenom):
2 print(f"Bonjour {prenom}")
3 print(x)
4
5
6 # Programme principal.
7 x = 10
8 hello("Patrick")
9 print(x)

13.7.1.4 Code 4

1 def hello(prenom):
2 x = 42
3 print(f"Bonjour {prenom}")
4 print(x)
5
6
7 # Programme principal.
8 x = 10
9 hello("Patrick")

10 print(x)

13.7.2 Passage de liste à une fonction
Créez une fonction ajoute_nb_alea() qui prend en argument une liste et qui ajoute un nombre entier aléatoire

entre -10 et 10 (inclus) à chaque élément. La fonction affichera à l’écran cette nouvelle liste modifiée.
Dans le programme principal, effectuez les actions suivantes :
1. Créez une variable ma_liste = [7, 3, 8, 4, 5, 1, 9, 10, 2, 6].
2. Affichez ma_liste à l’écran.
3. Appelez la fonction ajoute_nb_alea() en lui passant ma_liste en argument.
4. Affichez à nouveau ma_liste à l’écran.
Comment expliquez-vous le résultat obtenu ?

Cours de Python / Université Paris Cité / UFR Sciences du Vivant 137

CHAPITRE 14

Conteneurs

Dans ce chapitre, nous allons aborder la notion de conteneur, revenir sur certaines propriétés avancées des dictionnaires
et tuples, et enfin aborder les types set et frozenset. Pour les débutants, ce chapitre aborde des notions relativement
avancées. Avant de vous lancer, nous vous conseillons vivement de bien maitriser les chapitres 4 Listes et 12 Plus sur les
listes, ainsi que le chapitre 8 Dictionnaires et tuples, d’avoir effectué un maximum d’exercices, et de vous sentir à l’aise
avec toutes les notions abordées jusque là.

14.1 Généralités
14.1.1 Définition et propriétés

Définition
Un conteneur (container en anglais) est un nom générique pour définir un objet Python qui contient une collection

d’autres objets.

Les conteneurs que nous connaissons depuis le début de ce cours sont les listes, les chaînes de caractères, les diction-
naires et les tuples. Même si on ne l’a pas vu explicitement, les objets de type range sont également des conteneurs.

Dans la suite de cette rubrique, nous allons examiner les différentes propriétés des conteneurs. À la fin de ce chapitre,
nous ferons un tableau récapitulatif de ces propriétés.

Examinons d’abord les propriétés qui caractérisent tous les types de conteneur.
• Capacité à supporter le test d’appartenance. Souvenez-vous, il permet de vérifier si un élément était présent dans

une liste. Cela fonctionne donc aussi sur les chaînes de caractères ou tout autre conteneur :
1 >>> liste1 = [4, 5, 6]
2 >>> 4 in liste1
3 True
4 >>> "to" in "toto"
5 True

• Capacité à supporter la fonction len() renvoyant la longueur du conteneur.
Voici d’autres propriétés générales que nous avons déjà croisées. Un conteneur peut être :
• Ordonné (ordered en anglais) : il y a un ordre précis des éléments ; cet ordre correspond à celui utilisé lors de la

création ou de la modification du conteneur (si cela est permis) ; ce même ordre est utilisé lorsqu’on itère dessus.

138

14.1. Généralités Chapitre 14. Conteneurs

• Indexable (subscriptable en anglais) : on peut retrouver un élément par son indice (c’est-à-dire sa position dans le
conteneur) ou plusieurs éléments avec une tranche ; en général, tout conteneur indexable est ordonné.

• Itérable (iterable en anglais) : on peut faire une boucle dessus.
Certains conteneurs sont appelés objets séquentiels ou séquence.

Définition
Un objet séquentiel ou séquence est un conteneur itérable, ordonné et indexable. Les objets séquentiels sont les

listes, les chaînes de caractères, les objets de type range, ainsi que les tuples.

Une autre propriété importante que l’on a déjà croisée, et qui nous servira dans ce chapitre, concerne la possibilité
ou non de modifier un objet.

• Un objet est dit non modifiable lorsqu’on ne peut pas le modifier, ou lorsqu’on ne peut pas en modifier un de
ses éléments si c’est un conteneur. On parle aussi d’objet immuable 1 (immutable object en anglais). Cela signifie
qu’une fois créé, Python ne permet plus de le modifier par la suite.

Qu’en est-il des objets que nous connaissons ? Les listes sont modifiables, on peut modifier un ou plusieurs de ses
éléments et ajouter ou retirer un élément. Les dictionnaires sont modifiables : pour une clé donnée, on peut changer la
valeur correspondante et ajouter ou retirer un couple clé/valeur. Tous les autres types que nous avons vus précédemment
sont quant à eux non modifiables : les chaînes de caractères ou strings, les tuples, les objets de type range, mais également
des objets qui ne sont pas des conteneurs comme les entiers, les floats et les booléens.

On comprend bien l’immutabilité des strings comme vu au chapitre 11 Plus sur les chaînes de caractères, mais c’est
moins évident pour les entiers, floats ou booléens. Nous allons démontrer cela, mais avant nous avons besoin de définir
la notion d’identifiant d’un objet.

Définition
L’identifiant d’un objet est un nombre entier qui est garanti constant pendant toute la durée de vie de l’objet. Cet

identifiant est en général unique pour chaque objet. Toutefois, pour des raisons d’optimisation, Python crée parfois le
même identifiant pour deux objets non modifiables différents qui ont la même valeur. L’identifiant peut être assimilé
à l’adresse mémoire de l’objet qui, elle aussi, est unique. En Python, on utilise la fonction interne id() qui prend en
argument un objet et renvoie son identifiant.

Maintenant que l’identifiant est défini, regardons l’exemple suivant qui montre l’immutabilité des entiers :
1 >>> var = 4
2 >>> id(var)
3 140318876873440
4 >>> var = 5
5 >>> id(var)
6 140318876873472

Ligne 1 on définit l’entier var puis on regarde son identifiant.
Ligne 4, on pourrait penser que l’on modifie var. Toutefois, on voit que son identifiant ligne 6 est différent de la

ligne 3. En fait, l’affectation ligne 4 var = 5 écrase l’ancienne variable var et en crée une nouvelle, ce n’est pas la valeur
de var qui a été changée puisque l’identifiant n’est plus le même. Le même raisonnement peut être tenu pour les autres
types numériques comme les floats et booléens.

Si on regarde maintenant ce qu’il se passe pour une liste :
1 >>> liste1 = [1, 2, 3]
2 >>> id(liste1)
3 140318850324832
4 >>> liste1[1] = -15
5 >>> id(liste1)
6 140318850324832
7 >>> liste1.append(5)
8 >>> id(liste1)
9 140318850324832

1. https://fr.wikipedia.org/wiki/Objet_immuable

Cours de Python / Université Paris Cité / UFR Sciences du Vivant 139

https://fr.wikipedia.org/wiki/Objet_immuable

Chapitre 14. Conteneurs 14.1. Généralités

La liste liste1 a été modifiée ligne 4 (changement de l’élément d’indice 1) et ligne 7 (ajout d’un élément). Pour
autant, l’identifiant de cette liste est resté identique tout du long. Ceci démontre la mutabilité des listes : quelle que soit
la manière dont on modifie une liste, celle-ci garde le même identifiant.

• Une dernière propriété importante est la capacité d’un conteneur (ou tout autre objet Python) à être hachable.

Définition
Un objet Python est dit hachable (hashable en anglais) s’il est possible de calculer une valeur de hachage sur celui-ci

avec la fonction interne hash(). En programmation, la valeur de hachage peut être vue comme une empreinte numérique
de l’objet. Elle est obtenue en passant l’objet dans une fonction de hachage et dépend du contenu de l’objet. En Python,
cette empreinte est, comme dans la plupart des langages de programmation, un entier. Au sein d’une même session
Python, deux objets hachables qui ont un contenu identique auront strictement la même valeur de hachage.

Attention
La valeur de hachage d’un objet renvoyée par la fonction hash() n’a pas le même sens que son identifiant renvoyé

par la fonction id(). La valeur de hachage est obtenue en « moulinant » le contenu de l’objet dans une fonction de
hachage. L’identifiant est quant à lui attribué par Python à la création de l’objet. Il est constant tout le long de la durée
de vie de l’objet, un peu comme une carte d’identité. Tout objet a un identifiant, mais il doit être hachable pour avoir
une valeur de hachage.

Pour aller plus loin
Pour aller plus loin, vous pouvez consulter la page Wikipedia sur les fonctions de hachage 2.

Pourquoi évoquer cette propriété de hachabilité ? D’abord, parce qu’elle est étroitement liée à l’immutabilité. En effet,
un objet non modifiable est la plupart du temps hachable. Cela permet de l’identifier en fonction de son contenu. Par
ailleurs, l’hachabilité est une implémentation qui permet un accès rapide aux éléments des conteneurs de type dictionnaire
ou set (cf. rubriques suivantes).

Les objets hachables sont les chaînes de caractères, les entiers, les floats, les booléens, les objets de type range, les
tuples (sous certaines conditions) et les frozensets ; par contre, les listes, les sets et les dictionnaires sont non hachables.
Les sets et frozensets seront vus plus bas dans ce chapitre.

Voici un exemple :
1 >>> hash("Plouf")
2 5085648805260210718
3 >>> hash(5)
4 5
5 >>> hash(3.14)
6 322818021289917443
7 >>> hash([1, 2, 3])
8 Traceback (most recent call last):
9 File "<stdin>", line 1, in <module>

10 TypeError: unhashable type: 'list'

Les valeurs de hachage renvoyées par la fonction hash() de Python sont systématiquement des entiers. Par contre,
Python renvoie une erreur pour une liste, car elle est non hachable.

14.1.2 Conteneurs de type range
Revenons rapidement sur les objets de type range. Jusqu’à maintenant, on s’en est servi pour faire des boucles ou

générer des listes de nombres. Toutefois, on a vu ci-dessus qu’ils étaient aussi des conteneurs. Ils sont ordonnés, indexables,
itérables, hachables et non modifiables :

2. https://fr.wikipedia.org/wiki/Fonction_de_hachage

140 Cours de Python / Université Paris Cité / UFR Sciences du Vivant

https://fr.wikipedia.org/wiki/Fonction_de_hachage

14.2. Plus sur les dictionnaires Chapitre 14. Conteneurs

1 >>> range1 = range(3)
2 >>> range1[0]
3 0
4 >>> range1[0:1]
5 range(0, 1)
6 >>> for element in range1:
7 ... print(element)
8 ...
9 0

10 1
11 2
12 >>> range1[2] = 10
13 Traceback (most recent call last):
14 File "<stdin>", line 1, in <module>
15 TypeError: 'range' object does not support item assignment
16 >>> hash(range1)
17 5050907061201647097

La tentative de modification d’un élément ligne 12 conduit à la même erreur que lorsqu’on essaie de modifier un
caractère d’une chaîne de caractères. Comme pour la plupart des objets Python non modifiables, les objets de type range
sont hachables.

14.2 Plus sur les dictionnaires
Nous revenons sur les dictionnaires qui, on l’a vu, sont des conteneurs de correspondance où chaque valeur est associée

à une clé plutôt qu’un indice. Nous allons voir certaines propriétés avancées des dictionnaires, notamment comment trier
par clé ou par valeur.

14.2.1 Objets utilisables comme clé
Toutes les clés de dictionnaire vues dans le chapitre 8 Dictionnaires et tuples et utilisées jusqu’à présent étaient des

chaînes de caractères. Toutefois, on peut utiliser d’autres types d’objets comme des entiers, des floats, voire des tuples,
cela peut s’avérer parfois très utile. Une règle est toutefois requise : les objets utilisés comme clé doivent être hachables
(voir la rubrique précédente pour la définition).

Pourquoi les clés doivent être des objets hachables ? C’est la raison d’être des dictionnaires qui d’ailleurs sont aussi
appelés table de hachage 3 dans d’autres langages, comme Perl. Convertir chaque clé en sa valeur de hachage permet
un accès très rapide à chacun des éléments du dictionnaire, ainsi que des comparaisons de clés entre dictionnaires
extrêmement efficaces. Même si on a vu que deux objets pouvaient avoir la même valeur de hachage, par exemple a = 5
et b = 5, on ne peut mettre qu’une seule fois la clé 5. Ceci assure que deux clés d’un même dictionnaire ont forcément
une valeur de hachage différente.

Pouvoir utiliser autre chose qu’une chaîne de caractères comme clé peut se révéler très pratique. Par exemple, pour
une protéine ou un peptide, on pourrait concevoir d’utiliser comme clé le numéro de résidu, et comme valeur le nom de
résidu. Imaginons par ailleurs que nous commencions à compter le premier acide aminé à 3 (souvent les fichiers PDB ne
commence pas à 1 pour le premier acide aminé). Par exemple :

1 >>> sequence = {3: 'S', 4: 'E', 5: 'Q', 6: 'P', 7: 'E', 8: 'P', 9: 'T'}
2 >>> sequence[5]
3 'Q'
4 >>> sequence[9]
5 'T'
6 >>> for num, res in sequence.items():
7 ... print(num, res)
8 ...
9 3 S

10 4 E
11 5 Q
12 6 P
13 7 E
14 8 P
15 9 T

3. https://fr.wikipedia.org/wiki/Table_de_hachage

Cours de Python / Université Paris Cité / UFR Sciences du Vivant 141

https://fr.wikipedia.org/wiki/Table_de_hachage

Chapitre 14. Conteneurs 14.2. Plus sur les dictionnaires

Vous voyez l’énorme avantage, d’utiliser comme clé le numéro de résidu. Avec une liste ou une chaîne de caractère,
l’indiçage commence à zéro. Ainsi, il faudrait utiliser les indices 2 et 6 pour retrouver respectivement les acides aminés 5
et 9 :

1 >>> sequence = ['S', 'E', 'Q', 'P', 'E', 'P', 'T']
2 >>> sequence[2]
3 'Q'
4 >>> sequence[6]
5 'T'

14.2.2 Destruction d’une paire clé/valeur
Comme pour tous les objets Python, l’instruction del permet de détruire un couple clé/valeur :

1 >>> dico = {'nom': 'girafe', 'taille': 5.0, 'poids': 1100}
2 >>> del dico["nom"]
3 >>> dico
4 {'taille': 5.0, 'poids': 1100}

Pour les listes, on utilise l’indice entre crochet pour détruire l’élément, par exemple del liste[2]. Ici, on utilise la
clé.

14.2.3 Tri par clés
On peut utiliser la fonction sorted() vue précédemment avec les listes pour trier un dictionnaire par ses clés :

1 >>> ani2 = {'nom': 'singe', 'taille': 1.75, 'poids': 70}
2 >>> sorted(ani2)
3 ['nom', 'poids', 'taille']

Les clés sont triées ici par ordre alphabétique.

14.2.4 Tri par valeurs
Pour trier un dictionnaire par ses valeurs, il faut utiliser la fonction sorted() avec l’argument key :

1 >>> dico = {"a": 15, "b": 5, "c":20}
2 >>> sorted(dico, key=dico.get)
3 ['b', 'a', 'c']

L’argument key=dico.get indique explicitement qu’il faut réaliser le tri par les valeurs du dictionnaire. On retrouve
la méthode .get() vue au chapitre 8 Dictionnaires et tuples, mais sans les parenthèses : key=dico.get, mais pas key
=dico.get(). Une fonction ou méthode passée en argument sans les parenthèses est appelée callback, nous reverrons
cela en détail dans le chapitre 25 Fenêtres graphiques et Tkinter (en ligne).

Attention, ce sont les clés du dictionnaire qui sont renvoyées, pas les valeurs. Ces clés sont cependant renvoyées dans
un ordre qui permet d’obtenir les clés triées par ordre croissant :

1 >>> dico = {"a": 15, "b": 5, "c":20}
2 >>> for key in sorted(dico, key=dico.get):
3 ... print(key, dico[key])
4 ...
5 b 5
6 a 15
7 c 20

Enfin, l’argument reverse=True fonctionne également :
1 >>> dico = {"a": 15, "b": 5, "c":20}
2 >>> sorted(dico, key=dico.get, reverse=True)
3 ['c', 'a', 'b']

Remarque
Lorsqu’on trie un dictionnaire par ses valeurs, il faut être sûr que cela soit possible. Ce n’est pas le cas lorsqu’on a un

mélange de valeurs numériques et chaînes de caractères :

142 Cours de Python / Université Paris Cité / UFR Sciences du Vivant

14.2. Plus sur les dictionnaires Chapitre 14. Conteneurs

1 >>> ani2 = {'nom': 'singe', 'poids': 70, 'taille': 1.75}
2 >>> sorted(ani2, key=ani2.get)
3 Traceback (most recent call last):
4 File "<stdin>", line 1, in <module>
5 TypeError: '<' not supported between instances of 'int' and 'str'

On obtient ici une erreur, car Python ne sait pas comparer une chaîne de caractères (singe) avec des valeurs
numériques (70 et 1.75).

14.2.5 Clé associée au minimum ou au maximum des valeurs
Les fonctions min() et max(), que vous avez déjà manipulées dans les chapitres précédents, acceptent également

l’argument key=. On peut ainsi obtenir la clé associée au minimum ou au maximum des valeurs d’un dictionnaire :
1 >>> dico = {"a": 15, "b": 5, "c":20}
2 >>> max(dico, key=dico.get)
3 'c'
4 >>> min(dico, key=dico.get)
5 'b'

14.2.6 Fonction dict()
La fonction dict() va convertir l’argument qui lui est passé en dictionnaire. Il s’agit donc d’une fonction de casting,

comme int(), str(), etc. Toutefois, l’argument qui lui est passé doit avoir une forme particulière : un objet séquentiel
contenant d’autres objets séquentiels de deux éléments. Par exemple, une liste de listes de deux éléments :

1 >>> liste_animaux = [["girafe", 2], ["singe", 3]]
2 >>> dict(liste_animaux)
3 {'girafe': 2, 'singe': 3}

Ou un tuple de tuples de deux éléments, ou encore une combinaison liste et tuple :
1 >>> tuple_animaux = (("girafe", 2), ("singe", 3))
2 >>> dict(tuple_animaux)
3 {'girafe': 2, 'singe': 3}
4 >>>
5 >>> dict([("girafe", 2), ("singe", 3)])
6 {'girafe': 2, 'singe': 3}

Si un des sous-éléments a plus de deux éléments (ou moins), Python renvoie une erreur :
1 >>> dict([("girafe", 2), ("singe", 3, 4)])
2 Traceback (most recent call last):
3 File "<stdin>", line 1, in <module>
4 ValueError: dictionary update sequence element #1 has length 3; 2 is required

Attention
Une manière intuitive utilise simplement des arguments par mot-clés, qui deviendront des clés sous forme de chaîne

de caractères :
1 >>> dict(un=1, deux=2, trois=3)
2 {'un': 1, 'deux': 2, 'trois': 3}

Nous vous déconseillons toutefois cette manière de faire, car on ne peut pas mettre d’arguments par mot-clé variables,
on doit les écrire explicitement.

Une dernière manière puissante pour générer des dictionnaires combine les fonctions dict() et zip(). On se souvient
que la fonction zip() peut générer une liste de tuples :

Cours de Python / Université Paris Cité / UFR Sciences du Vivant 143

Chapitre 14. Conteneurs 14.3. Plus sur les tuples

1 >>> animaux = ["poulain", "renard", "python"]
2 >>> couleurs = ["alezan", "roux", "vert"]
3 >>> list(zip(animaux, couleurs))
4 [('poulain', 'alezan'), ('renard', 'roux'), ('python', 'vert')]

Si on utilise l’objet zip avec la fonction dict(), on obtient un dictionnaire.
1 >>> dict(zip(animaux, couleurs))
2 {'poulain': 'alezan', 'renard': 'roux', 'python': 'vert'}

Attention à ne passer que deux listes à la fonction zip(), sinon Python renvoie une erreur :
1 >>> dict(zip([1, 2, 3], animaux, couleurs))
2 Traceback (most recent call last):
3 File "<stdin>", line 1, in <module>
4 ValueError: dictionary update sequence element #0 has length 3; 2 is required

14.3 Plus sur les tuples
Nous revenons sur les tuples, que nous avons défini dans le chapitre 8 Dictionnaires et tuples et que nous avons

croisé à de nombreuses reprises, notamment avec les fonctions. Les tuples sont des objets séquentiels correspondant aux
listes, donc ils sont itérables, ordonnés et indexables, mais ils sont toutefois non modifiables. On verra plus bas qu’ils
sont hachables sous certaines conditions. L’intérêt des tuples par rapport aux listes réside dans leur immutabilité. Cela
accélère considérablement la manière dont Python accède à chaque élément et ils prennent moins de place en mémoire.
Par ailleurs, on ne risque pas de modifier un de ses éléments par mégarde.

14.3.1 Immutabilité
Nous avions vu que les tuples étaient immuables :

1 >>> tuple1 = (1, 2, 3)
2 >>> tuple1[2] = 15
3 Traceback (most recent call last):
4 File "<stdin>", line 1, in <module>
5 TypeError: 'tuple' object does not support item assignment

Ce message est similaire à celui que nous avions rencontré quand on essayait de modifier une chaîne de caractères
(voir chapitre 11 Plus sur les chaînes de caractères). De manière générale, Python renverra un message TypeError: '
[...]' does not support item assignment lorsqu’on essaie de modifier un élément d’un objet non modifiable. Si
vous voulez ajouter un élément (ou le modifier), vous devez créer un nouveau tuple :

1 >>> tuple1 = (1, 2, 3)
2 >>> tuple1
3 (1, 2, 3)
4 >>> id(tuple1)
5 139971081704464
6 >>> tuple1 = tuple1 + (2,)
7 >>> tuple1
8 (1, 2, 3, 2)
9 >>> id(tuple1)

10 139971081700368

La fonction id() montre que le tuple créé ligne 6 est bien différent de celui créé ligne 4, bien qu’ils aient le même
nom. Comme on a vu plus haut, ceci est dû à l’opérateur d’affectation utilisé ligne 6 (tuple1 = tuple1 + (2,)) qui
crée un nouvel objet distinct de celui de la ligne 1. Cet exemple montre que les tuples sont peu adaptés lorsqu’on a besoin
d’ajouter, retirer, modifier des éléments. La création d’un nouveau tuple à chaque étape s’avère lourde et il n’y a aucune
méthode pour faire cela, puisque les tuples sont non modifiables.

Conseil
Pour ce genre de tâche, les listes sont clairement mieux adaptées que les tuples.

144 Cours de Python / Université Paris Cité / UFR Sciences du Vivant

14.3. Plus sur les tuples Chapitre 14. Conteneurs

14.3.2 Affectation multiple et fonctions

Dans le chapitre 8 Dictionnaires et tuples, nous avons abordé l’affectation multiple. Pour rappel, elle permet d’effectuer
sur une même ligne plusieurs affectations en même temps, par exemple : x, y, z = 1, 2, 3. On a vu qu’il était possible
de le faire également avec les listes : [x, y, z] = [1, 2, 3]. Toutefois, cette syntaxe étant alourdie par la présence
des crochets, on préfèrera toujours la première syntaxe avec les tuples sans parenthèses.

Concernant les fonctions, nous avions croisé l’importance de l’affectation multiple dans le chapitre 10 lorsqu’une
fonction renvoyait plusieurs valeurs :

1 >>> def ma_fonction():
2 ... return 3, 14
3 ...
4 >>> x, y = ma_fonction()
5 >>> print(x, y)
6 3 14

La syntaxe x, y = ma_fonction() permet de récupérer les deux valeurs renvoyées par la fonction et de les affecter
à la volée dans deux variables différentes. Cela évite l’opération laborieuse de récupérer d’abord le tuple, puis de créer les
variables en utilisant l’indiçage :

1 >>> resultat = ma_fonction()
2 >>> resultat
3 (3, 14)
4 >>> x = resultat[0]
5 >>> y = resultat[1]
6 >>> print(x, y)
7 3 14

Conseil
Lorsqu’une fonction renvoie plusieurs valeurs sous forme de tuple, privilégiez toujours la forme x, y = ma_fonction

().

14.3.3 Affectation multiple et nom de variable _
Quand une fonction renvoie plusieurs valeurs, mais que l’on ne souhaite pas les utiliser toutes dans la suite du code,

on peut utiliser le nom de variable _ (caractère underscore) pour indiquer que certaines valeurs ne nous intéressent pas :

1 >>> def ma_fonction():
2 ... return 1, 2, 3, 4
3 ...
4 >>> x, _, y, _ = ma_fonction()
5 >>> x
6 1
7 >>> y
8 3

Cela envoie le message à la personne qui lit le code « je ne m’intéresse pas aux valeurs récupérées dans les variables
_ ». Notez que l’on peut utiliser une ou plusieurs variables underscore(s). Dans l’exemple ci-dessus, la 2e et la 4e variable
renvoyées par la fonction seront ignorées dans la suite du code. Cela présente le mérite d’éviter de polluer l’attention de
la personne qui lit le code.

Remarque
Dans l’interpréteur interactif, la variable _ a une signification différente. Elle prend automatiquement la dernière valeur

affichée :

Cours de Python / Université Paris Cité / UFR Sciences du Vivant 145

Chapitre 14. Conteneurs 14.3. Plus sur les tuples

1 >>> 3
2 3
3 >>> _
4 3
5 >>> "mésange"
6 'mésange'
7 >>> _
8 'mésange'

Attention, ceci n’est vrai que dans l’interpréteur !

Remarque
Le caractère underscore (_) est couramment utilisé dans les noms de variable pour séparer les mots et être explicite,

par exemple seq_ADN ou liste_listes_residus. On verra dans le chapitre 16 Bonnes pratiques en programmation
Python que ce style de nommage est appelé snake_case. Toutefois, il faut éviter d’utiliser les underscores en début et/ou
en fin de nom de variable (leading et trailing underscores en anglais), par exemple : _var, var_, __var, __var__. On
verra au chapitre 23 Avoir la classe avec les objets que ces underscores ont aussi une signification particulière.

14.3.4 Tuples contenant des listes
On a vu que les tuples étaient non modifiables. Que se passe-t-il alors si on crée un tuple contenant des objets

modifiables comme des listes ? Examinons le code suivant :
1 >>> liste1 = [1, 2, 3]
2 >>> tuple1 = (liste1, "Plouf")
3 >>> tuple1
4 ([1, 2, 3], 'Plouf')
5 >>> liste1[0] = -15
6 >>> tuple1[0].append(-632)
7 >>> tuple1
8 ([-15, 2, 3, -632], 'Plouf')

Si on modifie un élément de la liste liste1 (ligne 5) ou bien qu’on ajoute un élément à tuple1[0] (ligne 6), Python
s’exécute et ne renvoie pas de message d’erreur. Or nous avions dit qu’un tuple était non modifiable… Comment cela
est-il possible ? Commençons d’abord par regarder comment les objets sont agencés avec Python Tutor.

Figure 14.1 – Tuple contenant une liste.

La liste liste1 pointe vers le même objet que l’élément du tuple d’indice 0. Comme pour la copie de liste (par
exemple liste_b = liste_a), ceci est attendu car, par défaut, Python crée une copie par référence (voir le chapitre
12 Plus sur les listes). Ainsi, qu’on raisonne en tant que premier élément du tuple ou bien en tant que liste liste1, on
pointe vers la même liste. Or, rappelez-vous, nous avons expliqué au début de ce chapitre que lorsqu’on modifiait un

146 Cours de Python / Université Paris Cité / UFR Sciences du Vivant

14.3. Plus sur les tuples Chapitre 14. Conteneurs

élément d’une liste, celle-ci gardait le même identifiant. C’est toujours le cas ici, même si celle-ci se trouve dans un tuple.
Regardons cela :

1 >>> liste1 = [1, 2, 3]
2 >>> tuple1 = (liste1, "Plouf")
3 >>> tuple1
4 ([1, 2, 3], 'Plouf')
5 >>> id(liste1)
6 139971081980816
7 >>> id(tuple1[0])
8 139971081980816

Nous confirmons ici le schéma de Python Tutor, c’est bien la même liste que l’on considère liste1 ou tuple1[0]
puisqu’on a le même identifiant. Maintenant, on modifie cette liste via la variable liste1 ou tuple1[0] :

1 >>> liste1[2] = -15
2 >>> tuple1[0].append(-632)
3 >>> tuple1
4 ([1, 2, -15, -632], 'Plouf')
5 >>> id(liste1)
6 139971081980816
7 >>> id(tuple1[0])
8 139971081980816

Malgré la modification de cette liste, l’identifiant n’a toujours pas changé puisque la fonction id() nous renvoie la
même valeur depuis le début. Même si la liste a été modifiée « de l’intérieur », Python considère que c’est toujours la
même liste, puisqu’elle n’a pas changé d’identifiant. Si au contraire on essaie de remplacer cette sous-liste par autre
chose, Python renvoie une erreur :

1 >>> tuple1[0] = "Plif"
2 Traceback (most recent call last):
3 File "<stdin>", line 1, in <module>
4 TypeError: 'tuple' object does not support item assignment

Cette erreur s’explique par le fait que le nouvel objet "Plif" n’a pas le même identifiant que la sous-liste initiale. En
fait, l’immutabilité selon Python signifie qu’un objet créé doit toujours garder le même identifiant. Cela est valable pour
tout objet non modifiable, comme un élément d’un tuple, un caractère dans une chaîne de caractères, etc.

Conseil
Cette digression avait pour objectif de vous faire comprendre ce qu’il se passe lorsqu’on met une liste dans un tuple.

Toutefois, pouvoir modifier une liste en tant qu’élément d’un tuple va à l’encontre de l’intérêt d’un objet non modifiable.
Dans la mesure du possible, nous vous déconseillons de créer des listes dans des tuples afin d’éviter les déconvenues.

14.3.5 Fonction tuple()
Nous avions vu également la fonction tuple(), qui permet de convertir un objet séquentiel en tuple (opération de

casting). Cela est possible seulement si l’objet passé en argument est itérable :
1 >>> tuple([1, 3])
2 (1, 3)
3 >>> tuple("a")
4 ('a',)
5 >>> tuple(2)
6 Traceback (most recent call last):
7 File "<stdin>", line 1, in <module>
8 TypeError: 'int' object is not iterable
9 >>> tuple(True)

10 Traceback (most recent call last):
11 File "<stdin>", line 1, in <module>
12 TypeError: 'bool' object is not iterable

Bien sûr, un entier ou un booléen ne sont pas itérables.

Cours de Python / Université Paris Cité / UFR Sciences du Vivant 147

Chapitre 14. Conteneurs 14.4. Sets et frozensets

14.3.6 Hachabilité des tuples
Les tuples sont hachables s’ils ne contiennent que des éléments hachables. Si un tuple contient un ou plusieurs objet(s)

non hachable(s), comme une liste, il devient non hachable :
1 >>> tuple1 = tuple(range(10))
2 >>> tuple1
3 (0, 1, 2, 3, 4, 5, 6, 7, 8, 9)
4 >>> hash(tuple1)
5 -4181190870548101704
6 >>> tuple2 = ("Plouf", 2, (1, 3))
7 >>> tuple2
8 ('Plouf', 2, (1, 3))
9 >>> hash(tuple2)

10 286288423668065022
11 >>> tuple3 = (1, (3, 4), "Plaf", [3, 4, 5])
12 >>> tuple3
13 (1, (3, 4), 'Plaf', [3, 4, 5])
14 >>> hash(tuple3)
15 Traceback (most recent call last):
16 File "<stdin>", line 1, in <module>
17 TypeError: unhashable type: 'list'

Les tuples tuple1 et tuple2 sont hachables car ils ne contiennent que des éléments hachables. Par contre, tuple3
ne l’est pas, car un de ses éléments est une liste.

Conseil
Mettre une ou plusieurs liste(s) dans un tuple le rend non hachable. Ceci le rend inutilisable comme clé de dictionnaire

ou, on le verra ci-après, comme élément d’un set ou d’un frozenset. Donc, à nouveau, ne mettez pas de listes dans vos
tuples !

14.4 Sets et frozensets
14.4.1 Définition et propriétés

Les objets de type set représentent un autre type de conteneur qui peut se révéler très pratique. Ils ont la particularité
d’être modifiables, non hachables, non ordonnés, non indexables et de ne contenir qu’une seule copie maximum de chaque
élément. Pour créer un nouveau set on peut utiliser les accolades :

1 >>> set1 = {4, 5, 5, 12}
2 >>> set1
3 {12, 4, 5}
4 >>> type(set1)
5 <class 'set'>

Remarquez que la répétition du chiffre 5 dans la définition du set ligne 1 produit finalement un seul chiffre 5, car
chaque élément ne peut être présent qu’une seule fois. Comme pour les dictionnaires (jusqu’à la version 3.6), les sets
sont non ordonnés. La manière dont Python les affiche n’a pas de sens en tant que tel et peut être différente de celle
utilisée lors de leur création.

Les sets ne peuvent contenir que des objets hachables. On a déjà eu le cas avec les clés de dictionnaire. Ceci optimise
l’accès à chaque élément du set. Pour rappel, les objets hachables que nous connaissons sont les chaînes de caractères,
les tuples, les entiers, les floats, les booléens et les frozensets (voir plus bas). Les objets non hachables que l’on connait
sont les listes, les sets et les dictionnaires. Si on essaie tout de même de mettre une liste dans un set, Python renvoie
une erreur :

1 >>> set1 = {3, 4, "Plouf", (1, 3)}
2 >>> set1
3 {(1, 3), 3, 4, 'Plouf'}
4 >>> set2 = {3.14, [1, 2]}
5 Traceback (most recent call last):
6 File "<stdin>", line 1, in <module>
7 TypeError: unhashable type: 'list'

148 Cours de Python / Université Paris Cité / UFR Sciences du Vivant

14.4. Sets et frozensets Chapitre 14. Conteneurs

À quoi différencie-t-on un set d’un dictionnaire alors que les deux utilisent des accolades ? Le set sera défini seulement
par des valeurs {valeur_1, valeur_2, ...} alors que le dictionnaire aura toujours des couples clé/valeur {clé_1:
valeur_1, clé_2: valeur_2, ...}.

La fonction interne à Python set() convertit un objet itérable passé en argument en un nouveau set (opération de
casting) :

1 >>> set([1, 2, 4, 1])
2 {1, 2, 4}
3 >>> set((2, 2, 2, 1))
4 {1, 2}
5 >>> set(range(5))
6 {0, 1, 2, 3, 4}
7 >>> set({"clé_1": 1, "clé_2": 2})
8 {'clé_1', 'clé_2'}
9 >>> set(["ti", "to", "to"])

10 {'ti', 'to'}
11 >>> set("Maître Corbeau et Maître Renard")
12 {'e', 'd', 'M', 'r', 'n', 't', 'a', 'C', 'î', ' ', 'o', 'u', 'R', 'b'}

Nous avons dit plus haut que les sets ne sont ni ordonnés ni indexables, il est donc impossible de récupérer un élément
par sa position. Il est également impossible de modifier un de ses éléments par l’indexation.

1 >>> set1 = set([1, 2, 4, 1])
2 >>> set1[1]
3 Traceback (most recent call last):
4 File "<stdin>", line 1, in <module>
5 TypeError: 'set' object is not subscriptable
6 >>> set1[1] = 5
7 Traceback (most recent call last):
8 File "<stdin>", line 1, in <module>
9 TypeError: 'set' object does not support item assignment

Par contre, les sets sont itérables :
1 >>> for element in set1:
2 ... print(element)
3 ...
4 1
5 2
6 4

Les sets ne peuvent être modifiés que par des méthodes spécifiques :
1 >>> set1 = set(range(5))
2 >>> set1
3 {0, 1, 2, 3, 4}
4 >>> set1.add(4)
5 >>> set1
6 {0, 1, 2, 3, 4}
7 >>> set1.add(472)
8 >>> set1
9 {0, 1, 2, 3, 4, 472}

10 >>> set1.discard(0)
11 >>> set1
12 {1, 2, 3, 4, 472}

La méthode .add() ajoute au set l’élément passé en argument. Toutefois, si l’élément est déjà présent dans le set,
il n’est pas ajouté puisqu’on a au plus une copie de chaque élément. La méthode .discard() retire du set l’élément
passé en argument. Si l’élément n’est pas présent dans le set, il ne se passe rien, le set reste intact. Comme les sets ne
sont pas ordonnés ni indexables, il n’y a pas de méthode pour insérer un élément à une position précise, contrairement
aux listes. Dernier point sur ces méthodes, elles modifient le set sur place (in place, en anglais) et ne renvoient rien, à
l’instar des méthodes des listes (.append(), .remove(), etc.).

Enfin, les sets ne supportent pas les opérateurs + et *.

Cours de Python / Université Paris Cité / UFR Sciences du Vivant 149

Chapitre 14. Conteneurs 14.4. Sets et frozensets

14.4.2 Utilité

Les conteneurs de type set sont très utiles pour rechercher les éléments uniques d’une suite d’éléments. Cela revient
à éliminer tous les doublons. Par exemple :

1 >>> import random
2 >>> liste1 = [random.randint(0, 9) for i in range(10)]
3 >>> liste1
4 [7, 9, 6, 6, 7, 3, 8, 5, 6, 7]
5 >>> set(liste1)
6 {3, 5, 6, 7, 8, 9}

On peut bien sûr transformer dans l’autre sens un set en liste. Cela permet par exemple d’éliminer les doublons de la
liste initiale, tout en récupérant une liste à la fin :

1 >>> list(set([7, 9, 6, 6, 7, 3, 8, 5, 6, 7]))
2 [3, 5, 6, 7, 8, 9]

On peut faire des choses très puissantes. Par exemple, un compteur de lettres en combinaison avec une liste de
compréhension, le tout en une ligne !

1 >>> seq = "atctcgatcgatcgcgctagctagctcgccatacgtacgactacgt"
2 >>> set(seq)
3 {'c', 'g', 't', 'a'}
4 >>> [(base, seq.count(base)) for base in set(seq)]
5 [('c', 15), ('g', 10), ('t', 11), ('a', 10)]

Les sets permettent aussi l’évaluation d’union ou d’intersection mathématiques en conjonction avec les opérateurs,
respectivement | et & :

1 >>> liste1 = [3, 3, 5, 1, 3, 4, 1, 1, 4, 4]
2 >>> liste2 = [3, 0, 5, 3, 3, 1, 1, 1, 2, 2]
3 >>> set(liste1) | set(liste2)
4 {0, 1, 2, 3, 4, 5}
5 >>> set(liste1) & set(liste2)
6 {1, 3, 5}

Notez qu’il existe les méthodes .union() et .intersection permettant de réaliser ces opérations d’union et
d’intersection :

1 >>> set1 = {1, 3, 4, 5}
2 >>> set2 = {0, 1, 2, 3, 5}
3 >>> set1.union(set2)
4 {0, 1, 2, 3, 4, 5}
5 >>> set1.intersection(set2)
6 {1, 3, 5}

L’instruction set1.difference(set2) renvoie sous la forme d’un nouveau set les éléments de set1 qui ne sont
pas dans set2. Et inversement pour set2.difference(set1) :

1 >>> set1.difference(set2)
2 {4}
3 >>> set2.difference(set1)
4 {0, 2}

Enfin, deux autres méthodes sont très utiles :

150 Cours de Python / Université Paris Cité / UFR Sciences du Vivant

14.5. Récapitulation des propriétés des conteneurs Chapitre 14. Conteneurs

1 >>> set1 = set(range(10))
2 >>> set2 = set(range(3, 7))
3 >>> set3 = set(range(15, 17))
4 >>> set1
5 {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}
6 >>> set2
7 {3, 4, 5, 6}
8 >>> set3
9 {16, 15}

10 >>> set2.issubset(set1)
11 True
12 >>> set3.isdisjoint(set1)
13 True

La méthode .issubset() indique si un set est inclus dans un autre set. La méthode isdisjoint() indique si un
set est disjoint d’un autre set, c’est-à-dire, s’ils n’ont aucun élément en commun indiquant que leur intersection est nulle.

Il existe de nombreuses autres méthodes que nous n’abordons pas ici, mais qui peuvent être consultées sur la docu-
mentation officielle de Python 4.

14.4.3 Frozensets
Les frozensets sont des sets non modifiables et hachables. Ainsi, un set peut contenir des frozensets mais pas l’inverse.

À quoi servent-ils ? Comme la différence entre tuple et liste, l’immutabilité des frozensets donne l’assurance de ne pas
pouvoir les modifier par erreur. Pour créer un frozenset on utilise la fonction interne frozenset(), qui prend en argument
un objet itérable et le convertit (opération de casting) :

1 >>> frozen1 = frozenset([3, 3, 5, 1, 3, 4, 1, 1, 4, 4])
2 >>> frozen2 = frozenset([3, 0, 5, 3, 3, 1, 1, 1, 2, 2])
3 >>> frozen1
4 frozenset({1, 3, 4, 5})
5 >>> frozen2
6 frozenset({0, 1, 2, 3, 5})
7 >>> frozen1.add(5)
8 Traceback (most recent call last):
9 File "<stdin>", line 1, in <module>

10 AttributeError: 'frozenset' object has no attribute 'add'
11 >>> frozen1.union(frozen2)
12 frozenset({0, 1, 2, 3, 4, 5})
13 >>> frozen1.intersection(frozen2)
14 frozenset({1, 3, 5})

Les frozensets ne possèdent bien sûr pas les méthodes de modification des sets (.add(), .discard(), etc.) puisqu’ils
sont non modifiables. Par contre, ils possèdent toutes les méthodes de comparaisons de sets (.union(), .intersection
(), etc.).

Conseil
Pour aller plus loin sur les sets et les frozensets, voici deux articles sur les sites programiz 5 et towardsdatascience 6.

14.5 Récapitulation des propriétés des conteneurs
Après ce tour d’horizon des différents conteneurs, voici des tableaux qui résument leurs propriétés. La mention « in

et len() » indique que l’on peut tester l’appartenance d’un élément à un conteneur avec l’opérateur in, et que l’on peut
connaître le nombre d’éléments du conteneur avec la fonction len(). Les mentions « index. » et « modif. » indiquent
respectivement « indexable » et « modifiable ».

14.5.1 Objets séquentiels

4. https://docs.python.org/3/library/stdtypes.html#set-types-set-frozenset
5. https://www.programiz.com/python-programming/set
6. https://towardsdatascience.com/python-sets-and-set-theory-2ace093d1607

Cours de Python / Université Paris Cité / UFR Sciences du Vivant 151

https://docs.python.org/3/library/stdtypes.html#set-types-set-frozenset
https://www.programiz.com/python-programming/set
https://towardsdatascience.com/python-sets-and-set-theory-2ace093d1607

Chapitre 14. Conteneurs 14.6. Dictionnaires et sets de compréhension

Conteneur in et len() itérable ordonné index. modif. hachable
liste oui oui oui oui oui non
chaîne de caractères oui oui oui oui non oui
range oui oui oui oui non oui
tuple oui oui oui oui non oui∗

∗ s’il ne contient que des objets hachables

14.5.2 Objets de mapping

Conteneur in et len() itérable ordonné index. modif. hachable
dictionnaire oui oui sur les clés oui∗ non oui non

∗ à partir de Python 3.7 uniquement

14.5.3 Objets sets

Conteneur in et len() itérable ordonné index. modif. hachable
sets oui oui non non oui non
frozensets oui oui non non non oui

14.5.4 Types de base
Il est aussi intéressant de comparer ces propriétés avec celles des types numériques de base qui ne sont pas des

conteneurs.

Objet numérique in et len() itérable ordonné index. modif. hachable
entier non non non non non oui
float non non non non non oui
booléen non non non non non oui

14.5.5 Copie de conteneurs
Un dernier point qu’il peut être utile de mentionner concerne la copie de conteneurs. On avait vu dans le chapitre

12 Plus sur les listes que la copie de listes se fait par référence. Cela est un mécanisme général pour tous les types de
conteneurs, sauf pour les chaînes de caractères. Python Tutor nous permet de visualiser cela (Figure 14.2).

Ainsi, il faut toujours faire attention quand on fait une copie d’un conteneur modfiable (liste, dictionnaire, set, etc.).
On verra que Python se comporte de la même manière avec les objets arrays (chapitre 20 module Numpy) ou Dataframes
(chapitre 22 Module pandas), car on peut les considérer également comme des conteneurs.

14.6 Dictionnaires et sets de compréhension
Nous avons abordé les listes de compréhension dans le chapitre 12 Plus sur les listes. Il est également possible de

générer des dictionnaires de compréhension :
1 >>> dico = {"a": 10, "g": 10, "t": 11, "c": 15}
2 >>> dico.items()
3 dict_items([('a', 10), ('g', 10), ('t', 11), ('c', 15)])
4 >>> {key:val*2 for key, val in dico.items()}
5 {'a': 20, 'g': 20, 't': 22, 'c': 30}
6 >>>
7 >>> animaux = (("singe", 3), ("girafe", 4), ("rhinocéros", 2))
8 >>> {animal:nombre for animal, nombre in animaux}
9 {'singe': 3, 'girafe': 4, 'rhinocéros': 2}

152 Cours de Python / Université Paris Cité / UFR Sciences du Vivant

14.7. Module collections Chapitre 14. Conteneurs

Figure 14.2 – Copie de conteneurs.

La méthode .items() vue dans le chapitre 8 Dictionnaires et tuples est particulièrement bien adaptée pour créer un
dictionnaire de compréhension, car elle permet d’itérer en même temps sur les clés et valeurs d’un dictionnaire.

Avec un dictionnaire de compréhension, on peut rapidement compter le nombre de chaque base dans une séquence
d’ADN :

1 >>> sequence = "atctcgatcgatcgcgctagctagctcgccatacgtacgactacgt"
2 >>> {base:seq.count(base) for base in set(sequence)}
3 {'a': 10, 'g': 10, 't': 11, 'c': 15}

De manière générale, tout objet sur lequel on peut faire une double itération du type for var1, var2 in obj est
utilisable pour créer un dictionnaire de compréhension. Si vous souhaitez aller plus loin, vous pouvez consulter cet article
sur le site Datacamp 7.

Il est également possible de générer des sets de compréhension sur le même modèle que les listes de compréhension :
1 >>> {i for i in range(10)}
2 {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}
3 >>> {i**2 for i in range(10)}
4 {0, 1, 64, 4, 36, 9, 16, 49, 81, 25}
5 >>>
6 >>> animaux = (("singe", 3), ("girafe", 4), ("rhinocéros", 2))
7 >>> {ani for ani, _ in animaux}
8 {'girafe', 'singe', 'rhinocéros'}

14.7 Module collections
Le module collections 8 contient d’autres types de conteneurs qui peuvent se révéler utiles, c’est une véritable mine

d’or ! Nous n’aborderons pas tous ces objets ici, mais nous pouvons citer tout de même certains d’entre eux si vous
souhaitez aller un peu plus loin :

• Les dictionnaires ordonnés 9, qui se comportent comme les dictionnaires classiques, mais qui sont ordonnés, c’est-à-
dire que si on les affiche ou on itère dessus, l’ordre sera le même que celui utilisé pour sa création. Avant la version

7. https://www.datacamp.com/community/tutorials/python-dictionary-comprehension
8. https://docs.python.org/fr/3/library/collections.html
9. https://docs.python.org/fr/3/library/collections.html#collections.OrderedDict

Cours de Python / Université Paris Cité / UFR Sciences du Vivant 153

https://www.datacamp.com/community/tutorials/python-dictionary-comprehension
https://docs.python.org/fr/3/library/collections.html
https://docs.python.org/fr/3/library/collections.html#collections.OrderedDict

Chapitre 14. Conteneurs 14.8. Exercices

3.6 de Python, ces dictionnaires ordonnés avaient un intérêt, car l’ordre des dictionnaires normaux était arbitraire.
Désormais, les dictionnaires normaux se comportent presque en tout point comme les dictionnaires ordonnés.

• Les defaultdicts 10, qui génèrent des valeurs par défaut quand on demande une clé qui n’existe pas (cela évite que
Python génère une erreur).

• Les compteurs 11, dont un exemple est présenté ci-dessous.
• Les namedtuples 12, que nous évoquerons au chapitre 24 Avoir plus la classe avec les objets (en ligne).
L’objet collection.Counter() est particulièrement intéressant et simple à utiliser. Il crée des compteurs à partir

d’objets itérables, par exemple :
1 >>> import collections
2 >>> compo_seq = collections.Counter("aatctccgatcgatcgatcgatgatc")
3 >>> compo_seq
4 Counter({'a': 7, 't': 7, 'c': 7, 'g': 5})
5 >>> type(compo_seq)
6 <class 'collections.Counter'>
7 >>> compo_seq["a"]
8 7
9 >>> compo_seq["n"]

10 0

Dans cet exemple, Python a automatiquement compté chaque caractère a, t, g et c de la chaîne de caractères passée
en argument. Cela crée un objet de type Counter qui se comporte ensuite comme un dictionnaire, à une exception près :
si on appelle une clé qui n’existe pas dans l’itérable initiale (comme le n ci-dessus), la valeur renvoyée est 0.

14.8 Exercices

Conseil
Pour ces exercices, créez des scripts puis exécutez-les dans un shell.

14.8.1 Séquence peptidique et dictionnaire
Les numéros d’acides aminés commencent rarement à 1 dans les fichiers PDB. Créez un dictionnaire où chaque clé

est un numéro de résidu de 3 à 9, et chaque valeur est un acide aminé de la séquence peptidique suivante : SEQPEPT.
Utilisez pour cela les fonctions dict() et zip().

14.8.2 Composition en acides aminés
En utilisant un set et la méthode .count() des chaînes de caractères, déterminez le nombre d’occurrences de chaque

acide aminé dans la séquence
AGWPSGGASAGLAILWGASAIMPGALW.

14.8.3 Mots de deux et trois lettres dans une séquence d’ADN
Créez une fonction compte_mots_2_lettres(), qui prend comme argument une séquence sous la forme d’une

chaîne de caractères et qui renvoie tous les mots de deux lettres qui existent dans la séquence sous la forme d’un
dictionnaire. Par exemple pour la séquence ACCTAGCCCTA, le dictionnaire renvoyée serait :

{'AC': 1, 'CC': 3, 'CT': 2, 'TA': 2, 'AG': 1, 'GC': 1}
Créez une nouvelle fonction compte_mots_3_lettres(), qui a un comportement similaire à compte_mots_2_lettres

(), mais avec des mots de trois lettres.
Utilisez ces fonctions pour afficher les mots de deux et trois lettres et leurs occurrences trouvés dans la séquence

d’ADN :
ACCTAGCCATGTAGAATCGCCTAGGCTTTAGCTAGCTCTAGCTAGCTG
Voici un exemple de sortie attendue :

10. https://docs.python.org/fr/3/library/collections.html#collections.defaultdict
11. https://docs.python.org/fr/3/library/collections.html#collections.Counter
12. https://docs.python.org/fr/3/library/collections.html#collections.namedtuple

154 Cours de Python / Université Paris Cité / UFR Sciences du Vivant

https://docs.python.org/fr/3/library/collections.html#collections.defaultdict
https://docs.python.org/fr/3/library/collections.html#collections.Counter
https://docs.python.org/fr/3/library/collections.html#collections.namedtuple

14.8. Exercices Chapitre 14. Conteneurs

Mots de 2 lettres
AC : 1
CC : 3
CT : 8
[...]
Mots de 3 lettres
ACC : 1
CCT : 2
CTA : 5
[...]

14.8.4 Mots de deux lettres dans la séquence du chromosome I de Saccharomyces cerevi-
siae

Créez une fonction lit_fasta() qui prend comme argument le nom d’un fichier FASTA sous la forme d’une chaîne
de caractères, lit la séquence dans le fichier FASTA et la renvoie sous la forme d’une chaîne de caractères. Inspirez-vous
d’un exercice similaire du chapitre 10 Plus sur les chaînes de caractères.

Utilisez cette fonction et la fonction compte_mots_2_lettres() de l’exercice précédent pour extraire les mots de
deux lettres et leurs occurrences dans la séquence du chromosome I de la levure du boulanger Saccharomyces cerevisiae
(fichier NC_001133.fna 13).

Le génome complet est fourni au format FASTA. Vous trouverez des explications sur ce format et des exemples de
code dans l’annexe A Quelques formats de données en biologie.

14.8.5 Mots de n lettres dans un fichier FASTA
Créez un script extract-words.py qui prend comme arguments le nom d’un fichier FASTA suivi d’un entier compris

entre 1 et 4. Ce script doit extraire du fichier FASTA tous les mots et leurs occurrences, en fonction du nombre de lettres
passé en option.

Utilisez pour ce script la fonction lit_fasta() de l’exercice précédent. Créez également la fonction compte_mots_n_lettres
() qui prend comme argument une séquence sous la forme d’une chaîne de caractères et le nombre de lettres des mots
sous la forme d’un entier.

Testez ce script avec :
• la séquence du chromosome I de la levure du boulanger Saccharomyces cerevisiae (fichier NC_001133.fna 14) ;
• le génome de la bactérie Escherichia coli (fichier NC_000913.fna 15).
Les deux fichiers sont au format FASTA.
Cette méthode vous paraît-elle efficace sur un génome assez gros comme celui d’Escherichia coli ?

14.8.6 Atomes carbone alpha d’un fichier PDB
Téléchargez le fichier 1bta.pdb 16, qui correspond à la structure tridimensionnelle de la protéine barstar 17 sur le site

de la Protein Data Bank (PDB).
Créez la fonction trouve_calpha(), qui prend en argument le nom d’un fichier PDB (sous la forme d’une chaîne

de caractères), qui sélectionne uniquement les lignes contenant des carbones alpha et qui les renvoie sous la forme d’une
liste de dictionnaires. Chaque dictionnaire contient quatre clés :

• le numéro du résidu (resid) avec une valeur entière,
• la coordonnée atomique x (x) avec une valeur float,
• la coordonnée atomique y (y) avec une valeur float,
• la coordonnée atomique z (z) avec une valeur float.
Utilisez la fonction trouve_calpha() pour afficher à l’écran le nombre total de carbones alpha de la barstar ainsi

que les coordonnées atomiques des carbones alpha des deux premiers résidus (acides aminés).

Conseil
13. https://python.sdv.u-paris.fr/data-files/NC_001133.fna
14. https://python.sdv.u-paris.fr/data-files/NC_001133.fna
15. https://python.sdv.u-paris.fr/data-files/NC_000913.fna
16. https://files.rcsb.org/download/1BTA.pdb
17. http://www.rcsb.org/pdb/explore.do?structureId=1BTA

Cours de Python / Université Paris Cité / UFR Sciences du Vivant 155

https://python.sdv.u-paris.fr/data-files/NC_001133.fna
https://python.sdv.u-paris.fr/data-files/NC_001133.fna
https://python.sdv.u-paris.fr/data-files/NC_000913.fna
https://files.rcsb.org/download/1BTA.pdb
http://www.rcsb.org/pdb/explore.do?structureId=1BTA

Chapitre 14. Conteneurs 14.8. Exercices

Vous trouverez des explications sur le format PDB et des exemples de code pour lire ce type de fichier en Python
dans l’annexe A Quelques formats de données en biologie.

14.8.7 Barycentre d’une protéine (exercice +++)
Téléchargez le fichier 1bta.pdb 18 qui correspond à la structure tridimensionnelle de la protéine barstar 19 sur le site

de la Protein Data Bank (PDB).
Un carbone alpha est présent dans chaque résidu (acide aminé) d’une protéine. On peut obtenir une bonne approxi-

mation du barycentre d’une protéine en calculant le barycentre de ses carbones alpha.
Le barycentre G de coordonnées (Gx, Gy, Gz) est obtenu à partir des n carbones alpha (CA) de coordonnées (CAx,

CAy, CAz) avec :

Gx =
1
n

n

∑
i=1

CAi,x

Gy =
1
n

n

∑
i=1

CAi,y

Gz =
1
n

n

∑
i=1

CAi,z

Créez une fonction calcule_barycentre(), qui prend comme argument une liste de dictionnaires dont les clés
(resid, x, y et z) sont celles de l’exercice précédent et qui renvoie les coordonnées du barycentre sous la forme d’une
liste de floats.

Utilisez la fonction trouve_calpha() de l’exercice précédent et la fonction
calcule_barycentre() pour afficher, avec deux chiffres significatifs, les coordonnées du barycentre des carbones alpha
de la barstar.

14.8.8 Kinases et protéines humaines
Nous avons extrait de la base de données de protéines UniProt la liste des protéines humaines (dans le fichier

human_proteins.txt 20) et la liste des kinases (dans le fichier kinases_proteins.txt 21), qui sont une famille de
protéines enzymatiques 22 impliquées dans la phosphorylation d’autres protéines.

Chaque fichier contient un identifiant de protéine par ligne. Voici un exemple pour le fichier human_proteins.txt :
A0A087X1C5
A0A0B4J2F0
A0A0B4J2F2
A0A0C5B5G6
A0A0K2S4Q6
A0A0U1RRE5
A0A1B0GTW7
A0AV02
A0AV96
[...]

L’objectif de cet exercice est de déterminer quelles sont les protéines humaines qui sont des kinases. Chaque liste de
protéines contenant plusieurs milliers d’éléments, il n’est pas possible de la faire à la main. Vous aller utiliser Python et
les sets pour cela.

1. Créez un script compare_proteins.py.
2. Dans ce script, créez une fonction read_protein_file() qui prend en argument le nom d’un fichier de protéines

sous la forme d’une chaîne de caractères et qui renvoie un set contenant la liste des identifiants des protéines
contenues dans le fichier passé en argument.

18. https://files.rcsb.org/download/1BTA.pdb
19. http://www.rcsb.org/pdb/explore.do?structureId=1BTA
20. https://python.sdv.u-paris.fr/data-files/human_proteins.txt
21. https://python.sdv.u-paris.fr/data-files/kinase_proteins.txt
22. https://fr.wikipedia.org/wiki/Kinase

156 Cours de Python / Université Paris Cité / UFR Sciences du Vivant

https://files.rcsb.org/download/1BTA.pdb
http://www.rcsb.org/pdb/explore.do?structureId=1BTA
https://python.sdv.u-paris.fr/data-files/human_proteins.txt
https://python.sdv.u-paris.fr/data-files/kinase_proteins.txt
https://fr.wikipedia.org/wiki/Kinase

14.8. Exercices Chapitre 14. Conteneurs

3. Affichez ensuite le nombre de protéines listées dans chaque fichier.
4. En utilisant uniquement des opérations sur les sets, déterminez et affichez :
• le nombre de protéines humaines qui sont des kinases ;
• le nombre de protéines humaines qui ne sont pas des kinases ;
• le nombre de kinases qui ne sont pas des protéines humaines.

Cours de Python / Université Paris Cité / UFR Sciences du Vivant 157

CHAPITRE 15

Création de modules

15.1 Pourquoi créer ses propres modules ?
Dans le chapitre 9 Modules, nous avons découvert quelques modules Python comme random, math, etc. Nous avons

vu par ailleurs dans les chapitres 10 Fonctions et 13 Plus sur les fonctions que les fonctions sont utiles pour réutiliser
une fraction de code plusieurs fois au sein d’un même programme, sans avoir à dupliquer ce code. On peut imaginer
qu’une fonction utile pourrait être judicieusement réutilisée dans un autre programme Python. C’est justement l’intérêt
de créer un module. On y regroupe un ensemble de fonctions que l’on peut être amené à utiliser souvent. En général, les
modules sont regroupés autour d’un thème précis. Par exemple, on pourrait concevoir un module d’analyse de séquences
biologiques ou encore de gestion de fichiers PDB.

15.2 Création d’un module
En Python, la création d’un module est très simple. Il suffit d’écrire un ensemble de fonctions (et éventuellement de

constantes) dans un fichier, puis d’enregistrer ce dernier avec une extension .py (comme n’importe quel script Python).
À titre d’exemple, nous allons créer un module simple que nous enregistrerons sous le nom message.py :

1 """Module inutile qui affiche des messages."""
2
3 DATE = "2024-01-05"
4
5
6 def bonjour(nom):
7 """Dit Bonjour."""
8 return f"Bonjour {nom}"
9

10
11 def ciao(nom):
12 """Dit Ciao."""
13 return f"Ciao {nom}"
14
15
16 def hello(nom):
17 """Dit Hello."""
18 return f"Hello {nom}"

Les chaînes de caractères entre triple guillemets en tête du module et en tête de chaque fonction sont facultatives
mais elles jouent néanmoins un rôle essentiel dans la documentation du code.

158

15.3. Utilisation de son propre module Chapitre 15. Création de modules

Remarque
Une constante est, par définition, une variable dont la valeur n’est pas modifiée. Par convention, en Python, le nom

des constantes est écrit en majuscules (comme DATE dans notre exemple).

15.3 Utilisation de son propre module
Pour appeler une fonction ou une variable de ce module, il faut que le fichier message.py soit dans le répertoire

courant (dans lequel on travaille) ou bien dans un répertoire listé par la variable d’environnement PYTHONPATH de votre
système d’exploitation. Ensuite, il suffit d’importer le module et toutes ses fonctions (et constantes) vous sont alors
accessibles.

Remarque
Avec Mac OS X et Linux, il faut taper la commande suivante depuis un shell Bash pour modifier la variable d’envi-

ronnement PYTHONPATH :
export PYTHONPATH=$PYTHONPATH:/chemin/vers/mon/super/module

Avec Windows, mais depuis un shell PowerShell, il faut taper la commande suivante :
$env:PYTHONPATH += ";C:\chemin\vers\mon\super\module"

Une fois cette manipulation effectuée, vous pouvez contrôler que le chemin vers le répertoire contenant vos modules
a bien été ajouté à la variable d’environnement PYTHONPATH :

• sous Mac OS X et Linux : echo $PYTHONPATH
• sous Windows : echo $env:PYTHONPATH

Le chargement du module se fait avec la commande import message. Notez que le fichier est bien enregistré avec
une extension .py, pourtant on ne la précise pas lorsqu’on importe le module. Ensuite, on peut utiliser les fonctions
comme avec un module classique :

1 >>> import message
2 >>> message.hello("Joe")
3 'Hello Joe'
4 >>> message.ciao("Bill")
5 'Ciao Bill'
6 >>> message.bonjour("Monsieur")
7 'Bonjour Monsieur'
8 >>> message.DATE
9 '2024-01-05'

Remarque
La première fois qu’un module est importé, Python crée un répertoire nommé __pycache__ contenant un fichier

avec une extension .pyc qui contient le bytecode 1, c’est-à-dire le code précompilé du module.

15.4 Les docstrings
Lorsqu’on écrit un module, il est important de créer de la documentation pour expliquer ce que fait le module et

comment utiliser chaque fonction. Les chaînes de caractères entre triple guillemets, situées en début du module et de
chaque fonction, sont là pour cela : on les appelle docstrings (« chaînes de documentation » en français). Les docstrings
seront détaillées dans le chapitre 16 Bonnes pratiques en programmation Python.

Les docstrings permettent notamment de fournir de l’aide lorsqu’on invoque la commande help() :

1. https://docs.python.org/fr/3/glossary.html#term-bytecode

Cours de Python / Université Paris Cité / UFR Sciences du Vivant 159

https://docs.python.org/fr/3/glossary.html#term-bytecode

Chapitre 15. Création de modules 15.5. Visibilité des fonctions dans un module

1 >>> import message
2 >>> help(message)
3
4 Help on module message:
5
6 NAME
7 message - Module inutile qui affiche des messages.
8
9 FUNCTIONS

10 bonjour(nom)
11 Dit Bonjour.
12
13 ciao(nom)
14 Dit Ciao.
15
16 hello(nom)
17 Dit Hello.
18
19 DATA
20 DATE = '2024-01-05'
21
22 FILE
23 /home/pierre/message.py

Remarque
Pour quitter l’aide, pressez la touche Q.

Vous remarquez que Python a généré automatiquement cette page d’aide, tout comme il est capable de le faire pour
les modules internes à Python (random, math, etc.) et ce grâce aux docstrings. Notez que l’on peut aussi appeler l’aide
pour une seule fonction :

1 >>> help(message.ciao)
2
3 Help on function ciao in module message:
4
5 ciao(nom)
6 Dit Ciao.

En résumé, les docstrings sont destinés aux utilisateurs du module. Leur but est différent des commentaires qui, eux,
sont destinés à celui qui lit le code (pour en comprendre les subtilités). Une bonne docstring de fonction doit contenir
tout ce dont un utilisateur a besoin pour utiliser cette fonction. Une liste minimale et non exhaustive serait :

• ce que fait la fonction,
• ce qu’elle prend en argument,
• ce qu’elle renvoie.
Pour en savoir plus sur les docstrings et comment les écrire, nous vous recommandons de lire le chapitre 16 Bonnes

pratiques en programmation Python.

15.5 Visibilité des fonctions dans un module
La visibilité des fonctions au sein des modules suit des règles simples :
• Les fonctions dans un même module peuvent s’appeler les unes les autres.
• Les fonctions dans un module peuvent appeler des fonctions situées dans un autre module s’il a été préalablement

importé. Par exemple, si la commande import autremodule est utilisée dans un module, il est possible d’appeler
une fonction avec autremodule.fonction().

Toutes ces règles viennent de la manière dont Python gère les espaces de noms. De plus amples explications sont
données sur ce concept dans le chapitre 24 Avoir plus la classe avec les objets (en ligne).

160 Cours de Python / Université Paris Cité / UFR Sciences du Vivant

15.6. Module ou script ? Chapitre 15. Création de modules

15.6 Module ou script ?
Vous avez remarqué que notre module message ne contient que des fonctions et une constante. Si on l’exécutait

comme un script classique, cela n’afficherait rien :
$ python message.py
$

Cela s’explique par l’absence de programme principal, c’est-à-dire de lignes de code que l’interpréteur exécute lorsqu’on
lance le script.

À l’inverse, que se passe-t-il si on importe un script en tant que module alors qu’il contient un programme principal
avec des lignes de code ? Prenons par exemple le script message2.py suivant :

1 """Script de test."""
2
3
4 def bonjour(nom):
5 """Dit Bonjour."""
6 return f"Bonjour {nom}"
7
8
9 # Programme principal.

10 print(bonjour("Joe"))

Si on l’importe dans l’interpréteur, on obtient :
1 >>> import message2
2 Bonjour Joe

Ceci n’est pas le comportement voulu pour un module, car on n’attend pas d’affichage particulier lors de son charge-
ment. Par exemple la commande import math n’affiche rien dans l’interpréteur.

Afin de pouvoir utiliser un code Python en tant que module ou en tant que script, nous vous conseillons la structure
suivante :

1 """Script de test."""
2
3
4 def bonjour(nom):
5 """Dit Bonjour."""
6 return f"Bonjour {nom}"
7
8
9 if __name__ == "__main__":

10 print(bonjour("Joe"))

À la ligne 9, l’instruction if __name__ == "__main__": indique à Python :
• Si le programme message2.py est exécuté en tant que script dans un shell, le résultat du test if sera alors True

et le bloc d’instructions correspondant (ligne 10) sera exécuté :
$ python message2.py
Bonjour Joe

• Si le programme message2.py est importé en tant que module, le résultat du test if sera alors False et le bloc
d’instructions correspondant ne sera pas exécuté :

1 >>> import message2
2 >>>

Ce comportement est possible grâce à la gestion des espaces de noms par Python (pour plus de détail, consultez le
chapitre 24 Avoir plus la classe avec les objets (en ligne)). Au delà de la commodité de pouvoir utiliser votre script en
tant que programme ou en tant que module, cela présente l’avantage de signaler clairement où se situe le programme
principal quand on lit le code.

Conseil

Cours de Python / Université Paris Cité / UFR Sciences du Vivant 161

Chapitre 15. Création de modules 15.7. Exercice

Ainsi, au lieu d’ajouter le commentaire :
Programme principal.
comme nous vous l’avions suggéré dans les chapitres 10 Fonctions et 13 Plus sur les fonctions, nous vous recomman-

dons désormais d’utiliser la ligne :
if __name__ == "__main__":

15.7 Exercice

Conseil
Pour cet exercice, créez un script puis exécutez-le dans un shell.

15.7.1 Module ADN
Dans le script adn.py, construisez un module qui va contenir les fonctions et constantes suivantes.
• Fonction lit_fasta() : prend en argument un nom de fichier sous forme d’une chaîne de caractères et renvoie la

séquence d’ADN lue dans le fichier sous forme d’une chaîne de caractères.
• Fonction seq_alea() : prend en argument une taille de séquence sous forme d’un entier et renvoie une séquence

aléatoire d’ADN de la taille correspondante sous forme d’une chaîne de caractères.
• Fonction comp_inv() : prend en argument une séquence d’ADN sous forme d’une chaîne de caractères et renvoie

la séquence complémentaire inverse (aussi sous forme d’une chaîne de caractères).
• Fonction prop_gc() : prend en argument une séquence d’ADN sous forme d’une chaîne de caractères et renvoie

la proportion en GC de la séquence sous forme d’un float. Nous vous rappelons que la proportion de GC s’obtient
comme la somme des bases Guanine (G) et Cytosine (C), divisée par le nombre total de bases (A, T, C, G).

• Constante BASE_COMP : dictionnaire qui contient la complémentarité des bases d’ADN (A→T, T→C, G→C et C→G).
Ce dictionnaire sera utilisé par la fonction comp_inv().

À la fin de votre script, proposez des exemples d’utilisation des fonctions que vous aurez créées. Ces exemples
d’utilisation ne devront pas être exécutés lorsque le script est chargé comme un module.

Conseil
• Dans cet exercice, on supposera que toutes les séquences sont manipulées comme des chaînes de caractères en

majuscules.
• Pour les fonctions seq_alea() et comp_inv(), n’hésitez pas à jeter un œil aux exercices correspondants dans le

chapitre 12 Plus sur les listes.
• Voici un exemple de fichier FASTA adn.fasta 2 pour tester la fonction lit_fasta().

2. https://python.sdv.u-paris.fr/data-files/adn.fasta

162 Cours de Python / Université Paris Cité / UFR Sciences du Vivant

https://python.sdv.u-paris.fr/data-files/adn.fasta

CHAPITRE 16

Bonnes pratiques en programmation Python

Comme vous l’avez constaté dans tous les chapitres précédents, la syntaxe de Python est très permissive. Afin
d’uniformiser l’écriture de code en Python, la communauté des développeurs Python recommande un certain nombre de
règles afin qu’un code soit lisible. Lisible par quelqu’un d’autre, mais également, et surtout, par soi-même. Essayez de
relire un code que vous avez écrit « rapidement » il y a un mois, six mois ou un an. Si le code ne fait que quelques lignes,
il se peut que vous vous y retrouviez, mais s’il fait plusieurs dizaines, voire centaines de lignes, vous serez perdus.

Dans ce contexte, le créateur de Python, Guido van Rossum, part d’un constat simple : « code is read much more
often than it is written » (« le code est plus souvent lu qu’écrit »). Avec l’expérience, vous vous rendrez compte que cela
est parfaitement vrai. Alors, plus de temps à perdre, voyons en quoi consistent ces bonnes pratiques.

Plusieurs choses sont nécessaires pour écrire un code lisible : la syntaxe, l’organisation du code, le découpage en
fonctions (et possiblement en classes, que nous verrons dans le chapitre 23 Avoir la classe avec les objets), mais souvent,
aussi, le bon sens. Pour cela, les « PEP » peuvent nous aider.

Définition
Afin d’améliorer le langage Python, la communauté qui développe Python publie régulièrement des Python Enhance-

ment Proposal 1 (PEP), suivi d’un numéro. Il s’agit de propositions concrètes pour améliorer le code, ajouter de nouvelles
fonctionnalités, mais aussi des recommandations sur la manière d’utiliser Python, bien écrire du code, etc.

On va aborder dans ce chapitre sans doute la plus célèbre des PEP, à savoir la PEP 8, qui est incontournable lorsque
l’on veut écrire du code Python correctement.

Définition
On parle de code pythonique lorsque ce dernier respecte les règles d’écriture définies par la communauté Python,

mais aussi les règles d’usage du langage.

1. https://www.python.org/dev/peps/

163

https://www.python.org/dev/peps/

Chapitre 16. Bonnes pratiques en programmation Python 16.1. De la bonne syntaxe avec la PEP 8

16.1 De la bonne syntaxe avec la PEP 8
La PEP 8 Style Guide for Python Code 2 est une des plus anciennes PEP (les numéros sont croissants avec le temps).

Elle consiste en un nombre important de recommandations sur la syntaxe de Python. Il est vivement recommandé de lire
la PEP 8 en entier au moins une fois pour avoir une bonne vue d’ensemble. On ne présentera ici qu’un rapide résumé de
cette PEP 8.

16.1.1 Indentation
On a vu que l’indentation est obligatoire en Python pour séparer les blocs d’instructions. Cela vient d’un constat

simple : l’indentation améliore la lisibilité d’un code. La PEP 8 recommande d’utiliser quatre espaces pour chaque niveau
d’indentation. Nous vous recommandons de suivre impérativement cette règle.

Attention
Afin de toujours utiliser cette règle des quatre espaces pour l’indentation, il est essentiel de régler correctement votre

éditeur de texte. Consultez pour cela l’annexe Installation de Python disponible en ligne 3. Avant d’écrire la moindre ligne
de code, faites en sorte que lorsque vous pressez la touche tabulation, cela ajoute quatre espaces (et non pas un caractère
tabulation).

16.1.2 Importation des modules
Comme on l’a vu dans le chapitre 9 Modules, le chargement d’un module est réalisé avec l’instruction import module

plutôt qu’avec from module import *.
Si on souhaite ensuite utiliser une fonction d’un module, la première syntaxe conduit à module.fonction(), ce qui

rend explicite la provenance de la fonction. Avec la seconde syntaxe, il faudrait écrire fonction(), ce qui peut :
• mener à un conflit si une de vos fonctions a le même nom ;
• rendre difficile la recherche de documentation si on ne sait pas d’où vient la fonction, notamment si plusieurs

modules sont chargés avec l’instruction
from module import *

Par ailleurs, la première syntaxe définit un « espace de noms » spécifique au module (voir le chapitre 24 Avoir plus
la classe avec les objets (en ligne)).

Dans un script Python, on importe un module par ligne. D’abord les modules internes (classés par ordre alphabétique),
c’est-à-dire les modules de base de Python, puis les modules externes (ceux que vous avez installés en plus), et enfin, les
modules que vous avez créés.

Si le nom du module est trop long, on peut utiliser un alias. L’instruction from est tolérée si vous n’importez que
quelques fonctions clairement identifiées.

En résumé :
1 import module_interne_1
2 import module_interne_2
3 from module_interne_3 import fonction_spécifique
4
5 import module_externe_1
6 import module_externe_2_qui_a_un_nom_long as mod2
7
8 import module_cree_par_vous

16.1.3 Règles de nommage
Les noms de variables, de fonctions et de modules doivent être de la forme :

1 ma_variable
2 fonction_test_27()
3 mon_module

2. https://www.python.org/dev/peps/pep-0008/
3. https://python.sdv.u-paris.fr/livre-dunod

164 Cours de Python / Université Paris Cité / UFR Sciences du Vivant

https://www.python.org/dev/peps/pep-0008/
https://python.sdv.u-paris.fr/livre-dunod

16.1. De la bonne syntaxe avec la PEP 8 Chapitre 16. Bonnes pratiques en programmation Python

c’est-à-dire en minuscules avec un caractère « souligné » (« tiret du bas », ou underscore en anglais) pour séparer les
différents « mots » dans le nom.

Les constantes sont écrites en majuscules :
1 MA_CONSTANTE
2 VITESSE_LUMIERE

Les noms de classes (voir le chapitre 23 Avoir la classe avec les objets) et les exceptions (voir le chapitre 26 Remarques
complémentaires (en ligne)) sont de la forme :

1 MaClasse
2 MyException

Remarque
• Le style recommandé pour nommer les variables et les fonctions en Python est appelé snake_case. Il est différent

du CamelCase utilisé pour les noms des classes et des exceptions.
• La variable _ est habituellement employée pour stocker des valeurs qui ne seront pas utilisées par la suite. Par

exemple, dans le cas d’une affectation multiple, on peut utiliser _ pour stocker une valeur qui ne nous intéresse pas
(voir chapitre 14 Conteneurs).

Pensez à donner à vos variables des noms qui ont du sens. Évitez autant que possible les a1, a2, i, truc, toto…
Les noms de variables à un caractère sont néanmoins autorisés pour les indices dans les boucles :

1 >>> ma_liste = [1, 3, 5, 7, 9, 11]
2 >>> for i in range(len(ma_liste)):
3 ... print(ma_liste[i])

Bien sûr, une écriture plus « pythonique » de l’exemple précédent permet de se débarrasser de l’indice i :
1 >>> ma_liste = [1, 3, 5, 7, 9, 11]
2 >>> for entier in ma_liste:
3 ... print(entier)

Enfin, des noms de variable à une lettre peuvent être utilisés lorsque cela a un sens mathématique (par exemple, les
noms x, y et z évoquent des coordonnées cartésiennes).

16.1.4 Gestion des espaces
La PEP 8 recommande d’entourer les opérateurs (+, -, /, *, ==, !=, >=, not, in, and, or…) d’un espace avant et

d’un espace après. Par exemple :
1 # Code recommandé :
2 ma_variable = 3 + 7
3 mon_texte = "souris"
4 mon_texte == ma_variable
5 # Code non recommandé :
6 ma_variable=3+7
7 mon_texte="souris"
8 mon_texte== ma_variable

Il n’y a, par contre, pas d’espace à l’intérieur de crochets, d’accolades et de parenthèses :
1 # Code recommandé :
2 ma_liste[1]
3 mon_dico{"clé"}
4 ma_fonction(argument)
5 # Code non recommandé :
6 ma_liste[1]
7 mon_dico{"clé" }
8 ma_fonction(argument)

Ni juste avant la parenthèse ouvrante d’une fonction ou le crochet ouvrant d’une liste ou d’un dictionnaire :

Cours de Python / Université Paris Cité / UFR Sciences du Vivant 165

Chapitre 16. Bonnes pratiques en programmation Python 16.1. De la bonne syntaxe avec la PEP 8

1 # Code recommandé :
2 ma_liste[1]
3 mon_dico{"clé"}
4 ma_fonction(argument)
5 # Code non recommandé :
6 ma_liste [1]
7 mon_dico {"clé"}
8 ma_fonction (argument)

On met un espace après les caractères : et , (mais pas avant) :
1 # Code recommandé :
2 ma_liste = [1, 2, 3]
3 mon_dico = {"clé1": "valeur1", "clé2": "valeur2"}
4 ma_fonction(argument1, argument2)
5 # Code non recommandé :
6 ma_liste = [1 , 2 ,3]
7 mon_dico = {"clé1" : "valeur1", "clé2":"valeur2"}
8 ma_fonction(argument1 ,argument2)

Par contre, pour les tranches de listes, on ne met pas d’espace autour du :
1 ma_liste = [1, 3, 5, 7, 9, 1]
2 # Code recommandé :
3 ma_liste[1:3]
4 ma_liste[1:4:2]
5 ma_liste[::2]
6 # Code non recommandé :
7 ma_liste[1 : 3]
8 ma_liste[1: 4:2]
9 ma_liste[: :2]

Enfin, on n’ajoute pas plusieurs espaces autour du = ou des autres opérateurs pour faire joli :
1 # Code recommandé :
2 x1 = 1
3 x2 = 3
4 x_old = 5
5 # Code non recommandé :
6 x1 = 1
7 x2 = 3
8 x_old = 5

16.1.5 Longueur de ligne
Une ligne de code ne doit pas dépasser 79 caractères, pour des raisons tant historiques que de lisibilité.
On a déjà vu dans le chapitre 1 Introduction que le caractère \ permet de couper des lignes trop longues. Par exemple :

1 >>> ma_variable = 3
2 >>> if ma_variable > 1 and ma_variable < 10 \
3 ... and ma_variable % 2 == 1 and ma_variable % 3 == 0:
4 ... print(f"ma variable vaut {ma_variable}")
5 ...
6 ma variable vaut 3

À l’intérieur de parenthèses, on peut revenir à la ligne sans utiliser le caractère \. C’est particulièrement utile pour
préciser les arguments d’une fonction ou d’une méthode, lors de sa création ou lors de son utilisation :

1 >>> def ma_fonction(argument_1, argument_2,
2 ... argument_3, argument_4):
3 ... return argument_1 + argument_2
4 ...
5 >>> ma_fonction("texte très long", "tigre",
6 ... "singe", "souris")
7 'texte très longtigre'

Les parenthèses sont également très pratiques, pour répartir sur plusieurs lignes une chaîne de caractères qui sera

166 Cours de Python / Université Paris Cité / UFR Sciences du Vivant

16.1. De la bonne syntaxe avec la PEP 8 Chapitre 16. Bonnes pratiques en programmation Python

ensuite affichée sur une seule ligne :
1 >>> print("ATGCGTACAGTATCGATAAC"
2 ... "ATGACTGCTACGATCGGATA"
3 ... "CGGGTAACGCCATGTACATT")
4 ATGCGTACAGTATCGATAACATGACTGCTACGATCGGATACGGGTAACGCCATGTACATT

Notez qu’il n’y a pas d’opérateur + pour concaténer les trois chaînes de caractères, et que celles-ci ne sont pas séparées
par des virgules. À partir du moment où elles sont entre parenthèses, Python les concatène automatiquement.

On peut aussi utiliser les parenthèses pour évaluer un expression trop longue :
1 >>> ma_variable = 3
2 >>> if (ma_variable > 1 and ma_variable < 10
3 ... and ma_variable % 2 == 1 and ma_variable % 3 == 0):
4 ... print(f"ma variable vaut {ma_variable}")
5 ...
6 ma variable vaut 3

Remarque
Les parenthèses sont aussi très utiles lorsqu’on a besoin d’enchaîner des méthodes les unes à la suite des autres. Cette

technique du method chaining a été introduite dans le chapitre 11 Plus sur les chaînes de caractères et sera très utilisée
dans le chapitre 22 Module Pandas.

Enfin, il est possible de créer des listes ou des dictionnaires sur plusieurs lignes, en sautant une ligne après une virgule :
1 >>> ma_liste = [1, 2, 3,
2 ... 4, 5, 6,
3 ... 7, 8, 9]
4 >>> mon_dico = {"clé1": 13,
5 ... "clé2": 42,
6 ... "clé3": -10}

16.1.6 Lignes vides
Dans un script, les lignes vides sont utiles pour séparer visuellement les différentes parties du code.
Il est recommandé de laisser deux lignes vides avant la définition d’une fonction ou d’une classe, et de laisser une

seule ligne vide avant la définition d’une méthode (dans une classe).
On peut aussi laisser une ligne vide dans le corps d’une fonction pour séparer les sections logiques de la fonction,

mais cela est à utiliser avec parcimonie.

16.1.7 Commentaires
Les commentaires débutent toujours par le symbole # suivi d’un espace. Ils fournissent des explications sur l’utilité

du code et permettent de comprendre son fonctionnement.
Les commentaires sont sur le même niveau d’indentation que le code qu’ils commentent. Les commentaires sont

constitués de phrases complètes, avec une majuscule au début (sauf si le premier mot est une variable qui s’écrit sans
majuscule) et un point à la fin.

La PEP 8 recommande d’écrire les commentaires en anglais, sauf si vous êtes absolument certains que votre code ne
sera lu que par des francophones. Dans la mesure où vous allez souvent développer des programmes scientifiques, nous
vous conseillons d’écrire vos commentaires en anglais.

Soyez également cohérent entre la langue utilisée pour les commentaires et la langue utilisée pour nommer les variables.
Pour un programme scientifique, les commentaires et les noms de variables sont en anglais. Ainsi ma_liste deviendra
my_list et ma_fonction deviendra my_function (par exemple).

Les commentaires qui suivent le code sur la même ligne sont à éviter le plus possible et doivent être séparés du code
par au moins deux espaces :

1 var_x = number / total * 100 # My useful comment.

Cours de Python / Université Paris Cité / UFR Sciences du Vivant 167

Chapitre 16. Bonnes pratiques en programmation Python 16.2. Les docstrings et la PEP 257

Remarque
La PEP 8 ne fournit pas de recommandation 4 quant à l’usage de guillemets simples ou de guillemets doubles pour

déclarer une chaîne de caractères.
1 >>> var_1 = "Ma chaîne de caractères"
2 >>> var_1
3 'Ma chaîne de caractères'
4 >>> var_2 = 'Ma chaîne de caractères'
5 >>> var_2
6 'Ma chaîne de caractères'
7 >>> var_1 == var_2
8 True

Vous constatez dans l’exemple ci-dessus que, pour Python, les guillemets simples et doubles sont équivalents. Nous
vous conseillons cependant d’utiliser les guillemets doubles car ceux-ci sont, de notre point de vue, plus lisibles.

16.2 Les docstrings et la PEP 257
Les docstrings, que l’on pourrait traduire par « chaînes de documentation » en français, sont un élément essentiel

des programmes Python, comme on l’a vu au chapitre 15 Création de modules. À nouveau, les développeurs de Python
ont émis des recommandations dans la PEP 8, et plus exhaustivement dans la PEP 257 5, sur la manière de rédiger
correctement les docstrings. En voici un résumé succinct.

16.2.1 Les principales règles
De manière générale, écrivez des docstrings pour les modules, les fonctions, les classes et les méthodes que vous

développez.
Lorsque l’explication est courte et compacte, comme dans certaines fonctions ou méthodes simples, utilisez des

docstrings d’une ligne :
1 """Docstring simple d'une ligne se finissant par un point."""

Lorsque vous avez besoin de décrire plus en détail un module, une fonction, une classe ou une méthode, utilisez une
docstring sur plusieurs lignes :

1 """Docstring de plusieurs lignes, la première ligne est un résumé.
2
3 Après avoir sauté une ligne, on décrit les détails de cette docstring.
4 On termine la docstring avec les triples guillemets
5 sur la ligne suivante.
6 """

Remarque
La PEP 257 recommande d’écrire des docstrings avec trois doubles guillemets, c’est-à-dire :
"""Ceci est une docstring recommandée."""
mais pas :
'''Ceci n'est pas une docstring recommandée.'''

Comme indiqué dans le chapitre 15 Création de modules, n’oubliez pas que les docstrings sont destinées aux utilisateurs
des modules, fonctions, méthodes et classes que vous avez développés. Les éléments essentiels pour les fonctions et les
méthodes sont :

1. ce que fait la fonction ou la méthode,
2. ce qu’elle prend en argument,
3. ce qu’elle renvoie.

4. https://peps.python.org/pep-0008/#string-quotes
5. https://www.python.org/dev/peps/pep-0257/

168 Cours de Python / Université Paris Cité / UFR Sciences du Vivant

https://peps.python.org/pep-0008/#string-quotes
https://www.python.org/dev/peps/pep-0257/

16.3. Outils de contrôle qualité du code Chapitre 16. Bonnes pratiques en programmation Python

Pour les modules et les classes, on ajoute également des informations générales sur leur fonctionnement.
Pour autant, la PEP 257 ne dit pas explicitement comment organiser les docstrings pour les fonctions et les méthodes.

Pour répondre à ce besoin, deux solutions ont émergées :
• la solution Google avec le Google Style Python Docstrings 6,
• la solution NumPy avec le NumPy Style Python Docstrings 7. NumPy est un module complémentaire à Python,

très utilisé en analyse de données et dont on parlera dans le chapitre 20.

16.2.2 Un exemple concret
On illustre ici la solution de docstrings NumPy pour des raisons de goût personnel. Sentez-vous libre d’explorer la

proposition de Google.
Voici un exemple pour une fonction qui prend en argument deux entiers et qui renvoie leur produit :

1 def multiplie_nombres(nombre1, nombre2):
2 """Multiplication de deux nombres entiers.
3
4 Cette fonction ne sert pas à grand chose.
5
6 Parameters
7 ----------
8 nombre1 : int
9 Le premier nombre entier.

10 nombre2 : int
11 Le second nombre entier,
12 très important pour cette fonction.
13
14 Returns
15 -------
16 int
17 Le produit des deux nombres.
18 """
19 return nombre1 * nombre2

• Lignes 6 et 7. La section Parameters précise les paramètres de la fonction. Les tirets sur la ligne 7 soulignent le
nom de la section pour la rendre visible.

• Lignes 8 et 9. On indique le nom et le type du paramètre, séparés par le caractère deux-points. Le type n’est pas
obligatoire. En dessous, on indique une description du paramètre en question. La description est indentée.

• Lignes 10 à 12. Même chose pour le second paramètre. La description du paramètre peut s’étaler sur plusieurs
lignes.

• Lignes 14 et 15. La section Returns indique ce qui est renvoyé par la fonction (le cas échéant).
• Lignes 16 et 17. La mention du type renvoyé est obligatoire. En dessous, on indique une description de ce qui est

renvoyé par la fonction. Cette description est aussi indentée.

Attention
L’être humain a une fâcheuse tendance à la procrastination (le fameux « Bah je le ferai demain…») et écrire de la

documentation peut être un sérieux motif de procrastination. Soyez vigilant sur ce point, et rédigez vos docstrings au
moment où vous écrivez vos modules, fonctions, classes ou méthodes. Passer une journée (voire plusieurs) à écrire les
docstrings d’un gros projet est particulièrement pénible. Croyez-nous !

16.3 Outils de contrôle qualité du code
Pour évaluer la qualité d’un code Python, c’est-à-dire sa conformité avec les recommandations de la PEP 8 et de la

PEP 257, on peut utiliser les outils pycodestyle, pydocstyle et pylint.
Ces outils ne sont fournis dans l’installation de base de Python et doivent être installés sur votre machine. Avec la

distribution Miniconda, cette étape d’installation se résume à une ligne de commande :

6. https://sphinxcontrib-napoleon.readthedocs.io/en/latest/example_google.html
7. https://sphinxcontrib-napoleon.readthedocs.io/en/latest/example_numpy.html

Cours de Python / Université Paris Cité / UFR Sciences du Vivant 169

https://sphinxcontrib-napoleon.readthedocs.io/en/latest/example_google.html
https://sphinxcontrib-napoleon.readthedocs.io/en/latest/example_numpy.html

Chapitre 16. Bonnes pratiques en programmation Python 16.3. Outils de contrôle qualité du code

$ conda install -c conda-forge pycodestyle pydocstyle pylint

Définition
Les outils pycodestyle, pydocstyle et pylint sont des linters, c’est-à-dire des programmes qui vont chercher les

sources potentielles d’erreurs dans un code informatique. Ces erreurs peuvent être des erreurs de style (PEP 8 et 257) ou
des erreurs logiques (manipulation d’une variable, chargement de module).

Voici le contenu du script script_quality_not_ok.py 8 que nous allons analyser par la suite :
1 """Un script de multiplication.
2 """
3
4 import os
5
6 def Multiplie_nombres(nombre1,nombre2):
7 """Multiplication de deux nombres entiers
8 Cette fonction ne sert pas à grand chose.
9

10 Parameters
11 ----------
12 nombre1 : int
13 Le premier nombre entier.
14 nombre2 : int
15 Le second nombre entier.
16 Très utile.
17
18 Returns
19 -------
20 int
21 Le produit des deux nombres.
22
23 """
24 return nombre1 *nombre2
25
26
27 if __name__ == "__main__":
28 print(f"2 x 3 = {Multiplie_nombres(2, 3)}")
29 print (f"4 x 5 = {Multiplie_nombres(4, 5)}")

Ce script est d’ailleurs parfaitement fonctionnel :
$ python script_quality_not_ok.py
2 x 3 = 6
4 x 5 = 20

On va tout d’abord vérifier la conformité avec la PEP 8 grâce à l’outil pycodestyle :
$ pycodestyle script_quality_not_ok.py
script_quality_not_ok.py:6:1: E302 expected 2 blank lines, found 1
script_quality_not_ok.py:6:30: E231 missing whitespace after ','
script_quality_not_ok.py:6:38: E202 whitespace before ')'
script_quality_not_ok.py:26:21: E225 missing whitespace around operator
script_quality_not_ok.py:31:10: E211 whitespace before '('

• Ligne 2. Le bloc script_quality_not_ok.py:6:1: désigne le nom du script (script_quality_not_ok.
py), le numéro de la ligne (6) et le numéro de la colonne (1) où se trouve la non-conformité avec la PEP 8.
Ensuite, pycodestyle fournit un code et un message explicatif. Ici, il faut deux lignes vides avant la fonction
Multiplie_nombres().

• Ligne 3. Il manque un espace après la virgule qui sépare les arguments nombre1 et nombre2 dans la définition de
la fonction Multiplie_nombres() à la ligne 6 (colonne 30) du script.

8. https://python.sdv.u-paris.fr/data-files/script_quality_not_ok.py

170 Cours de Python / Université Paris Cité / UFR Sciences du Vivant

https://python.sdv.u-paris.fr/data-files/script_quality_not_ok.py

16.4. Outil de formatage automatique du code Chapitre 16. Bonnes pratiques en programmation Python

• Ligne 4. Il y un espace de trop après le second argument nombre2 dans la définition de la fonction Multiplie_nombres
() à la ligne 6 (colonne 38) du script.

• Ligne 5. Il manque un espace après l’opérateur * à la ligne 26 (colonne 21) du script.
• Ligne 6. Il y a un espace de trop entre print et (à la ligne 31 (colonne 10) du script.
Assez curieusement, pycodestyle n’a pas détecté que le nom de la fonction Multiplie_nombres() ne respecte

pas la convention de nommage (pas de majuscule).
Ensuite, l’outil pydocstyle va vérifier la conformité avec la PEP 257 et s’intéresser particulièrement aux docstrings :

$ pydocstyle script_quality_not_ok.py
script_quality_not_ok.py:1 at module level:

D200: One-line docstring should fit on one line with quotes (found 2)
script_quality_not_ok.py:7 in public function `Multiplie_nombres`:

D205: 1 blank line required between summary line and description (found 0)
script_quality_not_ok.py:7 in public function `Multiplie_nombres`:

D400: First line should end with a period (not 's')

• Lignes 2 et 3. pydocstyle indique que la docstring à la ligne 1 du script est sur deux lignes, alors qu’elle devrait
être sur une seule ligne.

• Lignes 4 et 5. Dans la docstring de la fonction Multiplie_nombres() (ligne 7 du script), il manque une ligne
vide entre la ligne résumé et la description plus complète.

• Lignes 6 et 7. Dans la docstring de la fonction Multiplie_nombres() (ligne 7 du script), il manque un point
à la fin de la première ligne.

Les outils pycodestyle et pydocstyle vont simplement vérifier la conformité aux PEP 8 et 257. L’outil pylint
va lui aussi vérifier une partie de ces règles mais il va également essayer de comprendre le contexte du code et proposer
des éléments d’amélioration. Par exemple :
$ pylint script_quality_not_ok.py
************* Module script_quality_not_ok
script_quality_not_ok.py:6:0: C0103: Function name "Multiplie_nombres"
doesn't conform to snake_case naming style (invalid-name)
script_quality_not_ok.py:4:0: W0611: Unused import os (unused-import)

--
Your code has been rated at 6.67/10

• Lignes 3 et 4. pylint indique que nom de la fonction Multiplie_nombres() ne respecte pas la convention
PEP 8 (ligne 6 du script).

• Ligne 5. Le module os est chargé mais pas utilisé (ligne 4 du script).
• Ligne 8. pylint produit également une note sur 10. Ne soyez pas surpris si cette note est très basse (voire

négative) la première fois que vous analysez votre script avec pylint. Cet outil fournit de nombreuses suggestions
d’amélioration et la note attribuée à votre script devrait rapidement augmenter. Pour autant, la note de 10 est
parfois difficile à obtenir. Ne soyez pas trop exigeant.

Une version améliorée du script précédent est disponible en ligne 9.

16.4 Outil de formatage automatique du code
Se souvenir de toutes les règles PEP 8 est fastidieux. Il existe des outils pour formater automatiquement le code

Python pour qu’il soit conforme à la PEP 8. L’outil le plus connu est black.
Cet outil n’est pas fourni dans l’installation de base de Python et doit être installé sur votre machine. Avec la

distribution Miniconda, cette étape d’installation se résume à une ligne de commande :
$ conda install -c conda-forge black

Voici un exemple d’utilisation :
$ black script_quality_not_ok.py
reformatted script_quality_not_ok.py

All done!
1 file reformatted.

9. https://python.sdv.u-paris.fr/data-files/script_quality_ok.py

Cours de Python / Université Paris Cité / UFR Sciences du Vivant 171

https://python.sdv.u-paris.fr/data-files/script_quality_ok.py

Chapitre 16. Bonnes pratiques en programmation Python 16.5. Organisation du code

Le script script_quality_not_ok.py a été modifié pour être conforme à la PEP 8, ce qu’on peut vérifier avec
pycodestyle :

$ pycodestyle script_quality_not_ok.py

qui ne renvoie aucune erreur.

black peut modifier votre code de manière significative. Il est donc recommandé de l’utiliser avec l’option --diff
au préalable pour afficher les modifications apportées. Par exemple, avec le programme script_quality_not_ok.py
qui n’aurait pas été modifié :

$ black --diff script_quality_not_ok.py
--- script_quality_not_ok.py 2024-02-05 12:07:04.851491+00:00
+++ script_quality_not_ok.py 2024-02-05 12:07:10.418009+00:00
@@ -1,11 +1,12 @@
"""Un script de multiplication.
"""

import os

-def Multiplie_nombres(nombre1,nombre2):
+
+def Multiplie_nombres(nombre1, nombre2):
[...]

Conseil

black est très pratique. N’hésitez pas à l’utiliser pour formater automatiquement votre code.

Attention

• black ne fait qu’une entorse à la PEP 8 : il autorise des longueurs de lignes jusqu’à 88 caractères. Si vous souhaitez
respecter strictement la PEP 8, utilisez l’option --line-length 79.

• black se limite à la PEP 8. Il ne vérifie pas la conformité avec la PEP 257 ni la qualité du code (imports inutiles,
etc.). Utilisez toujours pydocstyle et pylint en complément.

16.5 Organisation du code

Il est important de toujours structurer son code de la même manière. Ainsi, on sait tout de suite où trouver l’information
et un autre programmeur pourra s’y retrouver. Voici un exemple de code avec les différents éléments dans le bon ordre :

172 Cours de Python / Université Paris Cité / UFR Sciences du Vivant

16.6. Conseils sur la conception d’un script Chapitre 16. Bonnes pratiques en programmation Python

1 """Docstring d'une ligne décrivant brièvement ce que fait le programme.
2
3 Usage:
4 ======
5 python nom_de_ce_super_script.py argument1 argument2
6
7 argument1: un entier signifiant un truc
8 argument2: une chaîne de caractères décrivant un bidule
9 """

10
11 __authors__ = ("Johny B Good", "Hubert de la Pâte Feuilletée")
12 __contact__ = ("johny@bgood.us", "hub@pate.feuilletee.fr")
13 __copyright__ = "MIT"
14 __date__ = "2030-01-01"
15 __version__ = "1.2.3"
16
17 import module_interne
18 import module_interne_2 as mod2
19
20 import module_externe
21
22 import my_module
23
24 UNE_CONSTANTE = valeur
25
26
27 def une_fonction_complexe(arg1, arg2, arg3):
28 """Résumé de la docstring décrivant la fonction.
29
30 Description détaillée.
31 """
32 [...]
33 return une_chose
34
35
36 def une_fonction_simple(arg1, arg2):
37 """Docstring d'une ligne décrivant la fonction."""
38 [...]
39 return autre_chose
40
41
42 if __name__ == "__main__":
43 # Ici débute le programme principal.
44 [...]

• Lignes 1 à 9. Cette docstring décrit globalement le script. Cette docstring (ainsi que les autres) seront visibles si
on importe le script en tant que module, puis en invoquant la commande help() (voir chapitre 15 Création de
modules).

• Lignes 11 à 15. On définit ici un certain nombre de variables avec des doubles underscores donnant quelques
informations sur la version du script, les auteurs, etc. Il s’agit de métadonnées que la commande help() pourra
afficher. Ces métadonnées sont utiles lorsque le code est distribué à la communauté.

• Lignes 17 à 22. Importation des modules. D’abord les modules internes à Python (fournis en standard), puis les
modules externes (ceux qu’il faut installer en plus), puis les modules créés localement. Un module par ligne.

• Ligne 24. Définition des constantes. Le nom des constantes est en majuscule.
• Lignes 27 à 39. Définition des fonctions. Avant chaque fonction, on laisse deux lignes vides.
• Lignes 42 à 44. On écrit le programme principal. Le test ligne 42 n’est vrai que si le script est utilisé en tant que

programme.

16.6 Conseils sur la conception d’un script
Voici quelques conseils pour vous aider à concevoir un script Python.
• Réfléchissez avec un papier, un crayon… et un cerveau (voire même plusieurs) ! Reformulez avec vos propres mots

les consignes qui vous ont été données. Dessinez des schémas si cela vous aide.
• Découpez en fonctions chaque élément de votre programme. Vous pourrez ainsi tester chaque élément indépen-

Cours de Python / Université Paris Cité / UFR Sciences du Vivant 173

Chapitre 16. Bonnes pratiques en programmation Python 16.7. Pour terminer : la PEP 20

damment du reste. Pensez à écrire les docstrings en même temps que vous écrivez vos fonctions.
• Documentez-vous. L’algorithme dont vous avez besoin existe-t-il déjà dans un autre module ? De quels outils

mathématiques avez-vous besoin dans votre algorithme ?
• Quand l’algorithme est complexe, commentez votre code pour expliquer votre raisonnement. Utiliser des fonctions

(ou méthodes) encore plus petites peut aussi être une solution.
• Utilisez des noms de variables explicites, qui signifient quelque chose. En lisant votre code, on doit comprendre

ce que vous faites. Choisir des noms de variables pertinents permet aussi de réduire les commentaires.
• Quand vous construisez une structure de données complexe (par exemple une liste de dictionnaires contenant

d’autres objets), documentez l’organisation de cette structure de données avec un exemple simple.
• Si vous créez ou manipulez une entité cohérente avec des propriétés propres, essayez de construire une classe.

Reportez-vous, pour cela, au chapitre 23 Avoir la classe avec les objets.
• Testez votre code sur un petit jeu de données, pour comprendre rapidement ce qui se passe et corriger d’éven-

tuelles erreurs. Par exemple, une séquence d’ADN de 1 000 bases est plus facile à manipuler que le génome humain
(3×109 bases) !

• Lorsque votre programme « plante », lisez le message d’erreur. Python tente de vous expliquer ce qui ne va pas.
Le numéro de la ligne qui pose problème est aussi indiqué.

• Discutez avec des gens. Faites tester votre programme par d’autres. Les instructions d’utilisation sont-elles
claires ?

• Enfin, si vous distribuez votre code :
— Rédigez une documentation claire.
— Testez votre programme (jetez un œil aux tests unitaires 10).
— Précisez une licence d’utilisation (voir le site Choose an open source license 11).

16.7 Pour terminer : la PEP 20
La PEP 20 est une sorte de réflexion philosophique avec des phrases simples qui devraient guider tout programmeur.

Comme les développeurs de Python ne manque pas d’humour, celle-ci est accessible sous la forme d’un « œuf de Pâques
» (easter egg, en anglais) ou encore « fonctionnalité cachée d’un programme » en important un module nommé this :

1 >>> import this
2 The Zen of Python, by Tim Peters
3
4 Beautiful is better than ugly.
5 Explicit is better than implicit.
6 Simple is better than complex.
7 Complex is better than complicated.
8 Flat is better than nested.
9 Sparse is better than dense.

10 Readability counts.
11 Special cases aren't special enough to break the rules.
12 Although practicality beats purity.
13 Errors should never pass silently.
14 Unless explicitly silenced.
15 In the face of ambiguity, refuse the temptation to guess.
16 There should be one-- and preferably only one --obvious way to do it.
17 Although that way may not be obvious at first unless you're Dutch.
18 Now is better than never.
19 Although never is often better than *right* now.
20 If the implementation is hard to explain, it's a bad idea.
21 If the implementation is easy to explain, it may be a good idea.
22 Namespaces are one honking great idea -- let's do more of those!

Et si l’aventure et les easter eggs vous plaisent, testez également la commande
1 >>> import antigravity

Il vous faudra un navigateur et une connexion internet.

10. https://fr.wikipedia.org/wiki/Test_unitaire
11. https://choosealicense.com/

174 Cours de Python / Université Paris Cité / UFR Sciences du Vivant

https://fr.wikipedia.org/wiki/Test_unitaire
https://choosealicense.com/

16.7. Pour terminer : la PEP 20 Chapitre 16. Bonnes pratiques en programmation Python

Pour aller plus loin
• L’article Python Code Quality : Tools & Best Practices 12 du site Real Python est une ressource intéressante pour

explorer plus en détail la notion de qualité pour un code Python. De nombreux linters y sont présentés.
• Les articles Assimilez les bonnes pratiques de la PEP 8 13 du site OpenClassrooms et Structuring Python Programs 14

du site Real Python rappellent les règles d’écriture et les bonnes pratiques vues dans ce chapitre.

12. https://realpython.com/python-code-quality/
13. https://openclassrooms.com/fr/courses/4425111-perfectionnez-vous-en-python/4464230-assimilez-les-bonnes-pratiques-de-la-pep-8
14. https://realpython.com/python-program-structure/

Cours de Python / Université Paris Cité / UFR Sciences du Vivant 175

https://realpython.com/python-code-quality/
https://openclassrooms.com/fr/courses/4425111-perfectionnez-vous-en-python/4464230-assimilez-les-bonnes-pratiques-de-la-pep-8
https://realpython.com/python-program-structure/

CHAPITRE 17

Expressions régulières et parsing

Le module re permet d’utiliser des expressions régulières avec Python. Les expressions régulières sont aussi appelées
en anglais regular expressions, ou en plus court regex. Dans la suite de ce chapitre, nous utiliserons souvent le mot regex
pour désigner une expression régulière. Les expressions régulières sont puissantes et incontournables en bioinformatique,
surtout lorsque vous souhaitez récupérer des informations dans de gros fichiers.

Cette action de recherche de données dans un fichier est appelée généralement parsing (qui signifie littéralement «
analyse syntaxique »). Le parsing fait partie du travail quotidien du bioinformaticien, il est sans arrêt en train de « fouiller
» dans des fichiers pour en extraire des informations d’intérêt, par exemple récupérer les coordonnées 3D des atomes
d’une protéine dans un fichier PDB, ou encore extraire les gènes d’un fichier GenBank.

Dans ce chapitre, nous ne ferons que quelques rappels sur les expressions régulières. Pour une documentation plus
complète, référez-vous à la page d’aide des expressions régulières 1 sur le site officiel de Python.

17.1 Définition et syntaxe
Une expression régulière est une suite de caractères qui a pour but de décrire un fragment de texte. Cette suite de

caractères est encore appelée motif (en anglais, pattern), qui est constitué de deux types de caractères :
• les caractères dits normaux ;
• les métacaractères ayant une signification particulière, par exemple le caractère ^ signifie début de ligne, et non

pas le caractère « chapeau » littéral.
Avant de présenter les regex en Python, nous allons faire un petit détour par Unix. En effet, certains programmes,

comme egrep, sed ou encore awk, savent interpréter les expressions régulières. Tous ces programmes fonctionnent
généralement selon le schéma suivant :

• le programme lit un fichier ligne par ligne ;
• pour chaque ligne lue, si l’expression régulière passée en argument est retrouvée dans la ligne, alors le programme

effectue une action.
Par exemple, pour le programme egrep :

$ egrep "^DEF" herp_virus.gbk
DEFINITION Human herpesvirus 2, complete genome.

Ici, egrep affiche toutes les lignes du fichier du virus de l’herpès (herp_virus.gbk) dans lesquelles la regex ^DEF
(c’est-à-dire le mot DEF en début de ligne) est retrouvée.

1. https://docs.python.org/fr/3/library/re.html

176

https://docs.python.org/fr/3/library/re.html

17.1. Définition et syntaxe Chapitre 17. Expressions régulières et parsing

Remarque
Il est intéressant de faire un point sur le vocabulaire utilisé en anglais et en français. En général, on utilise le verbe

to match pour indiquer qu’une regex « a fonctionné ». Bien qu’il n’y ait pas de traduction littérale en français, on peut
utiliser les verbes « retrouver » ou « correspondre ». Par exemple, on pourra traduire l’expression « The regex matches
the line » par « La regex est retrouvée dans la ligne » ou encore « La regex correspond dans la ligne ».

Après avoir introduit le vocabulaire des regex, voici quelques éléments de syntaxe des métacaractères :
^ Début de chaîne de caractères ou de ligne.

Exemple : la regex ^ATG est retrouvée dans la chaîne de caractères ATGCGT mais pas dans la chaîne CCATGTT.
$ Fin de chaîne de caractères ou de ligne.

Exemple : la regex ATG$ est retrouvée dans la chaîne de caractères TGCATG mais pas dans la chaîne CCATGTT.
. N’importe quel caractère (mais un caractère quand même).

Exemple : la regex A.G est retrouvée dans ATG, AtG, A4G, mais aussi dans A-G ou dans A G.
[ABC] Le caractère A ou B ou C (un seul caractère).

Exemple : la regex T[ABC]G est retrouvée dans TAG, TBG ou TCG, mais pas dans TG.
[A-Z] N’importe quelle lettre majuscule.

Exemple : la regex C[A-Z]T est retrouvée dans CAT, CBT, CCT…
[a-z] N’importe quelle lettre minuscule.
[0-9] N’importe quel chiffre.
[A-Za-z0-9] N’importe quel caractère alphanumérique.
[^AB] N’importe quel caractère sauf A et B.

Exemple : la regex CG[^AB]T est retrouvée dans CG9T, CGCT… mais pas dans CGAT ni dans CGBT.
\ Caractère d’échappement (pour protéger certains caractères).

Exemple : la regex \+ désigne le caractère + littéral. La regex A\.G est retrouvée dans A.G et non pas dans A suivi
de n’importe quel caractère, suivi de G.

* 0 à n fois le caractère précédent ou l’expression entre parenthèses précédente.
Exemple : la regex A(CG)*T est retrouvée dans AT, ACGT, ACGCGT…

+ 1 à n fois le caractère précédent ou l’expression entre parenthèses précédente.
Exemple : la regex A(CG)+T est retrouvée dans ACGT, ACGCGT… mais pas dans AT.

? 0 à 1 fois le caractère précédent ou l’expression entre parenthèses précédente.
Exemple : la regex A(CG)?T est retrouvée dans AT ou ACGT.

{n} n fois le caractère précédent ou l’expression entre parenthèses précédente.
Exemple : la regex A(CG){2}T est retrouvée dans ACGCGT mais pas dans ACGT, ACGCGCGT ou ACGCG.

{n,m} n à m fois le caractère précédent ou l’expression entre parenthèses précédente.
Exemple : la regex A(C){2,4}T est retrouvée dans ACCT, ACCCT et ACCCCT mais pas dans ACT, ACCCCCT ou ACCC.

{n,} Au moins n fois le caractère précédent ou l’expression entre parenthèses précédente.
Exemple : la regex A(C){2,}T est retrouvée dans ACCT, ACCCT et ACCCCT mais pas à ACT ou ACCC.

{,m} Au plus m fois le caractère précédent ou l’expression entre parenthèses précédente.
Exemple : la regex A(C){,2}T est retrouvée dans AT, ACT et ACCT mais pas dans ACCCT ou ACC.

(CG|TT) Les chaînes de caractères CG ou TT.
Exemple : la regex A(CG|TT)C est retrouvée dans ACGC ou ATTC.

Enfin, il existe des caractères spéciaux qui sont bien commodes et qui peuvent être utilisés en tant que métacaractères :
\d remplace n’importe quel chiffre (d signifie digit), équivalent à [0-9].
\w remplace n’importe quel caractère alphanumérique et le caractère souligné (underscore) (w signifie word character),

équivalent à [0-9A-Za-z_].

Cours de Python / Université Paris Cité / UFR Sciences du Vivant 177

Chapitre 17. Expressions régulières et parsing 17.2. Quelques ressources en ligne

\s remplace n’importe quel « espace blanc » (whitespace) (s signifie space), équivalent à [\t\n\r\f]. La notion
d’espace blanc a été abordée dans le chapitre 11 Plus sur les chaînes de caractères. Les espaces blancs les plus
classiques sont l’espace , la tabulation \t, le retour à la ligne \n, mais il en existe d’autres comme \r et \f que nous
ne développerons pas ici. \s est très pratique pour détecter une combinaison d’espace(s) et/ou de tabulation(s).

Comme vous le constatez, les métacaractères sont nombreux et leur signification est parfois difficile à maîtriser. Faites
particulièrement attention aux métacaractères ., + et * qui, combinés ensemble, peuvent donner des résultats ambigus.

Attention
Il est important de savoir par ailleurs que les regex sont « avides » (greedy en anglais) lorsqu’on utilise les métaca-

ractères + et *. Cela signifie que la regex cherchera à « s’étendre » au maximum. Par exemple, si on utilise la regex A+
pour faire une recherche dans la chaîne TTTAAAAAAAAGC, tous les A de cette chaîne (huit en tout) seront concernés, bien
que AA, AAA, etc. « fonctionnent » également avec cette regex.

17.2 Quelques ressources en ligne
Nous vous conseillons de tester systématiquement vos expressions régulières sur des exemples simples. Pour vous

aider, nous vous recommandons plusieurs sites internet :
• RegexOne 2 : tutoriel en ligne très bien fait.
• RegExr 3 et ExtendsClass 4 : visualisent tous les endroits où une regex est retrouvée dans un texte.
• pythex.org 5 : interface simple et efficace, dédiée à Python.
• Regular-Expressions.info 6 : documentation exhaustive sur les regex (il y a même une section sur Python).
N’hésitez pas à explorer ces sites avant de vous lancer dans les exercices ou dans l’écriture de vos propres regex !

17.3 Le module re
17.3.1 La fonction search()

Dans le module re, la fonction search() est incontournable. Elle permet de rechercher un motif, c’est-à-dire une
regex, au sein d’une chaîne de caractères avec une syntaxe de la forme search(motif, chaine). Si motif est retrouvé
dans chaine, Python renvoie un objet du type SRE_Match.

Sans entrer dans les détails propres au langage orienté objet, si on utilise un objet du type SRE_Match dans un test,
il sera considéré comme vrai. Par exemple, si on recherche le motif tigre dans la chaîne de caractères "girafe tigre
singe" :
1 >>> import re
2 >>> animaux = "girafe tigre singe"
3 >>> re.search("tigre", animaux)
4 <_sre.SRE_Match object at 0x7fefdaefe2a0>
5 >>> if re.search("tigre", animaux):
6 ... print("OK")
7 ...
8 OK

Attention
Le motif que vous utilisez comme premier argument de la fonction search() sera interprété en tant que regex. Ainsi,

^DEF correspondra au mot DEF en début de chaîne et pas au caractère littéral ^suivi du mot DEF.

2. https://regexone.com/
3. https://regexr.com/
4. https://extendsclass.com/regex-tester.html#python
5. https://pythex.org/
6. https://www.regular-expressions.info

178 Cours de Python / Université Paris Cité / UFR Sciences du Vivant

https://regexone.com/
https://regexr.com/
https://extendsclass.com/regex-tester.html#python
https://pythex.org/
https://www.regular-expressions.info

17.3. Le module re Chapitre 17. Expressions régulières et parsing

17.3.2 Les fonctions match() et fullmatch()
Il existe aussi la fonction match() dans le module re qui fonctionne sur le modèle de search(). La différence est

qu’elle renvoie un objet du type SRE_Match seulement lorsque la regex correspond au début de la chaîne de caractères
(à partir du premier caractère) :

1 >>> animaux = "girafe tigre singe"
2 >>> re.search("tigre", animaux)
3 <_sre.SRE_Match object at 0x7fefdaefe718>
4 >>> re.match("tigre", animaux)
5 >>>
6 >>> animaux = "tigre singe"
7 >>> re.match("tigre", animaux)
8 <_sre.SRE_Match object; span=(0, 5), match='tigre'>
9 >>>

Il existe également la fonction fullmatch(), qui renvoie un objet du type SRE_Match si et seulement si l’expression
régulière correspond exactement à la chaîne de caractères.

1 >>> animaux = "tigre "
2 >>> re.fullmatch("tigre", animaux)
3 >>> animaux = "tigre"
4 >>> re.fullmatch("tigre", animaux)
5 <_sre.SRE_Match object; span=(0, 5), match='tigre'>

De manière générale, nous vous recommandons l’usage de la fonction search(). Si vous souhaitez avoir une cor-
respondance avec le début de la chaîne de caractères comme dans la fonction match(), vous pouvez toujours utiliser
l’accroche de début de ligne ^. Si vous voulez une correspondance exacte, comme dans la fonction fullmatch(), vous
pouvez utiliser les métacaractères ^ et $, par exemple ^tigre$.

17.3.3 Compilation d’expressions régulières
Lorsqu’on a besoin de tester la même expression régulière sur plusieurs milliers de chaînes de caractères, il est pratique

de compiler préalablement la regex à l’aide de la fonction compile(), qui renvoie un objet de type SRE_Pattern :
1 >>> regex = re.compile("^tigre")
2 >>> regex
3 <_sre.SRE_Pattern object at 0x7fefdafd0df0>

On peut alors utiliser directement cet objet avec la méthode .search() :
1 >>> animaux = "girafe tigre singe"
2 >>> regex.search(animaux)
3 >>> animaux = "tigre singe"
4 >>> regex.search(animaux)
5 <_sre.SRE_Match object at 0x7fefdaefe718>
6 >>> animaux = "singe tigre"
7 >>> regex.search(animaux)

17.3.4 Groupes
L’intérêt de l’objet de type SRE_Match renvoyé par Python lorsqu’une regex trouve une correspondance dans une

chaîne de caractères est de pouvoir ensuite récupérer certaines zones précises :
1 >>> regex = re.compile("([0-9]+)\.([0-9]+)")

Dans cet exemple, on recherche un nombre décimal, c’est-à-dire une chaîne de caractères :
• qui débute par un ou plusieurs chiffres [0-9]+,
• suivi d’un point \. (le point a d’habitude une signification de métacaractère, donc il faut l’échapper avec \ pour

qu’il retrouve sa signification de point),
• et qui se termine encore par un ou plusieurs chiffres [0-9]+.
Les parenthèses dans la regex créent des groupes ([0-9]+ deux fois) qui seront récupérés ultérieurement par la

méthode .group().

Cours de Python / Université Paris Cité / UFR Sciences du Vivant 179

Chapitre 17. Expressions régulières et parsing 17.3. Le module re

1 >>> resultat = regex.search("pi vaut 3.14")
2 >>> resultat.group(0)
3 '3.14'
4 >>> resultat.group(1)
5 '3'
6 >>> resultat.group(2)
7 '14'
8 >>> resultat.start()
9 8

10 >>> resultat.end()
11 12

La totalité de la correspondance est donnée par .group(0), le premier élément entre parenthèses est donné par
.group(1) et le second par .group(2).

Les méthodes .start() et .end() donnent respectivement la position de début et de fin de la zone qui correspond
à la regex. Notez que la méthode .search() ne renvoie que la première zone qui correspond à l’expression régulière,
même s’il en existe plusieurs :

1 >>> resultat = regex.search("pi vaut 3.14 et e vaut 2.72")
2 >>> resultat.group(0)
3 '3.14'

17.3.5 La méthode .findall()
Pour récupérer chaque zone dans la regex, s’il y en a plusieurs, vous pouvez utiliser la méthode .findall() qui

renvoie une liste des éléments en correspondance :
1 >>> regex = re.compile("[0-9]+\.[0-9]+")
2 >>> resultat = regex.findall("pi vaut 3.14 et e vaut 2.72")
3 >>> resultat
4 ['3.14', '2.72']

L’utilisation des groupes entre parenthèses est également possible, ceux-ci sont alors renvoyés sous la forme de tuples :
1 >>> regex = re.compile("([0-9]+)\.([0-9]+)")
2 >>> resultat = regex.findall("pi vaut 3.14 et e vaut 2.72")
3 >>> resultat
4 [('3', '14'), ('2', '72')]

17.3.6 La méthode .sub()
Enfin, la méthode .sub() permet d’effectuer des remplacements assez puissants. Par défaut, la méthode .sub(

chaine1, chaine2) remplace toutes les occurrences trouvées par l’expression régulière dans chaine2 par chaine1.
Si vous souhaitez ne remplacer que les n premières occurrences, utilisez l’argument count=n :

1 >>> regex = re.compile("[0-9]+\.[0-9]+")
2 >>> regex.sub("quelque chose", "pi vaut 3.14 et e vaut 2.72")
3 'pi vaut quelque chose et e vaut quelque chose'
4 >>> regex.sub("quelque chose", "pi vaut 3.14 et e vaut 2.72", count=1)
5 'pi vaut quelque chose et e vaut 2.72'

Encore plus puissant, il est possible d’utiliser dans le remplacement des groupes qui ont été « capturés » avec des
parenthèses :

1 >>> regex = re.compile("([0-9]+)\.([0-9]+)")
2 >>> phrase = "pi vaut 3.14 et e vaut 2.72"
3 >>> regex.sub("approximativement \\1", phrase)
4 'pi vaut approximativement 3 et e vaut vaut approximativement 2'
5 >>> regex.sub("approximativement \\1 (puis .\\2)",phrase)
6 'pi vaut approximativement 3 (puis .14) et e vaut approximativement 2 (puis .72)'

Si vous avez capturé des groupes, il suffit d’utiliser \\1, \\2 (etc.) pour utiliser les groupes correspondants dans la
chaîne de caractères substituée. On notera que la syntaxe générale pour récupérer des groupes dans les outils qui gèrent
les regex est \1, \2, etc. Toutefois, Python nous oblige à mettre un deuxième backslash car il y a ici deux niveaux : un

180 Cours de Python / Université Paris Cité / UFR Sciences du Vivant

17.4. Exercices Chapitre 17. Expressions régulières et parsing

premier niveau Python où on veut mettre un backslash littéral (donc \\), puis un second niveau regex dans lequel on
veut retrouver \1. Si cela est confus, retenez seulement qu’il faut mettre un \\ devant le numéro de groupe.

Enfin, sachez que la réutilisation d’un groupe précédemment capturé est aussi utilisable lors d’une utilisation classique
de regex. Par exemple :

1 >>> re.search("(pan)\\1", "bambi et panpan")
2 <_sre.SRE_Match object; span=(9, 15), match='panpan'>
3 >>> re.search("(pan)\\1", "le pistolet a fait pan !")
4 >>>

Dans la regex (pan)\\1, on capture d’abord le groupe (pan) grâce aux parenthèses (il s’agit du groupe 1, puisque
c’est le premier jeu de parenthèses), immédiatement suivi du même groupe grâce au \\1. Dans cet exemple, on capture
donc le mot panpan (lignes 1 et 2). Si, par contre, on a une seule occurrence du mot pan, cette regex ne fonctionne
pas, ce qui est le cas ligne 3.

Bien sûr, si on avait eu un deuxième groupe, on aurait pu le réutiliser avec \\2, un troisième groupe avec \\3, etc.
Nous espérons vous avoir convaincu de la puissance du module re et des expressions régulières. Alors, plus de temps

à perdre, à vos regex !

17.4 Exercices

Conseil
Pour ces exercices, créez des scripts puis exécutez-les dans un shell.

17.4.1 Regex de base
Dans cet exercice, nous allons manipuler le fichier GenBank NC_001133.gbk 7 correspondant au chromosome I de la

levure Saccharomyces cerevisiae.
Créez un script regex_genbank.py :
• qui recherche le mot DEFINITION en début de ligne dans le fichier GenBank, puis affiche la ligne correspondante ;
• qui recherche tous les journaux (mot-clé JOURNAL) dans lesquels ont été publiés les travaux sur cette séquence,

puis affiche les lignes correspondantes.

Conseil
• Utilisez des regex pour trouver les lignes demandées.
• Des explications sur le format GenBank et des exemples de code sont fournies dans l’annexe A Quelques formats

de données en biologie.

17.4.2 Enzyme de restriction
Une enzyme de restriction est une protéine capable de couper une molécule d’ADN. Cette coupure se fait sur le site

de restriction de l’ADN qui correspond à une séquence particulière de nucléotides (bases).
Pour chacune des enzymes ci-dessous, déterminez les expressions régulières qui décrivent leurs sites de restriction. Le

symbole N correspond aux bases A, T, C ou G. W correspond à A ou T. Y correspond à C ou T. R correspond à A ou G.

Enzyme Site de restriction
HinFI GANTC
EcoRII CCWGG
BbvBI GGYRCC
BcoI CYCGRG
Psp5II RGGWCCY

7. https://python.sdv.u-paris.fr/data-files/NC_001133.gbk

Cours de Python / Université Paris Cité / UFR Sciences du Vivant 181

https://python.sdv.u-paris.fr/data-files/NC_001133.gbk

Chapitre 17. Expressions régulières et parsing 17.4. Exercices

Enzyme Site de restriction
BbvAI GAANNNNTTC

17.4.3 Nettoyeur d’espaces
Le fichier cigale_fourmi.txt 8 contient la célèbre fable de Jean de la Fontaine. Malheureusement, la personne qui

l’a recopié a parfois mis plusieurs espaces au lieu d’un seul entre les mots.
Créez un script cigale_fourmi.py qui, grâce à une regex et à la fonction sub(), remplace plusieurs espaces par un

seul dans le texte ci-dessus. Le nouveau texte, ainsi nettoyé, sera enregistré dans un fichier cigale_fourmi_propre.txt.

17.4.4 Liste des protéines humaines
Téléchargez le fichier human-proteome.fasta 9 qui contient le protéome humain, c’est-à-dire les séquences de

l’ensemble des protéines chez l’Homme. Ce fichier est au format FASTA.
On souhaite lister toutes ces protéines et les indexer avec un numéro croissant.
Créez un script liste_proteome.py qui :
• lit le fichier human-proteome.fasta ;
• extrait, avec une regex, le numéro d’accession de la protéine de toutes les lignes de commentaires des séquences ;
• affiche le mot protein, suivi d’un numéro qui s’incrémente, suivi du numéro d’accession.
Voici un exemple de sortie attendue :

protein 00001 O95139
protein 00002 O75438
protein 00003 Q8N4C6
[...]
protein 20371 Q8IZJ1
protein 20372 Q9UKP6
protein 20373 Q96HZ7

Conseil
• Des explications sur le format FASTA et des exemples de code sont fournis dans l’annexe A Quelques formats de

données en biologie.
• La ligne de commentaire d’une séquence au format FASTA est de la forme
>sp|O95139|NDUB6_HUMAN NADH dehydrogenase [...]
Elle débute toujours pas le caractère >. Le numéro d’accession O95139 se situe entre le premier et le second symbole
| (symbole pipe). Attention, il faudra « échapper » ce symbole car il a une signification particulière dans une regex.

• Le numéro qui s’incrémente débutera à 1 et sera affiché sur 5 caractères, avec des 0 à sa gauche si nécessaires
(formatage {:05d}).

17.4.5 Le défi du dé-HTMLiseur (exercice +++)
Le format HTML permet d’afficher des pages web dans un navigateur. Il s’agit d’un langage à balise qui fonctionne

avec des balises ouvrantes <balise> et des balises fermantes </balise>.
Créez un script dehtmliseur.py qui lit le fichier fichier_a_dehtmliser.html 10 au format HTML et qui renvoie

à l’écran tout le texte de ce fichier sans les balises HTML.
Nous vous conseillons tout d’abord d’ouvrir le fichier HTML dans un éditeur de texte et de bien l’observer. N’hésitez

pas à vous aider des sites mentionnés dans les ressources en ligne.

17.4.6 Nettoyeur de doublons (exercice +++)
Téléchargez le fichier breves_doublons.txt 11 qui contient des mots répétés deux fois. Par exemple :

8. https://python.sdv.u-paris.fr/data-files/cigale_fourmi.txt
9. https://python.sdv.u-paris.fr/data-files/human-proteome.fasta

10. https://python.sdv.u-paris.fr/data-files/fichier_a_dehtmliser.html
11. https://python.sdv.u-paris.fr/data-files/breves_doublons.txt

182 Cours de Python / Université Paris Cité / UFR Sciences du Vivant

https://python.sdv.u-paris.fr/data-files/cigale_fourmi.txt
https://python.sdv.u-paris.fr/data-files/human-proteome.fasta
https://python.sdv.u-paris.fr/data-files/fichier_a_dehtmliser.html
https://python.sdv.u-paris.fr/data-files/breves_doublons.txt

17.4. Exercices Chapitre 17. Expressions régulières et parsing

Le cinéma est devenu parlant, la radio radio finira en images.
La sardine, c'est un petit petit poisson sans tête qui vit dans l'huile.
[...]

Écrivez un script ote_doublons.py qui lit le fichier breves_doublons.txt et qui supprime tous les doublons à
l’aide d’une regex. Le script affichera le nouveau texte à l’écran.

Conseil
Utilisez la méthode .sub().

Cours de Python / Université Paris Cité / UFR Sciences du Vivant 183

CHAPITRE 18

Jupyter et ses notebooks

Les notebooks Jupyter sont des cahiers électroniques qui, dans le même document, peuvent rassembler du texte,
des images, des formules mathématiques, des tableaux, des graphiques et du code informatique exécutable. Ils sont
manipulables interactivement dans un navigateur web.

Initialement développés pour les langages de programmation Julia, Python et R (d’où le nom Jupyter), les notebooks
Jupyter supportent près de 40 langages différents.

La cellule est l’élément de base d’un notebook Jupyter. Elle peut contenir du texte formaté au format Markdown ou
du code informatique qui pourra être exécuté.

Voici un exemple de notebook Jupyter (figure 18.1) :
Ce notebook est constitué de cinq cellules : deux avec du texte en Markdown (la première et la dernière) et trois avec

du code Python (légèrement grisées).

18.1 Installation
Avec la distribution Miniconda, les notebooks Jupyter s’installent avec la commande :

$ conda install -c conda-forge -y jupyterlab

Pour être exact, la commande précédente installe un peu plus que les notebooks Jupyter, mais nous verrons cela par
la suite.

18.2 JupyterLab
En 2018, le consortium Jupyter a lancé JupyterLab, qui est un environnement complet de programmation et d’analyse

de données.
Pour obtenir cette interface, lancez la commande suivante depuis un shell :

$ jupyter lab

Une nouvelle page devrait s’ouvrir dans votre navigateur web et vous devriez obtenir une interface similaire à la figure
18.2, avec à gauche un navigateur de fichiers et à droite le « Launcher », qui permet de créer un nouveau notebook
Jupyter, de lancer un terminal ou d’éditer un fichier texte, un fichier Mardown, un script Python…

L’interface proposée par JupyterLab est très riche. On peut y organiser un notebook Jupyter, un éditeur de fichier
texte, un terminal… Les possibilités sont nombreuses et nous vous invitons à explorer cette interface par vous-même.

184

18.3. Création d’un notebook Chapitre 18. Jupyter et ses notebooks

Figure 18.1 – Exemple de notebook Jupyter. Les chiffres entourés désignent les différentes cellules.

18.3 Création d’un notebook
Pour créer un notebook, cliquez sur le bouton Python 3 situé dans la rubrique Notebook dans le Launcher (figure

18.3).
Le notebook fraîchement créé ne contient qu’une cellule vide.
La première chose à faire est de donner un nom à votre notebook. Pour cela, cliquer avec le bouton droit de la souris

sur Untitled.ipynb, en haut du notebook. Si le nom de votre notebook est test.ipynb, alors le fichier test.ipynb sera créé
dans le répertoire depuis lequel vous avez lancé JupyterLab.

Remarque
L’extension .ipynb est l’extension de fichier des notebooks Jupyter.

Vous pouvez entrer des instructions Python dans la première cellule. Par exemple :

Cours de Python / Université Paris Cité / UFR Sciences du Vivant 185

Chapitre 18. Jupyter et ses notebooks 18.3. Création d’un notebook

Figure 18.2 – Interface de JupyterLab.

Figure 18.3 – Création d’un nouveau notebook.

Figure 18.4 – Nouveau notebook avec une cellule vide.

1 a = 2
2 b = 3
3 print(a+b)

186 Cours de Python / Université Paris Cité / UFR Sciences du Vivant

18.3. Création d’un notebook Chapitre 18. Jupyter et ses notebooks

Pour exécuter le contenu de cette cellule, vous avez plusieurs possibilités :
• Cliquer sur le menu Run, puis Run Selected Cells.
• Cliquer sur le bouton � dans la barre de menu au dessus du notebook.
• Presser simultanément les touches Ctrl + Entrée.
Dans tous les cas, vous devriez obtenir un résultat similaire à la figure 18.5. La notation [1] à gauche de la cellule

indique qu’il s’agit de la première cellule de code qui a été exécutée.

Figure 18.5 – Exécution d’une première cellule.

Pour créer une nouvelle cellule, vous avez, ici encore, plusieurs possibilités :
• Cliquer sur l’icône + dans la barre de menu au dessus du notebook.
• Cliquer sur la 2e icône à partir de la droite (juste à côté de la poubelle), dans les icônes situées à l’intérieur de la

cellule, à droite.
Une nouvelle cellule vide devrait apparaître.
Vous pouvez également créer une nouvelle cellule, en positionnant votre curseur dans la première cellule, puis en

pressant simultanément les touches Alt + Entrée. Si vous utilisez cette combinaison de touches, vous remarquerez que
le numéro à gauche de la première cellule est passée de [1] à [2], car vous avez exécuté une nouvelle fois la première
cellule puis créé une nouvelle cellule.

Vous pouvez ainsi créer plusieurs cellules les unes à la suite des autres. Un objet créé dans une cellule antérieure sera
disponible dans les cellules suivantes. Par exemple, dans la figure 18.6, nous avons quatre cellules.

Figure 18.6 – Notebook avec plusieurs cellules de code Python.

Dans un notebook Jupyter, il est parfaitement possible de réexécuter une cellule précédente. Par exemple la première
cellule, qui porte désormais à sa gauche la numérotation [5] (voir figure 18.7).

Cours de Python / Université Paris Cité / UFR Sciences du Vivant 187

Chapitre 18. Jupyter et ses notebooks 18.4. Le format Markdown

Figure 18.7 – Notebook avec une cellule ré-exécutée.

Attention
La possibilité d’exécuter les cellules d’un notebook Jupyter dans un ordre arbitraire peut prêter à confusion, notamment

si vous modifiez la même variable dans plusieurs cellules.
Nous vous recommandons de régulièrement relancer complètement l’exécution de toutes les cellules de votre notebook,

de la première à la dernière, en cliquant sur le menu Kernel puis Restart Kernel and Run All Cells et enfin de valider le
message Restart Kernel ? en cliquant sur le bouton Restart.

18.4 Le format Markdown
Dans le tout premier exemple (figure 18.1), nous avons vu qu’il était possible de mettre du texte au format Markdown

dans une cellule.
Il faut cependant indiquer à Jupyter que cette cellule est au format Markdown en cliquant sur Code, sous la barre de

menu au dessus du notebook, puis en choisissant Markdown.
Le format Markdown permet de rédiger du texte formaté (gras, italique, liens, titres, images, formules mathéma-

tiques…) avec quelques balises très simples. Voici un exemple dans un notebook Jupyter (figure 18.8 (A)) et le rendu
lorsque la cellule est exécutée (figure 18.8 (B)). Notez qu’une cellule Markdown est sur fond blanc (comme sur la figure
18.8 (B)).

Le format Markdown permet de rédiger du texte structuré rapidement et simplement. Ce cours est par exemple
complètement rédigé en Markdown. Nous vous conseillons d’explorer les possibilités du Markdown en consultant la page
Wikipédia 1 ou directement la page de référence 2.

18.5 Des graphiques dans les notebooks
Un autre intérêt des notebooks Jupyter est de pouvoir y incorporer des graphiques réalisés avec la bibliothèque

matplotlib (que nous verrons prochainement).
Voici un exemple, d’un graphique qui sera présenté dans le chapitre 21 Module Matplotlib (figure 18.9).
L’instruction %matplotlib inline n’est pas nécessaire dans les versions récentes de JupyterLab. Mais avec d’an-

ciennes versions, vous pourriez en avoir besoin pour que les graphiques s’affichent dans le notebook.

1. https://fr.wikipedia.org/wiki/Markdown
2. https://daringfireball.net/projects/markdown/syntax

188 Cours de Python / Université Paris Cité / UFR Sciences du Vivant

https://fr.wikipedia.org/wiki/Markdown
https://daringfireball.net/projects/markdown/syntax

18.6. Les magic commands Chapitre 18. Jupyter et ses notebooks

Remarque
Pour quitter l’interface JupyterLab, il y a plusieurs possibilités :
• Dans le menu en haut à gauche de l’interface, cliquer sur File, puis Shut Down, puis confirmer en cliquant sur le

bouton Shut Down.
• Une méthode plus radicale est de revenir sur le shell depuis lequel JupyterLab a été lancé, puis de presser deux fois

de suite la combinaison de touches Ctrl + C.

18.6 Les magic commands
La commande précédente (%matplotlib inline) est une magic command. Les magic commands 3 apportent des

fonctionnalités supplémentaires dans un notebook. Il en existe beaucoup, nous allons en aborder ici quelques unes.

Remarque
Dans cette rubrique, nous vous montrerons quelques exemples d’utilisation de magic commands exécutées dans un

notebook Jupyter.
1 Les cellules de code apparaitront de cette manière
2 dans un notebook Jupyter, avec des numéros de lignes à gauche.

Les résultats seront affichés de cette manière,
éventuellement sur plusieurs lignes.

18.6.1 %whos
La commande %whos liste tous les objets (variables, fonctions, modules…) utilisés dans un notebook.
Si une cellule précédente contenait le code :

1 a = 2
2 b = 3
3
4 def ma_fonction(x, y):
5 return x + y
6
7 resultat_1 = ma_fonction(a, 10)
8 resultat_2 = ma_fonction("Bonjour", "Jupyter")

alors l’exécution de :
1 %whos

renvoie :
Variable Type Data/Info

a int 2
b int 3
ma_fonction function <function ma_fonction at 0x7f219c2d04a0>
resultat_1 int 12
resultat_2 str BonjourJupyter

18.6.2 %history
La commande %history liste toutes les commandes Python lancées dans un notebook :

1 %history

3. https://ipython.readthedocs.io/en/stable/interactive/magics.html

Cours de Python / Université Paris Cité / UFR Sciences du Vivant 189

https://ipython.readthedocs.io/en/stable/interactive/magics.html

Chapitre 18. Jupyter et ses notebooks 18.6. Les magic commands

a = 2
b = 3
print(a + b)
def ma_fonction(x, y):

return x + y
ma_fonction(a, 10)
ma_fonction("Bonjour", "Jupyter")
%whos
%history

18.6.3 %%time
La commande %%time (avec deux symboles %) va mesurer le temps d’exécution d’une cellule. C’est très utile pour

faire des tests de performance. On peut, par exemple, comparer les vitesses de parcours d’une liste avec une boucle for,
par les éléments ou par les indices des éléments.

Ainsi, cette cellule :
1 %%time
2 concentrations = [5.5, 7.2, 11.8, 13.6, 19.1, 21.7, 29.4]
3 somme_carres = 0.0
4 for conc in concentrations:
5 somme_carres += conc**2

renvoie :
CPU times: user 8 µs, sys: 2 µs, total: 10 µs
Wall time: 11.9 µs

et celle-ci :
1 %%time
2 concentrations = [5.5, 7.2, 11.8, 13.6, 19.1, 21.7, 29.4]
3 somme_carres = 0.0
4 for idx in range(len(concentrations)):
5 somme_carres += concentrations[idx]**2

renvoie :
CPU times: user 26 µs, sys: 5 µs, total: 31 µs
Wall time: 37.4 µs

Comme attendu, la première méthode (itération par les éléments) est plus rapide que la seconde (itération par les
indices des éléments). Les temps obtenus dépendent de la machine sur laquelle vous exécutez ces commandes. Mais, sur
une même machine, les résultats peuvent fluctuer d’une exécution à l’autre en fonction de l’activité de la machine. Ces
fluctuations seront d’autant plus importantes que le temps d’exécution est court.

18.6.4 %%timeit
Pour palier à ce problème, la magic command %%timeit va exécuter plusieurs fois la cellule et donner une estimation

du temps d’exécution moyen. Python détermine automatiquement le nombre d’itérations et le nombre de répétitions à
effectuer pour obtenir un temps global d’exécution raisonnable.

En reprenant l’exemple précédent, on obtient :
1 %%timeit
2 concentrations = [5.5, 7.2, 11.8, 13.6, 19.1, 21.7, 29.4]
3 somme_carres = 0.0
4 for conc in concentrations:
5 somme_carres += conc**2

492 ns ± 11.8 ns per loop (mean ± std. dev. of 7 runs, 1,000,000 loops each)

et

190 Cours de Python / Université Paris Cité / UFR Sciences du Vivant

18.7. Lancement d’une commande Unix Chapitre 18. Jupyter et ses notebooks

1 %%timeit
2 concentrations = [5.5, 7.2, 11.8, 13.6, 19.1, 21.7, 29.4]
3 somme_carres = 0.0
4 for idx in range(len(concentrations)):
5 somme_carres += concentrations[idx]**2

606 ns ± 21.6 ns per loop (mean ± std. dev. of 7 runs, 1,000,000 loops each)

Ici, chaque cellule sera exécutée un million de fois sur sept répétitions, soit sept millions de fois au total. Comme
nous l’avions expliqué dans le chapitre 5 Boucles et comparaisons, itérer une liste sur ses éléments est la méthode la plus
efficace (et la plus élégante).

18.7 Lancement d’une commande Unix
Enfin, dans les environnements Linux ou Mac OS X, il est possible de lancer une commande Unix depuis un notebook

Jupyter. Il faut pour cela faire précéder la commande du symbole « ! ». Par exemple, la commande ls affiche le contenu
du répertoire courant :

1 !ls

jupyter-exemple.ipynb markdown.ipynb test.ipynb
jupyter-logo.png matplotlib.ipynb

Pour aller plus loin
Le lancement d’une commande Unix depuis un notebook Jupyter (en précédant cette commande de !) est très utile

pour réaliser de grosses analyses de données. Pour vous en rendre compte, explorez ce notebook 4 qui reproduit une analyse
complète de données de séquençage haut débit. Ces résultats ont donné lieu à la publication de l’article scientifique «
An open RNA-Seq data analysis pipeline tutorial with an example of reprocessing data from a recent Zika virus study 5

» (F1000 Research, 2016).

Conseil
Les notebooks Jupyter sont particulièrement adaptés à l’analyse de données en combinaison avec les modules mat-

plotlib et pandas, qui seront abordés dans les prochains chapitres.

4. https://github.com/MaayanLab/Zika-RNAseq-Pipeline/blob/master/Zika.ipynb
5. https://f1000research.com/articles/5-1574/

Cours de Python / Université Paris Cité / UFR Sciences du Vivant 191

https://github.com/MaayanLab/Zika-RNAseq-Pipeline/blob/master/Zika.ipynb
https://f1000research.com/articles/5-1574/

Chapitre 18. Jupyter et ses notebooks 18.7. Lancement d’une commande Unix

Figure 18.8 – Notebook avec : (A) une cellule au format Markdown et (B) le rendu après exécution.

192 Cours de Python / Université Paris Cité / UFR Sciences du Vivant

18.7. Lancement d’une commande Unix Chapitre 18. Jupyter et ses notebooks

Figure 18.9 – Incorporation d’un graphique dans un notebook Jupyter.

Cours de Python / Université Paris Cité / UFR Sciences du Vivant 193

CHAPITRE 19

Module Biopython

Nous allons aborder dans ce chapitre un module incontournable en bioinformatique. En effet, le module Biopython 1

permet de manipuler des données biologiques, comme des séquences (nucléiques et protéiques) ou des structures (fichiers
PDB), et d’interroger des bases de données comme PubMed. Le tutoriel 2 est particulièrement bien fait, n’hésitez pas à
le consulter.

19.1 Installation et convention
Contrairement aux autres modules vus précédemment, Biopython n’est pas fourni avec la distribution Python de base.

Avec la distribution Miniconda que nous vous conseillons d’utiliser (consultez pour cela la documentation en ligne 3),
vous pouvez rapidement l’installer avec la commande :
$ conda install -c conda-forge biopython

Dans ce chapitre, nous vous montrerons quelques exemples d’utilisation du module Biopython pour vous convaincre
de sa pertinence. Ces exemples seront exécutés dans un notebook Jupyter.

1 Les cellules de code apparaitront de cette manière
2 dans un notebook Jupyter, avec des numéros de lignes à gauche.

Les résultats seront affichés de cette manière,
éventuellement sur plusieurs lignes.

19.2 Chargement du module
On charge le module Biopython avec la commande :

1 import Bio

Attention
Le nom du module Biopython n’est pas biopython, mais Bio (avec un B majuscule).

1. http://biopython.org/
2. http://biopython.org/DIST/docs/tutorial/Tutorial.html
3. https://python.sdv.u-paris.fr/livre-dunod

194

http://biopython.org/
http://biopython.org/DIST/docs/tutorial/Tutorial.html
https://python.sdv.u-paris.fr/livre-dunod

19.3. Manipulation de séquences Chapitre 19. Module Biopython

19.3 Manipulation de séquences
Voici quelques exemples de manipulation de séquences avec Biopython.

19.3.1 Définition d’une séquence

1 import Bio
2 from Bio.Seq import Seq
3 ADN = Seq("ATATCGGCTATAGCATGC")
4 ADN

Seq('ATATCGGCTATAGCATGC')

• Ligne 1. Le module Biopython s’appelle Bio.
• Ligne 2. On charge la classe Seq du sous-module Bio.Seq.
• Ligne 3. La variable ADN est de type Seq, comme affiché dans le résultat.

19.3.2 Obtention de la séquence complémentaire et de la séquence complémentaire inverse

1 ADN.complement()

Seq('TATAGCCGATATCGTACG')

1 ADN.reverse_complement()

Seq('GCATGCTATAGCCGATAT')

19.3.3 Traduction en séquence protéique

1 ADN.translate()

Seq('ISAIAC')

Conseil
Dans l’annexe A Quelques formats de données en biologie, vous trouverez de nombreux exemples d’utilisation de

Biopython pour manipuler des données aux formats FASTA, GenBank et PDB.

19.4 Interrogation de la base de données PubMed
Le sous-module Entrez de Biopython permet d’utiliser les ressources du NCBI et notamment d’interroger la base

de données PubMed 4. Nous allons par exemple utiliser PubMed pour chercher des articles scientifiques relatifs à la
transferrine (transferrin en anglais) :

1 from Bio import Entrez
2 Entrez.email = "votremail@provider.fr"
3 req_esearch = Entrez.esearch(db="pubmed", term="transferrin")
4 res_esearch = Entrez.read(req_esearch)

• Ligne 1. On charge directement le sous-module Entrez.
• Ligne 2. Lors d’une requête sur le site du NCBI, il est important de définir correctement la variable Entrez.email,

qui sera transmise au NCBI lors de la requête et qui pourra être utilisée pour vous contacter en cas de difficulté
avec le serveur.

4. https://www.ncbi.nlm.nih.gov/pubmed/

Cours de Python / Université Paris Cité / UFR Sciences du Vivant 195

https://www.ncbi.nlm.nih.gov/pubmed/

Chapitre 19. Module Biopython 19.4. Interrogation de la base de données PubMed

• Ligne 3. On lance la requête (transferrin) sur le moteur de recherche pubmed. La requête est stockée dans la
variable req_esearch.

• Ligne 4. Le résultat est lu et stocké dans la variable res_esearch.
Sans être un vrai dictionnaire, la variable res_esearch en a cependant plusieurs propriétés. Voici ses clés :

1 res_esearch.keys()

dict_keys(['Count', 'RetMax', 'RetStart', 'IdList', 'TranslationSet',
'TranslationStack', 'QueryTranslation'])

La valeur associée à la clé IdList est une liste qui contient les identifiants (PMID) des articles scientifiques associés
à la requête (ici transferrin) :

1 res_esearch["IdList"]

['30411489', '30409795', '30405884', '30405827', '30402883', '30401570',
'30399508', '30397276', '30395963', '30394734', '30394728', '30394123',
'30393423', '30392910', '30392664', '30391706', '30391651', '30391537',
'30391296', '30390672']

1 len(res_esearch["IdList"])

20

Cette liste ne contient les identifiants que de 20 publications, alors que, si nous faisons cette même requête directement
sur le site de PubMed depuis un navigateur web, nous obtenons plus de 45 700 résultats.

En réalité, le nombre exact de publications (en janvier 2024) est connu :
1 res_esearch["Count"]

'45717'

Pour ne pas saturer les serveurs du NCBI, seulement 20 PMID sont renvoyés par défaut. Mais vous pouvez augmenter
cette limite en utilisant le paramètre retmax dans la fonction Entrez.esearch().

Nous pouvons maintenant récupérer des informations sur une publication précise en connaissant son PMID, par
exemple, l’article avec le PMID 22294463 5, dont un aperçu est sur la figure 19.1.

Figure 19.1 – Aperçu de la publication Known and potential roles of transferrin in iron biology depuis le site PubMed.

Nous allons pour cela utiliser la fonction Entrez.esummary()
5. https://www.ncbi.nlm.nih.gov/pubmed/22294463

196 Cours de Python / Université Paris Cité / UFR Sciences du Vivant

https://www.ncbi.nlm.nih.gov/pubmed/22294463

19.4. Interrogation de la base de données PubMed Chapitre 19. Module Biopython

1 req_esummary = Entrez.esummary(db="pubmed", id="22294463")
2 res_esummary = Entrez.read(req_esummary)

La variable res_esummary n’est pas réellement une liste (son type exacte est Bio.Entrez.Parser.ListElement),
mais elle est indexable (voir chapitre 14 Conteneurs). Cette pseudo-liste n’a qu’un seul élément, qui est lui-même un
dictionnaire dont voici les clés :

1 res_esummary[0].keys()

dict_keys(['Item', 'Id', 'PubDate', 'EPubDate', 'Source', 'AuthorList',
'LastAuthor', 'Title', 'Volume', 'Issue', 'Pages', 'LangList',
'NlmUniqueID', 'ISSN', 'ESSN', 'PubTypeList', 'RecordStatus', 'PubStatus',
'ArticleIds', 'DOI', 'History', 'References', 'HasAbstract', 'PmcRefCount',
'FullJournalName', 'ELocationID', 'SO'])

Nous pouvons alors facilement obtenir le titre, le DOI et la date de publication (PubDate) de cet article, ainsi que le
journal (Source) dans lequel il a été publié :

1 res_esummary[0]["Title"]

'Known and potential roles of transferrin in iron biology.'

1 res_esummary[0]["DOI"]

'10.1007/s10534-012-9520-3'

1 res_esummary[0]["PubDate"]

'2012 Aug'

1 res_esummary[0]["Source"]

'Biometals'

Enfin, pour récupérer le résumé de la publication précédente, nous allons utiliser la fonction Entrez.efetch() :
1 req_efetch = Entrez.efetch(
2 db="pubmed", id="22294463",
3 rettype="abstract", retmode="text")
4 req_efetch.read()

'1. Biometals. 2012 Aug;25(4):677-86. doi: 10.1007/s10534-012-9520-3.
\n\nKnown and potential roles of transferrin in iron biology.\n\nBart
nikas TB(1).\n\nAuthor information:\n(1)Department of Pathology, Chil’
drens Hospital, Enders 1110, 300 Longwood \nAvenue, Boston, MA 02115
, USA. mas.Bartnikas@childrens.harvard.edu\n\nTransferrin is an abund
ant serum metal-binding protein best known for its role \nin iron del
[...]

Le résultat n’est pas très lisible, car il apparait comme un seul bloc. Le caractère \n désigne un retour à la ligne.
L’instruction print() affichera le résultat de manière plus lisible :

1 req_efetch = Entrez.efetch(
2 db="pubmed", id="22294463",
3 rettype="abstract", retmode="text")
4 print(req_efetch.read())

Cours de Python / Université Paris Cité / UFR Sciences du Vivant 197

Chapitre 19. Module Biopython 19.5. Exercices

1. Biometals. 2012 Aug;25(4):677-86. doi: 10.1007/s10534-012-9520-3.

Known and potential roles of transferrin in iron biology.

Bartnikas TB(1).

Author information:
(1)Department of Pathology, ’Childrens Hospital, Enders 1110, 300 Longwood
Avenue, Boston, MA 02115, USA. mas.Bartnikas@childrens.harvard.edu

Transferrin is an abundant serum metal-binding protein best known for its role
in iron delivery. The human disease congenital atransferrinemia and animal
models of this disease highlight the essential role of transferrin in
erythropoiesis and iron metabolism. Patients and mice deficient in transferrin
exhibit anemia and a paradoxical iron overload attributed to deficiency in
hepcidin, a peptide hormone synthesized largely by the liver that inhibits
dietary iron absorption and macrophage iron efflux. Studies of inherited human
disease and model organisms indicate that transferrin is an essential regulator
of hepcidin expression. In this paper, we review current literature on
transferrin deficiency and present our recent findings, including potential
overlaps between transferrin, iron and manganese in the regulation of hepcidin
expression.

DOI: 10.1007/s10534-012-9520-3
PMCID: PMC3595092
PMID: 22294463 [Indexed for MEDLINE]

Le résultat contient bien le résumé de la figure 19.1, mais aussi d’autres informations comme le titre, le DOI, la date
de publication…

19.5 Exercices

Conseil
Pour ces exercices, utilisez des notebooks Jupyter.

19.5.1 Pourcentage de GC de gènes de Plasmodium falciparum
Plasmodium falciparum (P. falciparum) est un des parasites responsables du paludisme chez les êtres humains. Le

fichier p_falciparum_500.fasta 6 contient 500 gènes du génome de P. falciparum.
Écrivez un code Python qui calcule le pourcentage de GC de chaque gène. Les valeurs seront stockées dans un

dictionnaire, avec comme clés les identifiants des gènes et comme valeurs le pourcentage de GC.
On rappelle que le pourcentage de GC d’une séquence est calculé avec la formule suivante :

pourcentage GC =
nombre de bases G+nombre de bases C

longueur de la séquence ×100

Affichez ensuite :
• Le nombre total de gènes.
• L’identifiant de la séquence qui a le pourcentage de GC le plus élevé, avec la valeur du pourcentage affichée avec

deux chiffres après la virgule.
• L’identifiant de la séquence qui a le pourcentage de GC le plus faible, avec la valeur du pourcentage affichée avec

deux chiffres après la virgule.

Conseil
Pour cet exercice, n’hésitez pas à consulter :
• Le chapitre 14 Conteneurs pour trier un dictionnaire.
• L’annexe A Quelques formats de données en biologie pour lire un fichier FASTA avec Biopython.

6. https://python.sdv.u-paris.fr/data-files/p_falciparum_500.fasta

198 Cours de Python / Université Paris Cité / UFR Sciences du Vivant

https://python.sdv.u-paris.fr/data-files/p_falciparum_500.fasta

19.5. Exercices Chapitre 19. Module Biopython

19.5.2 Années de publication des articles relatifs à la barstar
L’objectif de cet exercice est d’interroger automatiquement la base de données bibliographique PubMed pour déter-

miner le nombre d’articles relatifs à la protéine barstar publiés chaque année.
Vous utiliserez le module Biopython et le module matplotlib, qui sera vu un peu plus loin (les principales instructions

vous seront fournies).

19.5.2.1 Requête avec un mot-clé

Sur le site de PubMed 7, cherchez combien d’articles scientifiques sont relatifs à la barstar.
Effectuez la même chose avec Python et la méthode Entrez.esearch() de Biopython.
Choisissez un des PMID renvoyé et vérifiez dans PubMed que l’article associé est bien à propos de la barstar. Pour

cela, indiquez le PMID choisi dans la barre de recherche de PubMed et cliquez sur Search. Attention, l’association n’est
pas toujours évidente. Cherchez éventuellement dans le résumé de l’article si besoin.

Est-ce que le nombre total d’articles trouvés est cohérent avec celui obtenu sur le site de PubMed ?

19.5.2.2 Récupération des informations d’une publication

Récupérez les informations de la publication dont le PMID est 29701945 8. Vous utiliserez la méthode Entrez.
esummary().

Affichez le titre, le DOI, le nom du journal (Source) et la date de publication (PubDate) de cet article. Vérifiez que
cela correspond bien à ce que vous avez lu sur PubMed.

19.5.2.3 Récupération du résumé d’une publication

Récupérez le résumé de la publication dont le PMID est 29701945. Vous utiliserez la méthode Entrez.efetch().
Affichez ce résumé.

19.5.2.4 Distribution des années de publication des articles relatifs à la barstar

En utilisant la méthode Entrez.esearch(), récupérez tous les PMID relatifs à la barstar. Pour cela, pensez à
augmenter le paramètre retmax. Vos PMID seront stockés dans la liste pmids sous forme de chaînes de caractères.
Vérifiez sur PubMed que vous avez récupéré le bon nombre d’articles.

En utilisant maintenant la méthode Entrez.esummary() dans une boucle, récupérez la date de publication de
chaque article. Stockez l’année sous forme d’un nombre entier dans la liste years. Cette étape peut prendre une dizaine
de minutes, soyez patient. Vous pouvez afficher dans votre boucle un message qui indique où vous en êtes dans la
récupération des articles.

Vérifiez que votre liste years contient bien autant d’éléments que la liste pmids.
Calculez maintenant le nombre de publications par année. Vous créerez pour cela un dictionnaire freq qui aura pour

clé les années (oui, une clé de dictionnaire peut aussi être un entier) et pour valeur le nombre de publications associées
à une année donnée.

Créez une liste x qui contient les clés du dictionnaire freq. Ordonnez les valeurs dans x avec la méthode .sort().
Créez maintenant une seconde liste y qui contient, dans l’ordre, le nombre de publications associées à chaque année. Bien
évidemment, les listes x et y doivent avoir la même taille. Au fait, en quelle année la barstar apparaît pour la première
fois dans une publication scientifique ?

Ensuite, avec le module matplotlib (que nous aborderons prochainement), vous allez pouvoir afficher la distribution
des publications en fonction des années :

7. https://www.ncbi.nlm.nih.gov/pubmed/
8. https://www.ncbi.nlm.nih.gov/pubmed/29701945

Cours de Python / Université Paris Cité / UFR Sciences du Vivant 199

https://www.ncbi.nlm.nih.gov/pubmed/
https://www.ncbi.nlm.nih.gov/pubmed/29701945

Chapitre 19. Module Biopython 19.5. Exercices

1 import matplotlib.pyplot as plt
2
3 fig, ax = plt.subplots()
4 ax.bar(x, y)

Vous pouvez également ajouter un peu de cosmétique et enregistrer le graphique sur votre disque dur :
1 import matplotlib.pyplot as plt
2
3 fig, ax = plt.subplots()
4 ax.bar(x, y)
5
6 # Étiquetage des axes.
7 ax.set_xlabel("Années")
8 ax.set_ylabel("Nombre de publications")
9

10 # Ajout du titre du graphique.
11 ax.set_title("Distribution des publications qui mentionnent la barstar")
12
13 # Enregistrement sur le disque.
14 fig.savefig("distribution_barstar_annee.png")

200 Cours de Python / Université Paris Cité / UFR Sciences du Vivant

CHAPITRE 20

Module NumPy

Le module NumPy 1 est incontournable en bioinformatique. Il permet d’effectuer des calculs sur des vecteurs ou des
matrices, élément par élément, via un nouveau type d’objet appelé array.

20.1 Installation et convention
Contrairement aux modules vus précédemment, NumPy n’est pas fourni avec la distribution Python de base. Avec la

distribution Miniconda que nous vous conseillons d’utiliser (consultez pour cela la documentation en ligne 2), vous pouvez
rapidement l’installer avec la commande :
$ conda install -c conda-forge numpy

Dans ce chapitre, nous vous montrerons quelques exemples d’utilisation du module NumPy pour vous convaincre de
sa pertinence. Ces exemples seront exécutés dans un notebook Jupyter.

1 Les cellules de code apparaitront de cette manière
2 dans un notebook Jupyter, avec des numéros de lignes à gauche.

Les résultats seront affichés de cette manière,
éventuellement sur plusieurs lignes.

20.2 Chargement du module
On charge le module NumPy avec la commande :

1 import numpy

Par convention, on utilise np comme nom raccourci pour NumPy :
1 import numpy as np

20.3 Objets de type array
Les objets de type array correspondent à des tableaux à une ou plusieurs dimensions et permettent d’effectuer du

calcul vectoriel. La fonction array() convertit un conteneur (comme une liste ou un tuple) en un objet de type array.
1. http://numpy.scipy.org/
2. https://python.sdv.u-paris.fr/livre-dunod

201

http://numpy.scipy.org/
https://python.sdv.u-paris.fr/livre-dunod

Chapitre 20. Module NumPy 20.3. Objets de type array

Voici un exemple de conversion d’une liste à une dimension en objet array :
1 import numpy as np
2 a = [1, 2, 3]
3 np.array(a)

array([1, 2, 3])

1 b = np.array(a)
2 b

array([1, 2, 3])

1 type(b)

numpy.ndarray

Nous avons converti la liste [1, 2, 3] en array. La fonction np.array() accepte aussi comme argument un tuple,
ou un objet de type range.

Par ailleurs, lorsqu’on demande à Python d’afficher le contenu d’un objet array, le mot array et les symboles ([et
]) sont utilisés pour le distinguer d’une liste (délimitée par les caractères [et]) ou d’un tuple (délimité par les caractères
(et)).

Remarque
Un objet array ne contient que des données homogènes, c’est-à-dire d’un type identique. Il est possible de créer un

objet array à partir d’une liste contenant des entiers et des chaînes de caractères, mais, dans ce cas, toutes les valeurs
seront comprises par NumPy comme des chaînes de caractères :

1 a = np.array([1, 2, "tigre"])
2 a

array(['1', '2', 'tigre'], dtype='<U21')

Dans cet exemple, toutes les valeurs du array sont entre guillemets, indiquant qu’il s’agit de chaînes de caractères.
De même, il est possible de créer un objet array à partir d’une liste constituée d’entiers et de floats, mais toutes les

valeurs seront alors comprises par NumPy comme des floats :
1 b = np.array([1, 2, 3.5])
2 b

array([1. , 2. , 3.5])

Ici, la notation 1. indique qu’il s’agit du float 1.0000... et pas de l’entier 1.

Sur un modèle similaire à la fonction range(), la fonction arange() permet de construire un array à une dimension :
1 np.arange(10)

array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])

Comme avec range(), on peut spécifier en argument une borne de début, une borne de fin et un pas :
1 np.arange(10, 0, -1)

array([10, 9, 8, 7, 6, 5, 4, 3, 2, 1])

202 Cours de Python / Université Paris Cité / UFR Sciences du Vivant

20.3. Objets de type array Chapitre 20. Module NumPy

Un autre avantage de la fonction arange() est qu’elle génère des objets array qui contiennent des entiers ou des
floats (ce qui n’est pas possible avec range()) selon l’argument qu’on lui passe. D’abord un entier :

1 np.arange(10)

array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])

Puis un float :
1 np.arange(10.0)

array([0., 1., 2., 3., 4., 5., 6., 7., 8., 9.])

La différence fondamentale entre un objet array à une dimension et une liste (ou un tuple) est que celui-ci est
considéré comme un vecteur. Par conséquent, on peut effectuer des opérations vectorielles élément par élément sur
ce type d’objet, ce qui est bien commode lorsqu’on analyse de grandes quantités de données. Regardez ces exemples :

1 v = np.arange(4)
2 v

array([0, 1, 2, 3])

On ajoute 1 à chacun des éléments de l’array v :
1 v + 1

array([1, 2, 3, 4])

On multiplie par 2 chacun des éléments de l’array v :
1 v * 2

array([0, 2, 4, 6])

Avec les listes, ces opérations n’auraient été possibles qu’en utilisant des boucles. Nous vous encourageons donc à
utiliser dorénavant les objets array lorsque vous aurez besoin de faire des opérations élément par élément.

Il est aussi possible de multiplier deux arrays entre eux. Le résultat correspond alors à la multiplication élément par
élément des deux arrays initiaux :

1 v * v

array([0, 1, 4, 9])

20.3.1 Array et dimensions
Il est aussi possible de construire des objets arrays à deux dimensions, il suffit de passer en argument une liste de

listes à la fonction array() :
1 w = np.array([[1, 2], [3, 4], [5, 6]])
2 w

array([[1, 2],
[3, 4],
[5, 6]])

On peut aussi créer des tableaux à trois dimensions en passant comme argument à la fonction array() une liste de
listes de listes :

1 x = np.array([[[1, 2], [2, 3]], [[4, 5], [5, 6]]])
2 x

Cours de Python / Université Paris Cité / UFR Sciences du Vivant 203

Chapitre 20. Module NumPy 20.3. Objets de type array

array([[[1, 2],
[2, 3]],

[[4, 5],
[5, 6]]])

La fonction array() peut créer des tableaux à n’importe quel nombre de dimensions. Toutefois, cela devient vite
compliqué lorsqu’on dépasse trois dimensions. Retenez qu’un objet array à une dimension peut être assimilé à un vecteur,
un array à deux dimensions à une matrice. On peut généraliser ces objets mathématiques avec un nombre arbitraires de
dimensions, on parle alors de tenseur, qui sont représentés avec NumPy en array à n dimensions. Nous nous focaliserons
dans la suite sur des arrays à une dimension (1D) ou deux dimensions (2D).

Avant de continuer, il est important de définir comment sont organisés ces arrays 2D qui représentent des matrices.
Il s’agit de tableaux de nombres qui sont organisés en lignes et en colonnes comme le montre la figure 20.1. Les indices
indiqués dans cette figure seront définis un peu plus loin dans la rubrique Indices.

Figure 20.1 – Définition des lignes et colonnes dans un array 2D.

Voici quelques attributs intéressants pour décrire un objet array :
1 v = np.arange(4)
2 v

array([0, 1, 2, 3])

1 w = np.array([[1, 2], [3, 4], [5, 6]])
2 w

array([[1, 2],
[3, 4],
[5, 6]])

L’attribut .ndim renvoie le nombre de dimensions de l’array. Par exemple, 1 pour un vecteur et 2 pour une matrice :
1 v.ndim

1

1 w.ndim

204 Cours de Python / Université Paris Cité / UFR Sciences du Vivant

20.3. Objets de type array Chapitre 20. Module NumPy

2

L’attribut .shape renvoie les dimensions sous forme d’un tuple. Dans le cas d’une matrice (array à deux dimensions),
la première valeur du tuple correspond au nombre de lignes et la seconde au nombre de colonnes.

1 v.shape

(4,)

1 w.shape

(3, 2)

Enfin, l’attribut .size renvoie le nombre total d’éléments contenus dans l’array :
1 v.size

4

1 w.size

6

20.3.2 Redimensionnement d’array
La méthode .reshape() renvoie un nouvel array avec les dimensions spécifiées en argument :

1 a = np.arange(0, 6)
2 a

array([0, 1, 2, 3, 4, 5])

1 a.shape

(6,)

1 b = a.reshape((2, 3))
2 b

array([[0, 1, 2],
[3, 4, 5]])

1 b.shape

(2, 3)

1 a

array([0, 1, 2, 3, 4, 5])

Notez bien que l’array initial a n’a pas été modifié et que a.reshape((2, 3)) n’est pas la même chose que
a.reshape((3, 2)) :

Cours de Python / Université Paris Cité / UFR Sciences du Vivant 205

Chapitre 20. Module NumPy 20.3. Objets de type array

1 c = a.reshape((3, 2))
2 c

array([[0, 1],
[2, 3],
[4, 5]])

1 c.shape

(3, 2)

La méthode .reshape() attend que les nouvelles dimensions soient compatibles avec la dimension initiale de
l’objet array, c’est-à-dire que le nombre d’éléments contenus dans les différents arrays soit le même. Dans nos exemples
précédents, 6 = 2×3 = 3×2.

Si les nouvelles dimensions ne sont pas compatibles avec les dimensions initiales, la méthode .reshape() génère une
erreur.

1 a = np.arange(0, 6)
2 a

array([0, 1, 2, 3, 4, 5])

1 a.shape

(6,)

1 d = a.reshape((3, 4))

ValueError Traceback (most recent call last)
Cell In[36], line 1
----> 1 d = a.reshape((3, 4))

ValueError: cannot reshape array of size 6 into shape (3,4)

La méthode .resize(), par contre, ne déclenche pas d’erreur dans une telle situation et ajoute des 0 jusqu’à ce que
le nouvel array soit rempli, ou bien coupe la liste initiale :

1 a = np.arange(0, 6)
2 a.shape

(6,)

1 a.resize((3, 3), refcheck=False)
2 a.shape

(3, 3)

1 a

array([[0, 1, 2],
[3, 4, 5],
[0, 0, 0]])

206 Cours de Python / Université Paris Cité / UFR Sciences du Vivant

20.3. Objets de type array Chapitre 20. Module NumPy

1 b = np.arange(0, 10)
2 b.shape

(10,)

1 b.resize((2, 3), refcheck=False)
2 b.shape

(2, 3)

1 b

array([[0, 1, 2],
[3, 4, 5]])

Attention
• Cette modification de la forme de l’array par la méthode .resize() est faite « sur place » (in place), c’est-à-dire

que la méthode ne renvoie rien, mais l’array initial est bel et bien modifié (comme des méthodes sur les listes telles
que la méthode .reverse(), voir le chapitre 13 Plus sur les listes).

• Si l’option refcheck=False n’est pas présente, Python peut parfois renvoyer une erreur s’il existe des références
vers l’array qu’on souhaite modifier.

Enfin, il existe la fonction np.resize() qui, dans le cas d’un nouvel array plus grand que l’array initial, va répéter
l’array initial afin de remplir les cases manquantes :

1 a = np.arange(0, 6)
2 a.shape

(6,)

1 c = np.resize(a, (3, 5))
2 c.shape

(3, 5)

1 c

array([[0, 1, 2, 3, 4],
[5, 0, 1, 2, 3],
[4, 5, 0, 1, 2]])

1 a

array([0, 1, 2, 3, 4, 5])

Notez que la fonction np.resize() renvoie un nouvel array mais ne modifie pas l’array initial, contrairement à la
méthode .resize(), décrite ci-dessus.

Remarque
Depuis le début de ce chapitre, nous avons toujours montré l’affichage d’un array tel quel dans un notebook Jupyter :

Cours de Python / Université Paris Cité / UFR Sciences du Vivant 207

Chapitre 20. Module NumPy 20.3. Objets de type array

1 a = np.array(range(10))
2 a

array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])

1 a2 = np.ones((3, 3))
2 a2

array([[1., 1., 1.],
[1., 1., 1.],
[1., 1., 1.]])

Nous avons déjà indiqué que Python affiche systématiquement le mot array ainsi que les parenthèses, crochets et
virgules pour séparer les éléments. Toutefois, si vous utilisez la fonction print(), l’affichage sera différent. Le mot array,
les parenthèses et les virgules disparaissent :

1 print(a)

[0 1 2 3 4 5 6 7 8 9]

1 print(a2)

[[1. 1. 1.]
[1. 1. 1.]
[1. 1. 1.]]

Ceci peut amener des confusions, en particulier entre un array 1D :
[0 1 2 3 4 5 6 7 8 9]

et une liste contenant les mêmes éléments :
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

Dans ce cas, seule la présence ou l’absence de virgules permet de savoir s’il s’agit d’un array ou d’une liste.

20.3.3 Méthodes de calcul sur les arrays et l’argument axis
Chaque array NumPy possède une multitude de méthodes. Nombre d’entre elles permettent de faire des calculs de

base comme .mean() pour la moyenne, .sum() pour la somme, .std() pour l’écart-type, .max() pour extraire le
maximum, .min() pour extraire le minimum, etc. La liste exhaustive est disponible en ligne 3. Par défaut, chacune de
ces méthodes effectuera l’opération sur l’array entier, quelle que soit sa dimensionnalité. Par exemple :

1 import random
2 ma_liste = list(range(8))
3 random.shuffle(ma_liste)
4 ma_liste

[2, 7, 6, 4, 0, 3, 1, 5]

1 a = np.resize(ma_liste, (4, 2))
2 a

3. https://numpy.org/doc/stable/reference/arrays.ndarray.html#calculation

208 Cours de Python / Université Paris Cité / UFR Sciences du Vivant

https://numpy.org/doc/stable/reference/arrays.ndarray.html#calculation

20.3. Objets de type array Chapitre 20. Module NumPy

array([[2, 7],
[6, 4],
[0, 3],
[1, 5]])

1 a.max()

7

La méthode .max() a bien renvoyé la valeur maximale 7. Un argument très utile existant dans toutes ces méthodes
est axis. Pour un array 2D, axis=0 signifie qu’on fera l’opération le long de l’axe 0, à savoir les lignes. C’est-à-dire que
l’opération se fait en variant les lignes. On récupère ainsi une valeur par colonne :

1 a.max(axis=0)

array([6, 7])

Dans l’array 1D récupéré, le premier élément vaut 6 (maximum de la 1ère colonne) et le second vaut 7 (maximum
de la seconde colonne).

Avec axis=1, on fait une opération similaire, mais en faisant varier les colonnes. On récupère ainsi une valeur par
ligne :

1 a.max(axis=1)

array([7, 6, 3, 5])

L’array 1D récupéré a quatre éléments correspondant au maximum de chaque ligne.
On comprend la puissance de l’argument axis. À nouveau, il est possible, en une ligne, de faire des calculs qui

pourraient être fastidieux avec les listes traditionnelles.

20.3.4 Indices
Pour récupérer un ou plusieurs élément(s) d’un objet array, vous pouvez utiliser les indices, de la même manière

qu’avec les listes :
1 a = np.arange(10)
2 a

array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])

1 a[1]

1

L’utilisation des tranches est aussi possible :
1 a[5:]

array([5, 6, 7, 8, 9])

Ainsi que les pas :
1 a[::2]

array([0, 2, 4, 6, 8])

Cours de Python / Université Paris Cité / UFR Sciences du Vivant 209

Chapitre 20. Module NumPy 20.3. Objets de type array

Dans le cas d’un objet array à deux dimensions, vous pouvez récupérer une ligne complète (d’indice i), une colonne
complète (d’indice j) ou bien un seul élément. La figure 20.1 montre comment sont organisés les indices des lignes et
des colonnes :

1 a = np.array([[1, 2], [3, 4]])
2 a

array([[1, 2],
[3, 4]])

1 a[:,0]

array([1, 3])

1 a[0,:]

array([1, 2])

La syntaxe a[i,:] renvoie la ligne d’indice i, et a[:,j] renvoie la colonne d’indice j. Les tranches sont aussi
utilisables sur un array à deux dimensions.

1 a[1, 1]

4

La syntaxe a[i, j] renvoie l’élément à la ligne d’indice i et à la colonne d’indice j. Notez que NumPy suit la
convention mathématiques des matrices 4, à savoir, qu’on définit toujours un élément par sa ligne puis par sa
colonne. En mathématiques, l’élément ai j d’une matrice A se trouve à la ime ligne et à la jme colonne :

Remarque
Pour un array 2D, si un seul indice est donné, par exemple a[i], on récupère la ligne d’indice i sous forme d’array

1D :
1 a = np.array([[1, 2], [3, 4]])
2 a

array([[1, 2],
[3, 4]])

1 a[0]

array([1, 2])

1 a[1]

array([3, 4])

Pour cette raison, la syntaxe a[i][j] est également valide pour récupérer un élément :
1 a[1, 1]

4

4. https://fr.wikipedia.org/wiki/Matrice_(math%C3%A9matiques)#D%C3%A9finitions

210 Cours de Python / Université Paris Cité / UFR Sciences du Vivant

https://fr.wikipedia.org/wiki/Matrice_(math%C3%A9matiques)#D%C3%A9finitions

20.3. Objets de type array Chapitre 20. Module NumPy

1 a[1][1]

4

Nous vous recommandons la syntaxe a[i, j], qui est plus proche de la définition mathématique d’un élément de
matrice 5.

20.3.5 Copie d’arrays
Comme pour les listes, nous attirons votre attention sur la copie d’arrays :

1 a = np.arange(5)
2 a

array([0, 1, 2, 3, 4])

1 b = a
2 b[2] = -300
3 b

array([0, 1, -300, 3, 4])

1 a

array([0, 1, -300, 3, 4])

Attention
Par défaut la copie d’arrays se fait par référence, comme pour tous les conteneurs en Python (listes, tuples, diction-

naires, etc.).

Afin d’éviter le problème, vous pouvez soit utiliser la fonction np.array(), qui crée une nouvelle copie distincte de
l’array initial, soit la fonction copy.deepcopy(), comme pour les listes (voir chapitre 12 Plus sur les listes) :

1 a = np.full((2, 2), 0)
2 a

array([[0, 0],
[0, 0]])

1 b = np.array(a)
2 b[1, 1] = -300
3 import copy
4 c = copy.deepcopy(a)
5 c[1, 1] = -500
6 a

array([[0, 0],
[0, 0]])

1 b

5. https://fr.wikipedia.org/wiki/Matrice_(math%C3%A9matiques)#D%C3%A9finitions

Cours de Python / Université Paris Cité / UFR Sciences du Vivant 211

https://fr.wikipedia.org/wiki/Matrice_(math%C3%A9matiques)#D%C3%A9finitions

Chapitre 20. Module NumPy 20.4. Construction automatique de matrices

array([[0, 0],
[0, -300]])

1 c

array([[0, 0],
[0, -500]])

La fonction np.full() est expliquée dans la rubrique suivante.

Remarque
L’instruction b = np.array(a) réalise bien une copie distincte de l’array a, quelle que soit sa dimensionnalité. Ceci

n’était pas le cas avec la fonction list() pour les copies de listes à partir de la dimension deux (liste de listes) :
1 liste_1 = [[0, 0], [1, 1]]
2 liste_2 = list(liste_1)
3 import copy
4 liste_3 = copy.deepcopy(liste_1)
5 liste_1[1][1] = -365
6 liste_2

[[0, 0], [1, -365]]

1 liste_3

[[0, 0], [1, 1]]

20.4 Construction automatique de matrices
Il est parfois pénible de construire une matrice (array à deux dimensions) à l’aide d’une liste de listes. Le module

NumPy possède quelques fonctions pratiques pour initialiser des matrices. Par exemple, Les fonctions zeros() et ones
() construisent des objets array contenant des 0 ou des 1. Il suffit de leur passer en argument un tuple indiquant les
dimensions voulues :

1 np.zeros((2, 3))

array([[0., 0., 0.],
[0., 0., 0.]])

1 np.ones((3, 3))

array([[1., 1., 1.],
[1., 1., 1.],
[1., 1., 1.]])

Par défaut, les fonctions zeros() et ones() génèrent des floats, mais vous pouvez demander des entiers en passant
le type (par exemple int, float, etc.) en second argument :

1 np.zeros((2,3), int)

array([[0, 0, 0],
[0, 0, 0]])

212 Cours de Python / Université Paris Cité / UFR Sciences du Vivant

20.5. Chargement d’un array depuis un fichier Chapitre 20. Module NumPy

Enfin, si vous voulez construire une matrice avec autre chose que des 0 ou des 1, vous avez à votre disposition la
fonction full() :

1 np.full((2, 3), 7, int)

array([[7, 7, 7],
[7, 7, 7]])

1 np.full((2, 3), 7, float)

array([[7., 7., 7.],
[7., 7., 7.]])

Nous construisons ainsi une matrice constituée de 2 lignes et 3 colonnes. Celle-ci ne contient que le chiffre 7 sous
formes d’entiers (int) dans le premier cas et de floats dans le second.

20.5 Chargement d’un array depuis un fichier
Le module NumPy contient aussi des fonctions pour lire des données à partir de fichiers et créer des arrays automa-

tiquement. C’est très pratique, car la plupart du temps les données que l’on analyse proviennent de fichiers. La fonction
la plus simple à prendre en main est np.loadtxt(). Celle-ci lit un fichier organisé en lignes et colonnes. Par exemple,
imaginons que nous ayons un fichier donnees.dat contenant :
1 7 310

15 -4 35
78 95 79

La fonction prend en argument le nom du fichier et renvoie un array 2D directement :
1 np.loadtxt("donnees.dat")

array([[1., 7., 310.],
[15., -4., 35.],
[78., 95., 79.]])

Pratique, non ? Attention toutefois aux points suivants :
• Chaque ligne doit avoir le même nombre de colonnes, la fonction ne gère pas les données manquantes.
• Chaque donnée est convertie en float, donc si une chaîne de caractères est rencontrée la fonction renvoie une erreur.
• Par défaut, les données doivent être séparées par n’importe quelle combinaison d’espace(s) et/ou de tabulations.
Nous vous conseillons de consulter la documentation complète 6 de cette fonction. En effet, np.loadtxt() contient

de nombreux arguments permettant de récupérer telles ou telles lignes ou colonnes, d’ignorer des lignes de commentaire,
de changer le séparateur par défaut (par exemple la virgule , pour les fichiers .csv)… qui peuvent se révéler utiles.

L’opération inverse qui consiste à sauver un array dans un fichier se fait avec la fonction np.savetxt() :
1 a = np.reshape(range(1, 10), (3, 3))
2 a

array([[1, 2, 3],
[4, 5, 6],
[7, 8, 9]])

1 np.savetxt("out.dat", a)

Ceci générera le fichier out.dat contenant les lignes suivantes :
1.000000000000000000e+00 2.000000000000000000e+00 3.000000000000000000e+00
4.000000000000000000e+00 5.000000000000000000e+00 6.000000000000000000e+00
7.000000000000000000e+00 8.000000000000000000e+00 9.000000000000000000e+00

6. https://numpy.org/doc/stable/reference/generated/numpy.loadtxt.html

Cours de Python / Université Paris Cité / UFR Sciences du Vivant 213

https://numpy.org/doc/stable/reference/generated/numpy.loadtxt.html

Chapitre 20. Module NumPy 20.6. Concaténation d’arrays

La fonction np.savetxt() écrit par défaut les données comme des floats en notation scientifique. Il existe de
nombreuses options possibles 7 permettant de changer le format, les séparateurs, etc.

Pour aller plus loin
Il existe d’autres fonctions plus avancées telles que np.genfromttxt() 8, gérant les données manquantes, ou encore

np.load() 9 et np.fromfile() 10, permettant de lire des données au format binaire. De même, il existe des fonctions ou mé-
thodes permettant d’écrire au format binaire : np.save() 11 ou .tofile() 12. Le format binaire possède en général l’extension
.npy ou .npz lorsque les données sont compressées. L’avantage d’écrire au format binaire est que cela prend moins de
place pour de gros tableaux de données.

20.6 Concaténation d’arrays
Il peut être très utile de concaténer un ou plusieurs arrays. Il existe pour cela plusieurs fonctions dans NumPy, nous

développerons celle qui nous parait la plus intuitive et directe : np.concatenate().
Pour les arrays 1D, np.concatenate() prend en argument un tuple contenant les arrays à concaténer :

1 a1 = np.array((0, 1))
2 a2 = np.array((3, 4))
3 a1

array([0, 1])

1 a2

array([3, 4])

1 np.concatenate((a1, a2))

array([0, 1, 3, 4])

L’ordre de la concaténation est important :
1 np.concatenate((a2, a1))

array([3, 4, 0, 1])

1 np.concatenate((a1, a2, a1, a2))

array([0, 1, 3, 4, 0, 1, 3, 4])

Pour les arrays 2D, ça se complique un peu, car on peut concaténer des lignes ou des colonnes ! Ainsi, np.
concatenate() prend un argument optionnel, à savoir axis. Comme nous l’avions expliqué plus haut, celui-ci va
indiquer à NumPy si on veut concaténer le long de l’axe 0 (les lignes) ou le long de l’axe 1 (les colonnes). Voyons un
exemple :

1 a1 = np.reshape(np.array(range(6)), (3, 2))
2 a2 = a1 * 5
3 a1

7. https://numpy.org/doc/stable/reference/generated/numpy.savetxt.html
8. https://numpy.org/doc/stable/reference/generated/numpy.genfromtxt.html
9. https://numpy.org/doc/stable/reference/generated/numpy.load.html

10. https://numpy.org/doc/stable/reference/generated/numpy.fromfile.html
11. https://numpy.org/doc/stable/reference/generated/numpy.save.html
12. https://numpy.org/doc/stable/reference/generated/numpy.ndarray.tofile.html#numpy.ndarray.tofile

214 Cours de Python / Université Paris Cité / UFR Sciences du Vivant

https://numpy.org/doc/stable/reference/generated/numpy.savetxt.html
https://numpy.org/doc/stable/reference/generated/numpy.genfromtxt.html
https://numpy.org/doc/stable/reference/generated/numpy.load.html
https://numpy.org/doc/stable/reference/generated/numpy.fromfile.html
https://numpy.org/doc/stable/reference/generated/numpy.save.html
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.tofile.html#numpy.ndarray.tofile

20.7. Un peu d’algèbre linéaire Chapitre 20. Module NumPy

array([[0, 1],
[2, 3],
[4, 5]])

1 a2

array([[0, 5],
[10, 15],
[20, 25]])

On concatène d’abord par ligne (axis=0), c’est-à-dire qu’on ajoute les lignes du second array a2 à celles de l’array
a1 :

1 np.concatenate((a1, a2), axis=0)

array([[0, 1],
[2, 3],
[4, 5],
[0, 5],
[10, 15],
[20, 25]])

Ensuite, on concatène par colonne (axis=1). Attention, il vaut bien veiller à ce que la concaténation soit possible en
terme de dimensionalité. Par exemple, lors de la concaténation par colonne, il faut que les deux arrays a1 et a2 aient le
même nombre de lignes :

1 np.concatenate((a1, a2), axis=1)

array([[0, 1, 0, 5],
[2, 3, 10, 15],
[4, 5, 20, 25]])

Ces opérations de concaténation sont très importantes. On les utilise par exemple si on a des données dans plusieurs
fichiers différents et qu’on veut les agréger dans un array unique. On verra qu’on peut faire le même genre de chose avec
les fameux Dataframes du module pandas. Lisez bien également les recommandations dans la dernière rubrique 17.1.10
Quelques conseils sur quand utiliser la concaténation d’arrays avec NumPy.

20.7 Un peu d’algèbre linéaire
Après avoir manipulé les objets array comme des vecteurs et des matrices, voici quelques fonctions pour faire de

l’algèbre linéaire.
La fonction transpose() renvoie la transposée 13 d’un array. Par exemple, pour une matrice :

1 a = np.resize(np.arange(1, 10), (3, 3))
2 a

array([[1, 2, 3],
[4, 5, 6],
[7, 8, 9]])

1 np.transpose(a)

array([[1, 4, 7],
[2, 5, 8],
[3, 6, 9]])

13. https://fr.wikipedia.org/wiki/Matrice_transpos%C3%A9e

Cours de Python / Université Paris Cité / UFR Sciences du Vivant 215

https://fr.wikipedia.org/wiki/Matrice_transpos%C3%A9e

Chapitre 20. Module NumPy 20.7. Un peu d’algèbre linéaire

Tout objet array possède un attribut .T qui contient la transposée, il est ainsi possible d’utiliser cette notation objet
plus compacte :

1 a.T

array([[1, 4, 7],
[2, 5, 8],
[3, 6, 9]])

La fonction dot() permet de multiplier deux matrices 14 :
1 a = np.resize(np.arange(4), (2, 2))
2 a

array([[0, 1],
[2, 3]])

1 np.dot(a, a)

array([[2, 3],
[6, 11]])

1 a * a

array([[0, 1],
[4, 9]])

Notez bien que dot(a, a) renvoie le produit matriciel entre deux matrices, alors que l’opération a * a renvoie le
produit élément par élément.

Remarque
Dans le module NumPy, il existe également des objets de type matrix pour lesquels les multiplications de matrices

sont différents, mais nous ne les aborderons pas ici.

Pour toutes les opérations suivantes, nous utiliserons des fonctions du sous-module linalg de NumPy.
La fonction diag() permet de générer une matrice diagonale :

1 a = np.diag((1, 2, 3))
2 a

array([[1, 0, 0],
[0, 2, 0],
[0, 0, 3]])

La fonction inv() renvoie l’inverse d’une matrice carrée 15 :
1 np.linalg.inv(a)

array([[1. , 0. , 0.],
[0. , 0.5 , 0.],
[0. , 0. , 0.33333333]])

La fonction det() renvoie le déterminant 16 d’une matrice carrée :

14. https://fr.wikipedia.org/wiki/Produit_matriciel#Produit_matriciel_ordinaire
15. https://fr.wikipedia.org/wiki/Matrice_inversible
16. https://fr.wikipedia.org/wiki/Calcul_du_d%C3%A9terminant_d%27une_matrice

216 Cours de Python / Université Paris Cité / UFR Sciences du Vivant

https://fr.wikipedia.org/wiki/Produit_matriciel#Produit_matriciel_ordinaire
https://fr.wikipedia.org/wiki/Matrice_inversible
https://fr.wikipedia.org/wiki/Calcul_du_d%C3%A9terminant_d%27une_matrice

20.8. Parcours de matrice et affectation de lignes et colonnes Chapitre 20. Module NumPy

1 np.linalg.det(a)

6.0

Enfin, la fonction eig() renvoie les vecteurs et valeurs propres :
1 np.linalg.eig(a)

EigResult(eigenvalues=array([1., 2., 3.]), eigenvectors=array([[1., 0., 0.],
[0., 1., 0.],
[0., 0., 1.]]))

La fonction eig() renvoie un objet EigResult, qui contient les valeurs propres (eigenvalues) et les vecteurs
propres (eigenvectors), qu’on peut ensuite récupérer par affectation multiple :

1 eigvals, eigvecs = np.linalg.eig(a)
2 eigvals

array([1., 2., 3.])

eigvals est un array 1D contenant les trois valeurs propres.
1 eigvecs

array([[1., 0., 0.],
[0., 1., 0.],
[0., 0., 1.]])

eigvecs est un array 2D contenant les trois vecteurs propres (un par ligne).

20.8 Parcours de matrice et affectation de lignes et colonnes
Lorsqu’on a une matrice, on est souvent amené à la parcourir par ligne ou par colonne. NumPy permet d’itérer

directement sur les lignes d’une array :
1 a = np.reshape(np.arange(1, 10), (3, 3))
2 a

array([[1, 2, 3],
[4, 5, 6],
[7, 8, 9]])

1 for row in a:
2 print(row, type(row))

[1 2 3] <class 'numpy.ndarray'>
[4 5 6] <class 'numpy.ndarray'>
[7 8 9] <class 'numpy.ndarray'>

À chaque itération, la variable row est un array 1D correspondant à chaque ligne de la matrice a. Cela est du au fait
que l’utilisation d’un indiçage unique a[i] pour un array 2D correspond à sa ligne d’indice i (voir la rubrique Indices
ci-dessus).

Pour itérer sur les colonnes, on peut utiliser l’astuce d’itérer sur la transposée de l’array a, c’est-à-dire a.T :
1 for col in a.T:
2 print(col, type(col))

Cours de Python / Université Paris Cité / UFR Sciences du Vivant 217

Chapitre 20. Module NumPy 20.9. Masques booléens

[1 4 7] <class 'numpy.ndarray'>
[2 5 8] <class 'numpy.ndarray'>
[3 6 9] <class 'numpy.ndarray'>

À chaque itération, la variable col est un array 1D correspondant à chaque colonne de a.
On se souvient de l’affectation multiple x, y = 1, 2 qui permettait d’affecter des valeurs à plusieurs variables à la

fois. Il est possible d’utiliser cette fonctionnalité aussi avec les arrays NumPy :
1 a

array([[1, 2, 3],
[4, 5, 6],
[7, 8, 9]])

1 a1, a2, a3 = a
2 a1

array([1, 2, 3])

1 a2

array([4, 5, 6])

1 a3

array([7, 8, 9])

Par défaut, l’affectation multiple se fait sur les lignes de l’array 2D. Cette fonctionnalité s’explique à nouveau par le
fait que pour NumPy, a[i] correspond à la ligne d’indice i d’un array 2D.

Pour utiliser l’affectation multiple sur les colonnes, il suffit d’utiliser la transposée a.T :
1 c1, c2, c3 = a.T
2 c1

array([1, 4, 7])

1 c2

array([2, 5, 8])

1 c3

array([3, 6, 9])

20.9 Masques booléens
Une fonctionnalité puissante des arrays NumPy est l’utilisation des masques booléens. Avant de les définir, il est

important d’introduire le concept d’arrays de booléens. Jusqu’à maintenant nous avions définis uniquement des arrays
avec des types numériques int ou float. Il est tout à fait possible de définir des arrays de booléens. La fonction np.full()
vue précédemment nous permet d’en construire facilement :

1 np.full((2, 2), True)

218 Cours de Python / Université Paris Cité / UFR Sciences du Vivant

20.9. Masques booléens Chapitre 20. Module NumPy

array([[True, True],
[True, True]])

1 np.full((2, 2), False)

array([[False, False],
[False, False]])

Au premier abord, nous n’en voyons pas forcément l’utilité… Mais qu’en est-il lorsqu’on utilise les opérateurs de
comparaison avec un array ? Et bien cela renvoie un array de booléens !

1 a = np.reshape(np.arange(1, 10), (3, 3))
2 a

array([[1, 2, 3],
[4, 5, 6],
[7, 8, 9]])

1 a > 5

array([[False, False, False],
[False, False, True],
[True, True, True]])

1 a == 2

array([[False, True, False],
[False, False, False],
[False, False, False]])

Tous les éléments de l’array satisfaisant la condition seront à True, les autres à False. Il est même possible de
combiner plusieurs conditions avec les opérateurs logiques & et | (respectivement ET et OU) :

1 a = np.reshape(np.arange(1, 10), (3, 3))
2 a

array([[1, 2, 3],
[4, 5, 6],
[7, 8, 9]])

1 (a > 3) & (a % 2 == 0)

array([[False, False, False],
[True, False, True],
[False, True, False]])

1 (a > 3) | (a % 2 == 0)

array([[False, True, False],
[True, True, True],
[True, True, True]])

• Les opérateurs logiques & et | s’appliquent sur les arrays et sont différents des opérateurs logiques and et or, qui
eux s’appliquent sur les booléens (True ou False).

• Il est conseillé de mettre entre parenthèses chaque condition afin d’éviter les ambiguïtés.

Cours de Python / Université Paris Cité / UFR Sciences du Vivant 219

Chapitre 20. Module NumPy 20.9. Masques booléens

Maintenant que les arrays de booléens ont été introduits, nous pouvons définir les masques booléens :

Définition
Les masques booléens sont des arrays de booléens qui sont utilisés en tant qu’« indice » d’un array initial. Cela permet

de récupérer ou de modifier une partie de l’array initial.

Concrètement, il suffira d’utiliser un array et un opérateur de comparaison entre les crochets qui étaient dédiés à
l’indiçage :

1 a = np.reshape(np.arange(1, 10), (3, 3))
2 a

array([[1, 2, 3],
[4, 5, 6],
[7, 8, 9]])

Pour isoler tous les éléments de l’array a qui sont supérieurs à 5 :
1 a[a > 5]

array([6, 7, 8, 9])

Pour isoler tous les éléments de l’array a qui sont égaux à 2 :
1 a[a == 2]

array([2])

Pour isoler tous les éléments de l’array a qui sont non nuls :
1 a[a != 0]

array([1, 2, 3, 4, 5, 6, 7, 8, 9])

À chaque fois, on ne récupère que les éléments de l’array a qui satisfont la sélection. Toutefois, il est important de
remarquer que l’array renvoyé perd la dimensionnalité de l’array a initial, il s’agit systématiquement d’un array 1D.

La grande puissance de ce mécanisme est que l’on peut utiliser les masques booléens pour modifier les éléments que
l’on sélectionne :

1 a = np.reshape(np.arange(1, 10), (3, 3))
2 a

array([[1, 2, 3],
[4, 5, 6],
[7, 8, 9]])

On sélectionne les éléments de l’array a supérieurs à 5 :
1 a[a > 5]

array([6, 7, 8, 9])

On affecte la valeur -1 aux éléments de l’array a supérieurs à 5 :
1 a[a > 5] = -1
2 a

220 Cours de Python / Université Paris Cité / UFR Sciences du Vivant

20.10. Quelques conseils Chapitre 20. Module NumPy

array([[1, 2, 3],
[4, 5, -1],
[-1, -1, -1]])

On peut bien sûr combiner plusieurs conditions avec les opérateurs logiques :
1 a = np.reshape(np.arange(1, 10), (3, 3))
2 a

array([[1, 2, 3],
[4, 5, 6],
[7, 8, 9]])

1 a[(a > 3) | (a % 2 == 0)] = 0
2 a

array([[1, 0, 3],
[0, 0, 0],
[0, 0, 0]])

Ce mécanisme de sélection avec des masques booléens se révèle très puissant pour manipuler de grandes quantités
de données. On verra qu’il peut être également utilisé avec les Dataframes du module pandas.

Remarque
Les masques booléens ne doivent pas être confondus avec les masked arrays 17, qui sont des arrays dans lesquels on

peut trouver des valeurs manquantes ou invalides.

Enfin, une application possible des masques est de « binariser » une matrice de nombre :
1 import random
2 import numpy as np
3 a = np.resize([random.random() for i in range(16)], (4, 4))
4 a

array([[0.58704728, 0.50212977, 0.70652863, 0.24158108],
[0.93102132, 0.41864373, 0.45807961, 0.98288744],
[0.48198211, 0.16877376, 0.14431518, 0.74784176],
[0.92913469, 0.08383269, 0.10670144, 0.14554345]])

1 seuil = 0.3
2 a[a < seuil] = 0
3 a[a > seuil] = 1
4 a

array([[1., 1., 1., 0.],
[1., 1., 1., 1.],
[1., 0., 0., 1.],
[1., 0., 0., 0.]])

On obtient ce résultat avec deux lignes de code en utilisant des arrays, alors qu’il aurait fallu faire des boucles avec
des listes classiques.

20.10 Quelques conseils
Nous vous avons présenté une petite partie du module NumPy, mais vous avez pu en constater son extraordinaire

puissance. On pourrait au premier abord être tenté d’abandonner les listes, toutefois elles gardent toute leur importance.

17. https://numpy.org/doc/1.18/reference/maskedarray.html

Cours de Python / Université Paris Cité / UFR Sciences du Vivant 221

https://numpy.org/doc/1.18/reference/maskedarray.html

Chapitre 20. Module NumPy 20.11. Exercices

Alors, quand utiliser les listes ou quand utiliser les arrays NumPy ? Voici une liste non exhaustive d’éléments qui peuvent
guider votre choix :

Utilisez NumPy pour :
• les opérations vectorielles (éléments par éléments) ;
• lorsque vous souhaitez manipuler des objets mathématiques (vecteurs, matrices, etc.) et les outils associés (algèbre

linéaire) ;
• tout ce qui est numérique de manière générale.
Utilisez les listes :
• Lorsque vous avez besoin d’un conteneur pour accumuler des valeurs (fussent-elles des sous-listes), surtout lors-

qu’elles ne sont pas homogènes (c’est-à-dire du même type).
• Lorsque vous souhaitez accumuler des valeurs au fur et à mesure des itérations d’une boucle. Pour cela, la méthode
.append() des listes est bien plus efficace que de faire grandir un array ligne par ligne (c’est-à-dire en ajoutant
une ligne avec np.concatenate() à chaque itération).

• Lorsqu’on ne peut pas utiliser les fonctions de lecture de fichier de NumPy pour quelque raison que ce soit, il est
tout à fait classique de faire grandir une liste au fur et à mesure de la lecture du fichier puis de la convertir à la fin
en array. De manière générale, utilisez np.concatenate() seulement pour concaténer des gros arrays, pas pour
ajouter une seule ligne.

Enfin, comme nous vous le conseillons depuis le début, soignez votre documentation (docstrings) et vos commentaires
lorsque vous utilisez des arrays. NumPy permet de réaliser des opérations vectorielles de manière très compacte. Il est
donc essentiel de se mettre à la place du lecteur de votre script (y compris vous dans quelques semaines ou mois) et de
documenter ce que contient chaque array ainsi que sa dimensionnalité (1D, 2D, etc.).

Le module NumPy est la brique de base du calcul numérique en Python. Associé aux modules SciPy 18 et matplotlib,
ainsi qu’aux notebooks Jupyter (voir le chapitre précédent), il permet de faire du calcul scientifique de manière très
efficace. On verra dans le chapitre 22 Module Pandas que la puissance de NumPy est également utilisée par le module
pandas pour faire de l’analyse de données.

Pour aller plus loin
• Le livre de Nicolas Rougier From Python to Numpy 19 est une excellente ressource pour explorer plus en détails les

possibilités de NumPy.
• Les tutoriels 20 proposés par les développeurs de NumPy sont également un bon moyen de poursuivre votre explo-

ration de cette bibliothèque incontournable en sciences.

20.11 Exercices

Conseil
Pour ces exercices, utilisez des notebooks Jupyter.

20.11.1 Nombres pairs et impairs
Soit impairs un array NumPy qui contient les nombres :

1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21

En une seule instruction, construisez l’array pairs dans lequel tous les éléments de impairs sont incrémentés de 1.
Comparez ce que vous venez de faire avec l’exercice « Nombres pairs et impairs » du chapitre 5 Boucles et comparaisons.

18. https://scipy.org/
19. https://www.labri.fr/perso/nrougier/from-python-to-numpy/
20. https://numpy.org/numpy-tutorials/index.html

222 Cours de Python / Université Paris Cité / UFR Sciences du Vivant

https://scipy.org/
https://www.labri.fr/perso/nrougier/from-python-to-numpy/
https://numpy.org/numpy-tutorials/index.html

20.11. Exercices Chapitre 20. Module NumPy

20.11.2 Distance entre deux atomes carbones alpha consécutifs de la barstar
La barstar est un inhibiteur de ribonucléase. C’est une protéine relativement simple qui contient 89 acides aminés. Sa

structure tridimensionnelle, obtenue par résonance magnétique nucléaire (RMN), se trouve dans la Protein Data Bank
(PDB) sous le code 1BTA.

L’objectif de cet exercice est de calculer la distance entre carbones alpha consécutifs le long de la chaîne peptidique
avec module NumPy et de découvrir une anomalie.

Le morceau de code suivant vous sera utile pour extraire les coordonnées atomiques des carbones alpha de la barstar
depuis un fichier PDB :

1 with open("1bta.pdb", "r") as f_pdb, open("1bta_CA.txt", "w") as f_CA:
2 for ligne in f_pdb:
3 if ligne.startswith("ATOM") and ligne[12:16].strip() == "CA":
4 x = ligne[30:38]
5 y = ligne[38:46]
6 z = ligne[46:54]
7 f_CA.write(f"{x} {y} {z} ")

• Ligne 1. On ouvre deux fichiers simultanément. Ici, le fichier 1bta.pdb est ouvert en lecture (r) et le fichier
1bta_CA.txt est ouvert en écriture (w).

• Pour chaque ligne du fichier PDB (ligne 2), si la ligne débute par ATOM et le nom de l’atome est CA (ligne 3),
alors on extrait les coordonnées atomiques (lignes 4 à 6) et on les écrit dans le fichier 1bta_CA.txt (ligne 7).
Les coordonnées sont toutes enregistrées sur une seule ligne, les unes après les autres.

Voici les étapes à suivre :
1. Extraction des coordonnées atomiques

• Téléchargez le fichier 1bta.pdb qui correspond à la structure de la barstar 21 sur le site de la PDB (lien direct
vers le fichier 22).

• Utilisez le code précédent pour extraire les coordonnées atomiques des carbones alpha de la barstar.
2. Lecture des coordonnées

• Ouvrez le fichier 1bta_CA.txt avec Python et créez une liste contenant toutes les coordonnées sous forme
de floats avec les fonctions split() et float().

• Affichez à l’écran le nombre total de coordonnées.
3. Construction de la matrice de coordonnées

• En ouvrant dans un éditeur de texte le fichier 1bta.pdb, trouvez le nombre d’acides aminés qui constituent
la barstar.

• Avec la fonction array() du module NumPy, convertissez la liste de coordonnées en array. Avec la fonction
reshape() de NumPy, construisez ensuite une matrice à deux dimensions contenant les coordonnées des
carbones alpha de la barstar. Affichez les dimensions de cette matrice.

4. Calcul de la distance
• Créez maintenant une matrice qui contient les coordonnées des n− 1 premiers carbones alpha et une autre

qui contient les coordonnées des n− 1 derniers carbones alpha. Affichez les dimensions des matrices pour
vérification.

• En utilisant les opérateurs mathématiques habituels (-, +, **2) et les fonctions sqrt() et sum() du module
NumPy, calculez la distance entre les atomes n et n+1.

• Pour chaque atome, affichez le numéro de l’atome et la distance entre carbones alpha consécutifs avec un
chiffre après la virgule. Repérez la valeur surprenante.

20.11.3 Jour le plus chaud
Le fichier temperature.dat 23 contient un relevé de quatre températures pour chaque jour de la semaine :

Lun 12 11 14 12
Mar 12 10 14 11
Mer 11 11 14 13
[...]

21. http://www.rcsb.org/pdb/explore.do?structureId=1BTA
22. https://files.rcsb.org/download/1BTA.pdb
23. https://python.sdv.u-paris.fr/data-files/temperatures.dat

Cours de Python / Université Paris Cité / UFR Sciences du Vivant 223

http://www.rcsb.org/pdb/explore.do?structureId=1BTA
https://files.rcsb.org/download/1BTA.pdb
https://python.sdv.u-paris.fr/data-files/temperatures.dat

Chapitre 20. Module NumPy 20.11. Exercices

À l’aide du module NumPy, on souhaite déterminer quel est le jour de la semaine le plus chaud. Pour cela nous vous
proposons les étapes suivantes :

1. Récupérez le nom des jours de la semaine depuis le fichier et stockez-les dans une liste days.
2. Récupérez les valeurs de températures depuis le fichier et stockez-les dans un array 2D. La fonction np.loadtxt

() 24 et son argument usecols vous seront utiles.
3. Parcourez chaque ligne de la matrice, calculez la température moyenne de chaque jour puis stockez-la dans une

liste mean_temps.
4. À l’aide des deux listes days et mean_temps, déterminez et affichez le jour le plus chaud.

20.11.4 Calcul du centre de masse d’une membrane
L’image de gauche de la figure 20.2 montre le cliché d’une membrane de POPC (cyan) entourée d’eau (bleu)

(coordonnées trouvées ici 25). Les atomes de phosphore des groupes phosphates sont représentés en boule de van der
Waals brune. Dans cet exercice, on cherche à calculer le centre de masse de la membrane, ainsi que le centre de masse
(COM) de chaque monocouche de phosphores. Ces COM sont représentés sous forme de croix dans le graphique de droite
de la figure 20.2.

Figure 20.2 – Cliché d’une membrane de POPC.

Les coordonnées cartésiennes (x,y,z) de chaque atome de phosphore (en Å) sont stockées dans le fichier coors_P.dat 26,
à raison d’un atome par ligne.

Nous vous proposons les étapes suivantes pour résoudre cet exercice à l’aide du module NumPy :
1. Récupérez les coordonnées des atomes de phosphore depuis le fichier coors_P.dat et stockez-les dans un array

2D (matrice) coors_P. La dimensionnalité de cette matrice est n×3, avec n le nombre de phosphores.
2. Calculez le z moyen de tous les phosphores (nombre réel) et stockez-le dans la variable mean_z. La méthode

.mean() vous sera utile.
3. Avec des masques de booléens, récupérez les coordonnées des phosphores de la monocouche du haut dans un array

2D upper. Faites de même avec la monocouche du bas dans un array 2D lower.
4. Calculez le centre de masse COM de la membrane, ainsi que de la monocouche du haut COM_upper et du bas

COM_lower. Pensez aux méthodes de calcul sur les arrays et l’argument axis.
5. Une fois tout cela effectué, créez un graphique 3D pour représenter les différents centres de masse. Utilisez la

fonction scatter() du module matplotlib pour l’affichage en 3D 27. Voici un squelette de programme pour vous

24. https://numpy.org/doc/stable/reference/generated/numpy.loadtxt.html
25. https://zenodo.org/record/153944
26. https://python.sdv.u-paris.fr/data-files/coors_P.dat
27. https://matplotlib.org/3.2.1/gallery/mplot3d/scatter3d.html

224 Cours de Python / Université Paris Cité / UFR Sciences du Vivant

https://numpy.org/doc/stable/reference/generated/numpy.loadtxt.html
https://zenodo.org/record/153944
https://python.sdv.u-paris.fr/data-files/coors_P.dat
https://matplotlib.org/3.2.1/gallery/mplot3d/scatter3d.html

20.11. Exercices Chapitre 20. Module NumPy

aider :
1 # Initialisation du graphique.
2 from mpl_toolkits.mplot3d import Axes3D
3 import matplotlib.pyplot as plt
4 fig = plt.figure()
5 ax = fig.add_subplot(111, projection="3d")
6 [...]
7 # X, Y et Z sont des arrays 1D de n éléments.
8 # Par exemple X représente tous les x des P de la monocouche upper.
9 [...]

10 # Affichage de la couche upper.
11 ax.scatter(X, Y, Z, c="salmon", marker="o")
12 # Affichage du COM de la couche upper.
13 ax.scatter(x, y, z, c="red", marker="x")
14 [...]
15 # Affichage des étiquettes des axes et du titre.
16 ax.set_xlabel("x (Å)")
17 ax.set_ylabel("y (Å)")
18 ax.set_zlabel("z (Å)")
19 ax.set_title("Graphe 3D des phosphores")
20 plt.show()

Cours de Python / Université Paris Cité / UFR Sciences du Vivant 225

CHAPITRE 21

Module Matplotlib

Le module matplotlib 1 permet de générer des graphiques depuis Python. Il est l’outil complémentaire des modules
NumPy, scipy ou pandas (que l’on verra juste après) lorsqu’on veut faire de l’analyse de données.

21.1 Installation et convention
Le module matplotlib n’est pas fourni avec la distribution Python de base. Avec la distribution Miniconda que nous

vous conseillons d’utiliser (consultez pour cela la documentation en ligne 2), vous pouvez l’installer avec la commande :
$ conda install -c conda-forge matplotlib

Dans ce chapitre, nous vous montrerons quelques exemples d’utilisation du module matplotlib pour vous convaincre
de sa pertinence. Ces exemples seront exécutés dans un notebook Jupyter.

1 Les cellules de code apparaitront de cette manière
2 dans un notebook Jupyter, avec des numéros de lignes à gauche.

21.2 Chargement du module
On importe le module matplotlib avec la commande :

1 import matplotlib.pyplot as plt

Remarque
On n’importe pas le module matplotlib directement, mais plutôt son sous-module pyplot. Par convention, et pour

l’utiliser plus rapidement, ce sous-module prendre l’alias plt.

21.3 Représentation en nuage de points
Dans cet exemple, nous considérons l’évolution de la concentration d’un produit dans le sang (exprimé en mg/L) en

fonction du temps (exprimé en heures). Cet exemple est purement fictif.

1. https://matplotlib.org/
2. https://python.sdv.u-paris.fr/livre-dunod

226

https://matplotlib.org/
https://python.sdv.u-paris.fr/livre-dunod

21.3. Représentation en nuage de points Chapitre 21. Module Matplotlib

Voici les valeurs mesurées :

Temps (h) Concentration (mg/L)
1 3.5
2 5.8
3 9.1
4 11.8
6 17.5
7 21.3
9 26.8

Nous allons maintenant représenter l’évolution de la concentration en fonction du temps :
1 import matplotlib.pyplot as plt
2
3 temps = [1, 2, 3, 4, 6, 7, 9]
4 concentration = [5.5, 7.2, 11.8, 13.6, 19.1, 21.7, 29.4]
5
6 fig, ax = plt.subplots()
7 ax.scatter(temps, concentration, marker="o", color="blue")
8 ax.set_xlabel("Temps (h)")
9 ax.set_ylabel("Concentration (mg/L)")

10 ax.set_title("Concentration de produit en fonction du temps")
11 plt.show()

Dans un notebook Jupyter, vous devriez obtenir un graphique ressemblant à celui de la figure 21.1.

Figure 21.1 – Graphique produit par matplotlib.

Revenons maintenant sur le code :

Cours de Python / Université Paris Cité / UFR Sciences du Vivant 227

Chapitre 21. Module Matplotlib 21.4. Représentation sous forme de courbe

• Ligne 1. Tout d’abord, on importe le sous-module pyplot du module matplotlib et on lui donne l’alias plt pour
l’utiliser plus rapidement ensuite. Cet alias est standard, utilisez-le systématiquement.

• Lignes 3 et 4. On définit les variables temps et concentration comme des listes. Les deux listes doivent avoir
la même longueur (sept éléments dans le cas présent).

• Ligne 6. On crée une figure avec la fonction subplots() qui renvoie deux objets : une figure (fig) et un axe
(ax). L’axe est l’objet qui contient le graphique à proprement dit. On peut avoir plusieurs axes dans une même
figure.

• Ligne 7. La méthode .scatter() permet de représenter des points sous forme de nuage de points. Les deux
premiers arguments correspondent aux valeurs en abscisse et en ordonnée des points, fournis sous forme de listes.
Des arguments facultatifs sont ensuite précisés comme le symbole (marker) et la couleur (color).

• Lignes 8 et 9. Les méthodes .set_xlabel() et .set_ylabel() donnent une légende aux axes des abscisses et
des ordonnées.

• Ligne 10. La méthode .set_title() définit le titre du graphique.
• Ligne 11. L’instruction plt.show() affiche le graphique. Elle n’est pas nécessaire dans un notebook Jupyter, car

le graphique est affiché automatiquement, mais elle est indispensable dans un script Python.

21.4 Représentation sous forme de courbe
On sait par ailleurs que l’évolution de la concentration du produit en fonction du temps peut-être modélisée par la

fonction f (x) = 2+3× x.

Remarque
Le modèle présenté ici est purement fictif. Vous découvrirez dans le chapitre 22 Module Pandas comment réaliser une

régression linéaire pour modéliser des données expérimentales.

Représentons ce modèle avec les points expérimentaux et sauvegardons le graphique obtenu sous forme d’une image :
1 import numpy as np
2 import matplotlib.pyplot as plt
3
4 temps = [1, 2, 3, 4, 6, 7, 9]
5 concentration = [5.5, 7.2, 11.8, 13.6, 19.1, 21.7, 29.4]
6
7 fig, ax = plt.subplots()
8 ax.scatter(temps, concentration, marker="o", color = "blue")
9 ax.set_xlabel("Temps (h)")

10 ax.set_ylabel("Concentration (mg/L)")
11 ax.set_title("Concentration de produit en fonction du temps")
12
13 x = np.linspace(min(temps), max(temps), 50)
14 y = 2 + 3 * x
15
16 ax.plot(x, y, color="green", ls="--")
17 ax.grid()
18 fig.savefig("concentration_vs_temps_1.png", bbox_inches="tight", dpi=200)

Le résultat est représenté sur la figure 21.2.
Les étapes supplémentaires par rapport au graphique précédent (figure 21.1) sont :
• Ligne 1. On charge le module numpy sous le nom np.
• Ligne 13. On crée la variable x avec la fonction linspace() du module NumPy, qui renvoie une liste de valeurs

régulièrement espacées entre deux bornes, ici entre le minimum (min(temps)) et le maximum (max(temps)) de
la variable temps. Dans notre exemple, nous générons une liste de 50 valeurs. La variable x ainsi créée est du type
array.

• Ligne 14. On construit ensuite la variable y à partir de la formule modélisant l’évolution de la concentration
du produit en fonction du temps. Cette manipulation n’est possible que parce que x est du type array. Cela ne
fonctionnerait pas avec une liste classique.

• Ligne 16. La méthode .plot() construit une courbe à partir des coordonnées en abscisse et en ordonnées des

228 Cours de Python / Université Paris Cité / UFR Sciences du Vivant

21.4. Représentation sous forme de courbe Chapitre 21. Module Matplotlib

Figure 21.2 – Concentration du produit en fonction du temps.

points à représenter. On indique ensuite des arguments facultatifs comme le style de la ligne (ls pour line style)
et sa couleur (color).

• Ligne 17. La méthode .grid() affiche une grille.
• Ligne 18. Enfin, l’instruction fig.savefig() enregistre le graphique produit sous la forme d’une image au format

png. Des arguments par mot-clé définissent la manière de générer les marges autour du graphique (bbox_inches)
et la résolution de l’image (dpi).

Pour terminer, on peut améliorer un peu plus le graphique en ajoutant une légende et en modifiant l’étendue des axes
des abscisses et des ordonnées :

Cours de Python / Université Paris Cité / UFR Sciences du Vivant 229

Chapitre 21. Module Matplotlib 21.4. Représentation sous forme de courbe

1 import numpy as np
2 import matplotlib.pyplot as plt
3
4 temps = [1, 2, 3, 4, 6, 7, 9]
5 concentration = [5.5, 7.2, 11.8, 13.6, 19.1, 21.7, 29.4]
6
7 fig, ax = plt.subplots()
8 ax.scatter(temps, concentration, marker="o", color="blue", label="mesures")
9 ax.set_xlabel("Temps (h)")

10 ax.set_ylabel("Concentration (mg/L)")
11 ax.set_title("Concentration de produit en fonction du temps")
12
13 x = np.linspace(min(temps), max(temps), 50)
14 y = 2 + 3 * x
15
16 ax.plot(x, y, color="green", ls="--", label="modèle")
17
18 ax.grid()
19 ax.set_xlim(0, 10)
20 ax.set_ylim(0, 35)
21
22 ax.legend(loc="upper left")
23 fig.savefig("concentration_vs_temps_2.png", bbox_inches="tight", dpi=200)

On obtient alors le graphique représenté dans la figure 21.3.

Figure 21.3 – Concentration du produit en fonction du temps, version améliorée.

Les différences notables par rapport au code précédent sont :
• Lignes 8 et 16. On ajoute le paramètre label pour donner un nom au nuage de points (.scatter()) ou à la

courbe (.plot()).
• Lignes 19 et 20. On définit l’étendue de l’axe des abscisses avec la méthode .set_xlim() et de l’axe des

230 Cours de Python / Université Paris Cité / UFR Sciences du Vivant

21.5. Représentation en diagramme en bâtons Chapitre 21. Module Matplotlib

ordonnées avec la méthode .set_ylim().
• Lignes 22. On affiche la légende avec la méthode .legend(). L’argument loc permet de préciser la position de

la légende dans le graphique. Dans notre exemple, la légende est placée en haut à gauche ("upper left").

21.5 Représentation en diagramme en bâtons
On souhaite maintenant représenter graphiquement la distribution des différentes bases dans une séquence d’ADN.

1 import numpy as np
2 import matplotlib.pyplot as plt
3
4 sequence = "ACGATCATAGCGAGCTACGTAGAA"
5 bases = ["A", "C", "G", "T"]
6 distribution = []
7 for base in bases:
8 distribution.append(sequence.count(base))
9

10 x = np.arange(len(bases))
11
12 fig, ax = plt.subplots()
13 ax.bar(x, distribution)
14 ax.set_xticks(x, bases)
15 ax.set_xlabel("Bases")
16 ax.set_ylabel("Nombre")
17 ax.set_title(f"Distribution des bases\n dans la séquence {sequence}")
18 fig.savefig("distribution_bases.png", bbox_inches="tight", dpi=200)

On obtient alors le graphique de la figure 21.4.

Figure 21.4 – Distribution des bases.

Cours de Python / Université Paris Cité / UFR Sciences du Vivant 231

Chapitre 21. Module Matplotlib 21.5. Représentation en diagramme en bâtons

Prenons le temps d’examiner les différentes étapes du script précédent :
• Lignes 4 à 6. On définit les variables sequence, bases et distribution.
• Lignes 7 et 8. On calcule la distribution des différentes bases dans la séquence. On utilise pour cela la méthode
count(), qui renvoie le nombre de fois qu’une chaîne de caractères (les différentes bases) se trouve dans une autre
(la séquence).

• Ligne 10. On définit la position en abscisse des barres. Dans cet exemple, la variable x vaut array([0, 1, 2,
3]).

• Ligne 12. On crée le graphique.
• Ligne 13. La méthode .bar() construit le diagramme en bâtons. Elle prend en argument la position des barres

(x) et leurs hauteurs (distribution).
• Ligne 14. La méthode .set_xtics() redéfinit les étiquettes (c’est-à-dire le nom des bases) sur l’axe des abscisses.
• Lignes 15 à 17. On définit les légendes des axes et le titre du graphique. On insère un retour à la ligne \n dans

le titre pour qu’il soit réparti sur deux lignes.
• Ligne 18. Enfin, on enregistre le graphique généré au format png.
On espère que ces courts exemples vous auront convaincu de l’utilité du module matplotlib. Sachez qu’il peut faire

bien plus, par exemple générer des histogrammes ou toutes sortes de graphiques utiles en analyse de données. Il est existe
par ailleurs d’autres bibliothèques pour produire des graphiques avec Python, comme Seaborn 3, Bokeh 4 ou Plotly 5. Ces
deux dernières permettent de générer des graphiques interactifs, c’est-à-dire des graphiques dans lesquels on peut zoomer,
se déplacer, etc. Nous vous invitons à les découvrir par vous-même.

Pour aller plus loin
• Le site de matplotlib fournit de nombreux exemples détaillés 6, n’hésitez pas à le consulter.
• Le site Python Graph Gallery 7 propose aussi des exemples de code pour différents types de graphiques, réalisés

avec matplotlib ou d’autres bibliothèques.
• Enfin, des cheat sheets 8 de matplotlib sont extrêmement utiles et très bien faites.

3. https://seaborn.pydata.org/
4. http://bokeh.org/
5. https://plotly.com/
6. https://matplotlib.org/gallery/index.html
7. https://www.python-graph-gallery.com/matplotlib/
8. https://matplotlib.org/cheatsheets/

232 Cours de Python / Université Paris Cité / UFR Sciences du Vivant

https://seaborn.pydata.org/
http://bokeh.org/
https://plotly.com/
https://matplotlib.org/gallery/index.html
https://www.python-graph-gallery.com/matplotlib/
https://matplotlib.org/cheatsheets/

CHAPITRE 22

Module Pandas

Le module pandas 1 a été conçu pour l’analyse de données. Il est particulièrement puissant pour manipuler des données
structurées sous forme de tableau.

22.1 Installation et convention
Le module pandas n’est pas fourni avec la distribution Python de base. Avec la distribution Miniconda que nous

vous conseillons d’utiliser (consultez pour cela la documentation en ligne 2), vous pouvez rapidement l’installer avec la
commande :
$ conda install -c conda-forge pandas

Vous aurez également besoin des modules matplotlib pour créer des graphiques et scipy pour réaliser une régression
linaire, que vous pouvez installer ainsi :
$ conda install -c conda-forge matplotlib scipy

Dans ce chapitre, nous vous montrerons quelques exemples d’utilisation du module pandas pour vous convaincre de
sa pertinence. Ces exemples seront exécutés dans un notebook Jupyter.

1 Les cellules de code apparaitront de cette manière
2 dans un notebook Jupyter, avec des numéros de lignes à gauche.

Les résultats seront affichés de cette manière,
éventuellement sur plusieurs lignes.

22.2 Chargement du module
Pour charger pandas dans la mémoire de Python, on utilise la commande import habituelle :

1 import pandas

Par convention, on utilise pd comme nom raccourci pour pandas :
1 import pandas as pd

1. https://pandas.pydata.org/
2. https://python.sdv.u-paris.fr/livre-dunod

233

https://pandas.pydata.org/
https://python.sdv.u-paris.fr/livre-dunod

Chapitre 22. Module Pandas 22.3. Series

22.3 Series
Le premier type de données apporté par pandas est la Series, qui correspond à un vecteur à une dimension.

1 s = pd.Series([10, 20, 30, 40], index = ['a', 'b', 'c', 'd'])
2 s

a 10
b 20
c 30
d 40
dtype: int64

22.3.1 Sélections par étiquette ou indice
Avec pandas, chaque élément de la série de données possède une étiquette qui permet d’appeler les éléments qui la

composent. Ainsi, pour appeler le premier élément de la série, on peut utiliser son étiquette (ici, "a") :
1 s["a"]

10

Pour accéder au premier élément par son indice (ici 0), comme on le ferait avec une liste, on utilise la méthode
.iloc :

1 s.iloc[0]

10

Bien sûr, on peut extraire plusieurs éléments, par leurs indices ou leurs étiquettes :
1 s[["b", "d"]]

b 20
d 40
dtype: int64

et
1 s.iloc[[1, 3]]

b 20
d 40
dtype: int64

22.3.2 Modifications de Series
Les étiquettes permettent de modifier et d’ajouter des éléments :

1 s["c"] = 300
2 s["z"] = 50
3 s

a 10
b 20
c 300
d 40
z 50
dtype: int64

234 Cours de Python / Université Paris Cité / UFR Sciences du Vivant

22.4. Dataframes Chapitre 22. Module Pandas

22.3.3 Filtres
Enfin, on peut filtrer une partie de la Series :

1 s[s>30]

c 300
d 40
z 50
dtype: int64

Remarque
Cette écriture rappelle celle des masques booléens dans le chapitre 20 Module NumPy.

Enfin, on peut aussi combiner plusieurs critères de sélection avec les opérateurs logiques & (pour ET) et | (pour
OU) :

1 s[(s>20) & (s<100)]

d 40
z 50
dtype: int64

1 s[(s<15) | (s>150)]

a 10
c 300
dtype: int64

22.4 Dataframes
Un autre type d’objet particulièrement intéressant introduit par pandas sont les Dataframes. Ceux-ci correspondent

à des tableaux à deux dimensions avec des étiquettes pour nommer les lignes et les colonnes.

Remarque
Si vous êtes familier avec le langage de programmation et d’analyse statistique R, les Dataframes de pandas se

rapprochent de ceux trouvés dans R.

22.4.1 Création
Voici comment créer un Dataframe avec pandas à partir de données fournies comme liste de lignes :

1 import numpy as np
2 df = pd.DataFrame(columns=["a", "b", "c", "d"],
3 index=["chat", "singe", "souris"],
4 data=[np.arange(10, 14),
5 np.arange(20, 24),
6 np.arange(30, 34)])
7 df

a b c d
chat 10 11 12 13
singe 20 21 22 23
souris 30 31 32 33

Voici quelques commentaires sur le code précédent :

Cours de Python / Université Paris Cité / UFR Sciences du Vivant 235

Chapitre 22. Module Pandas 22.4. Dataframes

• Ligne 1. On charge le module NumPy utilisé ensuite.
• Ligne 2. Le Dataframe est créé avec la fonction DataFrame() à laquelle on fournit plusieurs arguments. L’argument
columns indique le nom des colonnes, sous forme d’une liste.

• Ligne 3. L’argument index définit le nom des lignes, sous forme de liste également.
• Lignes 4 à 6. L’argument data fournit le contenu du Dataframe, sous la forme d’une liste de valeurs correspon-

dantes à des lignes. Ainsi, np.arange(10, 14) qui est équivalent à [10, 11, 12, 13] correspond à la première
ligne du Dataframe.

Le même Dataframe peut aussi être créé à partir des valeurs fournies en colonnes sous la forme d’un dictionnaire :
1 data = {"a": np.arange(10, 40, 10),
2 "b": np.arange(11, 40, 10),
3 "c": np.arange(12, 40, 10),
4 "d": np.arange(13, 40, 10)}
5 df = pd.DataFrame(data)
6 df.index = ["chat", "singe", "souris"]
7 df

a b c d
chat 10 11 12 13
singe 20 21 22 23
souris 30 31 32 33

• Lignes 1 à 4. Le dictionnaire data contient les données en colonnes. La clé associée à chaque colonne est le nom
de la colonne.

• Ligne 5. Le dataframe est créé avec la fonction pd.DataFrame() à laquelle on passe data en argument.
• Ligne 6. On peut définir les étiquettes des lignes de n’importe quel dataframe avec l’attribut df.index.

22.4.2 Quelques propriétés
Les dimensions d’un dataframe sont données par l’attribut .shape :

1 df.shape

(3, 4)

Ici, le dataframe df possède trois lignes et quatre colonnes.
L’attribut .columns renvoie le nom des colonnes et permet aussi de renommer les colonnes d’un dataframe :

1 df.columns

Index(['a', 'b', 'c', 'd'], dtype='object')

1 df.columns = ["Paris", "Lyon", "Nantes", "Pau"]
2 df

Paris Lyon Nantes Pau
chat 10 11 12 13
singe 20 21 22 23
souris 30 31 32 33

La méthode .head(n) renvoie les n premières lignes du Dataframe (par défaut, n vaut 5) :
1 df.head(2)

Paris Lyon Nantes Pau
chat 10 11 12 13
singe 20 21 22 23

236 Cours de Python / Université Paris Cité / UFR Sciences du Vivant

22.4. Dataframes Chapitre 22. Module Pandas

Remarque
Les Dataframes utilisés ici comme exemples sont volontairement petits. Si vous êtes confrontés à des Dataframes

de grande taille, ceux-ci seront affichés partiellement dans un notebook Jupyter. Des ascenseurs en bas et à droite du
Dataframe permettront de naviguer dans les données.

22.4.3 Sélections
Les mécanismes de sélection fournis avec pandas sont très puissants. En voici un rapide aperçu :

22.4.3.1 Sélection de colonnes

On peut sélectionner une colonne par son étiquette :
1 df["Lyon"]

chat 11
singe 21
souris 31

La notation df["Lyon"] sélectionne une colonne et renvoie un objet Series :
1 type(df["Lyon"])

pandas.core.series.Series

Attention
On trouve parfois l’écriture df.Lyon pour sélectionner une colonne. C’est une très mauvaise pratique, car cette

écriture peut être confondue avec un attribut de l’objet df (par exemple .shape). Par ailleurs, elle ne fonctionne pas
pour des noms de colonnes qui contiennent des espaces ou des caractères spéciaux (ce qui n’est pas non plus une bonne
pratique).

Nous vous conseillons de toujours utiliser la notation df["nom_de_colonne"].

Pour sélectionner plusieurs colonnes, il faut fournir une liste de noms de colonnes :
1 df[["Lyon", "Pau"]]

Lyon Pau
chat 11 13
singe 21 23
souris 31 33

On obtient cette fois un Dataframe avec les colonnes sélectionnées :
1 type(df[["Lyon", "Pau"]])

pandas.core.frame.DataFrame

Remarque
La sélection de plusieurs colonnes nécessite une liste entre les crochets, par exemple df[["Lyon", "Pau"]]. Si on

utilise un tuple du type df[("Lyon", "Pau")], Python renvoie une erreur KeyError: ('Lyon', 'Pau').

Cours de Python / Université Paris Cité / UFR Sciences du Vivant 237

Chapitre 22. Module Pandas 22.4. Dataframes

22.4.3.2 Sélection de lignes

Pour sélectionner une ligne, il faut utiliser l’instruction .loc et l’étiquette de la ligne :
1 df.loc["singe"]

Paris 20
Lyon 21
Nantes 22
Pau 23
Name: singe, dtype: int64

Ici aussi, on peut sélectionner plusieurs lignes :
1 df.loc[["singe", "chat"]]

Paris Lyon Nantes Pau
singe 20 21 22 23
chat 10 11 12 13

Enfin, on peut aussi sélectionner des lignes avec l’instruction .iloc et l’indice de la ligne (la première ligne ayant
l’indice 0) :

1 df.iloc[1]

Paris 20
Lyon 21
Nantes 22
Pau 23
Name: singe, dtype: int64

1 df.iloc[[1, 0]]

Paris Lyon Nantes Pau
singe 20 21 22 23
chat 10 11 12 13

On peut également utiliser les tranches (comme pour les listes) :
1 df.iloc[0:2]

Paris Lyon Nantes Pau
chat 10 11 12 13
singe 20 21 22 23

22.4.3.3 Sélection sur les lignes et les colonnes

On peut bien sûr combiner les deux types de sélection (en ligne et en colonne) :
1 df.loc["souris", "Pau"]

33

1 df.loc[["singe", "souris"], ["Nantes", "Lyon"]]

Nantes Lyon
singe 22 21
souris 32 31

238 Cours de Python / Université Paris Cité / UFR Sciences du Vivant

22.4. Dataframes Chapitre 22. Module Pandas

Notez qu’à partir du moment où on souhaite effectuer une sélection sur des lignes, il faut utiliser .loc (ou .iloc si
on utilise les indices).

22.4.3.4 Sélection par condition

Remémorons-nous d’abord le contenu du dataframe df :
1 df

Paris Lyon Nantes Pau
chat 10 11 12 13
singe 20 21 22 23
souris 30 31 32 33

Sélectionnons maintenant toutes les lignes pour lesquelles les effectifs à Pau sont supérieurs à 15 :
1 df[df["Pau"]>15]

Paris Lyon Nantes Pau
singe 20 21 22 23
souris 30 31 32 33

De cette sélection, on ne souhaite garder que les valeurs pour Lyon :
1 df[df["Pau"]>15]["Lyon"]

singe 21
souris 31
Name: Lyon, dtype: int64

On peut aussi combiner plusieurs conditions avec & pour l’opérateur et :
1 df[(df["Pau"]>15) & (df["Lyon"]>25)]

Paris Lyon Nantes Pau
souris 30 31 32 33

et | pour l’opérateur ou :
1 df[(df["Pau"]>15) | (df["Lyon"]>25)]

Paris Lyon Nantes Pau
singe 20 21 22 23
souris 30 31 32 33

22.4.4 Combinaison de dataframes
En biologie, on a souvent besoin de combiner deux tableaux à partir d’une colonne commune. Par exemple, si on

considère les deux dataframes suivants :
1 data1 = {"Lyon": [10, 23, 17], "Paris": [3, 15, 20]}
2 df1 = pd.DataFrame.from_dict(data1)
3 df1.index = ["chat", "singe", "souris"]
4 df1

Lyon Paris
chat 10 3
singe 23 15
souris 17 20

et

Cours de Python / Université Paris Cité / UFR Sciences du Vivant 239

Chapitre 22. Module Pandas 22.4. Dataframes

1 data2 = {"Nantes": [3, 9, 14], "Strasbourg": [5, 10, 8]}
2 df2 = pd.DataFrame.from_dict(data2)
3 df2.index = ["chat", "souris", "lapin"]
4 df2

Nantes Strasbourg
chat 3 5
souris 9 10
lapin 14 8

On souhaite combiner ces deux dataframes, c’est-à-dire connaître pour les quatre villes (Lyon, Paris, Nantes et
Strasbourg) le nombre d’animaux. On remarque d’ores et déjà qu’il y a des singes à Lyon et Paris, mais pas de lapin et
qu’il y a des lapins à Nantes et Strasbourg, mais pas de singe. Nous allons voir comment gérer cette situation.

Pandas propose pour cela la fonction concat() 3, qui prend comme argument une liste de dataframes :
1 pd.concat([df1, df2])

Lyon Nantes Paris Strasbourg
chat 10.0 NaN 3.0 NaN
singe 23.0 NaN 15.0 NaN
souris 17.0 NaN 20.0 NaN
chat NaN 3.0 NaN 5.0
souris NaN 9.0 NaN 10.0
lapin NaN 14.0 NaN 8.0

Ici, NaN indique des valeurs manquantes, cela signifie littéralement Not a Number. Mais le résultat obtenu n’est pas
celui que nous attendions, puisque les lignes de deux dataframes ont été recopiées.

L’argument supplémentaire axis=1 produit le résultat attendu :
1 pd.concat([df1, df2], axis=1)

Lyon Paris Nantes Strasbourg
chat 10.0 3.0 3.0 5.0
lapin NaN NaN 14.0 8.0
singe 23.0 15.0 NaN NaN
souris 17.0 20.0 9.0 10.0

Par défaut, pandas va conserver le plus de lignes possible. Si on ne souhaite conserver que les lignes communes aux
deux dataframes, il faut ajouter l’argument join="inner" :

1 pd.concat([df1, df2], axis=1, join="inner")

Lyon Paris Nantes Strasbourg
chat 10 3 3 5
souris 17 20 9 10

Un autre comportement par défaut de concat() est que cette fonction va combiner les dataframes en se basant sur
leurs index. Il est néanmoins possible de préciser, pour chaque dataframe, le nom de la colonne qui sera utilisée comme
référence avec l’argument join_axes.

22.4.5 Opérations vectorielles
Pour cette rubrique, créons un Dataframe composé de nombres aléatoires compris entre 100 et 200, répartis en trois

colonnes (a, b et c) et 1 000 lignes :

3. https://pandas.pydata.org/pandas-docs/stable/merging.html

240 Cours de Python / Université Paris Cité / UFR Sciences du Vivant

https://pandas.pydata.org/pandas-docs/stable/merging.html

22.4. Dataframes Chapitre 22. Module Pandas

1 import numpy as np
2 import pandas as pd
3
4 nb_rows = 1000
5 df = pd.DataFrame(
6 {
7 "a": np.random.randint(100, 200, nb_rows),
8 "b": np.random.randint(100, 200, nb_rows),
9 "c": np.random.randint(100, 200, nb_rows),

10 }
11)

Vérifions que ce Dataframe a bien les propriétés attendues :
1 df.shape

(1000, 3)

1 df.head()

a b c
0 105 156 122
1 116 135 138
2 125 190 113
3 196 175 179
4 129 184 153

On souhaite maintenant créer une nouvelle colonne (d) qui sera le résultat de la multiplication des colonnes a et b,
à laquelle on ajoute ensuite la colonne c.

Une première manière de faire est de procéder ligne par ligne. La méthode .iterrows() permet de parcourir les
lignes d’un Dataframe et renvoie un tuple contenant l’indice de la ligne (sous la forme d’un entier) et la ligne elle-même
(sous la forme d’une Series) :

1 for idx, row in df.iterrows():
2 df.at[idx, "d"] = (row["a"] * row["b"]) + row["c"]

Ici, l’instruction .at ajoute une cellule à la ligne d’indice idx et de colonne d. Cette instruction est plus efficace que
.loc pour ajouter une cellule à un Dataframe.

L’approche précédente produit le résultat attendu, mais elle n’est pas optimale, car très lente. Pour évaluer le temps
moyen pour réaliser ces opérations, on utilise la commande magique %%timeit abordée dans le chapitre 18 Jupyter et
ses notebooks :

1 %%timeit
2 for idx, row in df.iterrows():
3 df.at[idx, "d"] = (row["a"] * row["b"]) + row["c"]

qui renvoie :
52.4 ms ± 3.6 ms per loop (mean ± std. dev. of 7 runs, 10 loops each)

Cette cellule de code s’exécute en moyenne en 52,4 ms.
Une autre approche, plus efficace, consiste à réaliser les opérations directement sur les colonnes (et non plus ligne

par ligne) :
1 %%timeit
2 df["d"] = (df["a"] * df["b"]) + df["c"]

qui renvoie :
250 µs ± 36.1 µs per loop (mean ± std. dev. of 7 runs, 1,000 loops each)

Ici, la cellule de code s’exécute en moyenne en 250 µs, soit environ 200 fois (52400/250) plus rapidement qu’avec

Cours de Python / Université Paris Cité / UFR Sciences du Vivant 241

Chapitre 22. Module Pandas 22.5. Un exemple plus concret avec les kinases

.iterrows(). Tout comme avec les arrays du chapitre 20 Numpy, les opérations vectorielles avec les Dataframes sont
rapides et efficaces. Privilégiez toujours ce type d’approche avec les arrays de NumPy ou les Series et Dataframes de
pandas.

Remarque
Dans l’exemple précédent, l’utilisation de la commande magique %%timeit calcule le temps d’exécution moyen d’une

cellule. Python détermine automatiquement le nombre d’itérations à réaliser pour que le calcul se fasse dans un temps
raisonnable. Ainsi, pour la méthode .iterrows(), le calcul est réalisé 10 fois sur sept répétitions alors que pour les
opérations vectorielles, le calcul est effectué 1000 fois sur sept répétitions.

22.5 Un exemple plus concret avec les kinases
Pour illustrer les possibilités de pandas, voici un exemple plus concret sur un jeu de données de kinases 4. Les kinases

sont des protéines responsables de la phosphorylation d’autres protéines.
Le fichier kinases.csv que vous pouvez télécharger en ligne 5 contient des informations tirées de la base de données

de séquences UniProt pour quelques kinases.
Si vous n’êtes pas familier avec le format de fichier .csv, nous vous conseillons de consulter l’annexe A Quelques

formats de données en biologie.

Remarque
Avant de nous lancer dans l’analyse de ce fichier, nous vous proposons cette petite devinette :

Qu’est-ce qu’une protéine dans une piscine ?

La réponse sera donnée à la fin de ce chapitre.

22.5.1 Prise de contact avec le jeu de données
Une fonctionnalité très intéressante de pandas est d’ouvrir très facilement un fichier au format .csv :

1 df = pd.read_csv("kinases.csv")

Le contenu est chargé sous la forme d’un Dataframe dans la variable df.
Le fichier contient 1 442 lignes de données plus une ligne d’en-tête. Cette dernière est automatiquement utilisée par

pandas pour nommer les différentes colonnes. Voici un aperçu des premières lignes :
1 df.head()

Entry Organism Length Creation date Mass PDB
0 A0A0B4J2F2 Human 783 2018-06-20 84930 NaN
1 A4L9P5 Rat 1211 2007-07-24 130801 NaN
2 A0A1D6E0S8 Maize 856 2023-05-03 93153 NaN
3 A0A8I5ZNK2 Rat 528 2023-09-13 58360 NaN
4 A1Z7T0 Fruit fly 1190 2012-01-25 131791 NaN

Nous avons six colonnes de données :
• l’identifiant de la protéine (Entry) ;
• l’organisme d’où provient cette protéine (Organism) ;
• le nombre d’acides aminés qui constituent la protéine (Length) ;
• la date à laquelle cette protéine a été déréférencée dans UniProt (Creation date) ;
• la masse de la protéine (Mass), exprimée en Dalton ;
• les éventuelles structures 3D de la protéine (PDB).

4. https://fr.wikipedia.org/wiki/Kinase
5. https://python.sdv.u-paris.fr/data-files/kinases.csv

242 Cours de Python / Université Paris Cité / UFR Sciences du Vivant

https://fr.wikipedia.org/wiki/Kinase
https://python.sdv.u-paris.fr/data-files/kinases.csv

22.5. Un exemple plus concret avec les kinases Chapitre 22. Module Pandas

La colonne d’entiers tout à gauche est un index automatiquement créé par pandas.
Nous pouvons demander à pandas d’utiliser une colonne particulière comme index. On utilise pour cela le paramètre

index_col de la fonction read_csv(). Ici, la colonne Entry s’y prête très bien, car cette colonne ne contient que des
identifiants uniques :

1 df = pd.read_csv("kinases.csv", index_col="Entry")
2 df.head()

Organism Length Creation date Mass PDB
Entry
A0A0B4J2F2 Human 783 2018-06-20 84930 NaN
A4L9P5 Rat 1211 2007-07-24 130801 NaN
A0A1D6E0S8 Maize 856 2023-05-03 93153 NaN
A0A8I5ZNK2 Rat 528 2023-09-13 58360 NaN
A1Z7T0 Fruit fly 1190 2012-01-25 131791 NaN

Remarque
La fonction .read_csv() permet également d’ouvrir un fichier au format TSV (voir l’annexe A Quelques formats de

données en biologie). Il faut pour cela préciser que le séparateur des colonnes de données est une tabulation (\t), avec
l’argument sep="\t".

Avant d’analyser un jeu de données, il est intéressant de l’explorer un peu. Par exemple, connaître ses dimensions :
1 df.shape

(1442, 5)

Notre jeu de données contient donc 1 442 lignes et 5 colonnes. En effet, la colonne Entry est maintenant utilisée
comme index et n’est donc plus prise en compte.

Il est aussi intéressant de savoir de quel type de données est constituée chaque colonne :
1 df.dtypes

Organism object
Length int64
Creation date object
Mass int64
PDB object
dtype: object

Les colonnes Length et Mass contiennent des valeurs numériques, en l’occurrence des entiers (int64). Le type
object est un type par défaut.

La méthode .info() permet d’aller un peu plus loin dans l’exploration du jeu de données en combinant les informa-
tions produites par les propriétés .shape et .dtypes :

1 df.info()

<class 'pandas.core.frame.DataFrame'>
Index: 1442 entries, A0A0B4J2F2 to Q5F361
Data columns (total 5 columns):
Column Non-Null Count Dtype
--- ------ -------------- -----
0 Organism 1442 non-null object
1 Length 1442 non-null int64
2 Creation date 1442 non-null object
3 Mass 1442 non-null int64
4 PDB 488 non-null object
dtypes: int64(2), object(3)
memory usage: 67.6+ KB

Cours de Python / Université Paris Cité / UFR Sciences du Vivant 243

Chapitre 22. Module Pandas 22.5. Un exemple plus concret avec les kinases

Avec l’argument memory_usage="deep", la méthode .info() permet de connaitre avec précision la quantité de
mémoire vive occupée par le Dataframe :

1 df.info(memory_usage="deep")

<class 'pandas.core.frame.DataFrame'>
Index: 1442 entries, A0A0B4J2F2 to Q5F361
Data columns (total 5 columns):
Column Non-Null Count Dtype
--- ------ -------------- -----
0 Organism 1442 non-null object
1 Length 1442 non-null int64
2 Creation date 1442 non-null object
3 Mass 1442 non-null int64
4 PDB 488 non-null object
dtypes: int64(2), object(3)
memory usage: 351.0 KB

Ici, le Dataframe occupe 351 kilo-octets (ko) en mémoire.

22.5.2 Recherche de valeurs manquantes
Il est aussi utile de savoir si des valeurs manquantes sont présentes dans le jeu de données. Ces valeurs manquantes

correspondent à des champs pour lesquels aucune valeur n’ont été fournies. Elles sont souvent représentées par NaN (pour
Not a Number).

La méthode .isna() renvoie un Dataframe de la même dimension que le Dataframe initial, mais avec des valeurs
booléennes (True si la valeur est manquante (NaN) ou False sinon). En le combinant avec la méthode .sum(), on peut
compter le nombre de valeurs manquantes pour chaque colonne :

1 df.isna().sum()

Organism 0
Length 0
Creation date 0
Mass 0
PDB 954
dtype: int64

Ici, la seule colonne qui contient des valeurs manquantes est la colonne PDB, qui contient 954 valeurs manquantes.
Cela signifie que pour 954 protéines, aucune structure 3D n’est disponible. Nous reviendrons plus tard sur cette colonne
PDB.

22.5.3 Conversion en date
Le type object correspond la plupart du temps à des chaînes de caractères. C’est tout à fait légitime pour la colonne

Organism. Mais on sait par contre que la colonne Creation date est une date sous la forme année-mois-jour.
Si le format de date utilisé est homogène sur tout le jeu de données et non ambigu, on peut demander à pandas

de considérer la colonne Creation Date comme une date. pandas détectera alors automatiquement le format de date
utilisé :

1 df["Creation date"] = pd.to_datetime(df["Creation date"])

L’affichage des données n’est pas modifié :
1 df.head()

Organism Length Creation date Mass PDB
Entry
A0A0B4J2F2 Human 783 2018-06-20 84930 NaN
A4L9P5 Rat 1211 2007-07-24 130801 NaN
A0A1D6E0S8 Maize 856 2023-05-03 93153 NaN
A0A8I5ZNK2 Rat 528 2023-09-13 58360 NaN
A1Z7T0 Fruit fly 1190 2012-01-25 131791 NaN

244 Cours de Python / Université Paris Cité / UFR Sciences du Vivant

22.5. Un exemple plus concret avec les kinases Chapitre 22. Module Pandas

Mais le type de données de la colonne Creation date est maintenant une date (datetime64[ns]) :
1 df.dtypes

Organism object
Length int64
Creation date datetime64[ns]
Mass int64
PDB object
dtype: object

22.5.4 Statistiques descriptives et table de comptage
Pour les colonnes qui contiennent des données numériques, on peut obtenir rapidement quelques statistiques descrip-

tives avec la méthode .describe() :
1 df.describe()

Length Creation date Mass
count 1442.000000 1442 1442.000000
mean 756.139390 2001-01-25 16:10:39.112344064 84710.753814
min 81.000000 1986-07-21 00:00:00 9405.000000
25% 476.250000 1996-10-01 00:00:00 54059.000000
50% 632.000000 2002-03-10 00:00:00 71613.000000
75% 949.250000 2005-11-22 00:00:00 105485.250000
max 2986.000000 2023-09-13 00:00:00 340261.000000
std 404.195273 NaN 44764.273097

On apprend ainsi que la taille de la protéine (colonne Length) a une valeur moyenne de 756,14 acides aminés et que
la plus petite protéine est composée de 81 acides aminés et la plus grande de 2 986. Pratique !

Des statistiques sont également proposées pour la colonne Creation date. La protéine la plus récente a ainsi été
référencée le 13 septembre 2023.

La colonne Organism contient des chaînes de caractères, on peut rapidement déterminer le nombre de protéines pour
chaque organisme :

1 df["Organism"].value_counts()

Organism
Human 489
Mouse 489
Rat 253
Fruit fly 103
Chicken 75
Rabbit 25
Maize 8
Name: count, dtype: int64

On apprend ainsi que 489 protéines sont d’origine humaine (Human) et 8 proviennent du maïs (Maize).

22.5.5 Statistiques par groupe
On peut aussi déterminer, pour chaque organisme, la taille et la masse moyenne des kinases :

1 df.groupby(["Organism"])[["Length", "Mass"]].mean()

Length Mass
Organism
Chicken 720.160000 81120.880000
Fruit fly 784.844660 88154.669903
Human 771.004090 86281.190184
Maize 666.875000 73635.000000
Mouse 768.092025 85942.274029
Rabbit 591.480000 66754.200000
Rat 722.379447 81081.822134

Cours de Python / Université Paris Cité / UFR Sciences du Vivant 245

Chapitre 22. Module Pandas 22.5. Un exemple plus concret avec les kinases

La méthode .groupby() rassemble d’abord les données suivant la colonne Organism. Puis on sélectionne les colonnes
Length et Mass. Enfin, la méthode .mean() calcule la moyenne pour chaque groupe.

Si on souhaite obtenir deux statistiques (par exemple les valeurs minimale et maximale) en une seule fois, il convient
alors d’utiliser la méthode .pivot_table(), méthode plus complexe, mais aussi beaucoup plus puissante :

1 df.pivot_table(
2 index="Organism",
3 values=["Length", "Mass"],
4 aggfunc=["min", "max"]
5)

min max
Length Mass Length Mass

Organism
Chicken 303 34688 2311 260961
Fruit fly 294 33180 2554 287025
Human 253 28160 2986 340261
Maize 294 33834 996 105988
Mouse 244 27394 2964 337000
Rabbit 81 9405 1382 158347
Rat 274 31162 2959 336587

• L’argument index précise la colonne dont on veut agréger les données.
• L’argument values indique sur quelles colonnes les statistiques sont calculées.
• Enfin, aggfunc liste les statistiques calculées, ici les valeurs minimale et maximale.
Notez que les valeurs renvoyées sont d’abord les valeurs minimales pour Length et Mass puis les valeurs maximales

pour Length et Mass.

22.5.6 Analyse de données numériques
On peut, sans trop de risque, émettre l’hypothèse que plus il y a d’acides aminés dans la protéine, plus sa masse va

être élevée.
Pour vérifier cela graphiquement, on représente la masse de la protéine en fonction de sa taille (c’est-à-dire du nombre

d’acides aminés) :
1 import matplotlib.pyplot as plt
2
3 fig, ax = plt.subplots()
4 ax.scatter(df["Length"], df["Mass"])
5 ax.set_xlabel("Taille (nombre d'acides aminés)")
6 ax.set_ylabel("Masse (Dalton)")
7 fig.savefig("kinases1.png")

On obtient un graphique similaire à celui de la figure 22.1.
Avec pandas, on peut aussi appeler une méthode .plot() sur un Dataframe pour obtenir une représentation graphique

identique à la figure 22.1 :
1 import matplotlib.pyplot as plt
2
3 df.plot(
4 kind="scatter",
5 x="Length",
6 y="Mass",
7 xlabel="Taille (nombre d'acides aminés)",
8 ylabel="Masse (Dalton)"
9)

10 plt.savefig("kinases1.png")

• Ligne 4. On spécifie le type de graphique. Ici, un nuage de points.
• Lignes 5 et 6. On précise les colonnes à utiliser pour les abscisses et les ordonnées.
Le graphique de la figure 22.1 met en évidence une relation linéaire entre le nombre de résidus d’une protéine et sa

masse.

246 Cours de Python / Université Paris Cité / UFR Sciences du Vivant

22.5. Un exemple plus concret avec les kinases Chapitre 22. Module Pandas

Figure 22.1 – Masse en fonction de la taille.

En réalisant une régression linéaire, on peut déterminer les paramètres de la droite qui passent le plus proche possible
des points du graphique. On utilise pour cela la fonction linregress() 6 du module scipy.stats :

1 from scipy.stats import linregress
2 model = linregress(df["Length"], df["Mass"])
3 model

LinregressResult(slope=110.63478918698122, intercept=1055.431834679228,
rvalue=0.9989676084416755, pvalue=0.0, stderr=0.13258187632073232,
intercept_stderr=113.66584551734655)

Ce modèle linéaire nous indique qu’un résidu a une masse d’environ 111 Dalton, ce qui est cohérent. On peut également
comparer ce modèle aux différentes protéines :

1 fig, ax = plt.subplots()
2 ax.scatter(df["Length"], df["Mass"], label="données")
3 ax.plot(
4 df["Length"],
5 df["Length"]*model.slope + model.intercept,
6 ls=":",
7 label="modèle"
8)
9 ax.set_xlabel("Taille (nombre d'acides aminés)")

10 ax.set_ylabel("Masse (Dalton)")
11 ax.legend()
12 fig.savefig("kinases2.png")

On obtient ainsi le graphique de la figure 22.2.

22.5.7 Analyse de données temporelles
Il peut être intéressant de savoir, pour chaque organisme, quand les premières et les dernières séquences de kinases

ont été référencées dans UniProt.

6. https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.linregress.html

Cours de Python / Université Paris Cité / UFR Sciences du Vivant 247

https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.linregress.html

Chapitre 22. Module Pandas 22.5. Un exemple plus concret avec les kinases

Figure 22.2 – Masse en fonction de la taille des protéines.

La méthode .pivot_table() apporte des éléments de réponse :
1 df.pivot_table(
2 index="Organism",
3 values=["Creation date"],
4 aggfunc=["min", "max"]
5)

min max
Creation date Creation date

Organism
Chicken 1986-07-21 2021-02-10
Fruit fly 1986-07-21 2023-09-13
Human 1986-07-21 2018-06-20
Maize 1990-08-01 2023-05-03
Mouse 1986-07-21 2017-03-15
Rabbit 1986-07-21 2010-03-02
Rat 1986-07-21 2023-09-13

Chez le poulet (Chicken), la première séquence a été référencée le 21 juillet 1986 et la dernière le 10 février 2021.
Une autre question est de savoir combien de kinases ont été référencées en fonction du temps.
La méthode .value_counts() peut être utilisée, mais elle ne renvoie que le nombre de protéines référencées dans

UniProt pour un jour donné. Par exemple, 40 structures ont été référencées le 28 novembre 2006 :
1 df["Creation date"].value_counts().head()

Creation date
1997-11-01 72
1996-10-01 58
2000-12-01 43
2000-05-30 41
2006-11-28 40
Name: count, dtype: int64

248 Cours de Python / Université Paris Cité / UFR Sciences du Vivant

22.5. Un exemple plus concret avec les kinases Chapitre 22. Module Pandas

Si on souhaite une réponse plus globale, par exemple à l’échelle de l’année, la méthode .resample() calcule le
nombre de protéines référencées par an (en fournissant l’argument YE). En utilisant le method chaining présenté dans le
chapitre 11 Plus sur les chaînes de caractères, nous pouvons écrire toutes ces transformations en une seule instruction,
répartie sur plusieurs lignes pour plus de lisibilité (en utilisant des parenthèses) :

1 (df["Creation date"]
2 .value_counts()
3 .resample("YE")
4 .sum()
5 .head()
6)

Creation date
1986-12-31 11
1987-12-31 12
1988-12-31 32
1989-12-31 29
1990-12-31 40
Freq: YE-DEC, Name: count, dtype: int64

Les dates apparaissent maintenant comme le dernier jour de l’année (31 décembre), mais désignent bien l’année
complète. Dans cet exemple, 11 kinases ont été référencées dans UniProt entre le 1er janvier et le 31 décembre 1986.

Pour connaître en quelle année le plus de kinases ont été référencées dans UniProt, il faut trier les valeurs obtenues
du plus grand au plus petit avec la méthode .sort_values(). Comme on ne veut connaître que les premières dates
(celles où il y a eu le plus de protéines référencées), on utilisera également la méthode .head() :

1 (df["Creation date"]
2 .value_counts()
3 .resample("YE")
4 .sum()
5 .sort_values(ascending=False)
6 .head()
7)

Creation date
2006-12-31 167
2005-12-31 136
2004-12-31 118
2003-12-31 104
2007-12-31 88
Name: count, dtype: int64

En 2006, 167 kinases ont été référencées dans UniProt. La deuxième « meilleure » année est 2005 avec 136 protéines.
Toutes ces méthodes, enchaînées les unes à la suite des autres, peuvent vous sembler complexes, mais chacune d’elles

correspond à une étape du traitement des données. Bien sûr, on aurait pu créer des variables intermédiaires pour chaque
étape, mais cela aurait été plus lourd :

1 date1 = df["Creation date"].value_counts()
2 date2 = date1.resample("YE")
3 date3 = date2.sum()
4 date4 = date3.sort_values(ascending=False)
5 date4.head()

On aurait obtenu exactement le même résultat.

Remarque
Le method chaining 7 est une manière efficace et élégante de traiter des données avec pandas.

Enfin, pour obtenir un graphique de l’évolution du nombre de kinases référencées dans UniProt en fonction du temps,

7. https://www.youtube.com/watch?v=39MEeDLxGGg

Cours de Python / Université Paris Cité / UFR Sciences du Vivant 249

https://www.youtube.com/watch?v=39MEeDLxGGg

Chapitre 22. Module Pandas 22.5. Un exemple plus concret avec les kinases

on peut encore utiliser le method chaining :
1 import matplotlib.pyplot as plt
2 (df["Creation date"]
3 .value_counts()
4 .resample("YE")
5 .sum()
6 .plot()
7)
8 plt.savefig("kinases3.png")

On obtient ainsi le graphique de la figure 22.3.

Figure 22.3 – Évolution temporelle du nombre de kinases référencées dans UniProt.

On observe un pic du nombre de kinases référencées dans UniProt sur la période 2003-2007.

22.5.8 Transformation d’une colonne
Nous avons vu précédemment que la colonne PDB contenait de nombreuses valeurs manquantes (NaN). Toutefois, il

est intéressant de savoir ce que peut contenir cette colonne quand elle n’est pas vide :
1 (df
2 .loc[~ df["PDB"].isna()]
3 .head(3)
4)

Organism Length Creation date Mass PDB
Entry
A2CG49 Mouse 2964 2007-10-23 337000 1WFW;7UR2;
D3ZMK9 Rat 1368 2018-07-18 147716 6EWX;
O00141 Human 431 1998-12-15 48942 2R5T;3HDM;3HDN;7PUE;

• Ligne 2. La méthode isna() sélectionne les lignes qui contiennent des valeurs manquantes dans la colonne PDB,
puis l’opérateur ~ inverse cette sélection.

• Ligne 3. On limite l’affichage aux trois premières lignes.

250 Cours de Python / Université Paris Cité / UFR Sciences du Vivant

22.5. Un exemple plus concret avec les kinases Chapitre 22. Module Pandas

On découvre que la colonne PDB contient des identifiants de structures 3D de protéines. Ces identifiants sont séparés
par des points-virgules, y compris pour la dernière valeur.

Nous souhaitons compter le nombre de structures 3D pour chaque protéine. Pour cela, nous allons d’abord créer une
fonction qui compte le nombre de points-virgules dans une chaîne de caractères :

1 def count_structures(row):
2 if pd.isna(row["PDB"]):
3 return 0
4 else:
5 return row["PDB"].count(";")

Dans la ligne 2, la méthode .isna() teste si la valeur est manquante et si ce n’est pas le cas, la fonction renvoie le
nombre de points-virgules dans la chaîne de caractères de la colonne PDB (ligne 5).

On applique ensuite la fonction count_structures() au Dataframe avec la méthode .apply(). On crée la nouvelle
colonne nb_structures en même temps :

1 df["nb_structures"] = df.apply(count_structures, axis=1)
2 df.head()

Organism Length Creation date Mass PDB nb_structures
Entry
A0A0B4J2F2 Human 783 2018-06-20 84930 NaN 0
A4L9P5 Rat 1211 2007-07-24 130801 NaN 0
A0A1D6E0S8 Maize 856 2023-05-03 93153 NaN 0
A0A8I5ZNK2 Rat 528 2023-09-13 58360 NaN 0
A1Z7T0 Fruit fly 1190 2012-01-25 131791 NaN 0

Les premières lignes ne sont pas très intéressantes, car elles ne contiennent pas de structures 3D. Mais on peut
chercher les kinases qui ont le plus de structures 3D :

1 (df
2 .sort_values(by="nb_structures", ascending=False)
3 .filter(["Organism", "nb_structures"])
4 .head()
5)

• Ligne 2. On trie les données par ordre décroissant de la colonne nb_structures.
• Ligne 3. On ne conserve que les colonnes Organism et nb_structures à afficher.
• Ligne 4. On limite l’affichage aux cinq premières lignes.

Organism nb_structures
Entry
P24941 Human 453
P00533 Human 284
Q16539 Human 245
P68400 Human 238
P11309 Human 176

La kinase P24941 possède 453 structures 3D référencées dans UniProt. Les cinq kinases qui ont le plus de structures
3D sont toutes d’origine humaine.

Pour aller plus loin
Les ouvrages Python for Data Analysis (2022) de Wes McKinney et Effective Pandas (2021) de Matt Harrison sont

d’excellentes références pour pandas.

Remarque
La réponse à la devinette précédente est :

Une protéine kinase

Cours de Python / Université Paris Cité / UFR Sciences du Vivant 251

Chapitre 22. Module Pandas 22.6. Exercices

(Une protéine qui nage… dans une piscine… Vous l’avez ?)

22.6 Exercices

Conseil
Pour ces exercices, utilisez des notebooks Jupyter.

22.6.1 Analyse d’un jeu de données
Le jeu de données people.tsv contient les caractéristiques de quelques individus : prénom, sexe, taille (en cm) et

âge (en années). Par exemple :

name sex size age
simon male 175 33
clara female 167 45
serge male 181 44
claire female 174 31
… … … …

L’objectif de cet exercice est de manipuler ce jeu de données avec pandas, de sélectionner des données et d’en calculer
quelques statistiques.

Conseil
Si vous n’êtes pas familier avec le format de fichier .tsv, nous vous conseillons de consulter l’annexe A Quelques

formats de données en biologie.

1. Chargement du jeu de données
• Téléchargez le fichier people.tsv 8.
• Ouvrez ce fichier avec pandas et la fonction .read_csv(). N’oubliez pas de préciser le séparateur par défaut

avec l’argument sep="\t". Utilisez également l’argument index_col pour utiliser la colonne name comme
index.

• Affichez les six premières lignes du jeu de données.
• Combien de lignes contient le jeu de données ?

2. Sélections
• Déterminez la taille de Claire.
• Déterminez l’âge de Baptiste.
• Affichez, en une seule commande, l’âge de Paul et Bob.

3. Statistiques descriptives et table de comptage
• Déterminez la moyenne et la valeur minimale de la taille et l’âge des individus.
• Comptez ensuite le nombre de personnes de chaque sexe.

4. Statistiques par groupe
• Déterminez la taille et l’âge moyen chez les hommes et les femmes. Utilisez pour cela la méthode .groupby().

5. Sélections par filtre
• Déterminez combien de d’individus mesurent plus de 1,80 m.
• Quelle femme a moins de 35 ans ?

6. Sélections et statistiques
• Déterminez l’âge moyen des individus qui mesurent plus de 1,80 m.

8. https://python.sdv.u-paris.fr/data-files/people.tsv

252 Cours de Python / Université Paris Cité / UFR Sciences du Vivant

https://python.sdv.u-paris.fr/data-files/people.tsv

22.6. Exercices Chapitre 22. Module Pandas

• Déterminez la taille maximale des femmes qui ont plus de 35 ans.

Cours de Python / Université Paris Cité / UFR Sciences du Vivant 253

CHAPITRE 23

Avoir la classe avec les objets

La programmation orientée objet (POO) est un concept de programmation très puissant qui permet de structurer ses
programmes d’une manière nouvelle. En POO, on définit un « objet » qui peut contenir des « attributs » ainsi que des «
méthodes » qui agissent sur lui-même. Par exemple, on définit un objet « citron » qui contient les attributs « saveur » et
« couleur », ainsi qu’une méthode « presser » permettant d’en extraire le jus. En Python, on utilise une « classe » pour
construire un objet. Dans notre exemple, la classe correspondrait au « moule » utilisé pour construire autant d’objets
citrons que nécessaire.

Définition
Une classe définit des objets, qui sont des instances (des représentants) de cette classe. Dans ce chapitre, on utilisera

les mots objet ou instance pour désigner la même chose. Les objets peuvent posséder des attributs (variables associées
aux objets) et des méthodes (qui sont des fonctions associées aux objets et qui peuvent agir sur ces derniers, ou encore
les utiliser).

Dans les chapitres précédents, nous avons déjà mentionné qu’en Python tout est objet. Une variable de type int est
en fait un objet de type int, donc construit à partir de la classe int. Même chose pour les float et string, mais aussi pour
les list, tuple, dict, etc. Voilà pourquoi nous avons rencontré de nombreuses notations et mots de vocabulaire associés à
la POO depuis le début de ce cours.

La POO permet de produire du code plus compact et plus facilement réutilisable. L’utilisation de classes évite
l’utilisation de variables globales en créant ce qu’on appelle un espace de noms, propre à chaque objet et permettant
d’y encapsuler des attributs et des méthodes. De plus, la POO amène de nouveaux concepts tels que le polymorphisme
(capacité à redéfinir le comportement des opérateurs), ou bien encore l’héritage (capacité à définir une classe à partir
d’une classe pré-existante et d’y ajouter de nouvelles fonctionnalités). Tous ces concepts seront définis dans ce chapitre.

Malgré tous ces avantages, la POO peut paraître difficile à aborder pour le débutant, spécialement dans la conception
des programmes. Elle nécessite donc la lecture de nombreux exemples, mais surtout beaucoup de pratique. Bien structurer
ses programmes en POO est un véritable art. Il existe même des langages qui formalisent la construction de programmes
orientés objets, par exemple le langage UML 1.

Dans ce chapitre, nous vous donnerons tous les éléments pour démarrer la construction de vos premières classes.
Le chapitre 24 Avoir plus la classe avec les objets (en ligne) abordera des aspects plus poussés de la POO, comme le
polymorphisme, la composition, l’héritage, certains pièges à éviter, ainsi que des bonnes pratiques.

1. https://fr.wikipedia.org/wiki/UML_(informatique)

254

https://fr.wikipedia.org/wiki/UML_(informatique)

23.1. Construction d’une classe Chapitre 23. Avoir la classe avec les objets

Après la lecture de ces deux chapitres sur la POO avec Python, vous verrez d’un autre œil de nombreux exemples
évoqués dans les chapitres précédents, et vous comprendrez sans doute de nombreuses subtilités qui avaient pu vous
paraître absconses.

Enfin, il est vivement recommandé de lire ces deux chapitres sur la POO avant d’aborder le chapitre 25 Fenêtres
graphiques et Tkinter (en ligne).

23.1 Construction d’une classe
Nous allons voir dans cette rubrique comment définir une classe en reprenant notre exemple sur le citron, que nous

allons faire évoluer et complexifier. Attention, certains exemples sont destinés à vous montrer comment les classes
fonctionnent, mais leur utilisation n’aurait pas de sens dans un vrai programme. Ainsi, nous vous donnerons plus loin
dans ce chapitre les pratiques recommandées.

23.1.1 La classe minimale
En Python, le mot-clé class permet de créer sa propre classe, suivi du nom de cette classe. On se souvient, un

nom de classe commence toujours par une majuscule (voir le chapitre 16 Bonnes pratiques en programmation Python).
Comme d’habitude, cette ligne attend un bloc d’instructions indenté définissant le corps de la classe. Voyons un exemple
simple dans l’interpréteur :

1 >>> class Citron:
2 ... pass
3 ...
4 >>> Citron
5 <class '__main__.Citron'>
6 >>> type(Citron)
7 <class 'type'>
8 >>> citron1 = Citron()
9 >>> citron1

10 <__main__.Citron object at 0x7ff2193a20f0>
11 >>>

Ligne 1. La classe Citron est définie. Pas besoin de parenthèses comme avec les fonctions dans un cas simple comme
celui-là (nous verrons d’autres exemples plus loin où elles seront nécessaires).

Ligne 2. La classe ne contient rien, mais il faut mettre au moins une ligne, on met donc ici le mot-clé Python pass
qui ne fait rien (comme dans une fonction qui ne fait rien).

Lignes 4 et 5. Quand on tape le nom de notre classe Citron, Python nous indique que cette classe est connue.
Lignes 6 et 7. Lorsqu’on regarde le type de notre classe Citron, Python nous indique qu’il s’agit d’un type au même

titre que type(int). Nous avons donc créé un nouveau type !
Ligne 8. On crée une instance de la classe Citron, c’est-à-dire qu’on fabrique un représentant ou objet de la classe

Citron, que nous nommons citron1.
Lignes 9 et 10. Lorsqu’on tape le nom de l’instance citron1, l’interpréteur nous rappelle qu’il s’agit d’un objet de

type Citron, ainsi que son adresse en mémoire.
Il est également possible de vérifier qu’une instance est bien issue d’une classe donnée avec la fonction isinstance() :

1 >>> isinstance(citron1, Citron)
2 True

23.1.2 Ajout d’un attribut d’instance
Reprenons notre classe Citron et l’instance citron1 créée précédemment. Regardons les attributs et méthodes que

cet objet possède, puis tentons de lui ajouter un attribut :
1 >>> dir(citron1)
2 ['__class__', '__delattr__', '__dict__', [...], '__weakref__']
3 >>> citron1.couleur = "jaune"
4 >>> dir(citron1)
5 ['__class__', '__delattr__', '__dict__', [...], '__weakref__', 'couleur']
6 >>> citron1.couleur
7 'jaune'

Cours de Python / Université Paris Cité / UFR Sciences du Vivant 255

Chapitre 23. Avoir la classe avec les objets 23.1. Construction d’une classe

Lignes 1 et 2. L’objet possède de nombreuses méthodes ou attributs, qui commencent et qui se terminent par deux
caractères underscores. On se souvient que les underscores indiquent qu’il s’agit de méthodes ou attributs destinés au
fonctionnement interne de l’objet. Nous reviendrons sur certains d’entre-eux dans la suite.

Ligne 3. Ici on ajoute un attribut .couleur à l’instance citron1. Notez bien la syntaxe instance.attribut et
le point qui lie les deux.

Lignes 4 à 5. La fonction dir() nous montre que l’attribut .couleur a bien été ajouté à l’objet.
Lignes 6. La notation instance.attribut donne accès à l’attribut de l’objet.
L’attribut nommé .__dict__ est particulièrement intéressant. Il s’agit d’un dictionnaire qui listera les attributs créés

dynamiquement dans l’instance en cours :
1 >>> citron1 = Citron()
2 >>> citron1.__dict__
3 {}
4 >>> citron1.couleur = "jaune"
5 >>> citron1.__dict__
6 {'couleur': 'jaune'}

L’ajout d’un attribut depuis l’extérieur de la classe (on parle aussi du côté « client ») avec une syntaxe instance.
nouvel_attribut = valeur, créera ce nouvel attribut uniquement pour cette instance :

1 citron1 = Citron()
2 citron1.couleur = "jaune"
3 >>> citron1.__dict__
4 {'couleur': 'jaune'}
5 >>> citron2 = Citron()
6 >>> citron2.__dict__
7 {}

Si on crée une nouvelle instance de Citron, ici citron2, elle n’aura pas l’attribut
couleur à sa création.

Définition
Une variable ou attribut d’instance est une variable accrochée à une instance et qui lui est spécifique. Cet attribut

n’existe donc pas forcément pour toutes les instances d’une classe donnée et, d’une instance à l’autre, il ne prendra
pas forcément la même valeur. On peut retrouver tous les attributs d’instance d’une instance donnée avec une syntaxe
instance.__dict__.

L’instruction del fonctionne bien sûr pour détruire un objet (par exemple : del citron1), mais permet également
de détruire un attribut d’instance. Si on reprend notre exemple citron1 ci-dessus :

1 >>> citron1.__dict__
2 {'couleur': 'jaune'}
3 >>> del citron1.couleur
4 >>> citron1.__dict__
5 {}

Dans la suite, on montrera du code à tester dans un script : n’hésitez pas, comme d’habitude, à le tester par
vous-même.

23.1.3 Les attributs de classe
Si on ajoute une variable dans une classe comme on créait une variable locale dans une fonction, on crée ce qu’on

appelle un attribut de classe :
1 class Citron:
2 couleur = "jaune"

Définition

256 Cours de Python / Université Paris Cité / UFR Sciences du Vivant

23.1. Construction d’une classe Chapitre 23. Avoir la classe avec les objets

Une variable de classe ou attribut de classe est un attribut qui sera identique pour chaque instance. On verra plus
bas que de tels attributs suivent des règles différentes par rapport aux attributs d’instance.

À l’extérieur ou à l’intérieur d’une classe, un attribut de classe peut se retrouver avec une syntaxe NomClasse.
attribut :

1 print(Citron.couleur)

Ce code affiche jaune. L’attribut de classe est aussi visible depuis n’importe quelle instance :
1 class Citron:
2 couleur = "jaune"
3
4
5 if __name__ == "__main__":
6 citron1 = Citron()
7 print(citron1.couleur)
8 citron2 = Citron()
9 print(citron2.couleur)

L’exécution de ce code affichera :
jaune
jaune

Attention
Même si on peut retrouver un attribut de classe avec la syntaxe instance.attribut, un tel attribut ne peut pas

être modifié avec une instruction de cette forme :
1 instance.attribut = nouvelle_valeur

(voir la rubrique Différence entre les attributs de classe et d’instance).

23.1.4 Les méthodes
Dans notre classe, on pourra aussi ajouter des fonctions.

Définition
Une fonction définie au sein d’une classe est appelée méthode. Pour exécuter une méthode à l’extérieur de la classe,

la syntaxe générale est instance.méthode(). En général, on distingue attributs et méthodes (comme nous le ferons
systématiquement dans ce chapitre). Toutefois, il faut garder à l’esprit qu’une méthode est finalement un objet de type
fonction. Ainsi, elle peut être vue comme un attribut également, concept que vous croiserez peut-être en consultant de
la documentation externe.

Voici un exemple d’ajout d’une fonction, ou plus exactement d’une méthode, au sein d’une classe (attention à
l’indentation !) :

1 class Citron:
2 def coucou(self):
3 print("Coucou, je suis la mth .coucou() dans la classe Citron !")
4
5
6 if __name__ == "__main__":
7 citron1 = Citron()
8 citron1.coucou()

Lignes 2 et 3. On définit une méthode nommée .coucou(), qui va afficher un petit message. Attention, cette
méthode prend obligatoirement un argument que nous avons nommé ici self. Nous verrons dans les deux prochaines

Cours de Python / Université Paris Cité / UFR Sciences du Vivant 257

Chapitre 23. Avoir la classe avec les objets 23.1. Construction d’une classe

rubriques la signification de ce self. Si on a plusieurs méthodes dans une classe, on saute toujours une ligne entre elles
afin de faciliter la lecture (comme pour les fonctions).

Ligne 7 et 8. On crée l’instance citron1 de la classe Citron, puis on exécute la méthode .coucou() avec une
syntaxe instance.méthode().

Une méthode étant une fonction, elle peut bien sûr retourner une valeur :
1 class Citron:
2 def recup_saveur(self):
3 return "acide"
4
5
6 if __name__ == "__main__":
7 citron1 = Citron()
8 saveur_citron1 = citron1.recup_saveur()
9 print(saveur_citron1)

Vous l’aurez deviné, ce code affichera acide à l’écran. Comme pour les fonctions, une valeur retournée par une
méthode est récupérable dans une variable, ici saveur_citron1.

23.1.5 Le constructeur
Lors de l’instanciation d’un objet à partir d’une classe, il peut être intéressant de lancer des instructions, comme,

d’initialiser certaines variables. Pour cela, on ajoute une méthode spéciale nommée .__init__() : cette méthode s’appelle
le « constructeur » de la classe. Il s’agit d’une méthode spéciale dont le nom est entouré de doubles underscores : en
effet, elle sert au fonctionnement interne de notre classe et, sauf cas extrêmement rare, elle n’est pas supposée être lancée
comme une fonction classique par l’utilisateur de la classe. Ce constructeur est exécuté à chaque instanciation de notre
classe, et ne renvoie pas de valeur, il ne possède donc pas de return.

Remarque
Pour les débutants, vous pouvez sauter cette remarque. Certains auteurs préfèrent nommer .__init__() « instantia-

teur » ou « initialisateur », pour signifier qu’il existe une autre méthode appelée .__new__(), qui participe à la création
d’une instance. Vous n’avez bien sûr pas à retenir ces détails pour continuer la lecture de ce chapitre, retenez simplement
que nous avons décidé de nommer la méthode .__init__() « constructeur » dans cet ouvrage.

Pour bien comprendre comment cela fonctionne, nous allons suivre un exemple simple avec le site Python Tutor 2

(déjà utilisé dans les chapitres 10 et 13 sur les fonctions). N’hésitez pas à copier/coller ce code dans Python Tutor pour
le tester vous-même :

1 class Citron:
2 def __init__(self):
3 self.couleur = "jaune"
4
5
6 if __name__ == "__main__":
7 citron1 = Citron()
8 print(citron1.couleur)

Étape 1

Figure 23.1. Au départ, Python Tutor nous montre que la classe Citron a été mise en mémoire, elle contient pour
l’instant la méthode .__init__().

Étape 2

Figure 23.2. Nous créons ensuite l’instance citron1 à partir de la classe Citron. Notre classe Citron contenant
une méthode .__init__() (le constructeur), celle-ci est immédiatement exécutée au moment de l’instanciation. Cette
méthode prend un argument nommé self : cet argument est obligatoire. Il s’agit en fait d’une référence vers l’instance

2. http://www.pythontutor.com

258 Cours de Python / Université Paris Cité / UFR Sciences du Vivant

http://www.pythontutor.com

23.1. Construction d’une classe Chapitre 23. Avoir la classe avec les objets

Figure 23.1 – Fonctionnement d’un constructeur (étape 1).

en cours (instance que nous appellerons citron1 dans le programme principal, mais cela serait vrai pour n’importe quel
autre nom d’instance). Python Tutor nous indique cela par une flèche pointant vers un espace nommé Citron instance.
La signification du self est expliquée en détail dans la rubrique suivante.

Figure 23.2 – Fonctionnement d’un constructeur (étape 2).

Étape 3

Figure 23.3. Un nouvel attribut est créé s’appelant self.couleur. La chaîne de caractères couleur est ainsi «
accrochée » (grâce au caractère point) à l’instance en cours référencée par le self. Python Tutor nous montre cela par
une flèche qui pointe depuis le self vers la variable couleur (qui se trouve elle-même dans l’espace nommé Citron
instance). Si d’autres attributs étaient créés, ils seraient tous répertoriés dans cet espace Citron instance. Vous

l’aurez compris, l’attribut couleur est donc une variable d’instance (voir rubrique Ajout d’un attribut d’instance ci-
dessus). La méthode .__init__() étant intrinsèquement une fonction, Python Tutor nous rappelle qu’elle ne renvoie
rien (d’où le None dans la case Return value), une fois son exécution terminée. Et comme avec les fonctions classiques,
l’espace mémoire contenant les variables locales à cette méthode va être détruit une fois son exécution terminée.

Cours de Python / Université Paris Cité / UFR Sciences du Vivant 259

Chapitre 23. Avoir la classe avec les objets 23.1. Construction d’une classe

Figure 23.3 – Fonctionnement d’un constructeur (étape 3).

Étape 4

Figure 23.4. De retour dans le programme principal, Python Tutor nous indique que citron1 est une instance de
la classe Citron par une flèche pointant vers l’espace Citron instance. Cette instance contient un attribut nommé
couleur auquel on accéde avec la syntaxe citron1.couleur dans le print(). Notez que si l’instance s’était appelée
enorme_citron, on aurait utilisé enorme_citron.couleur pour accéder à l’attribut couleur.

Figure 23.4 – Fonctionnement d’un constructeur (étape 4).

Conseil
Dans la mesure du possible, nous vous conseillons de créer tous les attributs d’instance dont vous aurez besoin dans

le constructeur .__init__() plutôt que dans toute autre méthode. Ainsi, ils seront visibles dans toute la classe dès
l’instanciation.

23.1.6 Passage d’argument(s) à l’instanciation
Lors de l’instanciation, il est possible de passer des arguments au constructeur. Comme pour les fonctions, on peut

passer des arguments positionnels ou par mot-clé, et en créer autant que l’on veut (voir chapitre 10 Fonctions). Voici un
exemple :

260 Cours de Python / Université Paris Cité / UFR Sciences du Vivant

23.1. Construction d’une classe Chapitre 23. Avoir la classe avec les objets

1 class Citron:
2 def __init__(self, masse, couleur="jaune"):
3 self.masse = masse
4 self.couleur = couleur
5
6
7 if __name__ == "__main__":
8 citron1 = Citron(100)
9 print("citron1:", citron1.__dict__)

10 citron2 = Citron(150, couleur="blanc")
11 print("citron2:", citron2.__dict__)

On a ici un argument positionnel (masse) et un autre par mot-clé (couleur). Le code donnera la sortie suivante :
1 citron1: {'masse': 100, 'couleur': 'jaune'}
2 citron2: {'masse': 150, 'couleur': 'blanc'}

23.1.7 Mieux comprendre le rôle du self
Cette rubrique va nous aider à mieux comprendre le rôle du self à travers quelques exemples simples. Regardons le

code suivant dans lequel nous créons une nouvelle méthode .affiche_attributs() :
1 class Citron:
2 def __init__(self, couleur="jaune"):
3 self.couleur = couleur
4 var = 2
5
6 def affiche_attributs(self):
7 print(self)
8 print(self.couleur)
9 print(var)

10
11
12 if __name__ == "__main__":
13 citron1 = Citron()
14 citron1.affiche_attributs()

Ligne 3. On crée l’attribut couleur que l’on accroche à l’instance avec self.
Ligne 4. Nous créons cette fois-ci une variable var sans l’accrocher à self.
Ligne 6. Nous créons une nouvelle méthode dans la classe Citron qui se nomme

.affiche_attributs(). Comme pour le constructeur, cette méthode prend comme premier argument une variable
obligatoire, que nous avons à nouveau nommée self. Il s’agit encore une fois d’une référence vers l’objet ou instance
créé(e).

Attention
On peut appeler cette référence comme on veut, toutefois nous vous conseillons vivement de l’appeler self, car c’est

une convention en Python. Ainsi, quelqu’un qui lira votre code comprendra immédiatement de quoi il s’agit.

Ligne 7. Cette ligne va afficher le contenu de la variable self.
Lignes 8 et 9. On souhaite que notre méthode .affiche_attributs() affiche ensuite l’attribut de classe .couleur

ainsi que la variable var créée dans le constructeur .__init__().
L’exécution de ce code donnera :

$ python classe_exemple1.py
<__main__.Citron object at 0x7f4e5fb71438>
jaune
Traceback (most recent call last):
File "classe_exemple1.py", line 14, in <module>

citron1.affiche_attributs()
File "classe_exemple1.py", line 9, in affiche_attributs

print(var)
^^^

NameError: name 'var' is not defined. Did you mean: 'vars'?

Cours de Python / Université Paris Cité / UFR Sciences du Vivant 261

Chapitre 23. Avoir la classe avec les objets 23.1. Construction d’une classe

Ligne 2. La méthode .affiche_attributs() montre que le self est bien une référence vers l’instance (ou objet)
citron1 (ou vers n’importe quelle autre instance : par exemple, si on crée citron2 = Citron(), le self sera une
référence vers citron2).

Ligne 3. La méthode .affiche_attributs() affiche l’attribut .couleur, qui avait été créé précédemment dans
le constructeur. Vous voyez ici l’intérêt principal de l’argument self passé en premier à chaque méthode d’une classe :
il « accroche » n’importe quel attribut qui sera visible partout dans la classe, y compris dans une méthode où il n’a pas
été défini.

Lignes 4 à 9. La création de la variable var dans la méthode .__init__() sans l’accrocher à l’objet self fait
qu’elle n’est plus accessible en dehors de .__init__(). C’est exactement comme pour les fonctions classiques, var
est finalement une variable locale au sein de la méthode .__init__() et n’est plus visible lorsque l’exécution de cette
dernière est terminée (voir les chapitres 10 et 13 sur les fonctions). Ainsi, Python renvoie une erreur, car var n’existe
pas lorsque .affiche_attributs() est en exécution.

En résumé, le self est nécessaire lorsqu’on a besoin d’accéder à différents attributs dans les différentes méthodes
d’une classe. Le self est également nécessaire pour appeler une méthode de la classe depuis une autre méthode :

1 class Citron:
2 def __init__(self, couleur="jaune"):
3 self.couleur = couleur
4 self.affiche_message()
5
6 def affiche_message(self):
7 print("Le citron c'est trop bon !")
8
9

10 if __name__ == "__main__":
11 citron1 = Citron("jaune pâle")

Ligne 4. Nous appelons ici la méthode .affiche_message() depuis le constructeur. Pour appeler cette méthode
interne à la classe Citron, on doit utiliser une syntaxe self.méthode(). Le self sert donc pour accéder aux attributs,
mais aussi aux méthodes, ou plus généralement à tout ce qui est accroché à la classe.

Lignes 6 et 7. La méthode .affiche_message() est exécutée. On peut se poser la question « Pourquoi passer
l’argument self à cette méthode alors qu’on ne s’en sert pas dans celle-ci ? »

Attention
Même si on ne se sert d’aucun attribut dans une méthode, l’argument self (ou quel que soit son nom) est stricte-

ment obligatoire. En fait, la notation citron1.affiche_message() est équivalente à Citron.affiche_message
(citron1). Testez les deux pour voir ! Dans cette dernière instruction, on appelle la méthode accrochée à la classe
Citron et on lui passe explicitement l’instance citron1 en tant qu’argument. La notation citron1.affiche_message
() contient donc en filigrane un argument, à savoir la référence vers l’instance citron1 que l’on appelle self au sein
de la méthode.

Conseil
C’est la première notation citron1.affiche_attributs() (ou plus généralement instance.méthode()), plus

compacte, qui sera toujours utilisée.

Ligne 11. On crée l’instance citron1 en lui passant l’argument "jaune pâle". La variable d’instance couleur
prendra ainsi cette valeur au lieu de celle par défaut ("jaune"). À noter, l’instanciation affichera le message Le citron
c'est trop bon ! puisque la méthode .affiche_attributs() est appelée dans le constructeur .__init__().

Afin de bien comprendre les différentes étapes des codes de cette rubrique, nous vous conseillons de les retester de
votre côté dans Python Tutor.

262 Cours de Python / Université Paris Cité / UFR Sciences du Vivant

23.2. Exercices Chapitre 23. Avoir la classe avec les objets

23.1.8 Remarque finale
Dans ce chapitre, nous avons vu les bases pour construire une classe. Toutefois, nous avons encore de nombreuses

notions à vous montrer afin de pouvoir utiliser la POO à plein régime. Dans le chapitre 24 Avoir plus la classe avec les
objets (en ligne), nous verrons les concepts de polymorphisme, composition et héritage qui donnent toute la puissance
à la POO. D’autres notions comme les décorateurs property seront abordées permettant le contrôle des attributs par
un utilisateur de la classe. Nous donnerons également des conseils généraux quand vous utilisez la POO. Le chapitre 25
Fenêtres graphiques et Tkinter (en ligne) illustrera l’utilisation de la POO pour concevoir des fenêtres graphiques avec
le module Tkinter.

23.2 Exercices

Conseil
Pour ces exercices, créez des scripts puis exécutez-les dans un shell.

23.2.1 Classe Rectangle
Téléchargez le script rectangle.py 3 qui implémente la classe Rectangle.
Complétez le programme principal pour que le script :
• crée une instance rectangle de la classe Rectangle ;
• affiche les attributs d’instance largeur, longueur et couleur ;
• calcule et affiche la surface de rectangle ;
• affiche une ligne vide ;
• change le rectangle en carré de 30 m de côté ;
• calcule et affiche la surface de ce carré ;
• crée une autre instance rectangle2, aux dimensions et à la couleur que vous souhaitez (soyez créatif !) et qui

affiche les attributs et la surface de ce nouveau rectangle.

23.2.2 Classe Rectangle améliorée
Entraînez-vous avec la classe Rectangle. Créez la méthode calcule_perimetre() qui calcule le périmètre d’un

objet rectangle. Testez sur un exemple simple (largeur = 10 m, longueur = 20 m).

23.2.3 Classe Atome
Créez une nouvelle classe Atome avec les attributs x, y, z, qui contiennent les coordonnées atomiques, et la méthode

calcul_distance(), qui calcule la distance entre deux atomes. Testez cette classe sur plusieurs exemples.

23.2.4 Classe Atome améliorée
Améliorez la classe Atome en lui ajoutant un nouvel attribut masse, qui correspond à la masse atomique, ainsi qu’une

nouvelle méthode .calcule_centre_masse(). Que se passe-t-il quand vous utilisez l’instruction print() avec une
instance d’un objet Atome ? Dans votre classe, ajoutez la méthode suivante :

1 def __str__(self):
2 """Redéfinition du comportement avec print()."""
3 return f"coords({self.x}, {self.y}, {self.z}) ; mass = {self.masse}"

Utilisez à nouveau l’instruction print() avec un objet de la classe Atome. Que constatez-vous par rapport au
précédent print() ?

3. https://python.sdv.u-paris.fr/data-files/rectangle.py

Cours de Python / Université Paris Cité / UFR Sciences du Vivant 263

https://python.sdv.u-paris.fr/data-files/rectangle.py

CHAPITRE 24

Avoir plus la classe avec les objets

Dans le chapitre précédent, nous avons vu les bases sur comment créer une classe, les notions d’attributs d’instance
et de classe, le fonctionnent d’un constructeur et comment passer des arguments lors de l’instanciation. Nous avons vu
qu’une classe pouvait être vue comme un constructeur de conteneur (chaque conteneur construit est une instance), qu’on
pouvait y mettre tout un tas de variables ou objets (les attributs d’instance), mais également nous pouvions définir des
méthodes réalisant des actions pour modifier ce que contient l’objet.

Dans le présent chapitre, nous abordons de nouvelles notions qui augmentent la puissance des classes, à savoir le
polymorphisme, l’héritage et la composition. Nous verrons également les décorateurs property permettant le contrôle de
l’accès aux attributs. À la fin du chapitre, nous vous donnerons des bonnes pratiques pour construire vos classes. Mais
avant d’aborder ces sujets, nous revenons sur un concept important en Python, à savoir les espaces de noms.

24.1 Espace de noms
La notion d’espace de noms est importante lorsqu’on étudie les classes. Nous avons déjà croisé ce concept à plusieurs

reprises. D’abord dans le chapitre 13 Plus sur les fonctions, puis dans le chapitre 15 Création de modules, et maintenant
dans ce chapitre. De quoi s’agit-il ?

Définition
Dans la documentation officielle 1, un espace de noms est défini comme suit : « a namespace is a mapping from

names to objects ». Un espace de noms, c’est finalement une correspondance entre des noms et des objets. Un espace
de noms peut être vu aussi comme une capsule dans laquelle on trouve des noms d’objets. Par exemple, le programme
principal ou une fonction représentent chacun un espace de noms, un module aussi, et bien sûr une classe ou l’instance
d’une classe également.

Différents espaces de noms peuvent contenir des objets de même nom sans que cela ne pose de problème. Parce qu’ils
sont chacun dans un espace différent, ils peuvent cohabiter sans risque d’écrasement de l’un par l’autre. Par exemple, à
chaque fois que l’on appelle une fonction, un espace de noms est créé pour cette fonction. Python Tutor nous montre
cet espace sous la forme d’une zone dédiée (voir les chapitres 10 et 13 sur les fonctions). Si cette fonction appelle une
autre fonction, un nouvel espace est créé, bien distinct de la fonction appelante (ce nouvel espace peut donc contenir

1. https://docs.python.org/fr/3/tutorial/classes.html#python-scopes-and-namespaces

264

https://docs.python.org/fr/3/tutorial/classes.html#python-scopes-and-namespaces

24.1. Espace de noms Chapitre 24. Avoir plus la classe avec les objets

un objet de même nom). En définitive, ce qui va compter, c’est de savoir quelles règles Python va utiliser pour chercher
dans les différents espaces de noms pour finalement accéder à un objet.

Nous allons dans cette rubrique refaire le point sur ce que l’on a appris dans cet ouvrage sur les espaces de noms en
Python, puis se pencher sur les spécificités de ce concept dans les classes.

24.1.1 Rappel sur la règle LGI
Comme vu dans le chapitre 10 Fonctions, la règle LGI peut être résumée ainsi : Local > Global > Interne. Lorsque

Python rencontre un objet, il utilise cette règle de priorité pour accéder à la valeur de celui-ci. Si on est dans une fonction
(ou une méthode), Python va d’abord chercher l’espace de noms local à cette fonction. S’il ne trouve pas de nom il va
ensuite chercher l’espace de noms du programme principal (ou celui du module), donc des variables globales s’y trouvant.
S’il ne trouve pas de nom, il va chercher dans les commandes internes à Python (on parle des Built-in Functions 2 et des
Built-in Constants 3). Si aucun objet n’est trouvé, Python renvoie une erreur.

24.1.2 Gestion des noms dans les modules
Les modules représentent aussi un espace de noms en soi. Afin d’illustrer cela, jetons un coup d’œil à ce programme

test_var_module.py :
1 import mod
2
3 i = 1000000
4 j = 2
5
6 print("Dans prog principal i:", i)
7 print("Dans prog principal j:", j)
8
9 mod.fct()

10 mod.fct2()
11
12 print("Dans prog principal i:", i)
13 print("Dans prog principal j:", j)

Le module mod.py contient les instructions suivantes :
1 def fct():
2 i = -27478524
3 print("Dans module, i local:", i)
4
5
6 def fct2():
7 print("Dans module, j global:", j)
8
9

10 i = 3.14
11 j = -76

L’exécution de test_var_module.py donnera :
$ python ./test_var_module.py
Dans prog principal i: 1000000
Dans prog principal j: 2
Dans module, i local: -27478524
Dans module, j global: -76
Dans prog principal i: 1000000
Dans prog principal j: 2

Lignes 3 et 4. On a bien les valeurs de i et j définies dans le programme principal de test.py.
Lignes 9 et 10. Lorsqu’on exécute mod.fct(), la valeur de i sera celle définie localement dans cette fonction.

Lorsqu’on exécute mod.fct2(), la valeur de j sera celle définie de manière globale dans le module.
Lignes 12 et 13. De retour dans notre programme principal, les variables i et j existent toujours et n’ont pas été

modifiées par l’exécution de fonctions du module mod.py.

2. https://docs.python.org/fr/3/library/functions.html%20comme%20par%20exemple%20%60print()%60
3. https://docs.python.org/fr/3/library/constants.html

Cours de Python / Université Paris Cité / UFR Sciences du Vivant 265

https://docs.python.org/fr/3/library/functions.html%20comme%20par%20exemple%20%60print()%60
https://docs.python.org/fr/3/library/constants.html

Chapitre 24. Avoir plus la classe avec les objets 24.1. Espace de noms

En résumé, lorsqu’on lance une méthode d’un module, c’est l’espace de noms de celui-ci qui est utilisé. Bien sûr,
toutes les variables du programme principal / fonction / méthode appelant ce module sont conservées telles quelles, et
on les retrouve intactes lorsque l’exécution de la fonction du module est terminée. Un module a donc son propre espace
de noms qui est bien distinct de tout programme principal / fonction / méthode appelant un composant de ce module.
Enfin, les variables globales créées dans notre programme principal ne sont pas accessibles dans le module lorsque celui-ci
est en exécution.

24.1.3 Gestion des noms avec les classes

On vient de voir qu’un module avait son propre espace de noms, mais qu’en est-il des classes ? En utilisant les exemples
vus depuis le début de ce chapitre, vous avez certainement la réponse. Une classe possède par définition son propre espace
de noms qui ne peut être en aucun cas confondu avec celui d’une fonction ou d’un programme principal. Reprenons un
exemple simple :

1 class Citron:
2 def __init__(self, saveur="acide", couleur="jaune"):
3 self.saveur = saveur
4 self.couleur = couleur
5 print("Dans __init__(), vous venez de créer un citron:",
6 self.affiche_attributs())
7
8 def affiche_attributs(self):
9 return f"{self.saveur}, {self.couleur}"

10
11
12 if __name__ == "__main__":
13 saveur = "sucrée"
14 couleur = "orange"
15 print(f"Dans le programme principal: {saveur}, {couleur}")
16 citron1 = Citron("très acide", "jaune foncé")
17 print("Dans citron1.affiche_attributs():", citron1.affiche_attributs())
18 print(f"Dans le programme principal: {saveur}, {couleur}")

Lorsqu’on exécutera ce code, on obtiendra :

Dans le programme principal: sucrée, orange
Dans __init__(), vous venez de créer un citron: très acide, jaune foncé
Dans citron1.affiche_attributs(): très acide, jaune foncé
Dans le programme principal: sucrée, orange

Les deux variables globales saveur et couleur du programme principal ne peuvent pas être confondues avec les
variables d’instance portant le même nom. Au sein de la classe, on utilisera pour récupérer ces dernières self.saveur
et self.couleur. À l’extérieur, on utilisera instance.saveur et instance.couleur. Il n’y a donc aucun risque de
confusion possible avec les variables globales saveur et couleur, on accède à chaque variable de la classe avec un nom
distinct (qu’on soit à l’intérieur ou à l’extérieur de la classe).

Ceci est également vrai pour les méthodes. Si par exemple, on a une méthode avec un certain nom, et une fonction
du module principal avec le même nom, regardons ce qui se passe :

266 Cours de Python / Université Paris Cité / UFR Sciences du Vivant

24.1. Espace de noms Chapitre 24. Avoir plus la classe avec les objets

1 class Citron:
2 def __init__(self):
3 self.couleur = "jaune"
4 self.affiche_coucou()
5 affiche_coucou()
6
7 def affiche_coucou(self):
8 print("Coucou interne !")
9

10
11 def affiche_coucou():
12 print("Coucou externe")
13
14
15 if __name__ == "__main__":
16 citron1 = Citron()
17 citron1.affiche_coucou()
18 affiche_coucou()

Lorsqu’on va exécuter le code, on obtiendra :
Coucou interne !
Coucou externe
Coucou interne !
Coucou externe

À nouveau, il n’y a pas de conflit possible pour l’utilisation d’une méthode ou d’une fonction avec le même nom. À
l’intérieur de la classe on utilise self.affiche_coucou() pour la méthode et affiche_coucou() pour la fonction.
À l’extérieur de la classe, on utilise instance.affiche_coucou() pour la méthode et affiche_coucou() pour la
fonction.

Dans cette rubrique, nous venons de voir une propriété des classes extrêmement puissante : une classe crée au-
tomatiquement son propre espace de noms. Cela permet d’encapsuler à l’intérieur tous les attributs et méthodes
dont on a besoin, sans avoir aucun risque de conflit de nom avec l’extérieur (variables locales, globales ou provenant de
modules). L’utilisation de classes évitera ainsi l’utilisation de variables globales qui, on l’a vu aux chapitres 10 et 13 sur
les fonctions, sont à proscrire absolument. Tout cela concourt à rendre le code plus lisible.

Dans le chapitre 25 Fenêtres graphiques et Tkinter (en ligne), vous verrez une démonstration de l’utilité de tout
encapsuler dans une classe afin d’éviter les variables globales.

24.1.4 Gestion des noms entre les attributs de classe et d’instance
Si vous lisez cette rubrique sur l’espace de noms sans avoir lu ce chapitre depuis le début, nous vous conseillons

vivement de lire attentivement la rubrique Différence entre les attributs de classe et d’instance. La chose importante
à retenir sur cette question est la suivante : si un attribut de classe et un attribut d’instance ont le même nom, c’est
l’attribut d’instance qui est prioritaire.

Pour aller plus loin
Il existe d’autres règles concernant les espace de noms. L’une d’elle, que vous pourriez rencontrer, concerne la gestion

des noms avec des fonctions imbriquées. Et oui, Python autorise cela ! Par exemple :
1 def fonction1():
2 [...]
3
4 def fct_dans_fonction1():
5 [...]

Là encore, il existe certaines règles de priorités d’accès aux objets spécifiques à ce genre de cas, avec l’apparition d’un
nouveau mot-clé nommé nonlocal. Toutefois ces aspects vont au-delà du présent ouvrage. Pour plus d’informations sur
les fonctions imbriquées et la directive nonlocal, vous pouvez consulter la documentation officielle 4.

D’autres subtilités concerneront la gestion des noms en cas de définition d’une nouvelle classe héritant d’une classe

4. https://docs.python.org/3/tutorial/classes.html#python-scopes-and-namespaces

Cours de Python / Université Paris Cité / UFR Sciences du Vivant 267

https://docs.python.org/3/tutorial/classes.html#python-scopes-and-namespaces

Chapitre 24. Avoir plus la classe avec les objets 24.2. Polymorphisme

mère. Ces aspects sont présentés dans la rubrique Héritage de ce chapitre.

24.2 Polymorphisme
Nous allons voir maintenant des propriétés très importantes des classes en Python, le polymorphisme dans cette

rubrique et l’héritage dans la suivante. Ces deux concepts donnent un surplus de puissance à la POO par rapport à la
programmation classique.

24.2.1 Principe
Commençons par le polymorphisme. Dans la vie, celui-ci évoque la capacité à prendre plusieurs apparences, qu’en

est-il en programmation ?

Définition
En programmation, le polymorphisme est la capacité d’une fonction (ou méthode) à se comporter différemment en

fonction de l’objet qui lui est passé. Une fonction donnée peut donc avoir plusieurs définitions.

Prenons un exemple concret de polymorphisme : la fonction Python sorted() va trier par ordre ASCII si l’argument
est une chaîne de caractères, et elle va trier par ordre croissant lorsque l’argument est une liste d’entiers :

1 >>> sorted("citron")
2 ['c', 'i', 'n', 'o', 'r', 't']
3 >>> sorted([1, -67, 42, 0, 81])
4 [-67, 0, 1, 42, 81]

Le polymorphisme est intimement lié au concept de redéfinition des opérateurs que nous avons déjà croisé à plusieurs
reprises dans ce livre.

Définition
La redéfinition des opérateurs est la capacité à redéfinir le comportement d’un opérateur en fonction des opérandes

utilisées (on rappelle dans l’expression 1 + 1, + est l’opérateur d’addition et les deux 1 sont les opérandes).

Un exemple classique de redéfinition des opérateurs concerne l’opérateur +. Si les opérandes sont de type numérique,
il fait une addition, si elles sont des chaînes de caractère il fait une concaténation :

1 >>> 2 + 2
2 4
3 >>> "ti" + "ti"
4 'titi'

Nous verrons dans la rubrique suivante sur l’héritage qu’il est également possible de redéfinir des méthodes d’une
classe, c’est-à-dire leur donner une nouvelle définition.

24.2.2 Méthodes dunder ou magiques
Comment Python permet-il ces prouesses que sont le polymorphisme et la redéfinition des opérateurs ? Et bien, il

utilise des méthodes dites dunder ou magiques.

Définition
Une méthode dunder (dunder method) est une méthode spéciale dont le nom est entouré de double underscores.

Par exemple, la méthode .__init__() est une méthode dunder. Ces méthodes sont, la plupart du temps, destinées
au fonctionnement interne de la classe. Nombre d’entre elles sont destinées à changer le comportement de fonctions ou
opérateurs internes à Python avec les instances d’une classe que l’on a créée. Le mot dunder signifie littéralement double
underscore. On parle aussi parfois de méthodes magiques.

268 Cours de Python / Université Paris Cité / UFR Sciences du Vivant

24.2. Polymorphisme Chapitre 24. Avoir plus la classe avec les objets

Nous allons prendre un exemple concret. Imaginons que suite à la création d’une classe, nous souhaitions que Python
affiche un message personnalisé lors de l’utilisation de la fonction print() avec une instance de cette classe. La méthode
dunder qui permettra cela est nommée .__str__() : elle redéfinit le comportement d’une instance avec la fonction
print().

1 class CitronBasique:
2 def __init__(self, couleur="jaune", taille="standard"):
3 self.couleur = "jaune"
4 self.taille = "standard"
5
6
7 class CitronCool:
8 def __init__(self, couleur="jaune", taille="standard"):
9 self.couleur = couleur

10 self.taille = taille
11
12 def __str__(self):
13 return (f"Votre citron est de couleur {self.couleur} "
14 f"et de taille {self.taille}")
15
16
17 if __name__ == "__main__":
18 citron1 = CitronBasique()
19 print(citron1)
20 citron2 = CitronCool("jaune foncée", "minuscule")
21 print(citron2)

Lignes 1 à 4. Création d’une classe CitronBasique dans laquelle il n’y a qu’un constructeur.
Lignes 7 à 14. Création d’une classe CitronCool où nous avons ajouté la nouvelle méthode .__str__(). Cette

dernière renvoie une chaîne de caractères contenant la description de l’instance.
Lignes 18 à 21. On crée une instance de chaque classe, et on utilise la fonction print() pour voir leur contenu.
L’exécution de ce code affichera la sortie suivante :

1 <__main__.CitronBasique object at 0x7ffe23e717b8>
2 Votre citron est de couleur jaune foncée et de taille minuscule 8-)

L’utilisation de la fonction print() sur l’instance citron1 construite à partir de la classe CitronBasique affiche
le message abscons que nous avons déjà croisé. Par contre, pour l’instance citron2 de la classe CitronCool, le texte
correspond à celui retourné par la méthode dunder .__str__(). Nous avons donc redéfini comment la fonction print()
se comportait avec une instance de la classe CitronCool. Notez que str(citron2) donnerait le même message que
print(citron2).

Ce mécanisme pourra être reproduit avec de très nombreux opérateurs et fonctions de bases de Python. En effet, il
existe une multitude de méthodes dunder, en voici quelques unes :

• .__repr__() : redéfinit le message obtenu lorsqu’on tape le nom de l’instance dans l’interpréteur ;
• .__add__() : redéfinit le comportement de l’opérateur + ;
• .__mul__() : redéfinit le comportement de l’opérateur * ;
• .__del__() : redéfinit le comportement de la fonction del.
Si on conçoit une classe produisant des objets séquentiels (comme des listes ou des tuples), il existe des méthodes

dunder telles que :
• .__len__() : redéfinit le comportement de la fonction len() ;
• .__getitem__() : redéfinit le comportement pour récupérer un élément ou des tranches sur un objet séquentiel.

Pour les tranches vous aurez également besoin de la fonction builtin slice() que nous ne développerons pas plus
en avant dans le cadre de ce cours.

Conseil
Nous vous conseillons la page de Trey Hunner 5 qui est bien complète sur comment mettre en place une méthode

.__getitem__() avec la fonction slice().

5. https://www.pythonmorsels.com/implementing-slicing/

Cours de Python / Université Paris Cité / UFR Sciences du Vivant 269

https://www.pythonmorsels.com/implementing-slicing/

Chapitre 24. Avoir plus la classe avec les objets 24.3. Héritage

Certaines méthodes dunder font des choses assez impressionnantes. Par exemple, la méthode .__call__() crée des
instances que l’on peut appeler comme des fonctions ! Dans cet exemple, nous allons vous montrer que l’on peut ainsi
créer un moyen inattendu pour mettre à jour des attributs d’instance :

1 class Citronnier:
2 def __init__(self, nb_citrons, age):
3 self.nb_citrons, self.age = nb_citrons, age
4
5 def __call__(self, nb_citrons, age):
6 self.nb_citrons, self.age = nb_citrons, age
7
8 def __str__(self):
9 return (f"Ce citronnier a {self.age} ans "

10 f"et {self.nb_citrons} citrons")
11
12
13 if __name__ == "__main__":
14 citronnier1 = Citronnier(10, 3)
15 print(citronnier1)
16 citronnier1(30, 4)
17 print(citronnier1)

À la ligne 16, on utilise une notation instance(arg1, arg2), ce qui va automatiquement appeler la méthode dunder
.__call__() qui mettra à jour les deux attributs d’instance nbcitrons et age (lignes 5 et 6). Ce code affichera la
sortie suivante :
Ce citronnier a 3 ans et 10 citrons
Ce citronnier a 4 ans et 30 citrons

Pour aller plus loin
• Nous vous avons montré l’idée qu’il y avait derrière le polymorphisme, et avec cela vous avez assez pour vous jeter à

l’eau et commencer à construire vos propres classes. L’apprentissage de toutes les méthodes dunder va bien sûr au-
delà du présent ouvrage. Toutefois, si vous souhaitez aller plus loin, nous vous conseillons la page de Trey Hunner 6

qui est particulièrement complète et très bien faite. Une autre page qui a un peu vieilli mais reste intéressante
est celle de Rafe Kettler 7. Enfin, nous développons les méthodes dunder .__iter__() et .__next__() dans la
rubrique sur les itérateurs du chapitre 26 Remarques complémentaires.

24.3 Héritage
24.3.1 Prise en main

L’héritage peut évoquer la capacité qu’ont nos parents à nous transmettre certains traits physiques ou de caractère
(ne dit-on pas, j’ai hérité ceci ou cela de ma mère ou de mon père ?). Qu’en est-il en programmation ?

Définition
En programmation, l’héritage est la capacité d’une classe d’hériter des propriétés d’une classe pré-existante. On parle

de classe mère et de classe fille. En Python, l’héritage peut être multiple lorsqu’une classe fille hérite de plusieurs classes
mères.

En Python, lorsque l’on veut créer une classe héritant d’une autre classe, on ajoutera après le nom de la classe fille
le nom de la ou des classe(s) mère(s) entre parenthèses :

6. https://www.pythonmorsels.com/every-dunder-method/
7. https://rszalski.github.io/magicmethods

270 Cours de Python / Université Paris Cité / UFR Sciences du Vivant

https://www.pythonmorsels.com/every-dunder-method/
https://rszalski.github.io/magicmethods

24.3. Héritage Chapitre 24. Avoir plus la classe avec les objets

1 class Mere1:
2 # contenu de la classe mère 1
3
4
5 class Mere2:
6 # contenu de la classe mère 2
7
8
9 class Fille1(Mere1):

10 # contenu de la classe fille 1
11
12
13 class Fille2(Mere1, Mere2):
14 # contenu de la classe fille 2

Dans cet exemple, la classe Fille1 hérite de la classe Mere1 et la classe Fille2 hérite des deux classes Mere1 et
Mere2. Dans le cas de la classe Fille2, on parle d’héritage multiple. Voyons maintenant un exemple concret :

1 class Mere:
2 def bonjour(self):
3 return "Vous avez le bonjour de la classe mère !"
4
5
6 class Fille(Mere):
7 def salut(self):
8 return "Un salut de la classe fille !"
9

10
11 if __name__ == "__main__":
12 fille = Fille()
13 print(fille.salut())
14 print(fille.bonjour())

Lignes 1 à 3. On définit une classe Mere avec une méthode .bonjour().
Lignes 6 à 8. On définit une classe Fille qui hérite de la classe Mere. Cette classe fille contient une nouvelle méthode

.salut().
Lignes 12 à 14. Après instanciation de la classe Fille, on utilise la méthode .salut(), puis la méthode .bonjour()

héritée de la classe mère.
Ce code affiche la sortie suivante :

Un salut de la classe fille !
Vous avez le bonjour de la classe mère !

Nous commençons à entrevoir la puissance de l’héritage. Si on possède une classe avec de nombreuses méthodes et
que l’on souhaite en ajouter de nouvelles, il suffit de créer une classe fille héritant d’une classe mère.

En revenant à notre exemple, une instance de la classe Fille sera automatiquement une instance de la classe Mere.
Regardons dans l’interpréteur :

1 >>> fille = Fille()
2 >>> isinstance(fille, Fille)
3 True
4 >>> isinstance(fille, Mere)
5 True

Si une méthode de la classe fille possède le même nom que celle de la classe mère, c’est la première qui prend la
priorité. Dans ce cas, on dit que la méthode est redéfinie (en anglais on parle de method overriding), tout comme on
parlait de redéfinition des opérateurs un peu plus haut. C’est le même mécanisme, car la redéfinition des opérateurs
revient finalement à redéfinir une méthode dunder (comme par exemple la méthode .__add__() pour l’opérateur +).

Voyons un exemple :

Cours de Python / Université Paris Cité / UFR Sciences du Vivant 271

Chapitre 24. Avoir plus la classe avec les objets 24.3. Héritage

1 class Mere:
2 def bonjour(self):
3 return "Vous avez le bonjour de la classe mère !"
4
5
6 class Fille2(Mere):
7 def bonjour(self):
8 return "Vous avez le bonjour de la classe fille !"
9

10
11 if __name__ == "__main__":
12 fille = Fille2()
13 print(fille.bonjour())

Ce code va afficher Vous avez le bonjour de la classe fille !. La méthode .bonjour() de la classe fille
a donc pris la priorité sur celle de la classe mère. Ce comportement provient de la gestion des espaces de noms par
Python, il est traité en détail dans la rubrique suivante.

Remarque
À ce point, nous pouvons faire une note de sémantique importante. Python utilise le mécanisme de redéfinition de

méthode (method overriding), c’est-à-dire qu’on redéfinit une méthode héritée d’une classe mère. Il ne faut pas confondre
cela avec la surcharge de fonction (function overloading) qui désigne le fait d’avoir plusieurs définitions d’une fonction
selon le nombres d’arguments et/ou leur type (la surcharge n’est pas supportée par Python contrairement à d’autres
langages orientés objet).

24.3.2 Ordre de résolution des noms
Vous l’avez compris, il y aura un ordre pour la résolution des noms d’attributs ou de méthodes en fonction du ou

des héritage(s) de notre classe (à nouveau, cela provient de la manière dont Python gère les espaces de noms). Prenons
l’exemple d’une classe déclarée comme suit class Fille(Mere1, Mere2):. Si on invoque un attribut ou une méthode
sur une instance de cette classe, Python cherchera d’abord dans la classe Fille. S’il ne trouve pas, il cherchera ensuite
dans la première classe mère (Mere1 dans notre exemple). S’il ne trouve pas, il cherchera dans les ancêtres de cette
première mère (si elle en a), et ce en remontant la filiation (d’abord la grand-mère, puis l’arrière grand-mère, etc). S’il n’a
toujours pas trouvé, il cherchera dans la deuxième classe mère (Mere2 dans notre exemple) puis dans tous ses ancêtres.
Et ainsi de suite, s’il y a plus de deux classes mères. Bien sûr, si aucun attribut ou méthode n’est trouvé, Python renverra
une erreur.

Il est en général possible d’avoir des informations sur l’ordre de résolution des méthodes d’une classe en évoquant la
commande help() sur celle-ci ou une de ses instances. Par exemple, nous verrons dans le chapitre suivant le module
Tkinter, imaginons que nous créions une instance de la classe principale du module Tkinter nommée Tk :

1 >>> import tkinter as tk
2 >>> racine = tk.Tk()

En invoquant la commande help(racine), l’interpréteur nous montre :
1 Help on class Tk in module tkinter:
2
3 class Tk(Misc, Wm)
4 | Toplevel widget of Tk which represents mostly the main window
5 | of an application. It has an associated Tcl interpreter.
6 |
7 | Method resolution order:
8 | Tk
9 | Misc

10 | Wm
11 | builtins.object
12 [...]

On voit tout de suite que la classe Tk hérite de deux autres classes Misc et Wm. Ensuite, le help indique l’ordre de
résolution des méthodes : d’abord la classe Tk elle-même, ensuite ses deux mères Misc puis Wm, et enfin une dernière

272 Cours de Python / Université Paris Cité / UFR Sciences du Vivant

24.3. Héritage Chapitre 24. Avoir plus la classe avec les objets

classe nommée builtins.object dont nous allons voir la signification maintenant.

Remarque

En Python, il existe une classe interne nommée object qui est en quelque sorte la classe ancêtre de tous les objets.
Toutes les classes héritent de object.

Pour vous en convaincre, nous pouvons recréer une classe vide :

1 >>> class Citron:
2 ... pass

Puis ensuite regarder l’aide sur l’une de ses instances :

1 Help on class Citron in module __main__:
2
3 class Citron(builtins.object)
4 | Data descriptors defined here:
5 |
6 | __dict__
7 | dictionary for instance variables (if defined)
8 [...]

L’aide nous montre que Citron a hérité de builtins.object bien que nous ne l’ayons pas déclaré explicitement.
Cela se fait donc de manière implicite.

Remarque

Le module builtins possède toutes les fonctions internes à Python. Il est donc pratique pour avoir une liste de toutes ces
fonctions internes en un coup d’œil. Regardons cela avec les deux instructions import builtins puis dir(builtins) :

1 >>> import builtins
2 >>> dir(builtins)
3 ['ArithmeticError', 'AssertionError', 'AttributeError', [...]
4 'ascii', 'bin', 'bool', 'bytearray', 'bytes', 'callable', 'chr', [...]
5 'list', 'locals', 'map', 'max', 'memoryview', 'min', 'next', 'object', [...]
6 'str', 'sum', 'super', 'tuple', 'type', 'vars', 'zip']

Au début, on y trouve les exceptions commençant par une lettre majuscule (voir le chapitre 26 Remarques complé-
mentaires (en ligne) pour la définition d’une exception), puis les fonctions Python de base tout en minuscule. On retrouve
par exemple list ou str, mais il y a aussi object. Toutefois ces fonctions étant chargées de base dans l’interpréteur,
l’importation de builtins n’est pas obligatoire : par exemple list revient au même que builtins.list, ou object
revient au même que builtins.object.

En résumé, la syntaxe class Citron: sera équivalente à
class Citron(builtins.object):
ou à class Citron(object):.

Ainsi, même si on crée une classe Citron vide (contenant seulement une commande pass), elle possède déjà tout
une panoplie de méthodes héritées de la classe object. Regardez l’exemple suivant :

Cours de Python / Université Paris Cité / UFR Sciences du Vivant 273

Chapitre 24. Avoir plus la classe avec les objets 24.3. Héritage

1 >>> class Citron:
2 ... pass
3 ...
4 >>> c = Citron()
5 >>> dir(c)
6 ['__class__', '__delattr__', '__dict__', '__dir__', '__doc__', '__eq__',
7 '__format__', '__ge__', '__getattribute__', '__gt__', '__hash__',
8 '__init__', '__le__', '__lt__', '__module__', '__ne__', '__new__',
9 '__reduce__', '__reduce_ex__', '__repr__', '__setattr__', '__sizeof__',

10 '__str__', '__subclasshook__', '__weakref__']
11 >>> o = object()
12 >>> dir(o)
13 ['__class__', '__delattr__', '__dir__', '__doc__', '__eq__', '__format__',
14 '__ge__', '__getattribute__', '__gt__', '__hash__', '__init__', '__le__',
15 '__lt__', '__ne__', '__new__', '__reduce__', '__reduce_ex__', '__repr__',
16 '__setattr__', '__sizeof__', '__str__', '__subclasshook__']

La quasi-totalité des attributs / méthodes de base de la classe Citron sont donc hérités de la classe object. Par
exemple, lorsqu’on instancie un objet Citron c = Citron(), Python utilisera la méthode .__init__() héritée de la
classe object (puisque nous ne l’avons pas définie dans la classe Citron).

24.3.3 Un exemple concret d’héritage

Nous allons maintenant prendre un exemple un peu plus conséquent pour illustrer la puissance de l’héritage en
programmation. D’abord quelques mots à propos de la conception. Imaginons que nous souhaitions créer plusieurs classes
correspondant à nos fruits favoris, par exemple le citron (comme par hasard !), l’orange, le kaki, etc. Chaque fruit a ses
propres particularités, mais il y a aussi de nombreux points communs. Nous pourrions donc concevoir une classe Fruit
permettant, par exemple, d’instancier un fruit et ajouter des méthodes d’affichage commune à n’importe quel fruit, et
ajouter (ou toute autre méthode) pouvant être utilisée pour n’importe quel fruit. Nous pourrions alors créer des classes
comme Citron, Orange, etc., héritant de la classe Fruit et ainsi nous économiser des lignes de code identiques à
ajouter pour chaque fruit. Regardons l’exemple suivant que nous avons garni de print() pour bien comprendre ce qui
se passe :

274 Cours de Python / Université Paris Cité / UFR Sciences du Vivant

24.3. Héritage Chapitre 24. Avoir plus la classe avec les objets

1 class Fruit:
2 def __init__(self, taille=None, masse=None, saveur=None, forme=None):
3 print("(2) Je suis dans le constructeur de la classe Fruit")
4 self.taille = taille
5 self.masse = masse
6 self.saveur = saveur
7 self.forme = forme
8 print("Je viens de créer self.taille, self.masse, self.saveur "
9 "et self.forme")

10
11 def affiche_conseil(self, type_fruit, conseil):
12 print("(2) Je suis dans la méthode .affiche_conseil() de la "
13 "classe Fruit\n")
14 return (f"Instance {type_fruit}\n"
15 f"taille: {self.taille}, masse: {self.masse}\n"
16 f"saveur: {self.saveur}, forme: {self.forme}\n"
17 f"conseil: {conseil}\n")
18
19
20 class Citron(Fruit):
21 def __init__(self, taille=None, masse=None, saveur=None, forme=None):
22 print("(1) Je rentre dans le constructeur de Citron, et je vais "
23 "appeler\n"
24 "le constructeur de la classe mère Fruit !")
25 Fruit.__init__(self, taille, masse, saveur, forme)
26 print("(3) J'ai fini dans le constructeur de Citron, "
27 "les attributs sont :\n"
28 f"self.taille: {self.taille}, self.masse: {self.masse}\n"
29 f"self.saveur: {self.saveur}, self.forme: {self.forme}\n")
30
31 def __str__(self):
32 print("(1) Je rentre dans la méthode .__str__() de la classe "
33 "Citron")
34 print("Je vais lancer la méthode .affiche_conseil() héritée "
35 "de la classe Fruit")
36 return self.affiche_conseil("Citron", "Bon en tarte :-p !")
37
38
39 if __name__ == "__main__":
40 # On crée un citron.
41 citron1 = Citron(taille="petite", saveur="acide",
42 forme="ellipsoïde", masse=50)
43 print(citron1)

Lignes 1 à 9. On crée la classe Fruit avec son constructeur qui initialisera tous les attributs d’instance décrivant le
fruit.

Lignes 11 à 17. Création d’une méthode .affiche_conseil() qui retourne une chaîne contenant le type de fruit,
les attributs d’instance du fruit, et un conseil de consommation.

Lignes 20 à 29. Création de la classe Citron qui hérite de la classe Fruit. Le constructeur de Citron prend les
mêmes arguments que ceux du constructeur de Fruit. La ligne 24 est une étape importante que nous n’avons encore
jamais vue : l’instruction Fruit.__init__() est un appel au constructeur de la classe mère (cf. explications plus bas).
Notez bien que le premier argument passé au constructeur de la classe mère sera systématiquement l’instance en cours
self. Le print() en lignes 26-29 illustre qu’après l’appel du constructeur de la classe mère tous les attributs d’instance
(self.taille, self.poids, etc.) ont bel et bien été créés.

Lignes 31 à 36. On définit la méthode .__str__() qui va modifier le comportement de notre classe avec print().
Celle-ci fait également appel à une méthode hértitée de la classe mère nommée .affiche_conseil(). Comme on a l’a
héritée, elle est directement accessible avec un self.méthode() (et de l’extérieur ce serait instance.méthode()).

Lignes 39 à 43. Dans le programme principal, on instancie un objet Citron, puis on utilise print() sur l’instance.

L’exécution de ce code affichera la sortie suivante :

Cours de Python / Université Paris Cité / UFR Sciences du Vivant 275

Chapitre 24. Avoir plus la classe avec les objets 24.3. Héritage

(1) Je rentre dans le constructeur de Citron, et je vais appeler
le constructeur de la classe mère Fruit !
(2) Je suis dans le constructeur de la classe Fruit
Je viens de créer self.taille, self.masse, self.saveur et self.forme
(3) J'ai fini dans le constructeur de Citron, les attributs sont:
self.taille: petite, self.masse: 50
self.saveur: acide, self.forme: ellipsoïde

(1) Je rentre dans la méthode .__str__() de la classe Citron
Je vais lancer la méthode .affiche_conseil() héritée de la classe Fruit
(2) Je suis dans la méthode .affiche_conseil() de la classe Fruit

Instance Citron
taille: petite, masse: 50
saveur: acide, forme: ellipsoïde
conseil: Bon en tarte :-p !

Prenez bien le temps de suivre ce code pas à pas pour bien en comprendre toutes les étapes.

Vous pourrez vous poser la question « Pourquoi utilise-t-on en ligne 24 la syntaxe Fruit.__init__() ? ». Cette
syntaxe est souvent utilisée lorsqu’une classe hérite d’une autre classe pour faire appel au constructeur de la classe mère.
La raison est que nous souhaitons appeler une méthode de la classe mère qui a le même nom qu’une méthode de la
classe fille. Dans ce cas, si on utilisait self.__init__(), cela correspondrait à la fonction de notre classe fille Citron.
En mettant systématiquement une syntaxe
ClasseMere.__init__() on indique sans ambiguïté qu’on appelle le constructeur de la classe mère, en mettant explici-
tement son nom. Ce mécanisme est assez souvent utilisé dans le module Tkinter (voir le chapitre 25 Fenêtres graphiques
et Tkinter (en ligne)) pour la construction d’interfaces graphiques, nous en verrons de nombreux exemples.

Remarque

Si vous utilisez des ressources externes, il se peut que vous rencontriez une syntaxe super().__init__(). La
fonction Python interne super() appelle automatiquement la classe mère sans que vous ayez à donner son nom. Même
si cela peut paraître pratique, nous vous conseillons d’utiliser dans un premier temps la syntaxe
ClasseMere.__init__() qui est selon nous plus lisible (on voit explicitement le nom de la classe employée, même s’il
y a plusieurs classes mères).

Ce mécanisme n’est pas obligatoirement utilisé, mais il est très utile lorsqu’une classe fille a besoin d’initialiser des
attributs définis dans la classe mère. On le croise donc souvent car :

• Cela donne la garantie que toutes les variables de la classe mère sont bien initialisées. On réduit ainsi les risques
de dysfonctionnement des méthodes héritées de la classe mère.

• Finalement, autant ré-utiliser les « moulinettes » de la classe mère, c’est justement à ça que sert l’héritage ! Au
final, on écrit moins de lignes de code.

Conseil

Pour les deux raisons citées ci-dessus, nous vous conseillons de systématiquement utiliser le constructeur de la classe
mère lors de l’instanciation.

Vous avez à présent bien compris le fonctionnement du mécanisme de l’héritage. Dans notre exemple, nous pourrions
créer de nouveaux fruits avec un minimum d’effort. Ceux-ci pourraient hériter de la classe mère Fruit à nouveau, et
nous n’aurions pas à réécrire les mêmes méthodes pour chaque fruit, simplement à les appeler. Par exemple :

276 Cours de Python / Université Paris Cité / UFR Sciences du Vivant

24.4. Composition Chapitre 24. Avoir plus la classe avec les objets

1 class Kaki(Fruit):
2 def __init__(self, taille=None, masse=None, saveur=None, forme=None):
3 Fruit.__init__(self, taille, masse, saveur, forme)
4
5 def __str__(self):
6 return Fruit.affiche_conseil(self, "Kaki",
7 "Bon à manger cru, miam !")
8
9

10 class Orange(Fruit):
11 def __init__(self, taille=None, masse=None, saveur=None, forme=None):
12 Fruit.__init__(self, taille, masse, saveur, forme)
13
14 def __str__(self):
15 return Fruit.affiche_conseil(self, "Orange", "Trop bon en jus !")

Cet exemple illuste la puissance de l’héritage et du polymorphisme et la facilité avec laquelle on les utilise en Python.
Pour chaque fruit, on utilise la méthode .affiche_conseil() définie dans la classe mère sans avoir à la réécrire. Bien
sûr cet exemple reste simpliste et n’est qu’une « mise en bouche ». Vous verrez des exemples concrets de la puissance de
l’héritage dans le chapitre 25 Fenêtres graphiques et Tkinter (en ligne) ainsi que dans les exercices du présent chapitre.
Avec le module Tkinter, chaque objet graphique (bouton, zone de texte, etc.) est en fait une classe. On peut ainsi créer
de nouvelles classes héritant des classes Tkinter afin de personnaliser chaque objet graphique.

24.4 Composition

Un autre concept puissant rencontré en POO est la composition.

Définition

La composition désigne le fait qu’une classe peut contenir des instances provenant d’autres classes. On parle parfois
de classe Composite contenant des instances d’une classe Component (qu’on pourrait traduire par élément).

Pour vous illustrer cela, nous allons prendre un exemple sur notre fruit préféré, le citron. Un citron (classe Composite)
contient de la pulpe (classe Component). Voilà comment nous pourrions l’implémenter :

Cours de Python / Université Paris Cité / UFR Sciences du Vivant 277

Chapitre 24. Avoir plus la classe avec les objets 24.4. Composition

1 class Pulpe:
2 def __init__(self, quantite_jus):
3 self.quantite_jus = quantite_jus # En cL.
4
5 def __str__(self):
6 return f"Cette pulpe contient {self.quantite_jus} cL de jus"
7
8
9 class Citron:

10 def __init__(self, pulpe=None):
11 self.pulpe = pulpe
12
13 def presse_citron(self):
14 if self.pulpe:
15 print(f"Le pressage de la pulpe délivre "
16 f"{self.pulpe.quantite_jus} cL de jus")
17 self.pulpe = None
18 else:
19 print("Il n'y a plus rien à presser dans votre citron !")
20
21 def __str__(self):
22 if self.pulpe:
23 return f"Votre citron contient {self.pulpe.quantite_jus} cL de jus"
24 else:
25 return "Ce citron ne contient pas de pulpe"
26
27
28 if __name__ == "__main__":
29 pulpe = Pulpe(10)
30 print(pulpe)
31 citron1 = Citron()
32 print(citron1)
33 print()
34 citron2 = Citron(pulpe)
35 print(citron2.pulpe)
36 print(citron2)
37 print()
38 citron2.presse_citron()
39 citron2.presse_citron()
40 print(citron2)

Lignes 1 à 6. On crée une classe Pulpe qui prend en argument à l’instanciation une quantité de jus (en cL) qu’elle
peut délivrer si on la presse.

Lignes 9 à 25. On crée une classe Citron qui prend un objet Pulpe à l’instanciation. Si aucun objet est passé, on
affecte None. Cette classe contient une méthode .presse_citron() qui pressera la pulpe pour délivrer le jus de citron.
Une fois le pressage effectué, il n’y aura plus de jus à délivrer.

La sortie sera la suivante :
Cette pulpe contient 10 cL de jus
Ce citron ne contient pas de pulpe

Cette pulpe contient 10 cL de jus
Votre citron contient 10 cL de jus

Le pressage de la pulpe délivre 10 cL de jus
Il n'y a plus rien à presser dans votre citron !
Ce citron ne contient pas de pulpe

Dans cet exemple, la classe Citron a utilisé une instance de la classe Pulpe pour fonctionner. Un avantage de la
composition est qu’on pourrait réutiliser cette classe Pulpe dans une classe Orange ou Pamplemousse. Par ailleurs, si
on change des détails dans la classe Pulpe, cela affectera peu la classe Citron à partir du moment où on garde l’attribut
.quantite_jus.

De manière générale, la composition est considérée comme plus flexible que l’héritage car les classes Composite et
Component sont peu couplées. Le changement de l’une d’entre elle aura peu d’effet sur l’autre. Au contraire, pour
l’héritage le changement d’une classe mère peut avoir des répercussions importantes pour les classes filles. Toutefois,

278 Cours de Python / Université Paris Cité / UFR Sciences du Vivant

24.5. Différence entre les attributs de classe et d’instance Chapitre 24. Avoir plus la classe avec les objets

dans certains cas l’héritage peut s’avérer plus naturel. Nous vous parlions en introduction du chapitre 23 Avoir la classe
avec les objets de l’art pour concevoir des classes interagissant harmonieusement entre elles. Et bien nous y sommes !

Si on a deux classes A et B, la relation entre elles dans l’héritage sera de type B is a A (avec B qui hérite de A). Dans
la composition, ce sera plutôt A has a B. Cela peut vous servir de piste dans la conception des relations entre vos classes.
A-t-il plus de sens d’y avoir une relation is a ou bien has a ? Dans le premier cas vous irez plutôt vers l’héritage, alors
que dans le deuxième plutôt vers la composition. C’est ici que le langage UML 8 peut être pratique pour avoir une vision
d’ensemble sur comment les classes interagissent entre elles.

Bien sûr, il faudra vous entraîner sur des cas concrets pour acquérir l’expérience qui vous mènera aux bons choix.
A la fin de ce chapitre, nous vous présentons un exercice pour vous entraîner dans un premier temps à la composition.
Dans le chapitre 25 Fenêtres graphiques et Tkinter (en ligne), vous aurez des illustrations et des exercices sur l’héritage
qui est très utilisé en Tkinter.

Pour aller plus loin

Nous vous conseillons ce très bon article sur le site RealPython qui explique de manière approfondie la problématique
entre la composition et l’héritage 9.

Pour aller plus loin

Le polymorphisme, l’héritage et la composition donnent toute la puissance à la POO. Toutefois, concevoir ses classes
sur un projet, surtout au début de celui-ci, n’est pas chose aisée. Nous vous conseillons de lire d’autres ressources et de
vous entraîner sur un maximum d’exemples. Si vous souhaitez allez plus loin sur la POO, nous vous conseillons de lire des
ressources supplémentaires. En langue française, vous trouverez les livres de Gérard Swinnen 10, Bob Cordeau et Laurent
Pointal 11, Vincent Legoff 12 et Xavier Olive 13.

24.5 Différence entre les attributs de classe et d’instance

Dans cette rubrique, nous souhaitons éclairer le rôle des attributs de classe et des attributs d’instance, et comment
ils sont gérés par Python.

On a vu dans le chapitre précédent comment créer un attribut de classe, il suffit de créer une variable au sein de la
classe (en dehors de toute méthode). En général, les attributs de classe contiennent des propriétés générales à la classe
puisqu’ils vont prendre la même valeur quelle que soit l’instance.

Au contraire, les attributs d’instance sont spécifiques à chaque instance. Pour en créer, on a vu qu’il suffisait de les
initialiser dans la méthode .__init__() en utilisant une syntaxe self.nouvel_attribut = valeur. On a vu aussi
dans la rubrique Ajout d’un attribut d’instance que l’on pouvait ajouter un attribut d’instance de l’extérieur avec une
syntaxe instance.nouvel_attribut = valeur .

Bien que les deux types d’attributs soient fondamentalement différents au niveau de leur finalité, il existe des similitudes
lorsqu’on veut accéder à leur valeur. Le code suivant illustre cela :

8. https://fr.wikipedia.org/wiki/UML_(informatique)
9. https://realpython.com/inheritance-composition-python/

10. https://inforef.be/swi/python.htm
11. https://perso.limsi.fr/pointal/python:courspython3
12. https://openclassrooms.com/fr/courses/235344-apprenez-a-programmer-en-python
13. https://www.xoolive.org/python/

Cours de Python / Université Paris Cité / UFR Sciences du Vivant 279

https://fr.wikipedia.org/wiki/UML_(informatique)
https://realpython.com/inheritance-composition-python/
https://inforef.be/swi/python.htm
https://perso.limsi.fr/pointal/python:courspython3
https://openclassrooms.com/fr/courses/235344-apprenez-a-programmer-en-python
https://www.xoolive.org/python/

Chapitre 24. Avoir plus la classe avec les objets 24.5. Différence entre les attributs de classe et d’instance

1 class Citron:
2 forme = "ellipsoïde" # attribut de classe
3 saveur = "acide" # attribut de classe
4
5 def __init__(self, couleur="jaune", taille="standard", masse=0):
6 self.couleur = couleur # attribut d'instance
7 self.taille = taille # attribut d'instance
8 self.masse = masse # attribut d'instance (masse en gramme)
9

10 def augmente_masse(self, valeur):
11 self.masse += valeur
12
13
14 if __name__ == "__main__":
15 citron1 = Citron()
16 print("Attributs de classe :", citron1.forme, citron1.saveur)
17 print("Attributs d'instance :", citron1.taille, citron1.couleur,
18 citron1.masse)
19 citron1.augmente_masse(100)
20 print("Attributs d'instance :", citron1.taille, citron1.couleur,
21 citron1.masse)

Lignes 2 et 3. Nous créons deux variables de classe qui seront communes à toutes les instances (disons qu’un citron
sera toujours ellipsoïde et acide !).

Lignes 6 à 8. Nous créons trois variables d’instance qui seront spécifiques à chaque instance (disons que la taille, la
couleur et la masse d’un citron peuvent varier !), avec des valeurs par défaut.

Lignes 10 et 11. On crée une nouvelle méthode .augmente_masse() qui augmente l’attribut d’instance .masse.
Ligne 14 à 21. Dans le programme principal, on instancie la classe Citron sans passer d’argument (les valeurs par

défaut "jaune", "standard" et 0 seront donc prises), puis on imprime les attributs.
La figure 24.1 montre l’état des variables après avoir exécuté ce code grâce au site Python Tutor 14.

Figure 24.1 – Illustration de la signification des attributs de classe et d’instance avec Python Tutor.

Python Tutor montre bien la différence entre les variables de classe forme et saveur qui apparaissent directement
dans les attributs de la classe Citron lors de sa définition et les trois variables d’instance couleur, taille et masse

14. http://www.pythontutor.com

280 Cours de Python / Université Paris Cité / UFR Sciences du Vivant

http://www.pythontutor.com

24.5. Différence entre les attributs de classe et d’instance Chapitre 24. Avoir plus la classe avec les objets

qui sont liées à l’instance citron1. Pour autant, on voit dans la dernière instruction print() qu’on peut accéder de la
même manière aux variables de classe ou d’instance, lorsqu’on est à l’extérieur, avec une syntaxe instance.attribut.

Au sein des méthodes, on accède également de la même manière aux attributs de classe ou d’instance, avec une
syntaxe self.attribut :

1 class Citron:
2 saveur = "acide" # attribut de classe
3
4 def __init__(self, couleur="jaune"):
5 self.couleur = couleur # attribut d'instance
6
7 def affiche_attributs(self):
8 print(f"attribut de classe: {self.saveur}")
9 print(f"attribut d'instance: {self.couleur}")

10
11
12 if __name__ == "__main__":
13 citron1 = Citron()
14 citron1.affiche_attributs()

Ce code va afficher la phrase :
attribut de classe: acide
attribut d'instance: jaune

En résumé, qu’on ait des attributs de classe ou d’instance, on peut accéder à eux de l’extérieur par instance.
attribut et de l’intérieur par self.attribut.

Qu’en est-il de la manière de modifier ces deux types d’attributs ? Les attributs d’instance peuvent se modifier sans
problème de l’extérieur avec une syntaxe instance.attribut_d_instance = nouvelle_valeur et de l’intérieur
avec une syntaxe self.attribut_d_instance = nouvelle_valeur. Ce n’est pas du tout le cas avec les attributs
de classe.

Attention
Les attributs de classe ne peuvent pas être modifiés ni à l’extérieur d’une classe via une syntaxe instance.

attribut_de_classe = nouvelle_valeur, ni à l’intérieur d’une classe via une syntaxe self.attribut_de_classe
= nouvelle_valeur. Puisqu’ils sont destinés à être identiques pour toutes les instances, cela est logique de ne pas

pouvoir les modifier via une instance. Les attributs de classe Python ressemblent en quelque sorte aux attributs statiques
du C++.

Regardons l’exemple suivant illustrant cela :
1 class Citron:
2 saveur = "acide"
3
4
5 if __name__ == "__main__":
6 citron1 = Citron()
7 print(citron1.saveur)
8 citron1.saveur = "sucrée"
9 print(citron1.saveur) # on regarde ici avec Python Tutor

10 del citron1.saveur
11 print(citron1.saveur) # on regarde ici avec Python Tutor
12 del citron1.saveur

À la ligne 7, on pourrait penser qu’on modifie l’attribut de classe saveur avec une syntaxe instance.attribut_de_classe
= nouvelle_valeur. Que se passe-t-il exactement ? La figure 24.3 nous montre l’état des variables grâce au site

Python Tutor. Celui-ci indique que la ligne 7 a en fait créé un nouvel attribut d’instance citron1.saveur (contenant la
valeur sucrée) qui est bien distinct de l’attribut de classe auquel on accédait avant par le même nom ! Tout ceci est dû
à la manière dont Python gère les espaces de noms (voir rubrique Espaces de noms). Dans ce cas, l’attribut d’instance
est prioritaire sur l’attribut de classe.

À la ligne 9, on détruit finalement l’attribut d’instance citron1.saveur qui contenait la valeur sucrée. Python

Cours de Python / Université Paris Cité / UFR Sciences du Vivant 281

Chapitre 24. Avoir plus la classe avec les objets 24.5. Différence entre les attributs de classe et d’instance

Figure 24.2 – Illustration avec Python Tutor de la non destruction d’un attribut de classe (étape 1).

Tutor nous montre que citron1.saveur n’existe pas dans l’espace Citron instance qui est vide ; ainsi, Python
utilisera l’attribut de classe .saveur qui contient toujours la valeur acide (cf. figure 24.3).

Figure 24.3 – Illustration avec Python Tutor de la non destruction d’un attribut de classe (étape 2).

La ligne 11 va tenter de détruire l’attribut de classe .saveur. Toutefois, Python interdit cela, ainsi l’erreur suivante
sera générée :

282 Cours de Python / Université Paris Cité / UFR Sciences du Vivant

24.6. Accès et modifications des attributs depuis l’extérieur Chapitre 24. Avoir plus la classe avec les objets

1 Traceback (most recent call last):
2 File "test.py", line 11, in <module>
3 del citron1.saveur
4 ^^^^^^^^^^^^^^
5 AttributeError: 'Citron' object has no attribute 'saveur'

En fait, la seule manière de modifier un attribut de classe est d’utiliser une syntaxe
NomClasse.attribut_de_classe = nouvelle_valeur,
dans l’exemple ci-dessus cela aurait été Citron.saveur = "sucrée". De même, pour sa destruction, il faudra utiliser
la même syntaxe : del Citron.saveur.

Conseil

Même si on peut modifier un attribut de classe, nous vous déconseillons de le faire. Une utilité des attributs de classe
est par exemple de définir des constantes (mathématique ou autre), donc cela n’a pas de sens de vouloir les modifier ! Il
est également déconseillé de créer des attributs de classe avec des objets modifiables comme des listes et des dictionnaires,
cela peut avoir des effets désastreux non désirés. Nous verrons plus bas un exemple concret d’attribut de classe qui est
très utile, à savoir le concept d’objet de type property.

Si vous souhaitez avoir des attributs modifiables dans votre classe, créez plutôt des attributs d’instance dans le
.__init__().

24.6 Accès et modifications des attributs depuis l’extérieur

24.6.1 Le problème

On a vu jusqu’à maintenant que Python était très permissif concernant le changement de valeur de n’importe quel
attribut depuis l’extérieur. On a vu aussi qu’il était même possible de créer de nouveaux attributs depuis l’extérieur ! Dans
d’autres langages orientés objet ceci n’est pas considéré comme une bonne pratique. Il est plutôt recommandé de définir
une interface, c’est-à-dire tout un jeu de méthodes accédant ou modifiant les attributs. Ainsi, le concepteur de la classe
a la garantie que celle-ci est utilisée correctement du « côté client ».

Remarque

Cette stratégie d’utiliser uniquement l’interface de la classe pour accéder aux attributs provient des langages orientés
objet comme Java et C++. Les méthodes accédant ou modifiant les attributs s’appellent aussi des getters et setters (en
français on dit accesseurs et mutateurs). Un des avantages est qu’il est ainsi possible de vérifier l’intégrité des données
grâce à ces méthodes : si par exemple on souhaitait avoir un entier seulement, ou bien une valeur bornée, on peut
facilement ajouter des tests dans le setter et renvoyer une erreur à l’utilisateur de la classe s’il n’a pas envoyé le bon type
(ou la bonne valeur dans l’intervalle imposé).

Regardons à quoi pourrait ressembler une telle stratégie en Python :

Cours de Python / Université Paris Cité / UFR Sciences du Vivant 283

Chapitre 24. Avoir plus la classe avec les objets 24.6. Accès et modifications des attributs depuis l’extérieur

1 class Citron:
2 def __init__(self, couleur="jaune", masse=0):
3 self.couleur = couleur
4 self.masse = masse # masse en g
5
6 def get_couleur(self):
7 return self.couleur
8
9 def set_couleur(self, value):

10 self.couleur = value
11
12 def get_masse(self):
13 return self.masse
14
15 def set_masse(self, value):
16 if value < 0:
17 raise ValueError("Z'avez déjà vu une masse négative ?")
18 self.masse = value
19
20
21 if __name__ == "__main__":
22 # définition de citron1
23 citron1 = Citron()
24 print(citron1.get_couleur(), citron1.get_masse())
25 # on change les attributs de citron1 avec les setters
26 citron1.set_couleur("jaune foncé")
27 citron1.set_masse(100)
28 print(citron1.get_couleur(), citron1.get_masse())

Lignes 6 à 10. On définit deux méthodes getters pour accéder à chaque attribut.

Lignes 12 à 18. On définit deux méthodes setters pour modifier chaque attribut. Notez qu’en ligne 16 nous testons
si la masse est négative, si tel est le cas nous générons une erreur avec le mot-clé raise (voir le chapitre 26 Remarques
complémentaires (en ligne)). Ceci représente un des avantages des setters : contrôler la validité des attributs (on pourrait
aussi vérifier qu’il s’agit d’un entier, etc.).

Lignes 22 à 28. Après instanciation, on affiche la valeur des attributs avec les deux fonctions getters, puis on les
modifie avec les setters et on les affiche à nouveau.

L’exécution de ce code donnera la sortie suivante :

jaune 0
jaune foncé 100

Si on avait mis citron1.set_masse(-100) en ligne 26, la sortie aurait été la suivante :

1 jaune 0
2 Traceback (most recent call last):
3 File "getter_setter.py", line 27, in <module>
4 citron1.set_masse(-100)
5 File "getter_setter.py", line 17, in set_masse
6 raise ValueError("Z'avez déjà vu une masse négative ???")
7 ValueError: Z'avez déjà vu une masse négative ???

La fonction interne raise nous a permis de générer une erreur, car l’utilisateur de la classe (c’est-à-dire nous dans le
programme principal) n’a pas rentré une valeur correcte.

On comprend bien l’utilité d’une stratégie avec des getters et setters dans cet exemple. Toutefois, en Python, on
peut très bien accéder et modifier les attributs même si on a des getters et des setters dans la classe. Imaginons la même
classe Citron que ci-dessus, mais on utilise le programme principal suivant (notez que nous avons simplement ajouté les
lignes 9 à 12 ci-dessous) :

284 Cours de Python / Université Paris Cité / UFR Sciences du Vivant

24.6. Accès et modifications des attributs depuis l’extérieur Chapitre 24. Avoir plus la classe avec les objets

1 if __name__ == "__main__":
2 # définition de citron1
3 citron1 = Citron()
4 print(citron1.get_couleur(), citron1.get_masse())
5 # on change les attributs de citron1 avec les setters
6 citron1.set_couleur("jaune foncé")
7 citron1.set_masse(100)
8 print(citron1.get_couleur(), citron1.get_masse())
9 # on les rechange sans les setters

10 citron1.couleur = "pourpre profond"
11 citron1.masse = -15
12 print(citron1.get_couleur(), citron1.get_masse())

Cela donnera la sortie suivante :
jaune 0
jaune foncé 100
pourpre profond -15

Malgré la présence des getters et des setters, nous avons réussi à accéder et à modifier la valeur des attributs. De
plus, nous avons pu mettre une valeur aberrante (masse négative) sans que cela ne génère une erreur !

Vous vous posez sans doute la question : mais dans ce cas, quel est l’intérêt de mettre des getters et des setters en
Python ? La réponse est très simple : cette stratégie n’est pas une manière « pythonique » d’opérer (voir le chapitre 16
Bonnes pratiques en programmation Python pour la définition de « pythonique »). En Python, la lisibilité est la priorité.
Souvenez-vous du Zen de Python « Readability counts » (voir le chapitre 16).

De manière générale, une syntaxe avec des getters et setters du côté client surcharge la lecture. Imaginons que l’on
ait une instance nommée obj et que l’on souhaite faire la somme de ses trois attributs x, y et z :

1 # pythonique
2 obj.x + obj.y + obj.z
3
4 # non pythonique
5 obj.get_x() + obj.get_y() + obj.get_z()

La méthode pythonique est plus « douce » à lire, on parle aussi de syntactic sugar ou littéralement en français « sucre
syntaxique ». De plus, à l’intérieur de la classe, il faut définir un getter et un setter pour chaque attribut, ce qui multiple
les lignes de code.

Très bien. Donc en Python, on n’utilise pas comme dans les autres langages orientés objet les getters et les setters ?
Mais, tout de même, cela avait l’air une bonne idée de pouvoir contrôler comment un utilisateur de la classe interagit
avec certains attributs (par exemple, rentre-t-il une bonne valeur ?). N’existe-t-il pas un moyen de faire ça en Python ? La
réponse est : bien sûr il existe un moyen pythonique, la classe property. Nous allons voir cette nouvelle classe dans la
prochaine rubrique et nous vous dirons comment opérer systématiquement pour accéder, modifier, voire détruire, chaque
attribut d’instance de votre classe.

24.6.2 La solution : la classe property
Dans la rubrique précédente, on vient de voir que les getters et setters traditionnels rencontrés dans d’autres langages

orientés objet ne représentent pas une pratique pythonique. En Python, pour des raisons de lisibilité, il faudra dans la
mesure du possible conserver une syntaxe instance.attribut pour l’accès aux attributs d’instance, et une syntaxe
instance.attribut = nouvelle_valeur pour les modifier.

Toutefois, si on souhaite contrôler l’accès, la modification (voire la destruction) de certains attributs stratégiques,
Python met en place une classe nommée property. Celle-ci permet de combiner le maintien de la syntaxe lisible
instance.attribut, tout en utilisant en filigrane des fonctions pour accéder, modifier, voire détruire l’attribut (à
l’image des getters et setters évoqués ci-dessus, ainsi que des deleters ou encore destructeurs en français). Pour faire
cela, on utilise la fonction Python interne property() qui crée un objet (ou instance) property :

1 attribut = property(fget=accesseur, fset=mutateur, fdel=destructeur)

Les arguments passés à property() sont systématiquement des méthodes dites callback, c’est-à-dire des noms de
méthodes que l’on a définies précédemment dans notre classe, mais on ne précise ni argument, ni parenthèse, ni self

Cours de Python / Université Paris Cité / UFR Sciences du Vivant 285

Chapitre 24. Avoir plus la classe avec les objets 24.6. Accès et modifications des attributs depuis l’extérieur

(voir le chapitre 25 Fenêtres graphiques et Tkinter (en ligne)). Avec cette ligne de code, attribut est un objet de type
property qui fonctionne de la manière suivante à l’extérieur de la classe :

• L’instruction instance.attribut appellera la méthode .accesseur().
• L’instruction instance.attribut = valeur appellera la méthode
.mutateur().

• L’instruction del instance.attribut appellera la méthode
.destructeur().

L’objet attribut est de type property, et la vraie valeur de l’attribut est stockée par Python dans une variable
d’instance qui s’appellera par exemple _attribut (même nom, mais commençant par un underscore unique, envoyant
un message à l’utilisateur qu’il s’agit d’une variable associée au comportement interne de la classe).

Comment cela fonctionne-t-il concrètement dans un code ? Regardons cet exemple (nous avons mis des print() un
peu partout pour bien comprendre ce qui se passe) :

1 class Citron:
2 def __init__(self, masse=0):
3 print("(2) J'arrive dans le .__init__()")
4 self.masse = masse
5
6 def get_masse(self):
7 print("Coucou je suis dans le get")
8 return self._masse
9

10 def set_masse(self, valeur):
11 print("Coucou je suis dans le set")
12 if valeur < 0:
13 raise ValueError("Un citron ne peut pas avoir"
14 " de masse négative !")
15 self._masse = valeur
16
17 masse = property(fget=get_masse, fset=set_masse)
18
19
20 if __name__ == "__main__":
21 print("(1) Je suis dans le programme principal, "
22 "je vais instancier un Citron")
23 citron = Citron(masse=100)
24 print("(3) Je reviens dans le programme principal")
25 print(f"La masse de notre citron est {citron.masse} g")
26 # On mange le citron.
27 citron.masse = 25
28 print(f"La masse de notre citron est {citron.masse} g")
29 print(citron.__dict__)

Pour une fois, nous allons commenter les lignes dans le désordre :
Ligne 17. Il s’agit de la commande clé pour mettre en place le système : masse devient ici un objet de type property

(si on regarde son contenu avec une syntaxe NomClasse.attribut_property, donc ici Citron.masse, Python nous
renverra quelque chose de ce style : <property object at 0x7fd3615aeef8>). Qu’est-ce que cela signifie ? Et bien la
prochaine fois qu’on voudra accéder au contenu de cet attribut .masse, Python appellera la méthode .get_masse(), et
quand on voudra le modifier, Python appellera la méthode .set_masse() (ceci sera valable de l’intérieur ou de l’extérieur
de la classe). Comme il n’y a pas de méthode destructeur (passée avec l’argument fdel), on ne pourra pas détruire cet
attribut : un del c.masse conduirait à une erreur de ce type : AttributeError: can't delete attribute.

Ligne 4. Si vous avez bien suivi, cette commande self.masse = masse dans le constructeur va appeler automa-
tiquement la méthode .set_masse(). Attention, dans cette commande, la variable masse à droite du signe = est une
variable locale passée en argument. Par contre, self.masse sera l’objet de type property. Si vous avez bien lu la rubrique
Différence entre les attributs de classe et d’instance, l’objet masse créé en ligne 16 est un attribut de classe, on peut
donc y accéder avec une syntaxe self.masse au sein d’une méthode.

Conseil
Notez bien l’utilisation de self.masse dans le constructeur (en ligne 4) plutôt que self._masse. Comme self.

masse appelle la méthode .set_masse(), cela permet de contrôler si la valeur est correcte dès l’instanciation. C’est

286 Cours de Python / Université Paris Cité / UFR Sciences du Vivant

24.6. Accès et modifications des attributs depuis l’extérieur Chapitre 24. Avoir plus la classe avec les objets

donc une pratique que nous vous recommandons. Si on avait utilisé self._masse, il n’y aurait pas eu d’appel à la
fonction mutateur et on aurait pu mettre n’importe quoi, y compris une valeur aberrante, lors de l’instanciation.

Lignes 6 à 15. Dans les méthodes accesseur et mutateur, on utilise la variable
self._masse qui contiendra la vraie valeur de la masse du citron (cela serait vrai pour tout autre objet de type property).

Attention

Dans les méthodes accesseur et mutateur, il ne faut surtout pas utiliser self.masse à la place de self._masse.
Pourquoi ? Par exemple, dans l’accesseur, si on met self.masse cela signifie que l’on souhaite accéder à la valeur
de l’attribut (comme dans le constructeur !). Ainsi, Python rappellera l’accesseur et retombera sur self.masse, ce qui
rappellera l’accesseur et ainsi de suite : vous l’aurez compris, cela partira dans une récursion infinie et mènera à une erreur
du type RecursionError: maximum recursion depth exceeded. Cela serait vrai aussi si vous aviez une fonction
destructeur, il faudrait utiliser self._masse.

L’exécution de ce code donnera :

(1) Dans le programme principal, je vais instancier un Citron
(2) J'arrive dans le .__init__()
Coucou je suis dans le set
(3) Je reviens dans le programme principal
Coucou je suis dans le get
La masse de notre citron est 100 g
Coucou je suis dans le set
Coucou je suis dans le get
La masse de notre citron est 25 g
{'_masse': 25}

Cette exécution montre qu’à chaque appel de self.masse ou citron.masse on va utiliser les méthodes accesseur
ou mutateur. La dernière commande qui affiche le contenu de citron.__dict__ montre que la vraie valeur de l’attribut
est stockée dans la variable d’instance ._masse (instance._masse de l’extérieur et self._masse de l’intérieur).

24.6.3 Une meilleure solution : les décorateurs @property, @attribut.setter et @at-
tribut.deleter

Nous venons de voir les objets property pour contrôler l’accès, la mutation et la supression d’attributs. Toutefois la
syntaxe est relativement lourde. Afin de la simplifier, une manière plus pythonique (sucre syntaxique) est d’utiliser un
décorateur. La syntaxe pour décorer une fonction est la suivante :

1 @decorateur
2 def fonction():
3 [...]

La ligne 1 précise que fonction() va être modifiée par une autre fonction nommée decorateur(). Le symbole @
en ligne 1 attend un nom de fonction qui sera la fonction décoratrice. Pour plus de détails sur comment les décorateurs
fonctionnent, vous pouvez consulter le chapitre 26 Remarques complémentaires où une rubrique leur est consacrée. Ici,
nous avons juste à savoir qu’un décorateur est une fonction qui modifie le comportement d’une autre fonction.

En reprenant l’exemple vu dans la rubrique précédente, voici comment on peut l’écrire avec des décorateurs :

Cours de Python / Université Paris Cité / UFR Sciences du Vivant 287

Chapitre 24. Avoir plus la classe avec les objets 24.6. Accès et modifications des attributs depuis l’extérieur

1 class Citron:
2 def __init__(self, masse=0):
3 print(f"(2) J'arrive dans le .__init__(), je vais mettre la masse = {masse}")
4 self.masse = masse
5
6 @property
7 def masse(self):
8 print("Coucou je suis dans le getter")
9 return self._masse

10
11 @masse.setter
12 def masse(self, valeur):
13 print("Coucou je suis dans le setter")
14 if valeur < 0:
15 raise ValueError("Un citron ne peut pas avoir"
16 " de masse négative !")
17 self._masse = valeur
18
19 @masse.deleter
20 def masse(self):
21 print("Coucou, je suis dans le deleter")
22 del self._masse

On voit que la syntaxe est plus lisible que celle de la rubrique précédente. Examinons les différences. La première
chose est que les méthodes getter (ligne 7), setter (ligne 11) et deleter (ligne 19) s’appellent toutes .masse(), masse
étant le nom de notre objet property. Comme dans la syntaxe de la rubrique précédente, la masse réelle se trouve dans
un attribut nommée ._masse pour ne pas confondre avec notre objet property. Afin de comprendre ce qu’il se passe,
nous vous avons concocté le programme principal suivant avec des print() un peu partout :

1 if __name__ == "__main__":
2 print("(1) Je suis dans le programme principal et "
3 "je vais instancier un Citron")
4 print()
5 citron = Citron(masse=100)
6 print()
7 print("(3) Je reviens dans le programme principal, je vais afficher "
8 "la masse du citron")
9 print(f"La masse de notre citron est {citron.masse} g")

10 print()
11 # On mange une partie du citron.
12 print("(4)Je suis dans le prog principal "
13 "et je vais changer la masse du citron")
14 citron.masse = 25
15 print()
16 print(f"(5) Je suis dans le prog principal, je vais afficher "
17 "la masse du citron")
18 print(f"La nouvelle masse de notre citron est {citron.masse} g")
19 print(f"L'attribut citron.__dict__ m'indique bien le nom réel "
20 f"de l'attribut contenant la masse :")
21 print(citron.__dict__)
22 print()
23 # On mange la fin du citron.
24 print(f"(6) Je suis dans le prog principal, "
25 f"je détruis l'attribut .masse")
26 del citron.masse
27 print(f"Ainsi, citron.__dict__ est maintenant vide :")
28 print(citron.__dict__)

L’exécution donnera la sortie suivante :

288 Cours de Python / Université Paris Cité / UFR Sciences du Vivant

24.6. Accès et modifications des attributs depuis l’extérieur Chapitre 24. Avoir plus la classe avec les objets

(1) Je suis dans le programme principal et je vais instancier un Citron

(2) J'arrive dans le .__init__(), je vais mettre la masse = 100
Coucou je suis dans le setter

(3) Je reviens dans le programme principal, je vais afficher la masse du citron
Coucou je suis dans le getter
La masse de notre citron est 100 g

(4)Je suis dans le prog principal et je vais changer la masse du citron
Coucou je suis dans le setter

(5) Je suis dans le prog principal, je vais afficher la masse du citron
Coucou je suis dans le getter
La nouvelle masse de notre citron est 25 g
L'attribut citron.__dict__ m'indique bien le nom réel de l'attribut contenant la masse :
{'_masse': 25}

(6) Je suis dans le prog principal, je détruis l'attribut .masse
Coucou, je suis dans le deleter
Ainsi, citron.__dict__ est maintenant vide :
{}

Examinez bien les phrases Coucou je suis dans [...] et essayez de comprendre pourquoi elles apparaissent. Bien
que nos trois méthodes soient définies comme def masse(), vous pouvez constater qu’elles sont appelées lorsque on
invoque citron.masse, citron.masse = 25 ou del citron.masse (à l’intérieur de la classe, ce serait self.masse,
self.masse = 25 ou del self.masse). Autrement dit, on n’utilise jamais la syntaxe .masse(). Ceci est justement
dû au fait que .masse est un objet de type property.

Conseil

Lorsque vous souhaitez créer des objets property , nous vous conseillons la syntaxe pythonique @property,@nom_attribut
.setter et @nom_attribut.deleter plutôt que celle de la rubrique précédente avec la ligne masse = property(
fget=get_masse, fset=set_masse, fdel=del_masse). Cette syntaxe améliore grandement la lisibilité.

24.6.4 Le décorateur @property seul

Une méthode décorée avec @property peut être utile seule sans avoir le setter et/ou le deleter correspondant(s).
On rencontre cela lorsqu’on souhaite créer un « d’attribut dynamique » plutôt qu’avoir un appel de méthode explicite.
Regardons un exemple :

1 class ADN:
2 def __init__(self):
3 self.sequence = []
4
5 def __repr__(self):
6 return f"La séquence de mon brin d'ADN est {self.sequence}"
7
8 def ajoute_base(self, nom_base):
9 self.sequence.append(nom_base)

10
11 @property
12 def len(self):
13 return len(self.sequence)

Voici un dans l’interpréteur :

Cours de Python / Université Paris Cité / UFR Sciences du Vivant 289

Chapitre 24. Avoir plus la classe avec les objets 24.7. Bonnes pratiques pour construire et manipuler ses classes

>>> brin_adn = ADN()
>>> brin_adn.ajoute_base("A")
>>> brin_adn.ajoute_base("T")
>>> brin_adn
La séquence de mon brin d'ADN est ['A', 'T']
>>> brin_adn.len
2
>>> brin_adn.ajoute_atome("G")
>>> brin_adn
La séquence de mon brin d'ADN est ['A', 'T', 'G']
>>> brin_adn.len
3

Lorsqu’on utilise l’attribut brin_adn.len, ceci invoque finalement l’appel de l’objet property len qui, in fine, est
une méthode. Ainsi, la valeur renvoyée sera calculée à chaque fois, bien que dans la syntaxe on n’a pas une notation
.methode(), mais plutôt .attribut. Voilà pourquoi nous avons parlé d’attribut dynamique. Cela permet d’alléger la
syntaxe quand il n’y a pas spécifiquement d’arguments à passer à la méthode qui se trouve derrière cet attribut.

24.7 Bonnes pratiques pour construire et manipuler ses classes
Nous allons voir dans cette rubrique certaines pratiques que nous vous recommandons lorsque vous construisez vos

propres classes.

24.7.1 L’accès aux attributs
On a vu dans la rubrique Accès et modifications des attributs depuis l’extérieur que nous avions le moyen de contrôler

cet accès avec la classe property. Toutefois, cela peut parfois alourdir inutilement le code, ce qui va à l’encontre de
certains préceptes de la PEP 20 comme « Sparse is better than dense », « Readability counts », etc. (voir le chapitre 16
Bonnes pratiques en programmation Python).

Conseil
Si on souhaite contrôler ce que fait le client de la classe pour certains attributs « délicats » ou « stratégiques », on peut

utiliser la classe property. Toutefois, nous vous conseillons de ne l’utiliser que lorsque cela se révèle vraiment nécessaire,
donc avec parcimonie. Le but étant de ne pas surcharger le code inutilement. Cela va dans le sens des recommandations
des développeurs de Python (comme décrit dans la PEP8).

Les objets property ont deux avantages principaux :
• ils permettent de garder une lisibilité du côté client avec une syntaxe
instance.attribut ;

• même si un jour vous décidez de modifier votre classe et de mettre en place un contrôle d’accès à certains attributs
avec des objets property, cela ne changera rien du côté client. Ce dernier utilisera toujours instance.attribut
ou
instance.attribut = valeur. Tout cela contribuera à une meilleure maintenance du code client utilisant votre
classe.

Certains détracteurs disent qu’il est parfois difficile de déterminer qu’un attribut est contrôlé avec un objet property.
La réponse à cela est simple, dites-le clairement dans la documentation de votre classe via les docstrings (voir la rubrique
ci-dessous).

24.7.2 Note sur les attributs publics et non publics
Certains langages orientés objet mettent en place des attributs dits privés dont l’accès est impossible de l’extérieur de

la classe. Ceux-ci existent afin d’éviter qu’un client n’aille perturber ou casser quelque chose dans la classe. Les arguments
auxquels l’utilisateur a accès sont dits publics.

Attention

290 Cours de Python / Université Paris Cité / UFR Sciences du Vivant

24.7. Bonnes pratiques pour construire et manipuler ses classes Chapitre 24. Avoir plus la classe avec les objets

En Python, il n’existe pas d’attributs privés comme dans d’autres langages orientés objet. L’utilisateur a accès à tous
les attributs quels qu’ils soient, même s’ils contiennent un ou plusieurs caractère(s) underscore(s) (voir ci-dessous) !

Au lieu de ça, on parle en Python d’attributs publics et non publics.

Définition

En Python les attributs non publics sont des attributs dont le nom commence par un ou deux caractère(s) underscore.
Par exemple, _attribut, ou __attribut.

La présence des underscores dans les noms d’attributs est un signe clair que le client ne doit pas y toucher. Toutefois,
cela n’est qu’une convention, et comme dit ci-dessus le client peut tout de même modifier ces attributs.

Par exemple, reprenons la classe Citron de la rubrique précédente dont l’attribut .masse est contrôlé avec un objet
property :

1 >>> citron = Citron()
2 Coucou je suis dans le set
3 >>> citron.masse
4 Coucou je suis dans le get
5 0
6 >>> citron.masse = -16
7 Coucou je suis dans le set
8 Traceback (most recent call last):
9 File "<stdin>", line 1, in <module>

10 File "<stdin>", line 11, in set_masse
11 ValueError: Un citron ne peut pas avoir de masse négative !
12 >>> citron.masse = 16
13 Coucou je suis dans le set
14 >>> citron.masse
15 Coucou je suis dans le get
16 16
17 >>> citron._masse
18 16
19 >>> citron._masse = -8364
20 >>> citron.masse
21 Coucou je suis dans le get
22 -8364
23 >>>

Malgré l’objet property, nous avons pu modifier l’attribut non public ._masse directement !

Il existe également des attributs dont le nom commence par deux caractères underscores. Nous n’avons encore jamais
croisé ce genre d’attribut. Ces derniers mettent en place le name mangling.

Définition

Le name mangling 15, ou encore substantypage ou déformation de nom en français, correspond à un mécanisme de
changement du nom d’un attribut selon si on est à l’intérieur ou à l’extérieur d’une classe.

Regardons un exemple :

15. https://en.wikipedia.org/wiki/Name_mangling

Cours de Python / Université Paris Cité / UFR Sciences du Vivant 291

https://en.wikipedia.org/wiki/Name_mangling

Chapitre 24. Avoir plus la classe avec les objets 24.7. Bonnes pratiques pour construire et manipuler ses classes

1 class Citron:
2 def __init__(self):
3 self.__mass = 100
4
5 def get_mass(self):
6 return self.__mass
7
8
9 if __name__ == "__main__":

10 citron1 = Citron()
11 print(citron1.get_mass())
12 print(citron1.__mass)

Ce code va donner la sortie suivante :
1 100
2 Traceback (most recent call last):
3 File "mangling.py", line 12, in <module>
4 print(citron1.__mass)
5 ^^^^^^^^^^^^^^
6 AttributeError: 'Citron' object has no attribute '__mass'

La ligne 12 du code a donc conduit à une erreur : Python prétend ne pas connaître l’attribut .__mass. On pourrait
croire que cela constitue un mécanisme de protection des attributs. En fait il n’en est rien, car on va voir que l’attribut
est toujours accessible et modifiable. Si on modifiait le programme principal comme suit :

1 if __name__ == "__main__":
2 citron1 = Citron()
3 print(citron1.__dict__)

On obtiendrait en sortie le dictionnaire {'_Citron__mass': 100}.
Le name mangling est donc un mécanisme qui transforme le nom self.__attribut à l’intérieur de la classe en

instance._NomClasse__attribut à l’extérieur de la classe. Ce mécanisme a été conçu initialement pour pouvoir
retrouver des noms d’attributs identiques lors de l’héritage. Si par exemple une classe mère et une classe fille ont chacune
un attribut nommé __attribut, le name mangling permet d’éviter les conflits de nom. Par exemple :

1 class Fruit:
2 def __init__(self):
3 self.__mass = 100
4
5
6 class Citron(Fruit):
7 def __init__(self):
8 Fruit.__init__(self)
9 self.__mass = 200

10
11 def print_masse(self):
12 print(self._Fruit__mass)
13 print(self.__mass)
14
15
16 if __name__ == "__main__":
17 citron1 = Citron()
18 citron1.print_masse()

Ce code affiche 100 puis 200. La ligne 12 a permis d’accéder à l’attribut .__mass de la classe mère Fruit, et la
ligne 13 a permis d’accéder à l’attribut .__mass de la classe Citron.

Le name mangling n’est donc pas un mécanisme de « protection » d’un attribut, il n’a pas été conçu pour ça. Les
concepteurs de Python le disent clairement dans la PEP 8 : « Generally, double leading underscores should be used only
to avoid name conflicts with attributes in classes designed to be subclassed ».

Donc en Python, on peut tout détruire, même les attributs délicats contenant des underscores. Pourquoi Python
permet-il un tel paradoxe ? Selon le concepteur de Python, Guido van Rossum : « We’re all consenting adults here »,
nous sommes ici entre adultes, autrement dit nous savons ce que nous faisons !

292 Cours de Python / Université Paris Cité / UFR Sciences du Vivant

24.7. Bonnes pratiques pour construire et manipuler ses classes Chapitre 24. Avoir plus la classe avec les objets

Conseil

En résumé, n’essayez pas de mettre des barrières inutiles vers vos attributs. Cela va à l’encontre de la philosophie
Python. Soignez plutôt la documentation et faites confiance aux utilisateurs de votre classe !

24.7.3 Classes et docstrings

Les classes peuvent bien sûr contenir des docstrings comme les fonctions et les modules. C’est d’ailleurs une pratique
vivement recommandée. Voici un exemple sur notre désormais familière classe Citron :

1 class Citron:
2 """Voici la classe Citron.
3
4 Il s'agit d'une classe assez impressionnante qui crée des objets
5 citrons.
6 Par défaut une instance de Citron contient l'attribut de classe
7 saveur.
8 """
9 saveur = "acide"

10
11 def __init__(self, couleur="jaune", taille="standard"):
12 """Constructeur de la classe Citron.
13
14 Ce constructeur prend deux arguments par mot-clé
15 couleur et taille."""
16 self.couleur = couleur
17 self.taille = taille
18
19 def __str__(self):
20 """Redéfinit le comportement avec print()."""
21 return f"saveur: {saveur}, couleur: {couleur}, taille: {taille}"
22
23 def affiche_coucou(self):
24 """Méthode inutile qui affiche coucou."""
25 print("Coucou !")

Si on fait help(Citron) dans l’interpréteur, on obtient :

Cours de Python / Université Paris Cité / UFR Sciences du Vivant 293

Chapitre 24. Avoir plus la classe avec les objets 24.7. Bonnes pratiques pour construire et manipuler ses classes

1 Help on class Citron in module __main__:
2
3 class Citron(builtins.object)
4 | Citron(couleur='jaune', taille='standard')
5 |
6 | Voici la classe Citron.
7 |
8 | Il s'agit d'une classe assez impressionnante qui crée des objets
9 | citrons.

10 | Par défaut une instance de Citron contient l'attribut de classe
11 | saveur.
12 |
13 | Methods defined here:
14 |
15 | __init__(self, couleur='jaune', taille='standard')
16 | Constructeur de la classe Citron.
17 |
18 | Ce constructeur prend deux arguments par mot-clé
19 | couleur et taille.
20 |
21 | __str__(self)
22 | Redéfinit le comportement avec print().
23 |
24 | affiche_coucou(self)
25 | Méthode inutile qui affiche coucou.
26 |
27 [...]
28 |
29 | Data and other attributes defined here:
30 |
31 | saveur = 'acide'

Python formate automatiquement l’aide comme il le fait avec les modules (voir chapitre 15 Création de modules).
Comme nous l’avons dit dans le chapitre 16 Bonnes pratiques en programmation Python, n’oubliez pas que les docstrings
sont destinées aux utilisateurs de votre classe. Elles doivent donc contenir tout ce dont un utilisateur a besoin pour
comprendre ce que fait la classe et comment l’utiliser.

Notez que si on instancie la classe citron1 = Citron() et qu’on invoque l’aide sur l’instance help(citron1), on
obtient la même page d’aide. Comme pour les modules, si on invoque l’aide pour une méthode de la classe
help(citron1.affiche_coucou), on obtient l’aide pour cette méthode seulement.

Toutes les docstrings d’une classe sont en fait stockées dans un attribut spécial nommé instance.__doc__. Cet
attribut est une chaîne de caractères contenant la docstring générale de la classe. Ceci est également vrai pour les
modules, méthodes et fonctions. Si on reprend notre exemple ci-dessus :

1 >>> citron1 = Citron()
2 >>> print(citron1.__doc__)
3 Voici la classe Citron.
4
5 Il s'agit d'une classe assez impressionnante qui crée des objets
6 citrons.
7 Par défaut une instance de Citron contient l'attribut de classe
8 saveur.
9

10 >>> print(citron1.affiche_coucou.__doc__)
11 Méthode inutile qui affiche coucou.

L’attribut .__doc__ est automatiquement créé par Python au moment de la mise en mémoire de la classe (ou module,
méthode, fonction, etc.).

24.7.4 Autres bonnes pratiques
Voici quelques points en vrac auxquels nous vous conseillons de faire attention :
• Une classe ne se conçoit pas sans méthode. Si on a besoin d’une structure de données séquentielles ou si on veut

donner des noms aux variables (plutôt qu’un indice), utilisez plutôt les dictionnaires. Une bonne alternative peut
être les namedtuples (voir la rubrique suivante).

294 Cours de Python / Université Paris Cité / UFR Sciences du Vivant

24.7. Bonnes pratiques pour construire et manipuler ses classes Chapitre 24. Avoir plus la classe avec les objets

• Nous vous déconseillons de mettre comme paramètre par défaut une liste vide (ou tout autre objet séquentiel
modifiable) :

1 def __init__(self, liste=[]):
2 self.liste = liste

Si vous créez des instances sans passer d’argument lors de l’instanciation, toutes ces instances pointeront vers la
même liste. Cela peut avoir des effets désastreux.

• Ne mettez pas non plus une liste vide (ou tout autre objet séquentiel modifiable) comme attribut de classe.
1 class Citron:
2 liste = []

Ici chaque instance pourra modifier la liste, ce qui n’est pas souhaitable. Souvenez-vous, la modification des attributs
de classe doit se faire par une syntaxe Citron.attribut = valeur (et non pas via les instances).

• Comme abordé dans la rubrique Différence entre les attributs de classe et d’instance, nous vous conseillons de ne
jamais modifier les attributs de classe. Vous pouvez néanmoins les utiliser comme constantes.

• Si vous avez besoin d’attributs modifiables, utilisez des attributs d’instance et initialisez-les dans la méthode .
__init__() (et nulle part ailleurs). Par exemple, si vous avez besoin d’une liste comme attribut, créez la plutôt
dans le constructeur :

1 class Citron:
2 def __init__(self):
3 self.liste = []

Ainsi, vous aurez des listes réellement indépendantes pour chaque instance.

24.7.5 Namedtuples

Imaginons que l’on souhaite stocker des éléments dans un conteneur, que l’on puisse retrouver ces éléments avec une
syntaxe conteneur.element et que ces éléments soient non modifiables. On a vu ci-dessus, les classes ne sont pas faites
pour cela, il n’est pas conseillé de les utiliser comme des conteneurs inertes, on les conçoit en général afin d’y créer aussi
des méthodes. Dans ce cas, les namedtuples 16 sont faits pour vous ! Ce type de conteneur est issu du module collections
que nous avions évoqué dans le chapitre 14 Conteneurs.

1 >>> import collections
2 >>> Citron = collections.namedtuple("Citron", "masse couleur saveur forme")
3 >>> Citron
4 <class '__main__.Citron'>
5 >>> citron = Citron(10, "jaune", "acide", "ellipsoide")
6 >>> citron
7 Citron(masse=10, couleur='jaune', saveur='acide', forme='ellipsoide')
8 >>> citron.masse
9 10

10 >>> citron.forme
11 'ellipsoide'

Lignes 2 à 4. La fonction namedtuple() renvoie une classe qui sert à créer de nouveaux objets citrons. Attention
cette classe est différente de celles que l’on a rencontrées jusqu’à maintenant, car elle hérite de la classe builtins.tuple
(on peut le voir en faisant help(Citron)). En ligne 2, on passe en argument le nom de la classe souhaitée (i.e. Citron),
puis une chaîne de caractères avec des mots séparés par des espaces qui correspondront aux attributs (on pourrait aussi
passer une liste ["masse", "couleur", "saveur", "forme"]).

Ligne 5. On instancie un nouvel objet citron.
Lignes 6 à 11. On peut retrouver les différents attributs avec une syntaxe instance.attribut.
Mais dans namedtuple, il y a tuple ! Ainsi, l’instance citron hérite de tous les attributs des tuples :

16. https://docs.python.org/fr/3/library/collections.html#collections.namedtuple

Cours de Python / Université Paris Cité / UFR Sciences du Vivant 295

https://docs.python.org/fr/3/library/collections.html#collections.namedtuple

Chapitre 24. Avoir plus la classe avec les objets 24.8. Note finale de sémantique

1 >>> citron[0]
2 10
3 >>> citron[3]
4 'ellipsoide'
5 >>> citron.masse = 100
6 Traceback (most recent call last):
7 File "<stdin>", line 1, in <module>
8 AttributeError: can't set attribute
9 >>> for elt in citron:

10 ... print(elt)
11 ...
12 10
13 jaune
14 acide
15 ellipsoide

Lignes 1 à 4. On peut retrouver les attributs également par indice.
Lignes 5 à 8. Les attributs / éléments sont non modifiables !
Lignes 9 à 15. Les namedtuples sont itérables.
Un namedtuple est non modifiable, mais on peut en générer un nouveau avec la méthode ._replace(), à l’image

de la méthode .replace() pour les chaînes de caractères :
1 >>> citron._replace(masse=30)
2 Citron(masse=30, couleur='jaune', saveur='acide', forme='ellipsoide')
3 >>> citron
4 Citron(masse=10, couleur='jaune', saveur='acide', forme='ellipsoide')
5 >>> citron = citron._replace(masse=30)
6 >>> citron
7 Citron(masse=30, couleur='jaune', saveur='acide', forme='ellipsoide')

Lignes 1 et 2. On crée un nouveau namedtuples avec la méthode ._replace(). Notez qu’il faut passer un (ou
plusieurs) argument(s) par mot-clé à cette méthode désignant les attributs à modifier.

Lignes 3 et 4. L’objet initial citron est intact puisqu’un namedtuples est non modifiable.
Lignes 5 à 7. En ré-affectant ce que renvoie la méthode ._replace() dans dans un objet de même nom citron,

on peut faire évoluer son contenu comme on a pu le faire avec les chaînes de caractères.
Enfin, il est possible de convertir un namedtuple en dictionnaire (ordonné) avec la méthode ._asdict() :

1 >>> citron._asdict()
2 OrderedDict([('masse', 10), ('couleur', 'jaune'), ('saveur', 'acide'), ('forme', 'ellipsoide')])

Quand utiliser les namedtuples ? Vous souvenez-vous de la différence entre les listes et les dictionnaires ? Ici, c’est
un peu la même chose entre les tuples et les namedtuples. Les namedtuples permettent de créer un code plus lisible en
remplaçant des numéros d’indice par des noms. Le fait qu’ils soient non modifiables peut aussi avoir un avantage par
rapport à l’intégrité des données. Si vous trouvez les namedtuples limités, sachez que vous pouvez créer votre propre
classe qui hérite d’un namedtuple afin de lui ajouter de nouvelles méthodes « maison ».

Pour aller plus loin
Pour aller plus loin, vous pouvez consulter le très bon article 17 de Dan Bader.

24.8 Note finale de sémantique
Jusqu’à présent, lorsque nous avons évoqué les outils pour créer ou convertir des objets Python tels que int(),

list(), range(), etc., nous avons toujours parlé de fonctions. Ceci parce-que nous avions une syntaxe fonction(),
c’est-à-dire fonction suivie de parenthèses (). Toutefois, vous vous êtes peut-être déjà demandé pourquoi Python
indiquait class lorsqu’on tapait le nom de ces fonctions dans l’interpréteur (ou en invoquant help()) :

17. https://dbader.org/blog/writing-clean-python-with-namedtuples

296 Cours de Python / Université Paris Cité / UFR Sciences du Vivant

https://dbader.org/blog/writing-clean-python-with-namedtuples

24.9. Exercices Chapitre 24. Avoir plus la classe avec les objets

1 >>> int
2 <class 'int'>
3 >>> list
4 <class 'list'>
5 >>> range
6 <class 'range'>
7 >>> property
8 <class 'property'>

Et bien, c’est parce-que ce sont bel et bien des classes ! Donc, lorsqu’on invoque par exemple liste1 = list(), on
crée finalement une instance de la classe list. Python ne met pas list en CamelCase car ce sont des classes natives
(built-in classes). En effet, les auteurs de Python ont décidé que les classes et fonctions natives sont en minuscules, et
les exceptions en CamelCase (voir ce lien 18).

Finalement, la création d’une instance à partir d’une classe ou l’appel d’une fonction possède la même syntaxe
mot_clé() :

1 >>> class Citron:
2 ... pass
3 ...
4 >>> Citron()
5 <__main__.Citron object at 0x7fb776308a10>
6 >>> def fct():
7 ... return "Coucou"
8 ...
9 >>> fct()

10 'Coucou'

On peut le voir aussi quand on invoque l’aide sur un de ces outils, par exemple help(int) :
Help on class int in module builtins:

class int(object)
| int([x]) -> integer
| int(x, base=10) -> integer
[...]

Il est bien précise que int est une classe.
Si on prend des fonctions natives (built-in functions) de Python comme len() ou sorted(), l’interpréteur nous

confirme bien qu’il s’agit de fonctions :
1 >>> len
2 <built-in function len>
3 >>> sorted
4 <built-in function sorted>

Par conséquent, d’un point de vue purement sémantique nous devrions parler de classe plutôt que de fonction pour
les instructions comme list(), range(), etc. Toutefois, nous avons décidé de garder le nom fonction pour ne pas
compliquer les premiers chapitres de ce cours.

24.9 Exercices

Conseil
Pour ces exercices, créez des scripts puis exécutez-les dans un shell.

24.9.1 Classe molécule
Pour illustrer le mécanisme de la composition en POO, on se propose de créer un programme molecule.py qui

permettra de décrire une molécule en utilisant les classes. Nous allons créer une classe représentant une molécule (qui
sera notre classe Composite) et celle-ci contiendra des instances d’une classe décrivant un atome (classe Component).

18. https://peps.python.org/pep-0008/#class-names

Cours de Python / Université Paris Cité / UFR Sciences du Vivant 297

https://peps.python.org/pep-0008/#class-names

Chapitre 24. Avoir plus la classe avec les objets 24.9. Exercices

On se propose de tester cela sur la molécule simple de benzene. Vous aurons besoin du fichier benzene.pdb 19 pour
réaliser cet exercice.

Après les import nécessaires, le programme contiendra une constante donnant les masses des atomes sous forme de
dictionnaire : ATOM_MASSES = {"C": 12.0, "O": 16.0, "H": 1.0}.

Créer une classe Atom en vous inspirant des exercices du chapitre 23 Avoir la classe avec les objets. Cette classe devra
instancier des objets contenant les attributs d’instance suivants :

• nom d’atome (par exemple C1)
• type d’atome (une seule lettre, déduit du nom d’atome, par exemple C)
• coordonnée x
• coordonnée y
• coordonnée z
Le nom d’atome et coordonnées cartésiennes seront passés au constructeur.
Ajouter les méthodes calc_distance(), calc_com() (center of mass). Ajouter une méthode mute_atom(name

) qui change le nom de l’atome, où name est un nouveau nom d’atome (par exemple O1). Cette méthode changera
également l’attribut d’instance décrivant le type d’atome.

Créer une classe Molecule qui construit les attributs d’instance : - Nom de la molécule - Une liste d’atomes (vide à
l’instanciation) : list_atoms - Une liste indiquant la connectivité (la liste des atomes connectés, vide à l’instanciation) :
list_connectivity

Le constructeur prendra en argument seulement le nom de la molécule.
Créer une méthode add_atom(atom) qui vérifie si l’argument passé est bien une instance de la classe Atom, et qui

ajoute atom dans la liste d’atomes.
Créer une autre méthode build_mlc_from_pdb(filename) qui prend en argument un nom de fichier pdb. La

méthode lit le fichier pdb, et pour chaque atome lu, crée une instance de la classe Atom, et ajouter celle-ci à list_atoms
.

Ajouter une méthode calc_mass() qui calcule et renvoie masse de la molécule.
Créer une méthode calc_com() qui cette fois-ci calcule et renvoie le centre de masse de la molécule entière.
Ajouter la méthode calc_connectivity() qui calcule et renvoie une liste décrivant la connectivité entre les atomes.

Deux atomes sont considérés connectés s’il y a une liaison covalente entre eux, on peut pour cela calculer la distance
entre eux qui doit être inférieure à 1.6 Å. La liste de connectivité pourra être construite dans ce style : [("C1", "H1")
, ("C1", "C2"), ...].

Chaque paire d’atome doit apparaitre une seule fois (pas de [("C1", "H1"), [("H1", "C1"), ...].
Créer une méthode spéciale affichant les caractéristiques de la molécule lorsqu’on utilise print() avec une instance

de cette classe Molecule, par exemple print(benzene). Cette méthode pourra par exemple afficher avant d’avoir créé
la molécule :
Molecule benzene
No atom for the moment
No connectivity for the moment

Ou bien, lorsque la molécule est créée et la connectivité déterminée, elle s’affichera comme ceci :
Molecule benzene
atom C1, type C, mass = 12.0 amu, coor(-2.145, 0.973, -0.003)
atom H1, type H, mass = 1.0 amu, coor(-3.103, 0.460, -0.005)
[...]
Connectivity
C1 connected to H1
C1 connected to C2
[...]

Pour lancer le programme dans un premier temps, vous pourrez instancier une molécule benzene, puis y ajouter les
atomes :

1 if __name__ == "__main__":
2 benzene = Molecule("benzene")
3 print(benzene)
4 benzene.build_mlc_from_pdb("benzene.pdb")
5 print(benzene)

19. https://python.sdv.u-paris.fr/data-files/benzene.pdb

298 Cours de Python / Université Paris Cité / UFR Sciences du Vivant

https://python.sdv.u-paris.fr/data-files/benzene.pdb

24.9. Exercices Chapitre 24. Avoir plus la classe avec les objets

Dans un deuxième temps, le programme principal calculera la masse et le centre de masse de benzene et les affichera.
Muter ensuite l’atome H1 en O1 et recalculer la masse et le centre de masse et les afficher.

Pour aller plus loin, vous pouvez ajouter une méthode qui calcule et affiche un graphe de la molécule avec le module
networkx 20. La page de tutorial 21 pourra vous être utile.

Par exemple :

Figure 24.4 – Graphe représentant une molécule de benzène.

20. https://networkx.org/
21. https://networkx.org/documentation/latest/tutorial.html#drawing-graphs

Cours de Python / Université Paris Cité / UFR Sciences du Vivant 299

https://networkx.org/
https://networkx.org/documentation/latest/tutorial.html#drawing-graphs

CHAPITRE 25

Fenêtres graphiques et Tkinter

Conseil
Dans ce chapitre, nous allons utiliser des classes, nous vous conseillons de bien relire les chapitres 23 Avoir la classe

avec les objets et 24 Avoir plus la classe avec les objets (en ligne). Par ailleurs, nous vous conseillons de relire également
la rubrique Arguments positionnels et arguments par mot-clé du chapitre 10 sur les fonctions.

25.1 Utilité d’une GUI
Dans votre carrière « pythonesque » il se peut que vous soyez amené à vouloir développer une application graphique,

on parle encore de graphical user interface ou GUI. Jusqu’à maintenant, vous avez fait en sorte qu’un utilisateur interagisse
avec votre code via la ligne de commande, par exemple :
$ python mon_script.py file.gbk blabla blublu

Les arguments passés à la ligne de commande sont tout à fait classiques dans le monde de la bioinformatique. Toutefois,
il se peut que vous développiez un programme pour une communauté plus large, qui n’a pas forcément l’habitude d’utiliser
un shell et la ligne de commande. Une GUI permettra un usage plus large de votre programme, il est donc intéressant
de regarder comment s’y prendre. Dans notre exemple ci-dessus on pourrait par exemple développer une interface où
l’utilisateur choisirait le nom du fichier d’entrée par l’intermédiaire d’une boîte de dialogue, et de contrôler les options en
cliquant sur des boutons, ou des « listes de choix ». Une telle GUI pourrait ressembler à la figure 25.1.

Au delà de l’aspect convivial pour l’utilisateur, vous pourrez, avec une GUI, construire des fenêtres illustrant des
éléments que votre programme génère à la volée. Ainsi, vous « verrez » ce qui se passe de manière explicite et en direct !
Par exemple, si on réalise une simulation de particules, on a envie de voir un « film » des particules en mouvement, c’est-
à-dire comment ces particules bougent au fur et à mesure que les pas de simulation avancent. Une GUI vous permettra
une telle prouesse ! Enfin, sachez que certains logiciels scientifiques ont été développés avec la bibliothèque graphique Tk
(par exemple pymol, vmd, etc.). Qui sait, peut-être serez-vous le prochain développeur d’un outil incontournable ?

Il existe beaucoup de modules pour construire des applications graphiques. Par exemple : Tkinter 1, wxpython 2, PyQt 3,

1. https://wiki.python.org/moin/TkInter
2. http://www.wxpython.org/
3. https://pyqt.readthedocs.io

300

https://wiki.python.org/moin/TkInter
http://www.wxpython.org/
https://pyqt.readthedocs.io

25.2. Quelques concepts liés à la programmation graphique Chapitre 25. Fenêtres graphiques et Tkinter

Figure 25.1 – Exemple de GUI.

PyGObject 4, etc. Nous présentons dans ce chapitre le module Tkinter qui est présent de base dans les distributions Python
(pas besoin a priori de faire d’installation de module externe). Tkinter permet de piloter la bibliothèque graphique Tk
(Tool Kit), Tkinter signifiant tk interface. On pourra noter que cette bibliothèque Tk peut être également pilotée par
d’autres langages (Tcl, perl, etc.).

25.2 Quelques concepts liés à la programmation graphique
Lorsque l’on développe une GUI, nous créons une fenêtre graphique contenant notre application, ainsi que des widgets

inclus dans la fenêtre.

Définition
Les widgets (window gadget) sont des objets graphiques permettant à l’utilisateur d’interagir avec votre programme

Python de manière conviviale. Par exemple, dans la fenêtre sur la figure 25.1, les boutons, les listes de choix, ou encore
la zone de texte sont des widgets.

L’utilisation d’une GUI va amener une nouvelle manière d’aborder le déroulement d’un programme, il s’agit de la
programmation dite « événementielle ». Jusqu’à maintenant vous avez programmé « linéairement », c’est-à-dire que
les instructions du programme principal s’enchaînaient les unes derrière les autres (avec bien sûr de possibles appels à
des fonctions). Avec une GUI, l’exécution est décidée par l’utilisateur en fonction de ses interactions avec les différents
widgets. Comme c’est l’utilisateur qui décide quand et où il clique dans l’interface, il va falloir mettre en place ce qu’on
appelle un « gestionnaire d’événements ».

Définition
Le gestionnaire d’événements est une sorte de « boucle infinie » qui est à l’affût de la moindre action de la part de

l’utilisateur. C’est lui qui effectuera une action lors de l’interaction de l’utilisateur avec chaque widget de la GUI. Ainsi,
l’exécution du programme sera réellement guidée par les actions de l’utilisateur.

La bibliothèque Tk que nous piloterons avec le module Python Tkinter propose tous les éléments cités ci-dessus (fe-
nêtre graphique, widgets, gestionnaire d’événements). Nous aurons cependant besoin d’une dernière notion : les fonctions
callback.

Définition

4. https://pygobject.readthedocs.io/en/latest/

Cours de Python / Université Paris Cité / UFR Sciences du Vivant 301

https://pygobject.readthedocs.io/en/latest/

Chapitre 25. Fenêtres graphiques et Tkinter 25.3. Notion de fonction callback

Une fonction callback est une fonction passée en argument d’une autre fonction.

Un exemple de fonction callback est présenté dans la rubrique suivante.

25.3 Notion de fonction callback

Conseil
Si vous êtes débutant, vous pouvez sauter cette rubrique.

Jusqu’à maintenant nous avons toujours appelé les fonctions ou les méthodes de cette manière :
1 var = fct(arg1, arg2)
2
3 obj.methode(arg)

où les arguments étaient des objets « classiques » (par exemple une chaîne de caractères, un entier, un float, etc.).
Sachez qu’il est possible de passer en argument une fonction à une autre fonction ! Par exemple :

1 def fct_callback(arg):
2 print(f"J'aime bien les {arg} !")
3
4
5 def une_fct(ma_callback):
6 print("Je suis au début de une_fct(), "
7 "et je vais exécuter la fonction callback :")
8 ma_callback("fraises")
9 print("une_fct() se termine.")

10
11 if __name__ == "__main__":
12 une_fct(fct_callback)

Si on exécute ce code, on obtient :
Je suis au début de une_fct() et je vais exécuter la fonction callback :
J'aime bien les fraises !
une_fct() se termine.

Vous voyez que dans le programme principal, lors de l’appel de une_fct(), on lui passe comme argument une autre
fonction mais sans aucune parenthèses ni argument, c’est-à-dire fct_callback tout court. En d’autres termes, cela
est différent de
une_fct(fct_callback("scoubidous")).

Dans une telle construction, fct_callback("scoubidous") serait d’abord évaluée, puis ce serait la valeur ren-
voyée par cet appel qui serait passée à une_fct() (n’essayez pas sur notre exemple car cela mènerait à une erreur !).
Que se passe-t-il en filigrane lors de l’appel une_fct(fct_callback) ? Python passe une référence vers la fonction
fct_callback (en réalité il s’agit d’un pointeur, mais tout ceci est géré par Python et est transparent pour l’utilisateur).
Vous souvenez-vous ce qui se passait avec une liste passée en argument à une fonction (voir le chapitre 13 Plus sur les
fonctions) ? C’était la même chose, une référence était envoyée plutôt qu’une copie. Python Tutor 5 nous confirme cela
(cf. figure 25.2).

Lorsqu’on est dans une_fct() on pourra utiliser bien sûr des arguments lors de l’appel de notre fonction callback
si on le souhaite. Notez enfin que dans une_fct() la fonction callback reçue en argument peut avoir un nom différent
(comme pour tout type de variable).

À quoi cela sert-il ? À première vue cette construction peut sembler ardue et inutile. Toutefois, vous verrez que dans
le module Tkinter les fonctions callback sont incontournables. En effet, on utilise cette construction pour lancer une
fonction lors de l’interaction de l’utilisateur avec un widget : par exemple, lorsque l’utilisateur clique sur un bouton et
qu’on souhaite lancer une fonction particulière suite à ce clic. Notez enfin que nous les avons déjà croisées avec :

5. http://pythontutor.com

302 Cours de Python / Université Paris Cité / UFR Sciences du Vivant

http://pythontutor.com

25.4. Prise en main du module Tkinter Chapitre 25. Fenêtres graphiques et Tkinter

Figure 25.2 – Exemple de fonction callback dans Python Tutor.

• le tri de dictionnaire par valeur avec la syntaxe sorted(dico, key=dico.get) (voir le chapitre 8 Dictionnaires
et tuples) ;

• le tri par longueur de mots avec la syntaxe sorted(liste, key=len) (voir chapitre 12 Plus sur les listes) ;
• les objets property avec la syntaxe property(fget=get_masse, fset=set_masse) (voir le chapitre 24 Avoir

plus la classe avec les objets (en ligne)).

25.4 Prise en main du module Tkinter
Le module Tkinter est très vaste. Notre but n’est pas de vous faire un cours exhaustif mais plutôt de vous montrer

quelques pistes. Pour apprendre à piloter ce module, nous pensons qu’il est intéressant de vous montrer des exemples. Nous
allons donc en présenter quelques-uns qui pourraient vous être utiles, à vous ensuite de consulter de la documentation
supplémentaire si vous souhaitez aller plus loin (cf. la rubrique Bibliographie pour aller plus loin).

25.4.1 Un premier exemple dans l’interpréteur
Commençons par construire un script qui affichera une simple fenêtre avec un message et un bouton. Regardons

d’abord comment faire dans l’interpréteur (nous vous conseillons de tester ligne par ligne ce code tout en lisant les
commentaires ci-dessous) :

1 >>> import tkinter as tk
2 >>> racine = tk.Tk()
3 >>> label = tk.Label(racine, text="J'adore Python !")
4 >>> bouton = tk.Button(racine, text="Quitter", fg="red",
5 ... command=racine.destroy)
6 >>> label.pack()
7 >>> bouton.pack()
8 >>>

Ligne 2. On crée la fenêtre principale (vous la verrez apparaître !). Pour cela, on crée une instance de la classe tk.Tk
dans la variable racine. Tous les widgets que l’on créera ensuite seront des fils de cette fenêtre. On pourra d’ailleurs
noter que cette classe tk.Tk ne s’instancie en général qu’une seule fois par programme. Vous pouvez, par curiosité, lancer
une commande dir(racine) ou help(racine), vous verrez ainsi les très nombreuses méthodes et attributs associés à
un tel objet Tk.

Ligne 3. On crée un label, c’est-à-dire une zone dans la fenêtre principale où on écrit un texte. Pour cela, on a créé
une variable label qui est une instance de la classe tk.Label. Cette variable label contient donc notre widget, nous la
réutiliserons plus tard (par exemple pour placer ce widget dans la fenêtre). Notez le premier argument positionnelracine
passé à la classe tk.Label, celui-ci indique la fenêtre parente où doit être dessinée le label. Cet argument doit toujours
être passé en premier et il est vivement conseillé de le préciser. Nous avons passé un autre argument avec le nom
text pour indiquer, comme vous l’avez deviné, le texte que nous souhaitons voir dans ce label. La classe tk.Label
peut recevoir de nombreux autres arguments, en voici la liste exhaustive 6. Dans les fonctions Tkinter qui construisent

6. http://infohost.nmt.edu/tcc/help/pubs/tkinter/web/label.html

Cours de Python / Université Paris Cité / UFR Sciences du Vivant 303

http://infohost.nmt.edu/tcc/help/pubs/tkinter/web/label.html

Chapitre 25. Fenêtres graphiques et Tkinter 25.4. Prise en main du module Tkinter

un widget, les arguments possibles pour la mise en forme de celui-ci sont nombreux, si bien qu’ils sont toujours des
arguments par mot-clé. Si on ne précise pas un de ces arguments lors de la création du widget, l’argument prendra
alors une valeur par défaut. Cette liste des arguments par mot-clé est tellement longue qu’en général on ne les précisera
pas tous. Heureusement, Python autorise l’utilisation des arguments par mot-clé dans un ordre quelconque. Comme nous
l’avons vu dans le chapitre 10 Fonctions, souvenez vous que leur utilisation dans le désordre implique qu’il faudra toujours
préciser leur nom : par exemple vous écrirez text="blabla" et non pas "blabla" tout court.

Ligne 4. De même, on crée un bouton « Quitter » qui provoquera la fermeture de la fenêtre et donc l’arrêt de
l’application si on clique dessus. À nouveau, on passe la fenêtre parente en premier argument, le texte à écrire dans le
bouton, puis la couleur de ce texte. Le dernier argument command=racine.destroy va indiquer la fonction / méthode
à exécuter lorsque l’utilisateur clique sur le bouton. On pourra noter que l’instance de la fenêtre mère tk.Tk (que nous
avons nommée racine) possède une méthode .destroy() qui va détruire le widget sur lequel elle s’applique. Comme
on tue la fenêtre principale (que l’on peut considérer comme un widget contenant d’autres widgets), tous les widgets
fils seront détruits et donc l’application s’arrêtera. Vous voyez par ailleurs que cette méthode racine.destroy est
passée à l’argument command= sans parenthèses ni arguments : il s’agit donc d’une fonction callback comme expliqué
ci-dessus. Dans tous les widgets Tkinter, on doit passer à l’argument command=... une fonction / méthode callback.
La liste exhaustive des arguments possibles de la classe tk.Button se trouve ici 7.

Lignes 6 et 7. Vous avez noté que lors de la création de ce label et de ce bouton, rien ne s’est passé dans la fenêtre.
C’est normal, ces deux widgets existent bien, mais il faut maintenant les placer à l’intérieur de la fenêtre. On appelle pour
ça la méthode .pack(), avec une notation objet widget.pack() : à ce moment précis, vous verrez votre label apparaître
ainsi que la fenêtre qui se redimensionne automatiquement en s’adaptant à la grandeur de votre label. L’invocation de la
même méthode pour le bouton va faire apparaître celui-ci juste en dessous du label et redimensionner la fenêtre. Vous
l’aurez compris la méthode .pack() place les widgets les uns en dessous des autres et ajuste la taille de la fenêtre. On
verra plus bas que l’on peut passer des arguments à cette méthode pour placer les widgets différemment (en haut, à
droite, à gauche).

Au final, vous devez obtenir une fenêtre comme sur la figure 25.3.

25.4.2 Le même exemple dans un script.
Tentons maintenant de faire la même chose dans un script tk_exemple.py :

1 import tkinter as tk
2
3 racine = tk.Tk()
4 label = tk.Label(racine, text="J'adore Python !")
5 bouton = tk.Button(racine, text="Quitter", command=racine.quit)
6 bouton["fg"] = "red"
7 label.pack()
8 bouton.pack()
9 racine.mainloop()

10 print("C'est fini !")

puis lançons ce script depuis un shell :
$ python tk_exemple.py

Vous voyez maintenant la même fenêtre avec les mêmes fonctionnalités par rapport à la version dans l’interpréteur
(voir la figure 25.3). Nous commentons ici les différences (dans le désordre) :

Ligne 6. Le bouton a été créé en ligne 5, mais on voit qu’il est possible de préciser une option de rendu du widget
après cette création (ici on met le texte en rouge avec l’option "fg"). La notation ressemble à celle d’un dictionnaire
avec une syntaxe générale widget["option"] = valeur.

Ligne 9. L’instruction racine.mainloop() va lancer le gestionnaire d’événements que nous avons évoqué ci-dessus.
C’est lui qui interceptera la moindre action de l’utilisateur, et qui lancera les portions de code associées à chacune de ses
actions. Bien sûr, comme nous développerons dans ce qui va suivre toutes nos applications Tkinter dans des scripts (et
non pas dans l’interpréteur), cette ligne sera systématiquement présente. Elle sera souvent à la fin du script, puisque, à
l’image de ce script, on écrit d’abord le code construisant l’interface, et on lance le gestionnaire d’événements une fois
l’interface complètement décrite, ce qui lancera au final l’application.

7. http://infohost.nmt.edu/tcc/help/pubs/tkinter/web/button.html

304 Cours de Python / Université Paris Cité / UFR Sciences du Vivant

http://infohost.nmt.edu/tcc/help/pubs/tkinter/web/button.html

25.5. Construire une application Tkinter avec une classe Chapitre 25. Fenêtres graphiques et Tkinter

Ligne 10. Cette ligne ne s’exécute qu’après l’arrêt de l’application (soit en cliquant sur le bouton « Quitter », soit en
cliquant sur la croix).

Ligne 5. Pour quitter l’application, on utilise ici la méthode .quit(). Celle-ci casse la .mainloop() et arrête ainsi
le gestionnaire d’événements. Cela mène à l’arrêt de l’application. Dans le premier exemple dans l’interpréteur, on avait
utilisé la méthode .destroy() sur la fenêtre principale. Comme son nom l’indique, celle-ci détruit la fenêtre principale
et mène aussi à l’arrêt de l’application. Cette méthode aurait donc également fonctionné ici. Par contre, la méthode
.quit() n’aurait pas fonctionné dans l’interpréteur car, comme on l’a vu, la boucle .mainloop() n’y est pas présente.
Comme nous écrirons systématiquement nos applications Tkinter dans des scripts, et que la boucle .mainloop() y est
obligatoire, vous pourrez utiliser au choix .quit() ou .destroy() pour quitter l’application.

Figure 25.3 – Exemple basique de fenêtre Tkinter.

25.5 Construire une application Tkinter avec une classe
De manière générale, il est vivement conseillé de développer ses applications Tkinter en utilisant une classe. Cela

présente l’avantage d’encapsuler l’application de manière efficace et d’éviter ainsi l’utilisation de variables globales.
Souvenez-vous, elles sont à bannir définitivement ! Une classe crée un espace de noms propre à votre application, et
toutes les variables nécessaires seront ainsi des attributs de cette classe. Reprenons notre petit exemple avec un label et
un bouton :

1 import tkinter as tk
2
3 class Application(tk.Tk):
4 def __init__(self):
5 tk.Tk.__init__(self)
6 self.creer_widgets()
7
8 def creer_widgets(self):
9 self.label = tk.Label(self, text="J'adore Python !")

10 self.bouton = tk.Button(self, text="Quitter", command=self.quit)
11 self.label.pack()
12 self.bouton.pack()
13
14
15 if __name__ == "__main__":
16 app = Application()
17 app.title("Ma Première App :-)")
18 app.mainloop()

Ligne 3. On crée notre application en tant que classe. Notez que cette classe porte un nom qui commence par
une majuscule (comme recommandé dans les bonnes pratiques de la PEP8 8, voir le chapitre 16 Bonnes pratiques en
programmation Python). L’argument passé dans les parenthèses indique que notre classe Application hérite de la
classe tk.Tk. Par ce mécanisme, nous héritons ainsi de toutes les méthodes et attributs de cette classe mère, mais nous
pouvons en outre en ajouter de nouvelles/nouveaux (on parle aussi de « redéfinition » de la classe tk.Tk) !

Ligne 4. On crée un constructeur, c’est-à-dire une méthode qui sera exécutée lors de l’instanciation de notre classe
(à la ligne 16).

Ligne 5. On appelle ici le constructeur de la classe mère tk.Tk.__init__(). Pourquoi fait-on cela ? On se souvient
dans la version linéaire de l’application, on avait utilisé une instanciation classique : racine = tk.Tk(). Ici, l’effet de
l’appel du constructeur de la classe mère permet d’instancier la fenêtre Tk dans la variable self directement. C’est-à-dire
que la prochaine fois que l’on aura besoin de cette instance (lors de la création des widgets par exemple, cf. lignes 9 et

8. https://www.python.org/dev/peps/pep-0008/

Cours de Python / Université Paris Cité / UFR Sciences du Vivant 305

https://www.python.org/dev/peps/pep-0008/

Chapitre 25. Fenêtres graphiques et Tkinter 25.6. Le widget canvas

10), on utilisera directement self plutôt que racine ou tout autre nom donné à l’instance. Comme vu dans le chapitre
23 Avoir la classe avec les objets, appeler le constructeur de la classe mère est une pratique classique lorsqu’une classe
hérite d’une autre classe.

Ligne 6. On appelle la méthode self.creer_widgets() de notre classe Application. Pour rappel, le self avant
le .creer_widgets() indique qu’il s’agit d’une méthode de notre classe (et non pas d’une fonction classique).

Ligne 8. La méthode .creer_widgets() va créer des widgets dans l’application.
Ligne 9. On crée un label en instanciant la classe tk.Label(). Notez que le premier argument passé est maintenant

self (au lieu de racine précédemment) indiquant la fenêtre dans laquelle sera construit ce widget.
Ligne 10. De même on crée un widget bouton en instanciant la classe tk.Button(). Là aussi, l’appel à la méthode

.quit() se fait par self.quit puisque la fenêtre est instanciée dans la variable self. Par ailleurs, on ne met ni
parenthèses ni arguments à self.quit car il s’agit d’une fonction callback (comme dans la rubrique précédente).

Lignes 11 et 12. On place les deux widgets dans la fenêtre avec la méthode .pack().
Ligne 15. Ici on autorise le lancement de notre application Tkinter en ligne de commande (python tk_application.

py), ou bien de réutiliser notre classe en important tk_application.py en tant que module (import tk_application
) (voir le chapitre 15 Création de modules).

Ligne 16. On instancie notre application.
Ligne 17. On donne un titre dans la fenêtre de notre application. Comme on utilise de petits widgets avec la méthode

pack(), il se peut que le titre ne soit pas visible lors du lancement de l’application. Toutefois, si on « étire » la fenêtre
à la souris, le titre le deviendra. On pourra noter que cette méthode .title() est héritée de la classe mère Tk.

Ligne 18. On lance le gestionnaire d’événements.
Au final, vous obtiendrez le même rendu que précédemment (cf. figure 25.3). Alors vous pourrez-vous poser la

question, « pourquoi ai-je besoin de toute cette structure alors que le code précédent semblait plus direct ? ». La réponse
est simple, lorsqu’un projet de GUI grossit, le code devient très vite illisible s’il n’est pas organisé en classe. De plus,
la non-utilisation de classe rend quasi-obligatoire l’utilisation de variables globales, ce qui on l’a vu, est à proscrire
définitivement ! Dans la suite du chapitre, nous verrons quelques exemples qui illustrent cela (cf. la rubrique suivante).

25.6 Le widget canvas
25.6.1 Un canvas simple et le système de coordonnées

Le widget canvas 9 de Tkinter est très puissant. Il permet de dessiner des formes diverses (lignes, cercles, etc.), et
même de les animer !

La classe tk.Canvas crée un widget canvas (ou encore canevas en français). Cela va créer une zone (i.e. le canevas
en tant que tel) dans laquelle nous allons dessiner divers objets tels que des ellipses, lignes, polygones, etc., ou encore
insérer du texte ou des images. Regardons tout d’abord un code minimal qui construit un widget canvas, dans lequel on
y dessine un cercle et deux lignes :

1 import tkinter as tk
2
3 racine = tk.Tk()
4 canv = tk.Canvas(racine, bg="white", height=200, width=200)
5 canv.pack()
6 canv.create_oval(0, 0, 200, 200, outline="red", width=10)
7 canv.create_line(0, 0, 200, 200, fill="black", width=10)
8 canv.create_line(0, 200, 200, 0, fill="black", width=10)
9 racine.mainloop()

Ligne 4. On voit qu’il faut d’abord créer le widget canvas, comme d’habitude en lui passant l’instance de la fenêtre
principale en tant qu’argument positionnel, puis les options. Notons que nous lui passons comme options la hauteur et la
largeur du canvas. Même s’il s’agit d’arguments par mot-clé, donc optionnels, c’est une bonne pratique de les préciser.
En effet, les valeurs par défaut risqueraient de nous mener à dessiner hors de la zone visible (cela ne génère pas d’erreur
mais n’a guère d’intérêt).

Ligne 6 à 8. Nous dessinons maintenant des objets graphiques à l’intérieur du canevas avec les méthodes .create_oval
() (dessine une ellipse) et .create_line() (dessine une ligne). Les arguments positionnels sont les coordonnées de

9. http://infohost.nmt.edu/tcc/help/pubs/tkinter/web/canvas.html

306 Cours de Python / Université Paris Cité / UFR Sciences du Vivant

http://infohost.nmt.edu/tcc/help/pubs/tkinter/web/canvas.html

25.6. Le widget canvas Chapitre 25. Fenêtres graphiques et Tkinter

l’ellipse (les deux points englobant l’ellipse, cf. ce lien 10 pour la définition exacte) ou de la ligne. Ensuite, on passe comme
d’habitude des arguments par mot-clé (vous commencez à avoir l’habitude !) pour mettre en forme ces objets graphiques.

Le rendu de l’image est montré dans la figure 25.4 ainsi que le système de coordonnées associé au canvas. Comme
dans la plupart des bibliothèques graphiques, l’origine du repère du canvas (i.e. la coordonnée (0,0)) est en haut à gauche.
Les x vont de gauche à droite, et les y vont de haut en bas.

Figure 25.4 – Exemple 1 de canvas avec le système de coordonnées. Le système de coordonnées est montré en vert et
n’apparaît pas sur la vraie fenêtre Tkinter.

Attention

L’axe des y est inversé par rapport à ce que l’on représente en mathématique. Si on souhaite représenter une fonction
mathématique (ou tout autre objet dans un repère régi par un repère mathématique), il faudra faire un changement de
repère.

25.6.2 Un canvas encapsulé dans une classe

Voici un exemple un peu plus conséquent d’utilisation du widget canvas qui est inclus dans une classe. Il s’agit d’une
application dans laquelle il y a une zone de dessin, un bouton dessinant des cercles, un autre des lignes et un dernier
bouton qui quitte l’application (figure 25.5).

Le code suivant crée une telle application :

10. http://infohost.nmt.edu/tcc/help/pubs/tkinter/web/create_oval.html

Cours de Python / Université Paris Cité / UFR Sciences du Vivant 307

http://infohost.nmt.edu/tcc/help/pubs/tkinter/web/create_oval.html

Chapitre 25. Fenêtres graphiques et Tkinter 25.6. Le widget canvas

Figure 25.5 – Exemple 2 de canvas.

1 import tkinter as tk
2 import random as rd
3
4 class AppliCanevas(tk.Tk):
5 def __init__(self):
6 tk.Tk.__init__(self)
7 self.size = 500
8 self.creer_widgets()
9

10 def creer_widgets(self):
11 # création canevas
12 self.canv = tk.Canvas(self, bg="light gray", height=self.size,
13 width=self.size)
14 self.canv.pack(side=tk.LEFT)
15 # boutons
16 self.bouton_cercles = tk.Button(self, text="Cercle !",
17 command=self.dessine_cercles)
18 self.bouton_cercles.pack(side=tk.TOP)
19 self.bouton_lignes = tk.Button(self, text="Lignes !",
20 command=self.dessine_lignes)
21 self.bouton_lignes.pack()
22 self.bouton_quitter = tk.Button(self, text="Quitter",
23 command=self.quit)
24 self.bouton_quitter.pack(side=tk.BOTTOM)
25
26 def rd_col(self):
27 return rd.choice(("black", "red", "green", "blue", "yellow", "magenta",
28 "cyan", "white", "purple"))
29
30 def dessine_cercles(self):
31 for i in range(20):
32 x, y = [rd.randint(1, self.size) for j in range(2)]
33 diameter = rd.randint(1, 50)
34 self.canv.create_oval(x, y, x+diameter, y+diameter,
35 fill=self.rd_col())
36
37 def dessine_lignes(self):
38 for i in range(20):
39 x, y, x2, y2 = [rd.randint(1, self.size) for j in range(4)]
40 self.canv.create_line(x, y, x2, y2, fill=self.rd_col())
41
42
43 if __name__ == "__main__":
44 app = AppliCanevas()
45 app.title("Mon Canevas Psychédélique !")
46 app.mainloop()

308 Cours de Python / Université Paris Cité / UFR Sciences du Vivant

25.6. Le widget canvas Chapitre 25. Fenêtres graphiques et Tkinter

Lignes 4 à 6. Comme montré dans la rubrique Construire une application Tkinter avec une classe, notre classe
AppliCanevas hérite de la classe générale tk.Tk et la fenêtre Tk se retrouve dans la variable self.

Ligne 7. On crée un attribut de la classe self.size qui contiendra la taille (hauteur et largeur) du canvas. On
rappelle que cet attribut sera visible dans l’ensemble de la classe puisqu’il est « accroché » à celle-ci par le self.

Ligne 8. On lance la méthode .creer_widgets() (qui est elle aussi « accrochée » à la classe par le self).

Lignes 12 à 14. On crée un widget canvas en instanciant la classe tk.Canvas. On place ensuite le canvas dans la
fenêtre avec la méthode .pack() en lui précisant où le placer avec la variable Tkinter tk.LEFT.

Lignes 15 à 24. On crée des widgets boutons et on les place dans la fenêtre. À noter que chacun de ces widgets appelle
une méthode différente, dont deux que nous avons créées dans la classe (.dessine_cercle() et .dessine_lignes()).

Ligne 26 à 28. Cette méthode renvoie une couleur au hasard sous forme de chaîne de caractères.

Lignes 30 à 40. On définit deux méthodes qui vont dessiner des paquets de 20 cercles (cas spécial d’une ellipse) ou 20
lignes aléatoires. Lors de la création de ces cercles et lignes, on ne les récupère pas dans une variable car on ne souhaite
ni les réutiliser ni changer leurs propriétés par la suite. Vous pourrez noter ici l’avantage de programmer avec une classe,
le canvas est directement accessible dans n’importe quelle méthode de la classe avec self.canv (pas besoin de le passer
en argument ou de créer une variable globale).

25.6.3 Un canvas animé dans une classe

Dans ce dernier exemple, nous allons illustrer la puissance du widget canvas en vous montrant que l’on peut animer
les objets se trouvant à l’intérieur. Nous allons également découvrir une technique intéressante, à savoir, comment «
intercepter » des clics de souris générés ou des touches pressées par l’utilisateur. L’application consiste en une « baballe
» qui se déplace dans la fenêtre et dont on contrôle les propriétés à la souris (cf. figure 25.6). Vous pouvez télécharger
le script ici 11.

11. https://python.sdv.u-paris.fr/data-files/tk_baballe.py

Cours de Python / Université Paris Cité / UFR Sciences du Vivant 309

https://python.sdv.u-paris.fr/data-files/tk_baballe.py

Chapitre 25. Fenêtres graphiques et Tkinter 25.6. Le widget canvas

1 """Super appli baballe !!!
2
3 Usage: python tk_baballe.py
4 - clic gauche: faire grossir la baballe
5 - clic droit: faire rétrécir la baballe
6 - clic central: relance la baballe (depuis le point du clic)
7 dans une direction aléatoire
8 - touche Esc: quitte l'appli baballe
9 """

10
11 import tkinter as tk
12 import random as rd
13
14 class AppliBaballe(tk.Tk):
15 def __init__(self):
16 """Constructeur de l'application."""
17 tk.Tk.__init__(self)
18 # Coord baballe.
19 self.x, self.y = 200, 200
20 # Rayon baballe.
21 self.size = 50
22 # Pas de deplacement.
23 self.dx, self.dy = 20, 20
24 # Création et packing du canvas.
25 self.canv = tk.Canvas(self, bg='light gray', height=400, width=400)
26 self.canv.pack()
27 # Création de la baballe.
28 self.baballe = self.canv.create_oval(self.x, self.y,
29 self.x+self.size,
30 self.y+self.size,
31 width=2, fill="blue")
32 # Binding des actions.
33 self.canv.bind("<Button-1>", self.incr)
34 self.canv.bind("<Button-2>", self.boom)
35 self.canv.bind("<Button-3>", self.decr)
36 self.bind("<Escape>", self.stop)
37 # Lancer la baballe.
38 self.move()
39
40 def move(self):
41 """Déplace la baballe (appelée itérativement avec la méthode after)."""
42 # Incrémente coord baballe.
43 self.x += self.dx
44 self.y += self.dy
45 # Vérifier que la baballe ne sort pas du canvas (choc élastique).
46 if self.x < 10:
47 self.dx = abs(self.dx)
48 if self.x > 400-self.size-10:
49 self.dx = -abs(self.dx)
50 if self.y < 10:
51 self.dy = abs(self.dy)
52 if self.y > 400-self.size-10:
53 self.dy = -abs(self.dy)
54 # Mise à jour des coord.
55 self.canv.coords(self.baballe, self.x, self.y, self.x+self.size,
56 self.y+self.size)
57 # Rappel de move toutes les 50ms.
58 self.after(50, self.move)
59
60 def boom(self, mclick):
61 """Relance la baballe dans une direction aléatoire au point du clic."""
62 self.x = mclick.x
63 self.y = mclick.y
64 self.canv.create_text(self.x, self.y, text="Boom !", fill="red")
65 self.dx = rd.choice([-30, -20, -10, 10, 20, 30])
66 self.dy = rd.choice([-30, -20, -10, 10, 20, 30])
67
68 def incr(self, lclick):
69 """Augmente la taille de la baballe."""
70 self.size += 10
71 if self.size > 200:
72 self.size = 200
73
74 def decr(self, rclick):
75 """Diminue la taille de la baballe."""
76 self.size -= 10
77 if self.size < 10:
78 self.size = 10
79
80 def stop(self, esc):
81 """Quitte l'application."""
82 self.quit()
83
84
85 if __name__ == "__main__":
86 myapp = AppliBaballe()
87 myapp.title("Baballe !")
88 myapp.mainloop()

310 Cours de Python / Université Paris Cité / UFR Sciences du Vivant

25.6. Le widget canvas Chapitre 25. Fenêtres graphiques et Tkinter

Lignes 19 à 23. Les coordonnées de la baballe, ses pas de déplacement, et sa taille sont créés en tant qu’attributs de
notre classe. Ainsi ils seront visibles partout dans la classe.

Lignes 25 à 31. Le canvas est ensuite créé et placé dans la fenêtre, puis on définit notre fameuse baballe. À noter,
les coordonnées self.x et self.y de la baballe représentent en fait son côté « nord-ouest » (en haut à gauche, voir le
point (x0, y0) dans la documentation officielle 12).

Lignes 33 à 35. Jusqu’à maintenant, nous avons utilisé des événements provenant de clics sur des boutons. Ici, on va
« intercepter » des événements générés par des clics de souris sur le canvas et les lier à une fonction / méthode (comme
nous l’avions fait pour les clics sur des boutons avec l’option command=...). La méthode pour faire cela est .bind(),
voilà pourquoi on parle de event binding en anglais. Cette méthode prend en argument le type d’événement à capturer
en tant que chaîne de caractères avec un format spécial : par exemple "<Button-1>" correspond à un clic gauche de la
souris (de même "<Button-2>" et "<Button-3>" correspondent aux clics central et droit respectivement). Le deuxième
argument de la méthode .bind() est une méthode / fonction callback à appeler lors de la survenue de l’événement
(comme pour les clics de bouton, vous vous souvenez ? On l’appelle donc sans parenthèses ni arguments). On notera
que tous ces événements sont liés à des clics sur le canvas, mais il est possible de capturer des événements de souris sur
d’autres types de widgets.

Ligne 36. De même, on peut « intercepter » un événement lié à l’appui sur une touche, ici la touche Esc.
Ligne 38. La méthode .move() est appelée, ainsi l’animation démarrera dès l’exécution du constructeur, donc peu

après l’instanciation de notre application (Ligne 86).
Lignes 40 à 58. On définit une méthode .move() qui va gérer le déplacement de la baballe avec des chocs élastiques

sur les parois (et faire en sorte qu’elle ne sorte pas du canvas).
Lignes 55 et 56. On utilise la méthode .coords() de la classe Canvas, qui « met à jour » les coordonnées de

n’importe quel objet dessiné dans le canvas (c’est-à-dire que cela déplace l’objet).
Ligne 58. Ici, on utilise une autre méthode spécifique des objets Tkinter. La méthode .after() rappelle une autre

méthode ou fonction (second argument) après un certain laps de temps (ici 50 ms, passé en premier argument). Ainsi la
méthode .move() se rappelle elle-même, un peu comme une fonction récursive. Toutefois, ce n’est pas une vraie fonction
récursive comme celle vue dans le chapitre 13 (exemple du calcul de factorielle), car Python ne conserve pas l’état de la
fonction lors de l’appel de .after(). C’est comme si on avait un return, tout l’espace mémoire alloué à la méthode
.move() est détruit lorsque Python rencontre la méthode .after(). On obtiendrait un résultat similaire avec la boucle
suivante :

1 import time
2
3 ...
4
5 while True:
6 move()
7 time.sleep(0.05) # attendre 50 ms

Le temps de 50 ms donne 20 images (ou clichés) par seconde. Si vous diminuez ce temps, vous aurez plus d’images
par secondes et donc un « film » plus fluide.

Ligne 60 à 66. On définit la méthode .boom() de notre classe qui on se souvient est appelée lors d’un événement clic
central sur le canvas. Vous noterez qu’outre le self, cette fonction prend un autre argument que nous avons nommé
ici mclick. Il s’agit d’un objet spécial géré par Tkinter qui va nous donner des informations sur l’événement généré par
l’utilisateur. Dans les lignes 62 et 63, cet objet mclick récupère les coordonnées où le clic a eu lieu grâce aux attributs
mclick.x et mclick.y. Ces coordonnées sont réaffectées à la baballe pour la faire repartir de l’endroit du clic. Nous
créons ensuite un petit texte dans le canevas et affectons des valeurs aléatoires aux variables de déplacement pour faire
repartir la baballe dans une direction aléatoire.

Lignes 68 à 78. On a ici deux méthodes .incr() et .decr() appelées lors d’un clic gauche ou droit. Deux choses
sont à noter : i) l’attribut self.size est modifié dans les deux fonctions, mais le changement de diamètre de la boule ne
sera effectif dans le canvas que lors de la prochaine exécution de l’instruction self.canv.coords() (dans la méthode
.move()) ; ii) de même que pour la méthode .boom(), ces deux méthodes prennent un argument après le self (lclick
ou rclick) récupérant ainsi des informations sur l’événement de l’utilisateur. Même si on ne s’en sert pas, cet argument
après le self est obligatoire car il est imposé par la méthode .bind().

Lignes 80 à 82. Cette méthode quitte l’application lorsque l’utilisateur fait un clic sur la touche Esc.

12. http://infohost.nmt.edu/tcc/help/pubs/tkinter/web/create_oval.html

Cours de Python / Université Paris Cité / UFR Sciences du Vivant 311

http://infohost.nmt.edu/tcc/help/pubs/tkinter/web/create_oval.html

Chapitre 25. Fenêtres graphiques et Tkinter 25.7. Pour aller plus loin

Figure 25.6 – Exemple de canvas animé à deux instants de l’exécution (panneau de gauche : au moment où on effectue
un clic central ; panneau de droite : après avoir effectué plusieurs clics gauches).

Il existe de nombreux autres événements que l’on peut capturer et lier à des méthodes / fonctions callback. Vous
trouverez une liste complète ici 13.

25.7 Pour aller plus loin
25.7.1 D’autres widgets

Jusqu’à maintenant nous avons vu les widgets Button, Canvas, Label, mais il en existe bien d’autres. En voici la liste
avec une brève explication pour chacun :

• Checkbutton : affiche des cases à cocher.
• Entry : demande à l’utilisateur de saisir une valeur / une phrase.
• Listbox : affiche une liste d’options à choisir (comme dans la figure 25.1).
• Radiobutton : implémente des « boutons radio ».
• Menubutton et Menu : affiche des menus déroulants.
• Message : affiche un message sur plusieurs lignes (extensions du widget Label).
• Scale : affiche une règle graduée pour que l’utilisateur choisisse parmi une échelle de valeurs.
• Scrollbar : affiche des ascenseurs (horizontaux et verticaux).
• Text : crée une zone de texte dans lequel l’utilisateur peut saisir un texte sur plusieurs lignes (comme dans la figure

25.1).
• Spinbox : sélectionne une valeur parmi une liste de valeurs.
• tkMessageBox : affiche une boîte avec un message.
Il existe par ailleurs des widgets qui peuvent contenir d’autres widgets et qui organisent le placement de ces derniers :
• Frame : widget conteneur pouvant contenir d’autres widgets classiques, particulièrement utile lorsqu’on réalise une

GUI complexe avec de nombreuses zones.
• LabelFrame : comme Frame mais affiche aussi un label sur le bord.
• Toplevel : pour créer des fenêtres indépendantes.
• PanedWindow : conteneur pour d’autres widgets, mais ici l’utilisateur peut réajuster les zones affectées à chaque

widget fils.
Vous trouverez la documentation exhaustive pour tous ces widgets (ainsi que ceux que nous avons décrits dans les

rubriques précédentes) sur le site de l’Institut des mines et de technologie du Nouveau Mexique 14 (MNT). Par ailleurs, la

13. http://effbot.org/tkinterbook/tkinter-events-and-bindings.htm
14. http://infohost.nmt.edu/tcc/help/pubs/tkinter/web/index.html

312 Cours de Python / Université Paris Cité / UFR Sciences du Vivant

http://effbot.org/tkinterbook/tkinter-events-and-bindings.htm
http://infohost.nmt.edu/tcc/help/pubs/tkinter/web/index.html

25.7. Pour aller plus loin Chapitre 25. Fenêtres graphiques et Tkinter

page Universal widget methods 15 vous donnera une vue d’ensemble des différentes méthodes associées à chaque widget.
Il existe également une extension de Tkinter nommée ttk, réimplémentant la plupart des widgets de base de Tkinter

et qui en propose de nouveaux (Combobox, Notebook, Progressbar, Separator, Sizegrip et Treeview). Typiquement, si
vous utilisez ttk, nous vous conseillons d’utiliser les widgets ttk en priorité, et pour ceux qui n’existent pas dans ttk, ceux
de Tkinter (comme Canvas qui n’existe que dans Tkinter). Vous pouvez importer le sous-module ttk de cette manière :
import tkinter.ttk as ttk.

Vous pourrez alors utiliser les classes de widget de ttk (par exemple ttk.Button, etc.). Si vous souhaitez importer
ttk et Tkinter, il suffit d’utiliser ces deux lignes :

1 import tkinter as tk
2 import tkinter.ttk as ttk

Ainsi vous pourrez utiliser des widgets de Tkinter et de ttk en même temps.
Pour plus d’informations, vous pouvez consulter la documentation officielle de Python 16, ainsi que la documentation

très complète du site du MNT 17.

25.7.2 Autres pistes à approfondir
Si vous souhaitez aller un peu plus loin en Tkinter, voici quelques notions / remarques qui pourraient vous être utiles.

Conseil
Si vous êtes débutant, vous pouvez sauter cette rubrique.

25.7.2.1 Les variables de contrôle

Lorsque vous souhaitez mettre un jour un widget avec une certaine valeur (par exemple le texte d’un label), vous ne
pouvez pas utiliser une variable Python ordinaire, il faudra utiliser une variable Tkinter dite de contrôle. Par exemple,
si on souhaitait afficher les coordonnées de notre baballe (cf. rubrique précédente) dans un label, et que cet affichage
se mette à jour au fur et à mesure des mouvements de la baballe, il faudrait utiliser des variables de contrôle. On peut
créer de telles variables avec les classes tk.StringVar pour les chaînes de caractères, tk.DoubleVar pour les floats, et
tk.IntVar pour les entiers. Une fois créée, par exemple avec l’instruction var = tk.StringVar(), on peut modifier
la valeur d’une variable de contrôle avec la méthode var.set(nouvelle_valeur) : ceci mettra à jour tous les widgets
utilisant cette variable var. Il existe aussi la méthode var.get() qui récupère la valeur actuelle contenue dans var.
Enfin, il faudra lors de la création du label utiliser l’option textvariable= avec votre variable de contrôle (par exemple
tk.Label(..., textvariable=var, ...)) pour que cela soit fonctionnel.

À nouveau, vous trouverez une documentation précise sur le site du MNT 18.

25.7.2.2 Autres méthodes de placement des widgets dans la fenêtre Tk

Dans les exemples montrés dans ce chapitre, nous avons systématiquement utiliser la méthode .pack() pour placer
les widgets. Cette méthode très simple et directe « empaquette » les widgets les uns contre les autres et redimensionne
la fenêtre automatiquement. Avec l’option side= et les variables tk.BOTTOM, tk.LEFT, tk.TOP et tk.RIGHT on place
facilement les widgets les uns par rapport aux autres. Toutefois, la méthode .pack() peut parfois présenter des limites,
il existe alors deux autres alternatives.

La méthode .grid() permet, grâce à l’utilisation d’une grille, un placement mieux contrôlé des différents widgets. La
méthode .place() place enfin les widgets en utilisant les coordonnées de la fenêtre principale. Nous ne développerons
pas plus ces méthodes, mais voici de la documentation supplémentaire en accès libre :

• .pack() 19 ;

15. https://infohost.nmt.edu/tcc/help/pubs/tkinter/web/universal.html
16. https://docs.python.org/3/library/tkinter.ttk.html
17. http://infohost.nmt.edu/tcc/help/pubs/tkinter/web/ttk.html
18. https://infohost.nmt.edu/tcc/help/pubs/tkinter/web/control-variables.html
19. http://effbot.org/tkinterbook/pack.htm

Cours de Python / Université Paris Cité / UFR Sciences du Vivant 313

https://infohost.nmt.edu/tcc/help/pubs/tkinter/web/universal.html
https://docs.python.org/3/library/tkinter.ttk.html
http://infohost.nmt.edu/tcc/help/pubs/tkinter/web/ttk.html
https://infohost.nmt.edu/tcc/help/pubs/tkinter/web/control-variables.html
http://effbot.org/tkinterbook/pack.htm

Chapitre 25. Fenêtres graphiques et Tkinter 25.7. Pour aller plus loin

• .grid() 20, 21 ;
• .place() 22.

25.7.2.3 Hériter de la classe Frame pour vos applications ?

Comme illustré dans nos exemples, nous vous recommandons pour vos classes applications Tkinter d’hériter de la classe
mère tk.Tk et d’utiliser le constructeur de la classe mère tk.Tk.__init__(). Toutefois, il se peut qu’en consultant
d’autres ressources certains auteurs utilisent la technique d’héritage de la classe mère tk.Frame :

1 import tkinter as tk
2
3 class Application(tk.Frame):
4 def __init__(self, racine=None):
5 tk.Frame.__init__(self, racine)
6 self.racine = racine
7 self.create_widgets()
8
9 def create_widgets(self):

10 self.label = tk.Label(self.racine, text="J'adore Python !")
11 self.bouton = tk.Button(self.racine, text="Quitter",
12 fg="green", command=self.quit)
13 self.label.pack()
14 self.bouton.pack()
15
16
17 if __name__ == "__main__":
18 racine = tk.Tk()
19 racine.title("Ma Première App :-)")
20 app = Application(racine)
21 racine.mainloop()

Lignes 17 à 21. Commentons d’abord le programme principal : ici on crée la fenêtre principale dans l’instance racine
puis on instancie notre classe en passant racine en argument.

Lignes 4 et 5. Ici réside la principale différence par rapport à ce que nous vous avons montré dans ce chapitre : en
ligne 4 on passe l’argument racine à notre constructeur, puis en ligne 5 on passe ce même argument racine lors de
l’appel du constructeur de la classe tk.Frame (ce qui était inutile lorsqu’on héritait de la classe Tk).

Ligne 6. L’argument racine passé à la méthode .__init__() est finalement une variable locale. Comme il s’agit
de l’instance de notre fenêtre principale à passer à tous nos widgets, il faut qu’elle soit visible dans toute la classe. La
variable self.racine est ainsi créée afin d’être réutilisée dans d’autres méthodes.

Vous pourrez vous posez la question : « Pourquoi en ligne 4 l’argument par mot-clé racine=None prend la valeur
None par défaut ? ». Et bien, c’est parce que notre classe Application peut s’appeler sans passer d’instance de fenêtre
Tk. Voici un exemple avec les lignes qui changent seulement (tout le reste est identique au code précédent) :

1 [...]
2 class Application(tk.Frame):
3 def __init__(self, racine=None):
4 tk.Frame.__init__(self)
5 self.racine = racine
6 [...]
7 [...]
8 if __name__ == "__main__":
9 app = Application()

10 app.mainloop()

Dans un tel cas, l’argument racine prend la valeur par défaut None lorsque la méthode .__init__() de notre
classe est exécutée. L’appel au constructeur de la classe Frame en ligne 4 instancie automatiquement une fenêtre Tk (car
cela est strictement obligatoire). Dans la suite du programme, cette instance de la fenêtre principale sera self.racine
et il n’y aura pas de changement par rapport à la version précédente. Cette méthode reste toutefois peu intuitive car
cette instance de la fenêtre principale self.racine vaut finalement None !

20. http://effbot.org/tkinterbook/grid.htm
21. https://infohost.nmt.edu/tcc/help/pubs/tkinter/web/grid.html
22. http://effbot.org/tkinterbook/place.htm

314 Cours de Python / Université Paris Cité / UFR Sciences du Vivant

http://effbot.org/tkinterbook/grid.htm
https://infohost.nmt.edu/tcc/help/pubs/tkinter/web/grid.html
http://effbot.org/tkinterbook/place.htm

25.7. Pour aller plus loin Chapitre 25. Fenêtres graphiques et Tkinter

Hériter de la classe Frame ou de la classe Tk sont deux manières tout à fait valides pour créer des applications
Tkinter. Le choix de l’une ou de l’autre relève plus de préférences que l’on acquiert en pratiquant, voire de convictions
philosophiques sur la manière de programmer. Toutefois, nous pensons qu’hériter de la classe tk.Tk est une manière
plus générale et plus compacte : tout ce qui concerne le fenêtrage Tkinter se situera dans votre classe Application, et le
programme principal n’aura qu’à instancier l’application et à lancer le gestionnaire d’événements (les choses seront ainsi
mieux « partitionnées »). C’est donc la méthode que nous vous recommandons.

25.7.2.4 Passage d’arguments avec *args et **kwargs

Si vous allez chercher de la documentation supplémentaire sur Tkinter, il se peut que vous tombiez sur ce style de
syntaxe lorsque vous créez votre classe contenant l’application graphique :

1 class MonApplication(tk.Tk):
2 def __init__(self, *args, **kwargs):
3 tk.Tk.__init__(self, *args, **kwargs)
4 # ici débute la construction de votre appli
5 [...]
6
7 # programme principal
8 if __name__ == "__main__":
9 [...]

10 app = MonApplication()
11 [...]

Les arguments *args et **kwargs récupérent facilement tous les arguments « positionnels » et « par mot-clé ». Pour
plus de détails sur comment *args et **kwargs fonctionnent, reportez-vous au chapitre 26 Remarques complémentaires
(en ligne).

Dans l’exemple ci-dessus, *args et **kwargs sont inutiles car lors de l’instanciation de notre application, on ne passe
aucun argument : app = MonApplication(). Toutefois, on pourrait être intéressé à récupérer des arguments passés
au constructeur, par exemple :
app = MonApplication(arg1, arg2, option1=val1, option2=val2)

Ainsi certains auteurs laissent toujours ces *args et **kwargs au cas où on en ait besoin dans le futur. Cela est
bien utile lorsqu’on distribue notre classe à la communauté et que l’on souhaite que les futurs utilisateurs puissent passer
des arguments Tkinter au constructeur de notre classe.

Toutefois, même si cela « ne coûte rien », nous vous recommandons de ne pas mettre ces *args et **kwargs si vous
n’en avez pas besoin, comme nous vous l’avons montré dans les exemples de ce chapitre. Rappelons nous de la PEP 20
(voir le chapitre 16 Bonnes Pratiques en programmation Python), les assertions « Simple is better than complex » ou «
Sparse is better than dense » nous suggèrent qu’il est inutile d’ajouter des choses dont on ne se sert pas.

25.7.2.5 Toujours préciser l’instance de la fenêtre principale

Tkinter est parfois surprenant. Dans le code suivant, on pourrait penser que celui-ci n’est pas fonctionnel :
1 >>> import tkinter as tk
2 >>> bouton = tk.Button(text="Quitter")
3 >>> bouton.pack()

Pour autant, cela fonctionne et on voit un bouton apparaître ! En fait, Tkinter va automatiquement instancier la
fenêtre principale, si bien qu’il n’est pas obligatoire de passer cette instance en argument d’un widget. À ce moment, on
peut se demander où est passé cette instance. Heureusement, Tkinter garde toujours une filiation des widgets avec les
attributs .master et .children :

1 >>> racine = bouton.master
2 >>> racine
3 <tkinter.Tk object .>
4 >>> racine.children
5 {'!button': <tkinter.Button object .!button>}
6 >>> bouton["command"] = racine.destroy

Cours de Python / Université Paris Cité / UFR Sciences du Vivant 315

Chapitre 25. Fenêtres graphiques et Tkinter 25.7. Pour aller plus loin

Ligne 1. On « récupère » l’instance de la fenêtre principale dans la variable racine.
Les lignes 4 et 5 montrent que le bouton est un « enfant » de cette dernière.
Enfin, ligne 6, on réassigne la destruction de la fenêtre lorsqu’on clique sur le bouton.
Ces attributs .master et .children existent pour tous widgets et sont bien pratiques lorsqu’on crée de grosses

applications graphiques (où on utilise souvent des widgets parents contenant d’autres widgets enfants). Une autre source
d’information sur les widgets se trouvent dans les méthodes dont le nom commence par winfo. Par exemple, la méthode
.winfo_toplevel() renvoie la même information que l’attribut .master (une référence vers le widget parent).

Conseil
Même si cela est possible, nous vous conseillons de systématiquement préciser l’instance de la fenêtre principale lors

de la création de vos widgets.

25.7.2.6 Passage d’arguments à vos fonctions callback

Comme vu dans nos exemples ci-dessus, les fonctions callback ne prennent pas d’arguments ce qui peut se révéler
parfois limitant. Il existe toutefois une astuce qui utilise les fonctions lambda ; nous expliquons brièvement les fonctions
lambda dans le chapitre 26 Remarques complémentaires (en ligne). Toutefois, nous ne développons pas leur utilisation
avec Tkinter et les fonctions callback car cela dépasse le cadre de cet ouvrage. Pour de plus amples explications sur cette
question, vous pouvez consulter le site pythonprogramming 23 et le livre de Gérard Swinnen 24.

25.7.2.7 Application Tkinter avec plusieurs pages

Dans ce chapitre d’introduction, nous vous avons montré des GUI simples avec une seule page. Toutefois, si votre
projet se complexifie, il se peut que vous ayez besoin de créer plusieurs fenêtre différentes. Le livre de Gérard Swinnen 25

et le site pythonprogramming 26 sont des bonnes sources pour commencer et voir concrètement comment faire cela.

25.7.3 Bibliographie pour aller plus loin
Voici quelques ressources que vous pouvez utiliser pour continuer votre apprentissage de Tkinter :
1. En anglais :
• La Documentation officielle 27 de Python.
• Le manuel 28 de référence sur le site du MNT.
• Le site 29 de Fredrik Lundh est également très complet.
• Pour avoir un exemple 30 rapide de code pour chaque widget.
• Le livre 31 de David Love Learn Tkinter By Example qui montre des exemples concrets d’applications Tkinter de

plus en plus complexes (pdf en libre téléchargement).
• Le site 32 très bien fait de Harisson (avec vidéos !) vous guidera dans la construction d’une GUI complète et complexe

avec de nombreuses fonctions avancées (comme par exemple mettre des graphes matplotlib qui se mettent à jour
dans la GUI !).

2. En français :
• Le site 33 bien complet d’Étienne Florent.
• Le livre 34 de Gérard Swinnen qui montre de nombreux exemples d’applications tkinter (pdf en libre téléchargement).

23. https://pythonprogramming.net/passing-functions-parameters-tkinter-using-lambda/
24. https://inforef.be/swi/python.htm
25. https://inforef.be/swi/python.htm
26. https://pythonprogramming.net/change-show-new-frame-tkinter/
27. https://wiki.python.org/moin/TkInter
28. https://infohost.nmt.edu/tcc/help/pubs/tkinter/web/index.html
29. http://effbot.org/tkinterbook/
30. https://www.tutorialspoint.com/python/python_gui_programming.htm
31. https://github.com/Dvlv/Tkinter-By-Example
32. https://pythonprogramming.net/tkinter-depth-tutorial-making-actual-program/
33. http://tkinter.fdex.eu/index.html
34. https://inforef.be/swi/python.htm

316 Cours de Python / Université Paris Cité / UFR Sciences du Vivant

https://pythonprogramming.net/passing-functions-parameters-tkinter-using-lambda/
https://inforef.be/swi/python.htm
https://inforef.be/swi/python.htm
https://pythonprogramming.net/change-show-new-frame-tkinter/
https://wiki.python.org/moin/TkInter
https://infohost.nmt.edu/tcc/help/pubs/tkinter/web/index.html
http://effbot.org/tkinterbook/
https://www.tutorialspoint.com/python/python_gui_programming.htm
https://github.com/Dvlv/Tkinter-By-Example
https://pythonprogramming.net/tkinter-depth-tutorial-making-actual-program/
http://tkinter.fdex.eu/index.html
https://inforef.be/swi/python.htm

25.8. Exercices Chapitre 25. Fenêtres graphiques et Tkinter

25.8 Exercices

Conseil
Pour ces exercices, créez des scripts puis exécutez-les dans un shell. Nous vous recommandons de concevoir une classe

pour chaque exercice.

25.8.1 Application de base
Concevez une application qui affiche l’heure dans un label (par exemple 09:10:55) et qui possède un boutton quitter.

L’heure affichée sera celle au moment du lancement de l’application. Pour « attraper » l’heure, vous pourrez utiliser la
fonction strftime() du module time.

25.8.2 Horloge
Sur la base de l’application précédente, faites une application qui affiche l’heure dans un label en se mettant à jour

sur l’heure de l’ordinateur une fois par seconde. Vous concevrez une méthode .mise_a_jour_heure() qui met à jour
l’heure dans le label et qui se rappelle elle-même toutes les secondes (n’oubliez pas la méthode .after(), cf. rubrique
Un canvas animé dans une classe ci-dessus). Pour cette mise à jour, vous pourrez utiliser la méthode .configure(), par
exemple : self.label.configure(text=heure) où heure est une chaîne de caractères représentant l’heure actuelle.

25.8.3 Compte à rebours
Créer une application affichant un compte à rebours dans un label. L’utilisateur choisira entre 1 et 240 minutes

en passant un argument au lancement du script, par exemple : python tk_compte_a_rebours.py 34 signifiera un
compte à rebours de 34’ (le programme vérifiera qu’il s’agit d’un entier entre 1 et 240 inclus). Il y aura un bouton «
Lancer » pour démarrer le compte à rebours et un boutton « Quitter » au cas où on veuille quitter avant la fin. À la fin
du rebours, le programme affichera 10 fois la phrase « C’est fini !!! » dans le shell et quittera automatiquement le script.
Une image du résultat attendu est montrée dans la figure 25.7.

Figure 25.7 – Compte à rebours.

25.8.4 Triangle de Sierpinski
Le triangle de Sierpinski 35 est une fractale classique. On se propose ici de la dessiner avec un algorithme tiré du jeu

du chaos 36. Celui-ci se décompose en pseudo-code de la façon suivante :

35. https://fr.wikipedia.org/wiki/Triangle_de_Sierpi%C5%84ski
36. https://fr.wikipedia.org/wiki/Jeu_du_chaos

Cours de Python / Université Paris Cité / UFR Sciences du Vivant 317

https://fr.wikipedia.org/wiki/Triangle_de_Sierpi%C5%84ski
https://fr.wikipedia.org/wiki/Jeu_du_chaos

Chapitre 25. Fenêtres graphiques et Tkinter 25.8. Exercices

définir les 3 sommets d'un triangle isocèle ou équilatéral
point <- coordonnées (x, y) du centre du trianle
dessiner(point) # un pixel de large
pour i de 0 à 25000:

sommet_tmp <- choisir un sommet du triangle au hasard
point <- calculer(coordonnées(x, y) du centre entre point et sommet_tmp)
dessiner(point)

Le rendu final attendu est montré dans la figure 25.8. On utilisera un canevas de 400x400 pixels. Il y a aura un
bouton « Quitter » et un bouton « Launch ! » qui calculera et affichera 10000 points supplémentaires dans le triangle de
Sierpinski.

Figure 25.8 – Triangle de Sierpinski.

25.8.5 Polygone de Sierpinski (exercice +++)

Améliorer l’application précédente en proposant une liste de choix supplémentaire demandant à l’utilisateur de choisir
le nombre de sommets (de 3 à 10). Le programme calculera automatiquement la position des sommets. Pour prendre en
main le widget Listbox, voici un code minimal qui pourra vous aider. Celui-ci contient une Listbox et permet d’afficher
dans le terminal l’élément sélectionné. Nous vous conseillons de bien étudier le code ci-dessous et d’avoir résolu l’exercice
précédent avant de vous lancer !

318 Cours de Python / Université Paris Cité / UFR Sciences du Vivant

25.8. Exercices Chapitre 25. Fenêtres graphiques et Tkinter

1 import tkinter as tk
2
3 class MaListBox(tk.Tk):
4 def __init__(self):
5 # Instanciation fenêtre Tk.
6 tk.Tk.__init__(self)
7 self.listbox = tk.Listbox(self, height=10, width=4)
8 self.listbox.pack()
9 # Ajout des items à la listbox (entiers).

10 for i in range(1, 10+1):
11 # Utilisation de ma méthode .insert(index, element)
12 # Ajout de l'entier i (tk.END signifie en dernier).
13 self.listbox.insert(tk.END, i)
14 # Selection du premier élément de listbox.
15 self.listbox.select_set(0)
16 # Liaison d'une méthode quand clic sur listbox.
17 self.listbox.bind("<<ListboxSelect>>", self.clic_listbox)
18
19 def clic_listbox(self, event):
20 # Récupération du widget à partir de l'objet event.
21 widget = event.widget
22 # Récupération du choix sélectionné dans la listbox (tuple).
23 # Par exemple renvoie `(5,)` si on a cliqué sur `5`.
24 selection = widget.curselection()
25 # Récupération du nombre sélectionné (déjà un entier).
26 choix_select = widget.get(selection[0])
27 # Affichage.
28 print(f"Le choix sélectionné est {choix_select}, "
29 f"son type est {type(choix_select)}")
30
31
32
33 if __name__ == "__main__":
34 app = MaListBox()
35 app.title("MaListBox")
36 app.mainloop()

25.8.6 Projet simulation d’un pendule
Vous souhaitez aller plus loin après ces exercices de « mise en jambe » ? Nous vous conseillons d’aller directement au

chapitre 27 Mini projets (en ligne). Nous vous proposons de réaliser une application Tkinter qui simule le mouvement d’un
pendule. En réalisant une application complète de ce genre, un peu plus conséquente, vous serez capable de construire
vos propres applications.

Cours de Python / Université Paris Cité / UFR Sciences du Vivant 319

CHAPITRE 26

Remarques complémentaires

Dans ce chapitre, nous présentons un certain nombre de points en vrac qui ne rentraient pas forcément dans les
autres chapitres ou qui étaient trop avancés au moment où les chapitres étaient abordés. Outre quelques points mineurs,
nous abordons les grandes différences entre Python 2 et Python 3, les anciennes méthodes de formatage des chaînes
de caractères, les fonctions lambda, les itérateurs, la gestion des exceptions, les passage d’arguments avancés dans les
fonctions et les décorateurs. Certains de ces points sont réellement avancés et nécessiteront d’avoir assimilé d’autres
notions avant de les aborder.

26.1 Différences Python 2 et Python 3
Python 3 est la version de Python qu’il faut utiliser.
Néanmoins, Python 2 a été employé pendant de nombreuses années par la communauté scientifique et vous serez

certainement confrontés à un programme écrit en Python 2. Voici quelques éléments pour vous en sortir :

26.1.1 Le mot-clé print / la fonction print()
En Python 2 print est un mot-clé du langage (en anglais statement) au même titre que for, if, def, etc. Il s’utilise

ainsi sans parenthèse. Par exemple :
1 >>> print 12
2 12
3 >>> print "girafe"
4 girafe

Par contre, en Python 3, print() est une fonction. Ainsi, si vous n’utilisez pas de parenthèse, Python vous renverra
une erreur :

1 >>> print 12
2 File "<stdin>", line 1
3 print 12
4 ^
5 SyntaxError: Missing parentheses in call to 'print'

26.1.2 Division d’entiers
En Python 3, la division de deux entiers, se fait naturellement, c’est-à-dire que l’opérateur / renvoie systématiquement

un float. Par exemple :

320

26.1. Différences Python 2 et Python 3 Chapitre 26. Remarques complémentaires

1 >>> 3 / 4
2 0.75

Il est également possible de réaliser une division entière avec l’opérateur // :
>>> 3 // 4
0

La division entière renvoie finalement la partie entière du nombre 0.75, c’est-à-dire 0.
Attention ! En Python 2, la division de deux entiers avec l’opérateur / correspond à la division entière, c’est-à-dire le

résultat arrondi à l’entier inférieur. Par exemple :
1 >>> 3 / 5
2 0
3 >>> 4 / 3
4 1

Faites très attention à cet aspect si vous programmez encore en Python 2, c’est une source d’erreur récurrente.

26.1.3 La fonction range()
En Python 3, la fonction range() renvoie un objet de type range (voir les chapitres 5 Boucles et comparaisons et

14 Conteneurs) :
1 >>> range(3)
2 range(0, 3)

Comme on a vu au chapitre 5 Boucles et comparaisons, ces objets sont itérables produisant successivement les nombres
0, puis 1 puis 2 sur notre exemple :

1 >>> for i in range(3):
2 ... print(i)
3 ...
4 0
5 1
6 2

En Python 2, la fonction range() renvoie une liste. Par exemple :
1 >>> range(3)
2 [0, 1, 2]
3 >>> range(2, 6)
4 [2, 3, 4, 5]

La création de liste avec range() était pratique, mais très peu efficace en mémoire lorsque l’argument donné à
range() était un grand nombre.

D’ailleurs la fonction xrange() est disponible en Python 2 pour faire la même chose que la fonction range() en
Python 3. Attention, ne vous mélangez pas les pinceaux !

1 >>> range(3)
2 [0, 1, 2]
3 >>> xrange(3)
4 xrange(3)

Remarque
Pour générer une liste d’entiers avec la fonction range() en Python 3, vous avez vu dans le chapitre 4 Listes qu’il

suffisait de l’associer avec la fonction list(). Par exemple :
1 >>> list(range(10))
2 [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

Cours de Python / Université Paris Cité / UFR Sciences du Vivant 321

Chapitre 26. Remarques complémentaires 26.2. Anciennes méthodes de formatage des chaînes de caractères

Conseil
Pour une comparaison exhaustive entre xrange() en Python 2 et range() en Python 3, vous pouvez lire ce très

bon article 1 tiré du blog de Trey Hunner.

26.1.4 Fonction zip()
En Python 2, la fonction zip() renvoie une liste de tuples, alors qu’en Python 3 elle renvoie un itérateur :

1 >>> # Python2.
2 >>> zip(range(4), range(10, 14))
3 [(0, 10), (1, 11), (2, 12), (3, 13)]

1 >>> # Python3.
2 >>> zip(range(4), range(10, 14))
3 <zip object at 0x7f11423ffd80>

Vous pouvez lire la rubrique Itérables, itérateurs, générateurs et module itertools un peu plus bas dans ce chapitre
pour en savoir plus sur les itérateurs.

26.1.5 Encodage et utf-8
En Python 3, vous pouvez utiliser des caractères accentués dans les commentaires ou dans les chaînes de caractères.
Ce n’est pas le cas en Python 2. Si un caractère accentué est présent dans votre code, cela occasionnera une erreur

de ce type lors de l’exécution de votre script :
SyntaxError: Non-ASCII character '\xc2' in file xxx on line yyy, but no encoding
declared; see http://python.org/dev/peps/pep-0263/ for details

Pour éviter ce genre de désagrément, ajoutez la ligne suivante en tout début de votre script :
1 # coding: utf-8

Si vous utilisez un shebang (voir rubrique précédente), il faudra mettre la ligne # coding: utf-8 sur la deuxième
ligne (la position est importante 2) de votre script :

1 #! /usr/bin/env python
2 # coding: utf-8

Remarque
L’encodage utf-8 peut aussi être déclaré de cette manière :

1 # -*- coding: utf-8 -*-

mais c’est un peu plus long à écrire.

26.2 Anciennes méthodes de formatage des chaînes de caractères
Dans les premières versions de Python jusqu’à la 2.6, il fallait utiliser l’opérateur %, puis de la version 2.7 jusqu’à la 3.5

il était plutôt conseillé d’utiliser la méthode .format(). Même si les f-strings sont devenues la manière conseillée pour
mettre en place l’écriture formatée, ces deux anciennes manières, sont encore pleinement compatibles avec les versions
modernes de Python.

Même si elle fonctionne encore, la première manière avec l’opérateur % est maintenant clairement déconseillée pour un
certain nombre de raisons 3. Néanmoins, nous rappelons ci-dessous son fonctionnement, car il se peut que vous tombiez
dessus dans d’anciens livres ou si vous lisez de vieux programmes Python.

1. https://treyhunner.com/2018/02/python-3-s-range-better-than-python-2-s-xrange/
2. http://www.python.org/dev/peps/pep-0263/
3. https://docs.python.org/fr/3/library/stdtypes.html?highlight=sprintf#printf-style-string-formatting

322 Cours de Python / Université Paris Cité / UFR Sciences du Vivant

https://treyhunner.com/2018/02/python-3-s-range-better-than-python-2-s-xrange/
http://www.python.org/dev/peps/pep-0263/
https://docs.python.org/fr/3/library/stdtypes.html?highlight=sprintf#printf-style-string-formatting

26.2. Anciennes méthodes de formatage des chaînes de caractères Chapitre 26. Remarques complémentaires

La deuxième manière avec la méthode .format() est encore utilisée et reste tout à fait valide. Elle est clairement
plus puissante et évite un certain nombre de désagréments par rapport à l’opérateur %. Vous la croiserez sans doute
de temps en temps dans des programmes et ouvrages plus ou moins récents. Heureusement elle a un fonctionnement
relativement proche des f-strings, donc vous ne serez pas totalement perdus !

Enfin, nous indiquons à la fin de cette rubrique nos conseils sur quelle méthode utiliser.

26.2.1 L’opérateur %
On a vu avec les entiers que l’opérateur % ou modulo renvoyait le reste d’une division entière. Cet opérateur existe

aussi pour les chaînes de caractères mais il met en place l’écriture formatée. En voici un exemple :
1 >>> x = 32
2 >>> nom = "John"
3 >>> print("%s a %d ans" % (nom, x))
4 John a 32 ans
5 >>> nb_G = 4500
6 >>> nb_C = 2575
7 >>> prop_GC = (nb_G + nb_C)/14800
8 >>> print("On a %d G et %d C -> prop GC = %.2f" % (nb_G, nb_C, prop_GC))
9 On a 4500 G et 2575 C -> prop GC = 0.48

La syntaxe est légèrement différente. Le symbole % est d’abord appelé dans la chaîne de caractères (dans l’exemple
ci-dessus %d, %d et %.2f) pour :

• Désigner l’endroit où sera placée la variable dans la chaîne de caractères.
• Préciser le type de variable à formater, d pour un entier (i fonctionne également) ou f pour un float.
• Éventuellement pour indiquer le format voulu. Ici .2 signifie une précision de deux décimales.
Le signe % est rappelé une seconde fois (% (nb_G, nb_C, prop_GC)) pour indiquer les variables à formater.

26.2.2 La méthode .format()
Depuis la version 2.7 de Python, la méthode .format() a apporté une nette amélioration pour mettre en place

l’écriture formatée. Celle-ci fonctionne de la manière suivante :
1 >>> x = 32
2 >>> nom = "John"
3 >>> print("{} a {} ans".format(nom, x))
4 John a 32 ans
5 >>> nb_G = 4500
6 >>> nb_C = 2575
7 >>> prop_GC = (nb_G + nb_C)/14800
8 >>> print("On a {} G et {} C -> prop GC = {:.2f}".format(nb_G, nb_C, prop_GC))
9 On a 4500 G et 2575 C -> prop GC = 0.48

• Dans la chaîne de caractères, les accolades vides {} précisent l’endroit où le contenu de la variable doit être inséré.
• Juste après la chaîne de caractères, l’instruction .format(nom, x) fournit la liste des variables à insérer, d’abord

la variable nom puis la variable x.
• On peut éventuellement préciser le formatage en mettant un caractère deux-points : puis par exemple ici .2f qui

signifie deux chiffres après la virgule.
• La méthode .format() agit sur la chaîne de caractères à laquelle elle est attachée par le point.
Tout ce que nous avons vu avec les f-strings sur la manière de formater l’affichage d’une variable (après les :

au sein des accolades) est identique avec la méthode .format(). Par exemple {:.2f}, {:0>6d}, {:.6e}, etc.,
fonctionneront de la même manière. La différence notable est qu’on ne met pas directement le nom de la variable au
sein des accolades. Comme pour l’opérateur %, c’est l’emplacement dans les arguments passés à la méthode .format()
qui dicte quelle variable doit être remplacée. Par exemple, dans "{} {} {}".format(bidule, machin, truc), les
premières accolades remplaceront la variable bidule, les deuxièmes la variable machin, les troisièmes la variable truc.

Le formatage avec la méthode .format() se rapproche de la syntaxe des f-strings (accolades, deux-points), mais
présente l’inconvénient – comme avec l’opérateur % – de devoir mettre la liste des variables tout à la fin, alourdissant
ainsi la syntaxe. En effet, dans l’exemple avec la proportion de GC, la ligne équivalente avec une f-string apparait tout
de même plus simple à lire :

1 >>> print(f"On a {nb_G} G et {nb_C} C -> prop GC = {prop_GC:.2f}")
2 On a 4500 G et 2575 C -> prop GC = 0.48

Cours de Python / Université Paris Cité / UFR Sciences du Vivant 323

Chapitre 26. Remarques complémentaires 26.3. Fonctions lambda

Conseil
Pour conclure, ces deux anciennes façons de formater une chaîne de caractères avec l’opérateur % ou la méthode

.format() vous sont présentées à titre d’information. La première avec l’opérateur % est clairement déconseillée. La
deuxième avec la méthode .format() est encore tout à fait valable. Si vous débutez Python, nous vous conseillons
fortement d’apprendre et d’utiliser les f-strings. C’est ce que vous rencontrerez dans la suite de ce cours. Si vous connaissez
déjà Python et que vous utilisez la méthode .format(), nous vous conseillons de passer aux f-strings. Depuis que nous
les avons découvertes, aucun retour n’est envisageable pour nous tant elles sont puissantes et plus claires à utiliser !

Pour aller plus loin
Enfin, si vous souhaitez aller plus loin, voici deux articles (en anglais) très bien faits sur le site RealPython : sur

l’écriture formatée 4 et sur les f-strings 5

26.3 Fonctions lambda
26.3.1 Définition

Définition
Une fonction lambda est une fonction qui s’écrit sur une ligne. En Python, il s’agit du moyen d’implémenter une

fonction anonyme 6 (en anglais anonymous function), c’est-à-dire, une fonction qui est la plupart du temps non reliée
à un nom (d’où le terme anonyme). Une fonction lambda s’utilise en général à la volée. On parle aussi d’expressions
lambda utilisées pour fabriquer des fonctions lambda.

Voici un premier exemple :
1 >>> lambda x: x**2
2 <function <lambda> at 0x7fcbd9c58b80>
3 >>> (lambda x: x**2)(4)
4 16
5 >>> (lambda x: x**2)(10)
6 100

• Ligne 1. On a ici une expression lambda typique définissant une fonction lambda. La syntaxe est (dans l’ordre) :
le mot-clé (statement) lambda, zero ou un ou plusieurs argument(s), deux-points, une expression utilisant ou pas
les arguments.

• Ligne 2. Python confirme qu’il s’agit d’une fonction.
• Lignes 3 à 6. Pour utiliser la fonction lambda, pour l’instant, on la met entre parenthèses et on utilise un autre

jeu de parenthèses pour l’appeler et éventuellement passer des arguments.

Attention
Une fonction lambda ne s’écrit que sur une ligne. Si vous essayez de l’écrire sur plusieurs lignes, Python lèvera une

exception SyntaxError: invalid syntax.

Comme pour les fonctions classiques, le nombre d’arguments est variable et doit être cohérent avec l’appel :

4. https://realpython.com/python-string-formatting
5. https://realpython.com/python-f-strings/
6. https://en.m.wikipedia.org/wiki/Anonymous_function

324 Cours de Python / Université Paris Cité / UFR Sciences du Vivant

https://realpython.com/python-string-formatting
https://realpython.com/python-f-strings/
https://en.m.wikipedia.org/wiki/Anonymous_function

26.3. Fonctions lambda Chapitre 26. Remarques complémentaires

1 >>> (lambda: 1/2)()
2 0.5
3 >>> (lambda x, y: x + y)(1, 2)
4 3
5 >>> (lambda x, y: x + y)(4, 5)
6 9
7 >>> (lambda: 1/2)(5)
8 Traceback (most recent call last):
9 File "<stdin>", line 1, in <module>

10 TypeError: <lambda>() takes 0 positional arguments but 1 was given
11 >>> (lambda x, y: x + y)(4)
12 Traceback (most recent call last):
13 File "<stdin>", line 1, in <module>
14 TypeError: <lambda>() missing 1 required positional argument: 'y'

• Ligne 1. Fonction lambda à zéro argument.
• Lignes 3 et 5. Fonction lambda à deux arguments.
• Lignes 7 à 10. Le nombre d’argument(s) est incorrect et génère une erreur. Dans cet exemple, on passe un

argument alors que la fonction lambda créée ici n’en prend pas.
• Lignes 11 à 14. Le nombre d’argument(s) est incorrect et génère une erreur. Dans cet exemple, on passe un

argument alors que la fonction lambda créée ici en prend deux.

26.3.2 Assignation d’une fonction lambda à un nom ?
Bien que cela soit déconseillé, il est possible d’assigner une fonction lambda à un nom de variable :

1 >>> carre = lambda x: x**2
2 >>> carre(3)
3 9

L’équivalent avec une fonction classique serait :
1 >>> def carre(x):
2 ... return x**2
3 ...
4 >>> carre(9)
5 81

Dans les deux cas l’appel est identique, mais la fonction lambda requière une syntaxe à une ligne lors de sa définition.
Même si on peut le faire, les dévelopeurs déconseillent toutefois d’assigner une fonction lambda à un nom dans

la PEP8 7. Une des raisons est que si une erreur est générée, l’interpréteur ne renvoie pas le numéro de ligne dans la
Traceback :

1 >>> inverse = lambda: 1/0
2 >>> inverse()
3 Traceback (most recent call last):
4 File "<stdin>", line 1, in <module>
5 File "<stdin>", line 1, in <lambda>
6 ZeroDivisionError: division by zero

Ligne 5. L’indication de la ligne pour l’erreur dans la fonction lambda (line 1) correspond à celle de l’appel et non
pas de la définition.

Alors qu’avec une fonction classique :
>>> def inverse():
... return 1/0
...
>>> inverse()
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "<stdin>", line 2, in inverse

ZeroDivisionError: division by zero

Ligne 5. Cette fois-ci, la Traceback indique bien la bonne ligne (line 2) dans la fonction.

7. https://peps.python.org/pep-0008/

Cours de Python / Université Paris Cité / UFR Sciences du Vivant 325

https://peps.python.org/pep-0008/

Chapitre 26. Remarques complémentaires 26.3. Fonctions lambda

Conseil
Pour cette raison, n’assignez pas une fonction lambda à un nom, mais utilisez la seulement à la volée (voir ci-dessous).

Une autre raison est que cela peut nuire à la lisibilité. Si une fonction lambda s’écrit en une ligne, c’est bien pour qu’on
puisse la lire quand elle est utilisée.

26.3.3 Utilité des fonctions lambda
Jusqu’à maintenant nous avons défini les fonctions lambda et montré ce qu’il ne fallait pas faire. Vous vous posez

sans doute la question, mais à quoi servent-elles vraiment ? Nous vous montrons ici deux utilisations principales.
La première est qu’elles sont utiles pour implémenter des concepts de programmation fonctionnelle 8. Dans ce para-

digme de programmation, on cherchera à « emboiter » les fonctions les unes dans les autres. Nous avions déjà croisé
cette idée avec la fonction map() dans le chapitre 11 Plus sur les chaînes de caractères. Celle-ci permet d’appliquer une
fonction à tous les éléments d’un objet itérable. Par exemple, convertir en entier les différents éléments d’une chaîne de
caractères :

1 >>> ligne = "3 5 -10"
2 >>> list(map(int, ligne.split()))
3 [3, 5, -10]

Ligne 2. On a converti l’objet map en liste pour voir ce qu’il contenait.
L’utilisation impliquant une fonction lambda permet par exemple d’appliquer une opération à tous les éléments d’une

liste :
1 >>> liste1 = [3, 5, -10]
2 >>> list(map(lambda x: x**2, liste1))
3 [9, 25, 100]
4 >>> list(map(lambda x: 1/x, liste1))
5 [0.3333333333333333, 0.2, -0.1]

Lignes 2 et 4. La fonction lambda permet de lire clairement quelle opération on réalise plutôt que de se référer à
une fonction classique se trouvant à un autre endroit. Ainsi, cela améliore la lisibilité.

Cela vous rappelle peut-être ce qu’on a rencontré avec les objets NumPy et les opérations vectorielles :
1 >>> import numpy as np
2 >>> array1 = np.arange(10)
3 >>> array1
4 array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])
5 >>> array1 * 2
6 array([0, 2, 4, 6, 8, 10, 12, 14, 16, 18])
7 >>>
8 >>> liste1 = list(range(10))
9 >>> liste1

10 [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
11 >>> list(map(lambda x: x*2, liste1))
12 [0, 2, 4, 6, 8, 10, 12, 14, 16, 18]

Ligne 5. Nativement, l’opération array1 * 2 se fait vectoriellement (élément par élément) avec un array NumPy.
Ligne 11. La fonction map() applique l’opération * 2 de la lambda sur tous les éléments de la liste. Ainsi, on obtient

le même effet que sur l’array NumPy.
Bien que cela s’avère pratique, nous verrons dans la rubrique suivante sur les itérateurs qu’il existe une syntaxe plus

Pythonique avec les listes de compréhensions et les expressions génératrices.
La deuxième grande utilité des fonctions lambda concerne leur utilisation pour faire des tris puissants. Dans le chapitre

14 Conteneurs, nous avions vu les tris de dictionnaires par valeurs :
1 >>> dico = {"a": 15, "b": 5, "c":20}
2 >>> sorted(dico, key=dico.get)
3 ['b', 'a', 'c']

8. https://fr.wikipedia.org/wiki/Programmation_fonctionnelle

326 Cours de Python / Université Paris Cité / UFR Sciences du Vivant

https://fr.wikipedia.org/wiki/Programmation_fonctionnelle

26.3. Fonctions lambda Chapitre 26. Remarques complémentaires

Ligne 2. On passe à l’argument par mot-clé key la callback dico.get (cette méthode renvoie initialement les valeurs
d’un dictionnaire). Cela permet finalement de trier par ce que renvoie cette méthode, à savoir les valeurs.

Cet argument par mot-clé peut prendre d’autres callback, par exemple len. Dans l’exemple suivant, on prend 10 mots
au hasard dans le dictionnaire et on les trie par leur longueur :

1 >>> mots = ['étudier', 'pie-grièche', 'figurerait', 'retraitait', 'allégerais',
2 'distribuent', 'affilierait', 'ramassa', 'galettes', 'connu']
3 >>> sorted(mots, key=len)
4 ['connu', 'étudier', 'ramassa', 'galettes', 'figurerait', 'retraitait',
5 'allégerais', 'pie-grièche', 'distribuent', 'affilierait']

Bien sûr, on peut utiliser aussi une fonction lambda. Celle-ci va nous permettre de passer une fonction de tri à la
volée au moment de l’appel de la fonction sorted(). Par exemple, si on reprend le même exemple que le dictionnaire
mais sous forme d’une liste de tuples :

1 liste1 = [('a', 15), ('b', 5), ('c', 20)]

Comment trier en fonction du deuxième élément de chaque tuple ? Réponse, avec une fonction lambda bien sûr !
Regardez :

1 >>> sorted(liste1, key=lambda x: x[1])
2 [('b', 5), ('a', 15), ('c', 20)]

Autre exemple, on souhaite trier une liste d’entiers aléatoires non pas par leur valeur, mais par le résultat de la fonction
x**2 :

1 >>> liste1 = [-5, 2, 5, 8, 6, 3, -9, 4, -10, 2]
2 >>> sorted(liste1, key=lambda x: x**2)
3 [2, 2, 3, 4, -5, 5, 6, 8, -9, -10]

Pour comprendre comment le tri est opéré en ligne 3, voici la liste initiale et une autre liste avec les carrés :
1 >>> liste1
2 [-5, 2, 5, 8, 6, 3, -9, 4, -10, 2]
3 >>> [x**2 for x in liste1]
4 [25, 4, 25, 64, 36, 9, 81, 16, 100, 4]

Le tri de liste1 ci-dessus est bien effectué en fonction des valeurs montrées en ligne 4.
L’agument par mot-clé key existe dans d’autres fonctions ou méthodes. Bien sûr il existe dans la méthode .sort()

qui trie les listes sur place. Mais aussi, dans les fonctions natives min() et max(). Enfin, on le croise dans la fonction
groupby() du module itertools (voir rubrique suivante). Dans tous ces cas, on peut utiliser une fonction lambda pour
l’argument key.

Par exemple, dans le code suivant :
1 >>> liste = ['baccalauréat', 'abaissera', 'barricadé', 'zouave', 'tabac',
2 'typographie', 'dactylographes', 'éclipse']
3 >>> min(liste)
4 'abaissera'
5 >>> max(liste)
6 'éclipse'
7 >>> min(liste, key=lambda x: x.count("a"))
8 'éclipse'
9 >>> max(liste, key=lambda x: x.count("a"))

10 'baccalauréat'

• Ligne 1. On prend une liste de mots du dictionnaire.
• Lignes 2 et 4. Les fonctions min() et max () considèrent l’ordre ASCII par défaut. Elles renvoient le premier et

dernier élément de la liste après un tel tri.
• Lignes 6 et 8. Comprenez-vous la règle que nous avons utilisée avec la lambda ?
Regardons comment se passe le tri :

1 >>> liste.sort(key=lambda x: x.count("a"))
2 >>> liste
3 ['éclipse', 'zouave', 'typographie', 'barricadé', 'tabac', 'dactylographes',
4 'abaissera', 'baccalauréat']

Cours de Python / Université Paris Cité / UFR Sciences du Vivant 327

Chapitre 26. Remarques complémentaires 26.4. Itérables, itérateurs, générateurs et module itertools

Vous l’aurez sans doute compris, avec notre fonction lambda, nous avons trié en fonction du nombre de lettres a dans
chaque mot !

26.3.4 Conclusion
Nous avons vu que les fonctions lambda permettaient des définitions de fonction rapidement sur une ligne. Il faut

absolument éviter de les assigner à un nom. Elles ont toute leur utilité lorsqu’on les utilise avec map() pour appliquer
une opération à tous les éléments d’un conteneur, ou pour des tris puissants avec sorted().

Pour aller plus loin
Pour aller plus loin, vous pouvez consulter ces quelques articles : Dataquest 9, Trey Hunner 10, RealPython 11 et Dan

Bader 12.

26.4 Itérables, itérateurs, générateurs et module itertools
26.4.1 Itérables et itérateurs

Dans le chapitre 14 Conteneurs, nous avons défini le mot itérable lorsque nous avions un objet de type conteneur sur
lequel on pouvait itérer (comme les listes, tuples, dictionnaires, etc.). En général, nous le faisions avec une boucle for.
Voyons ce qu’est maintenant un itérateur.

Définition
Un itérateur est un objet Python qui permet d’itérer sur une suite de valeurs avec la fonction next() jusqu’à temps

qu’elles soient épuisées. Si on itère sur une partie des valeurs seulement, l’itérateur garde en mémoire là où il s’est arrêté.
Si on le resollicite avec un next() il repartira de l’élément suivant. Une règle est toutefois importante : les valeurs ne
peuvent être parcourues qu’une seule fois.

On peut générer un itérateur avec la fonction iter() à partir de n’importe quel conteneur :
1 >>> animaux = ["chien", "chat", "souris"]
2 >>> iterateur = iter(animaux)
3 >>> iterateur
4 <list_iterator object at 0x7f917e907a30>

Une fois l’itérateur généré, on peut accéder à l’élément suivant avec la fonction next() :
1 >>> next(iterateur)
2 'chien'
3 >>> next(iterateur)
4 'chat'
5 >>> next(iterateur)
6 'souris'
7 >>> next(iterateur)
8 Traceback (most recent call last):
9 File "<stdin>", line 1, in <module>

10 StopIteration

Quand il n’y a plus de valeurs sur lesquelles itérer, la fonction next() lève une exception StopIteration. En général,
on n’utilisera pas les itérateurs de cette manière, mais plutôt avec une boucle for ce qui évitera cette levée d’exception :

9. https://www.dataquest.io/blog/tutorial-lambda-functions-in-python/
10. https://www.pythonmorsels.com/lambda-expressions/
11. https://realpython.com/python-lambda/
12. https://dbader.org/blog/python-lambda-functions

328 Cours de Python / Université Paris Cité / UFR Sciences du Vivant

https://www.dataquest.io/blog/tutorial-lambda-functions-in-python/
https://www.pythonmorsels.com/lambda-expressions/
https://realpython.com/python-lambda/
https://dbader.org/blog/python-lambda-functions

26.4. Itérables, itérateurs, générateurs et module itertools Chapitre 26. Remarques complémentaires

1 >>> iterateur = iter(animaux)
2 >>> for elt in iterateur:
3 ... print(elt)
4 ...
5 chien
6 chat
7 souris

On peut transformer un objet de type itérateur en un objet de type séquentiel, par exemple en tuple :
1 >>> iterateur = iter(animaux)
2 >>> tuple(iterateur)
3 ('chien', 'chat', 'souris')

Le point important est qu’une fois toutes les valeurs parcourues, l’itérateur est épuisé et ne renvoie plus rien :
1 >>> iterateur = iter(animaux)
2 >>> tuple(iterateur)
3 ('chien', 'chat', 'souris')
4 >>> tuple(iterateur)
5 ()

Ainsi, on ne pourra parcourir l’ensemble des valeurs d’un itérateur qu’une fois.
À ce stade, on pourrait se dire que la construction d’un itérateur à partir d’une liste ci-dessus est inutile puisqu’on

peut itérer directement sur la liste avec une boucle for. Toutefois, lorsqu’on réalise une telle boucle, il y a un itérateur
qui est généré implicitement même si on ne s’en rend pas compte. Pour prouver cela, essayons la fonction next() avec
une liste :

1 >>> next(animaux)
2 Traceback (most recent call last):
3 File "<stdin>", line 1, in <module>
4 TypeError: 'list' object is not an iterator

Ceci n’est pas possible car une liste n’est pas un itérateur. Alors pourquoi peut-on itérer dessus avec une boucle for ?
Et bien, c’est parce que l’objet de type liste possède une méthode dunder spéciale nommée .__iter__(). Celle-ci génère
un itérateur à partir d’elle-même permettant d’itérer sur ses éléments. L’objet itérateur ainsi généré possèdera une autre
méthode dunder spéciale .__next__() permettant de passer à l’élément suivant lorsqu’on itère dessus.

Remarque
Pour rappel, les méthodes dunder des classes ont été définies dans la rubrique 24.2.2 Méthodes magiques ou dunder

methods du chapitre 24 Avoir plus la classe avec les objets.

Lorsque vous construirez votre propre objet itérable, il faudra écrire une classe contenant ces deux méthodes dunder
et l’objet sera de facto un itérateur et itérable. Pour vous donnez une première idée, voici une classe minimale créant un
objet itérateur sur les lettres de l’alphabet :

1 class Alphabet:
2 def __init__(self):
3 self.current = 97 # ASCII code for a.
4
5 def __iter__(self):
6 return self
7
8 def __next__(self):
9 if self.current > 122: # ASCII code for z.

10 raise StopIteration
11 letter = chr(self.current)
12 self.current += 1
13 return letter

• Ligne 3. Dans le constructeur, on crée un attribut d’instance self.current qui gardera l’état de l’itérateur. On
l’initialise à 97 correspondant au code ASCII de la lettre a.

Cours de Python / Université Paris Cité / UFR Sciences du Vivant 329

Chapitre 26. Remarques complémentaires 26.4. Itérables, itérateurs, générateurs et module itertools

• Lignes 5 et 6. La méthode dunder .__iter__() est très simple à écrire. Elle renvoie self correspondant à
l’itérateur lui-même. Si cette méthode n’est pas présente, l’objet n’est pas itérable.

• Lignes 8 à 13. La méthode dunder .__next__() s’occupe de passer à l’élément suivant et de garder une mémoire
de là où l’itérateur est arrivé. Cela se passe en quatre étapes : i) levée d’une exception StopIteration si on est
arrivé au bout, ii) détermination de la lettre actuelle, iii) incrémenter le self.current de 1 pour l’itération suivante
et iv) retourner la lettre actuelle.

Si on sauve cette classe dans un fichier iterator.py, voici comment on pourrait l’utiliser :

1 >>> import iterator
2 >>> iter_alphabet = iterator.Alphabet()
3 >>> iter_alphabet
4 <iterator.Alphabet object at 0x7f308edc70b0>
5 >>> for lettre in iter_alphabet:
6 ... print(lettre)
7 ...
8 a
9 b

10 [...]
11 y
12 z
13 >>> list(iter_alphabet)
14 []

À nouveau, une fois l’itérateur épuisé, il ne renvoie plus rien. Bien sûr, cela représente un exemple très simple et la
plupart du temps on créera ses propres classes itérateurs en implémentant de nombreuses fonctionnalités et méthodes sup-
plémentaires. Pour créer un itérateur basique comme celui-ci sur l’alphabet, il est plus commode d’utiliser les générateurs
(voir rubrique Générateurs ci-dessous).

Pour aller plus loin

Pour aller plus loin sur comment fonctionne les itérateurs, vous pouvez lire ces articles de Dan Bader 13, Trey Hunner 14

et du site RealPython 15. Concernant la sémantique, cet article 16 de Trey Hunner explique pourquoi les objets range ne
sont pas des itérateurs.

26.4.2 Autres fonctions builtins renvoyant des itérateurs

Dans les chapitres précédents, nous avons déjà croisé des itérateurs sans le savoir, car nous ne vous l’avons pas
toujours précisé explicitement ! Dans le chapitre 5 Boucles avec la fonction enumerate(), dans le chapitre 11 Plus sur
les chaînes de caractères avec la fonction map() et dans le chapitre 12 Plus sur les listes avec la fonction zip(). Ces
trois fonctions renvoient des itérateurs qui sont épuisés une fois utilisés :

1 >>> animaux = ["chien", "chat", "souris"]
2 >>> obj_enum = enumerate(animaux)
3 >>> obj_enum
4 <enumerate object at 0x7f917ebf93a0>
5 >>> tuple(obj_enum)
6 ((0, 'chien'), (1, 'chat'), (2, 'souris'))
7 >>> tuple(obj_enum)
8 ()

13. https://dbader.org/blog/python-iterators
14. https://treyhunner.com/2018/06/how-to-make-an-iterator-in-python/
15. https://realpython.com/python-iterators-iterables/
16. https://treyhunner.com/2018/02/python-range-is-not-an-iterator/

330 Cours de Python / Université Paris Cité / UFR Sciences du Vivant

https://dbader.org/blog/python-iterators
https://treyhunner.com/2018/06/how-to-make-an-iterator-in-python/
https://realpython.com/python-iterators-iterables/
https://treyhunner.com/2018/02/python-range-is-not-an-iterator/

26.4. Itérables, itérateurs, générateurs et module itertools Chapitre 26. Remarques complémentaires

1 >>> line = "9 11 25 92 49 98 62 72 63 74"
2 >>> obj_map = map(int, line.split())
3 >>> obj_map
4 <map object at 0x7f029e47b9a0>
5 >>> min(obj_map)
6 9
7 >>> list(obj_map)
8 []

1 >>> obj_zip = zip(range(5), range(5, 10))
2 >>> list(obj_zip)
3 [(0, 5), (1, 6), (2, 7), (3, 8), (4, 9)]
4 >>> list(obj_zip)
5 []

Lorsque ces fonctions avaient été évoquées, nous n’avions pas vu ce problème d’épuisement car elles étaient utilisées
directement dans une boucle. Par exemple :

1 >>> for i, j in zip(range(5), range(5, 10)):
2 ... print(i, j)
3 ...
4 0 5
5 1 6
6 2 7
7 3 8
8 4 9

Ainsi, l’itérateur était généré à chaque fois qu’on lançait la boucle et n’était utilisé qu’une seule fois.
Une derniere fonction renvoyant un itérateur qui existe nativement dans les fonctions builtins de Python est reversed

(). Celle-ci prend en argument un objet de type séquence (liste, tuple, chaîne de caractère ou range) et renvoie un itérateur
parcourant la séquence en sens inverse :

1 >>> reversed(range(5))
2 <range_iterator object at 0x7f8b34227780>
3 >>> rev_iterateur = reversed(range(5))
4 >>> for i in rev_iterateur:
5 ... print(i)
6 ...
7 4
8 3
9 2

10 1
11 0
12 >>> list(rev_iterateur)
13 []

Pour finir, examinons les propriétés des itérateurs que nous avions vues pour les conteneurs. Un objet itérateur est
bien sûr iterable et ordonné, par contre il n’est pas indexable. Il ne supporte pas la fonction len(), supporte l’opérateur
in et il est hachable.

1 >>> animaux = ["chien", "chat", "souris"]
2 >>> iterateur = iter(animaux)
3 >>> len(iterateur)
4 Traceback (most recent call last):
5 File "<stdin>", line 1, in <module>
6 TypeError: object of type 'list_iterator' has no len()
7 >>> iterateur[1]
8 Traceback (most recent call last):
9 File "<stdin>", line 1, in <module>

10 TypeError: 'list_iterator' object is not subscriptable
11 >>> "chien" in iterateur
12 True
13 >>> hash(iterateur)
14 8741535406492

Cours de Python / Université Paris Cité / UFR Sciences du Vivant 331

Chapitre 26. Remarques complémentaires 26.4. Itérables, itérateurs, générateurs et module itertools

Attention
L’utilisation de l’opérateur in pour un test d’appartenance sur un itérateur épuise ce dernier (au même titre que

l’utilisation de l’itérateur dans une boucle où avec la fonction list()) :
1 >>> line = "9 11 25 92 49 98 62 72 63 74"
2 >>> obj_map = map(int, line.split())
3 >>> 9 in obj_map
4 True
5 >>> 9 in obj_map
6 False

Ligne 3, on fait un premier test qui parcourt l’itérateur et renvoie True. Même si la valeur 9 était présente initialement,
le deuxième test, ligne 5, renvoie False car l’itérateur est épuisé.

26.4.3 Module itertools
Il existe de nombreuses fonctions générant des itérateurs. Le module itertools 17 en est particulièrement riche.

Nous n’allons pas faire une liste exhaustive du contenu de ce module, mais nous parlerons de quelques fonctions qui nous
paraissent utiles, notamment product() 18. Son fonctionnement fait penser au produit extérieur 19 (outer product en
anglais) de l’algèbre tensorielle. Nous montrerons également la fonction groupby() 20 permettant de faire des regrou-
pements puissants. Enfin, nous évoquerons rapidement les itérateurs infinis comme la fonction count() à la fin de la
rubrique.

26.4.3.1 Fonction product()

La fonction product() prend (au moins) deux conteneurs en argument et génère toutes les combinaisons possibles
d’association :

1 >>> import itertools
2 >>> predateurs = ["lion", "requin", "tigre"]
3 >>> proies = ["souris", "oiseau", "gazelle"]
4 >>> for pred, proie in itertools.product(predateurs, proies):
5 ... print(pred, proie)
6 ...
7 lion souris
8 lion oiseau
9 lion gazelle

10 requin souris
11 requin oiseau
12 requin gazelle
13 tigre souris
14 tigre oiseau
15 tigre gazelle

Il est possible de passer plus de deux conteneurs à la fonction, par exemple :
1 >>> ma_liste = [1, 2]
2 >>> list(itertools.product(ma_liste, ma_liste, ma_liste))
3 [(1, 1, 1), (1, 1, 2), (1, 2, 1), (1, 2, 2), (2, 1, 1), (2, 1, 2), (2, 2, 1), (2, 2, 2)]

On a ici toutes les combinaisons possibles entre les trois objets ma_liste passés en argument.
Avec deux conteneurs en argument, cette fonction product() revient à faire une double boucle sur les deux conte-

neurs. Elle est donc particulièrement adaptée pour parcourir toutes les éléments d’un tableau. Par exemple, la commande
suivante parcourera toutes les cases d’un échiquier :

17. https://docs.python.org/fr/3.12/library/itertools.html
18. https://docs.python.org/fr/3.12/library/itertools.html#itertools.product
19. https://en.wikipedia.org/wiki/Outer_product
20. https://docs.python.org/fr/3.12/library/itertools.html#itertools.groupby

332 Cours de Python / Université Paris Cité / UFR Sciences du Vivant

https://docs.python.org/fr/3.12/library/itertools.html
https://docs.python.org/fr/3.12/library/itertools.html#itertools.product
https://en.wikipedia.org/wiki/Outer_product
https://docs.python.org/fr/3.12/library/itertools.html#itertools.groupby

26.4. Itérables, itérateurs, générateurs et module itertools Chapitre 26. Remarques complémentaires

1 >>> parcours_echiquier = itertools.product("abcdefgh", "12345678")
2 >>> parcours_echiquier
3 <itertools.product object at 0x7f192e412040>
4 >>> for col, ligne in parcours_echiquier:
5 ... print(col, ligne)
6 ...
7 a 1
8 a 2
9 [...]

10 h 7
11 h 8

Mais attention, la fonction product() est un itérateur. Donc quand elle est épuisée, on ne peut plus l’utiliser :
1 >>> list(parcours_echiquier)
2 []

Une utilisation particulièrement utile de product() en bioinformatique peut être de générer toutes les séquences
d’ADN possibles (mots) de deux lettres :

1 >>> bases = "atgc"
2 >>> list(itertools.product(bases, bases))
3 [('a', 'a'), ('a', 't'), ('a', 'g'), ('a', 'c'), ('t', 'a'), ('t', 't'), ('t', 'g'),
4 ('t', 'c'), ('g', 'a'), ('g', 't'), ('g', 'g'), ('g', 'c'), ('c', 'a'), ('c', 't'),
5 ('c', 'g'), ('c', 'c')]

De même, itertools.product(bases, bases, bases) itérera sur tous les mots de trois lettres possibles. Ou en-
core, si on définit une chaîne de caractères contenant les vingt acides aminés comme suit aas = "acdefghiklmnpqrstvwy
", itertools.product(aas, aas) produira tous les dipeptides possibles.

26.4.3.2 Fonction groupby()

La fonction groupby() permet de faire des regroupements puissants. Pour vous montrer son fonctionnement, nous
allons prendre un exemple. Nous partons d’une liste de mots que nous triions par longueur avec l’argument key auquel
on passe la callback len (voir chapitre 12 Plus sur les listes) :

1 >>> mots = ["bar", "babar", "bam", "ba", "bababar", "barre", "bla", "barbare"]
2 >>> mots.sort(key=len)
3 >>> mots
4 ['ba', 'bar', 'bam', 'bla', 'babar', 'barre', 'bababar', 'barbare']

La fonction groupby() crée un itérateur particulier :
1 >>> itertools.groupby(mots, key=len)
2 <itertools.groupby object at 0x7f467a6d0ca0>
3 >>> list(itertools.groupby(mots, key=len))
4 [(2, <itertools._grouper object at 0x7f467a8cf700>),
5 (3, <itertools._grouper object at 0x7f467a58c0d0>),
6 (5, <itertools._grouper object at 0x7f467a58c100>),
7 (7, <itertools._grouper object at 0x7f467a58c040>)]

• Lignes 1 et 3. Il est important de passer à l’argument key la même fonction callback que lors du tri initial.
• Lignes 4 à 7. En transformant cet itérateur en liste, on voit qu’il génère une liste de tuples. Le premier élément de

chaque tuple est un entier correspondant à une longueur de mot, le second élément est un itérateur. Que contient
ce dernier ?

1 >>> for longueur, iterateur in itertools.groupby(mots, key=len):
2 ... print(longueur, list(iterateur))
3 ...
4 2 ['ba']
5 3 ['bar', 'bam', 'bla']
6 5 ['babar', 'barre']
7 7 ['bababar', 'barbare']

Lignes 4 à 7. La conversion de cet itérateur en liste montre qu’il contient tous les mots de même longueur.

Cours de Python / Université Paris Cité / UFR Sciences du Vivant 333

Chapitre 26. Remarques complémentaires 26.4. Itérables, itérateurs, générateurs et module itertools

Comme vu dans une rubrique précédente, on peut passer une fonction lambda à l’argument key :
1 >>> mots.sort(key=lambda chaine: chaine.count("a"))
2 >>> mots
3 ['ba', 'bar', 'bam', 'bla', 'barre', 'babar', 'barbare', 'bababar']
4 >>> itertools.groupby(mots, key=lambda chaine: chaine.count("a"))
5 <itertools.groupby object at 0x7f467a6d0ca0>
6 >>> list(itertools.groupby(mots, key=lambda chaine: chaine.count("a")))
7 [(1, <itertools._grouper object at 0x7f467a58c490>),
8 (2, <itertools._grouper object at 0x7f467a58c100>),
9 (3, <itertools._grouper object at 0x7f467a58c040>)]

10 >>> for nb_a, iterateur in itertools.groupby(mots, key=lambda chaine: chaine.count("a")):
11 ... print(nb_a, list(iterateur))
12 ...
13 1 ['ba', 'bar', 'bam', 'bla', 'barre']
14 2 ['babar', 'barbare']
15 3 ['bababar']

Ici on a regroupé les mots suivant le nombre de lettres a qu’ils contiennent.

Conseil
Avant de faire un regroupement avecgroupby(), pensez à trier la liste initiale avec .sort() ou sorted() en utilisant

la même fonction (ou fonction lambda) passée à l’argument key.

Remarque
Il existe aussi une méthode .groupby() qui procède à des regroupements sur les dataframes pandas. Son mode de

fonctionnement est assez différent par rapport à la fonction groupby() du module itertools. Vous pouvez consulter le
chapitre 22 Modules pandas pour en savoir un peu plus.

26.4.4 Générateurs

Définition
Un générateur est un type d’itérateur particulier. On peut créer un générateur très facilement avec le mot-clé yield

ou avec les expression génératrices (generator expressions en anglais) qui ont une syntaxe similaire à celle des listes de
compréhension.

La création d’un générateur avec le mot-clé yield consiste à créer une fonction utilisant ce mot-clé. À partir de ce
moment là, la fonction renvoie un générateur. Avant de voir un exemple, imaginons une fonction qui crée et renvoie une
liste :

1 >>> def cree_alphabet():
2 ... alphabet = []
3 ... for i in range(97, 123):
4 ... alphabet.append(chr(i))
5 ... return alphabet
6 ...
7 >>> alphabet = cree_alphabet()
8 >>> alphabet
9 ['a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j', 'k', 'l', 'm', 'n', 'o', 'p', 'q',

10 'r', 's', 't', 'u', 'v', 'w', 'x', 'y', 'z']

Pour créer un générateur équivalent, il suffira de remplacer le .append() par un yield et d’enlever le return :

334 Cours de Python / Université Paris Cité / UFR Sciences du Vivant

26.4. Itérables, itérateurs, générateurs et module itertools Chapitre 26. Remarques complémentaires

1 >>> def alphabet_generator():
2 ... for i in range(97, 123):
3 ... yield chr(i)
4 ...
5 >>> gen = alphabet_generator()
6 >>> gen
7 <generator object alphabet_generator at 0x7fe1dffe39f0>
8 >>> for lettre in gen:
9 ... print(lettre)

10 ...
11 a
12 b
13 c
14 [...]
15 y
16 z
17 >>>
18 >>> list(gen)
19 []

Comme pour tous les itérateurs, une fois tous les éléments parcourus le générateur est épuisé. Notez que le yield
n’est pas une fonction mais un mot-clé, on n’utilise donc pas de parenthèses. Ce mot-clé yield n’a de sens que dans
une fonction et ne s’utilise que pour créer des générateurs.

La technique avec une expression génératrice ressemble à la syntaxe des listes de compréhension (voir la rubrique
Listes de compréhension du chapitre 12 Plus sur les listes), mais on l’entoure de parenthèses à la place des crochets :

1 >>> [n**2 for n in range(10)] # Liste de compréhension.
2 [0, 1, 4, 9, 16, 25, 36, 49, 64, 81]
3 >>> (n**2 for n in range(10)) # Expression génératrice.
4 <generator object <genexpr> at 0x7f917feb39f0>
5 >>> gen = (n**2 for n in range(10))
6 >>> for n in gen:
7 ... print(n)
8 ...
9 0

10 [...]
11 81

À nouveau, le générateur est épuisé après avoir itéré dessus :
1 >>> for nb in gen:
2 ... print(nb)
3 ...
4 >>>

Pour aller plus loin
Un générateur est un itérateur, mais l’inverse n’est pas vrai. Pour comprendre toutes les subtilités liées à cette

comparaison, vous pouvez consulter cette page 21 sur le site Datacamp.

Conseil
Comme vous le voyez, créer un générateur est extrêmement aisé avec le mot-clé yield ou les expressions génératrices

par rapport à l’écriture d’une classe itérateur (voir ci-dessus). Ainsi nous vous conseillons d’utiliser plutôt les générateurs
lorsque vous souhaitez créer des itérateurs simples.

21. https://www.datacamp.com/tutorial/python-iterators-generators-tutorial

Cours de Python / Université Paris Cité / UFR Sciences du Vivant 335

https://www.datacamp.com/tutorial/python-iterators-generators-tutorial

Chapitre 26. Remarques complémentaires 26.4. Itérables, itérateurs, générateurs et module itertools

26.4.5 Pourquoi utiliser des itérateurs ?
À ce stade, vous vous posez peut-être la question « Pourquoi utiliser des itérateurs ? ». Nous donnons quelques

réponses dans cette rubrique.

26.4.5.1 Consommation de resources optimisée

La première raison fondamentale est la consommation de resources. Lorsque vous créez un itérateur, Python ne va
pas construire l’ensemble des éléments dans la mémoire, mais plutôt préparer la « moulinette » qui réalisera les itérations.
Résultat, le processsus est très peu consommateur de mémoire même en créant un itérateur itérant sur un très grand
nombre d’éléments. Par ailleurs, Python crée les éléments au fur et à mesure et à la demande. C’est pour cela qu’on parle
parfois « d’évaluation paresseuse ou fainéante 22 » dans le sens où la valeur suivante d’un itérateur n’est pas pré-calculée
mais plutôt évaluée quand on lui demande. Trey Hunner 23 parle ainsi d’objets itérables « paresseux ».

Un itérateur sera par ailleurs très rapide car en interne il fait appel à des routines optimisées en C. Mais aussi,
l’utilisation de fonctions Python qui sont elles aussi optimisées (par exemple sum()) rend les itérateurs particulièrement
efficaces.

Afin de quantifier cela, on propose de mesurer le temps d’exécution de trois petits morceaux de code faisant une
somme de tous les entiers de 1 à 100000 (cent mille) avec un générateur, une boucle Python classique et une liste de
compréhension. Pour faire une telle mesure, nous utilisons le module timeit 24 qui est particulièrement bien optimisé pour
cela. Voici un exemple d’utilisation de timeit :

1 $ python -m timeit "sum(n**2 for n in range(100000))"
2 50 loops, best of 5: 3.76 msec per loop

On peut lancer timeit directement à la ligne de commande Unix avec l’option -m suivie de l’instruction Python à
exécuter entre guillemets. Python va effectuer plusieurs fois l’instruction (ici 50 fois) et donnera une approximation au
plus juste du temps d’exécution de celle-ci. Le nombre d’exécutions de l’instruction dépendra du temps pris par celle-ci
et sera entièrement déterminé par Python.

En revenant à notre problématique, voici les résultats de notre somme de 1 à 100000 (testé sur un ordinateur portable
relativement récent avec la version Python 3.12) :
$ python -m timeit "sum(n**2 for n in range(100000))"
50 loops, best of 5: 3.76 msec per loop
$ python -m timeit "somme=0" "for n in range(100000): somme += n**2"
50 loops, best of 5: 3.59 msec per loop
$ python -m timeit "sum([n**2 for n in range(100000)])"
50 loops, best of 5: 4.89 msec per loop

• Ligne 1. On utilise un générateur et la fonction sum() pour calculer cette somme. Notez que lorsqu’un générateur
est utilisé dans une fonction, les parenthèses ne sont pas obligatoires. Cela simplifie la syntaxe par rapport à
sum((n**2 for n in range(nb))).

• Ligne 3. On utilise une boucle Python classique pour calculer cette somme. Notez que pour pouvoir utiliser timeit
sur une ligne, on est obligé de passer deux arguments entre guillemets (initialisation de la variable somme et boucle).

• Ligne 5. On utilise une liste de compréhension pour calculer cette somme.
La méthode avec les générateurs est à peu près équivalente à l’utilisation d’une boucle classique où on accumule la

somme, preuve que les deux méthodes sont bien optimisées. De manière spectaculaire, la liste de compréhension est bien
plus lente (presque 1 ms de plus). Ceci vient du fait qu’il faut créer la liste de tous les éléments en mémoire, ce qui est
contre-productif. Le générateur ou la boucle classique se contentent d’itérer et sont bien plus économes.

Dernier point, un test réalisé avec la version Python 3.13 sortie en octobre 2024 conduit aux mêmes observations.

26.4.5.2 Itérateurs infinis

Bien que la taille de la mémoire d’un ordinateur soit finie, il est possible de créer des itérateurs infinis ! Par exemple,
la fonction count() 25 du module itertools itère de 0 (lorsqu’on l’appelle sans argument) jusqu’à l’infini :

22. https://en.m.wikipedia.org/wiki/Lazy_evaluation
23. https://treyhunner.com/2018/06/how-to-make-an-iterator-in-python/
24. https://docs.python.org/fr/3/library/timeit.html
25. https://docs.python.org/3/library/itertools.html#itertools.count

336 Cours de Python / Université Paris Cité / UFR Sciences du Vivant

https://en.m.wikipedia.org/wiki/Lazy_evaluation
https://treyhunner.com/2018/06/how-to-make-an-iterator-in-python/
https://docs.python.org/fr/3/library/timeit.html
https://docs.python.org/3/library/itertools.html#itertools.count

26.4. Itérables, itérateurs, générateurs et module itertools Chapitre 26. Remarques complémentaires

1 >>> iterateur = itertools.count()
2 >>> import itertools
3 >>> iterateur = itertools.count()
4 >>> for i in iterateur:
5 ... print(i)
6 ...
7 0
8 1
9 2

10 3
11 [Boucle infinie]

Attention de ne pas transformer cet itérateur en liste ou tuple sous peine de saturer la mémoire de l’ordinateur et de
le faire planter !

Dans le même module les fonctions cycle() 26 et repeat() 27 sont également des itérateurs infinis.

26.4.5.3 Meilleure lisibilité

De manière générale, l’utilisation d’itérateurs peut améliorer la lisibilité de vos programmes. Cet article 28 fait remarquer
que le simple fait de créer un itérateur et de le nommer donne un sens à ce qu’il contient. En reprenant notre exemple
sur la somme des carrés :

1 tous_les_carres = (n**2 for n in range(nb))
2 somme = sum(tous_les_carres)

Si on compare à la boucle for :
1 somme = 0
2 for n in range(nb):
3 somme += n**2

On voit que ce que représente l’objet tous_les_carres n’existe tout simplement pas avec la boucle for ! Par
ailleurs, outre l’avantage de rapidité, l’utilisation de la fonction sum() rend la lecture très claire.

Dernier point, les itérateurs et notamment les générateurs, donnent un moyen de faire de la programmation fonction-
nelle 29 en Python. Sans rentrer dans les considérations théoriques, nous avons déjà vu l’idée générale lorsque nous avons
abordé le method chaining sur les chaînes de caractères ou sur les dataframes pandas. Initialement, la programmation
fonctionnelle en Python utilisait la fonction map() (ainsi que les fonctions filter() et reduce() non abordées ici).
Mais depuis l’arrivée des générateurs, on préfère ces derniers qui sont considérés plus Pythoniques. Regardons un exemple
où nous transformons une chaîne de caractères en entiers puis nous calculons la somme. D’abord avec un générateur :

1 >>> ligne = "9 11 25 92 49 98 62 72 63 74"
2 >>> sum(int(nb) for nb in ligne.split())
3 555
4 >>>

Ensuite avec la fonction map() :
1 >>> line = "9 11 25 92 49 98 62 72 63 74"
2 >>> sum(map(int, line.split()))
3 555

Ne trouvez-vous pas que la version avec le générateur est plus lisible ?
Comme proposé par Dan Bader 30, on peut chainer les générateurs :

26. https://docs.python.org/3/library/itertools.html#itertools.cycle
27. https://docs.python.org/3/library/itertools.html#itertools.repeat
28. https://treyhunner.com/2019/06/loop-better-a-deeper-look-at-iteration-in-python/#How_iterators_

can_improve_your_code
29. https://fr.wikipedia.org/wiki/Programmation_fonctionnelle
30. https://dbader.org/blog/python-iterator-chains

Cours de Python / Université Paris Cité / UFR Sciences du Vivant 337

https://docs.python.org/3/library/itertools.html#itertools.cycle
https://docs.python.org/3/library/itertools.html#itertools.repeat
https://treyhunner.com/2019/06/loop-better-a-deeper-look-at-iteration-in-python/#How_iterators_can_improve_your_code
https://treyhunner.com/2019/06/loop-better-a-deeper-look-at-iteration-in-python/#How_iterators_can_improve_your_code
https://fr.wikipedia.org/wiki/Programmation_fonctionnelle
https://dbader.org/blog/python-iterator-chains

Chapitre 26. Remarques complémentaires 26.5. Gestion des exceptions

1 >>> import math
2 >>> ligne = "9 11 25 92 49 98 62 72 63 74"
3 >>> nombres = (int(nb) for nb in ligne.split())
4 >>> inverses = (nb**-1 for nb in nombres)
5 >>> cos_inverses = (math.cos(nb) for nb in inverses)
6 >>> sum(cos_inverse)
7 9.988141056338993

Une chose à noter dans cet exemple est que lorsqu’on crée un générateur à partir d’un autre générateur, le générateur
initial n’est pas déclenché. Par exemple, en Ligne 4 pour inverses le générateur nombres n’est pas encore déclenché,
ou en Ligne 5 pour cos_inverses le générateur inverses n’est pas déclenché non plus. Tous les générateurs seront
déclenchés en chaine lorsqu’on exécutera la Ligne 6.

Conseil
En écrivant un générateur par ligne, le code est bien lisible. Evitez une syntaxe en une ligne qui s’avérera illisible :

(math.cos(nb) for nb in (nb**-1 for nb in (int(nb) for nb in ligne.split())))

26.5 Gestion des exceptions
Les langages de programmation comme Python contiennent un système de gestion des exceptions 31. Qu’est-ce

qu’une exception ? Sur la page anglaise de Wikipedia 32, une exception est définie comme une anomalie de l’exécution d’un
programme requérant une action spéciale, en général l’arrêt de l’exécution. Le plus souvent, une exception correspond à
une erreur que Python rencontre lorsqu’il tente d’exécuter les lignes de code qu’on lui soumet. Par exemple, un problème
de syntaxe, une variable ou objet qui prend une valeur aberrante (par exemple diviser par 0, parcourir une liste au-delà
du nombre d’éléments, etc.).

Le système de gestion des exceptions évite que votre programme « plante » en prévoyant vous-même les sources
d’erreurs éventuelles.

Voici un exemple dans lequel on demande à l’utilisateur d’entrer un nombre entier, puis on affiche ce nombre.
1 >>> nb = int(input("Entrez un nombre entier : "))
2 Entrez un nombre entier : 23
3 >>> print(nb)
4 23

La fonction input() demande à l’utilisateur de saisir une chaîne de caractères. Cette chaîne de caractères est ensuite
transformée en nombre entier avec la fonction int().

Si l’utilisateur ne rentre pas un nombre, voici ce qui se passe :
1 >>> nb = int(input("Entrez un nombre entier : "))
2 Entrez un nombre entier : ATCG
3 Traceback (most recent call last):
4 File "<stdin>", line 1, in <module>
5 ValueError: invalid literal for int() with base 10: 'ATCG'

L’erreur provient de la fonction int() qui n’a pas pu convertir la chaîne de caractères "ATCG" en nombre entier, ce
qui est parfaitement normal. En termes plus techniques, on dira que « Python a levé une exception de type ValueError
». Eh oui il y a de nombreux types d’exceptions différents (voir plus bas) ! Le nom de l’exception apparaît toujours comme
le premier mot de la dernière ligne du message d’erreur. Si nous lancions ces lignes de code sous forme de script (du style
python script.py), cet exemple conduirait à l’arrêt de l’exécution du programme.

Le jeu d’instructions try / except permet de tester l’exécution d’une commande et d’intervenir en cas de levée
d’exception.

31. https://fr.wikipedia.org/wiki/Syst%C3%A8me_de_gestion_d%27exceptions
32. https://en.wikipedia.org/wiki/Exception_handling

338 Cours de Python / Université Paris Cité / UFR Sciences du Vivant

https://fr.wikipedia.org/wiki/Syst%C3%A8me_de_gestion_d%27exceptions
https://en.wikipedia.org/wiki/Exception_handling

26.5. Gestion des exceptions Chapitre 26. Remarques complémentaires

1 >>> try:
2 ... nb = int(input("Entrez un nombre entier : "))
3 ... except:
4 ... print("Vous n'avez pas entré un nombre entier !")
5 ...
6 Entrez un nombre entier : ATCG
7 Vous n'avez pas entré un nombre entier !

Dans cet exemple, l’exception levée par la fonction int() (qui ne peut pas convertir "ATCG" en nombre entier) est
interceptée et déclenche l’affichage du message d’avertissement.

On peut ainsi redemander sans cesse un nombre entier à l’utilisateur, jusqu’à ce que celui-ci en rentre bien un.
1 >>> while True:
2 ... try:
3 ... nb = int(input("Entrez un nombre entier : "))
4 ... print("Le nombre est", nb)
5 ... break
6 ... except:
7 ... print("Vous n'avez pas entré un nombre entier !")
8 ... print("Essayez encore")
9 ...

10 Entrez un nombre entier : ATCG
11 Vous n'avez pas entré un nombre entier !
12 Essayez encore
13 Entrez un nombre entier : toto
14 Vous n'avez pas entré un nombre entier !
15 Essayez encore
16 Entrez un nombre entier : 3.2
17 Vous n'avez pas entré un nombre entier !
18 Essayez encore
19 Entrez un nombre entier : 55
20 Le nombre est 55

Notez que dans cet exemple, l’instruction while True est une boucle infinie car la condition True est toujours
vérifiée. L’arrêt de cette boucle est alors forcé par la commande break lorsque l’utilisateur a effectivement entré un
nombre entier.

La gestion des exceptions est très utile dès lors que des données extérieures entrent dans un programme Python, que
ce soit directement par l’utilisateur (avec la fonction input()) ou par des fichiers. Cela est fondamental si vous distribuez
votre code à la communauté : si les utilisateurs ne connaissent pas Python, un message comme Vous n'avez pas entré
un nombre entier ! reste plus clair que ValueError: invalid literal for int() with base 10: 'ATCG'.

Vous pouvez par exemple vérifier qu’un fichier a bien été ouvert.
1 >>> nom = "toto.pdb"
2 >>> try:
3 ... with open(nom, "r") as fichier:
4 ... for ligne in fichier:
5 ... print(ligne)
6 ... except:
7 ... print("Impossible d'ouvrir le fichier", nom)

Si une erreur est déclenchée, c’est sans doute que le fichier n’existe pas à l’emplacement indiqué sur le disque ou que
vous n’avez pas les droits pour le lire.

Il est également possible de spécifier le type d’erreur à gérer. Le premier exemple que nous avons étudié peut s’écrire :
1 >>> try:
2 ... nb = int(input("Entrez un nombre entier : "))
3 ... except ValueError:
4 ... print("Vous n'avez pas entré un nombre entier !")
5 ...
6 Entrez un nombre entier : ATCG
7 Vous n'avez pas entré un nombre entier !

Ici, on intercepte une exception de type ValueError, ce qui correspond bien à un problème de conversion avec
int().

Cours de Python / Université Paris Cité / UFR Sciences du Vivant 339

Chapitre 26. Remarques complémentaires 26.5. Gestion des exceptions

Attention, si vous précisez le type d’exception comme ValueError, le except ValueError n’empêchera pas la
levée d’une autre exception.

1 >>> try:
2 ... nb = int(variable)
3 ... except ValueError:
4 ... print("Vous n'avez pas entré un nombre entier !")
5 ...
6 Traceback (most recent call last):
7 File "<stdin>", line 2, in <module>
8 NameError: name 'variable' is not defined. Did you mean: 'callable'?

Ici l’exception levée est de type NameError, car variable n’existe pas. Alors que si vous mettez except tout court,
cela intercepte n’importe quelle exception.

1 >>> try:
2 ... nb = int(variable)
3 ... except:
4 ... print("Vous n'avez pas entré un nombre entier !")
5 ...
6 Vous n'avez pas entré un nombre entier !
7 >>>

Vous voyez qu’ici cela pose un nouveau problème : le message d’erreur ne correspond pas à l’exception levée !

Conseil

• Nous vous conseillons vivement de toujours préciser le type d’exception dans vos except. Cela évite d’intercepter
une exception que vous n’aviez pas prévue. Il est possible d’intercepter plusieurs types d’exceptions en passant un
tuple à except, par exemple : except (Exception1, Exception2).

• Par ailleurs, ne mettez pas trop de lignes dans le bloc du try. Dans un tel cas, il peut être très pénible de trouver la
ligne qui a conduit à l’exécution du except. Pire encore, il se peut que des lignes que vous aviez prévues ne soient
pas exécutées ! Donc gardez des choses simples dans un premier temps, comme par exemple tester les conversions
de type ou vérifier qu’un fichier existe bien et que vous pouvez l’ouvrir.

Il existe de nombreux types d’exception comme RuntimeError, TypeError, NameError, IOError, etc. Vous pouvez
aller voir la liste complète 33 sur le site de Python. Nous avions déjà croisé des noms d’exception au chapitre 23 (Avoir
la classe avec les objets) en regardant ce que contient le module builtins.

1 >>> import builtins
2 >>> dir(builtins)
3 ['ArithmeticError', 'AssertionError', 'AttributeError', 'BaseException',
4 [...]
5 'UserWarning', 'ValueError', 'Warning', 'ZeroDivisionError'
6 [...]

Leur présence dans le module builtins signifie qu’elles font partie du langage lui même, au même titre que les
fonctions de base comme range(), list(), etc.

Avez-vous aussi remarqué que leur nom commence toujours par une majuscule et qu’il peut en contenir plusieurs à
la façon CamelCase ? Si vous avez bien lu le chapitre 16 Bonnes pratiques en programmation Python, avez-vous deviné
pourquoi ? Et bien, c’est parce que les exceptions sont des classes. C’est très intéressant car il est ainsi possible
d’utiliser l’héritage pour créer ses propres exceptions à partir d’exceptions pré-existantes. Nous ne développerons pas cet
aspect, mais en guise d’illustration, regardez ce que renvoit un help() de l’exception OverflowError.

33. https://docs.python.org/fr/3.12/library/exceptions.html#exceptions.TypeError

340 Cours de Python / Université Paris Cité / UFR Sciences du Vivant

https://docs.python.org/fr/3.12/library/exceptions.html#exceptions.TypeError

26.6. Shebang et /usr/bin/env python3 Chapitre 26. Remarques complémentaires

1 >>> help(OverflowError)
2 [...]
3 class OverflowError(ArithmeticError)
4 | Result too large to be represented.
5 |
6 | Method resolution order:
7 | OverflowError
8 | ArithmeticError
9 | Exception

10 | BaseException
11 | object

L’exception OverflowError hérite de ArithmeticError, c’est-à-dire qu’OverflowError a été conçue à partir de
ArithmeticError et en hérite de tous ses attributs.

Un autre aspect très important que nous avons croisé au chapitre 24 Avoir plus la classe avec les objets est la
possibilité de lever vous-même une exception avec le mot-clé raise. Nous avions vu le code suivant :
if valeur < 0:

raise ValueError("Z'avez déjà vu une masse négative ?")

La ligne 2 lève une exception ValueError lorsque la variable valeur est négative. L’instruction raise est bien
pratique lorsque vous souhaitez stopper l’exécution d’un programme si une variable ne se trouve pas dans le bon intervalle
ou ne contient pas la bonne valeur. Vous avez sans doute compris maintenant pourquoi on parlait de « levée » d’exception…

Enfin, on peut aussi être très précis dans le message d’erreur. Observez la fonction download_page() qui, avec le
module urllib, télécharge un fichier sur internet.

1 import urllib.request
2
3 def download_page(address):
4 error = ""
5 page = ""
6 try:
7 data = urllib.request.urlopen(address)
8 page = data.read()
9 except IOError as e:

10 if hasattr(e, 'reason'):
11 error = "Cannot reach web server: " + str(e.reason)
12 if hasattr(e, 'code'):
13 error = f"Server failed {e.code:d}"
14 return page, error
15
16 data, error = download_page("https://files.rcsb.org/download/1BTA.pdb")
17
18 if error:
19 print(f"Erreur rencontrée : {error}")
20 else:
21 with open("proteine.pdb", "w") as prot:
22 prot.write(data.decode("utf-8"))
23 print("Protéine enregistrée")

La variable e est une instance de l’exception IOError. Certains de ses attributs sont testés avec la fonction hasattr()
pour ainsi affiner le message renvoyé (ici contenu dans la variable error).

Si tout se passe bien, la page est téléchargée est stockée dans la variable data, puis enregistrée sur le disque dur.

26.6 Shebang et /usr/bin/env python3
Lorsque l’on programme sur un système Unix (Mac OS X ou Linux par exemple), on peut exécuter directement un

script Python, sans appeler explicitement la commande python.
Pour cela, deux opérations sont nécessaires :
Étape 1. Préciser la localisation de l’interpréteur Python en indiquant dans la première ligne du script :

1 #! /usr/bin/env python

Par exemple, si le script test.py contenait :

Cours de Python / Université Paris Cité / UFR Sciences du Vivant 341

Chapitre 26. Remarques complémentaires 26.7. Passage d’arguments avec *args et **kwargs

1 print("Hello World !")

il va alors contenir :
1 #!/usr/bin/env python
2
3 print("Hello World !")

Étape 2.. Rendre le script Python exécutable en lançant l’instruction :
$ chmod +x test.py

Remarque
La ligne #! /usr/bin/env python n’est pas considérée comme un commentaire par Python, ni comme une ins-

truction Python d’ailleurs . Cette ligne a une signification particulière pour le système d’exploitation Unix.

Pour exécuter le script, il suffit alors de taper son nom précédé des deux caractères ./ (afin de préciser au shell où se
trouve le script) :
$./test.py
Hello World !

Définition
Le shebang 34 correspond aux caractères #! qui se trouvent au début de la première ligne du script test.
Le shebang est suivi du chemin complet du programme qui interprète le script ou du programme qui sait où se

trouve l’interpréteur Python. Dans l’exemple précédent, c’est le programme /usr/bin/env qui indique où se trouve
l’interpréteur Python.

26.7 Passage d’arguments avec *args et **kwargs
Avant de lire cette rubrique, nous vous conseillons de bien relire et maîtriser la rubrique Arguments positionnels et

arguments par mot-clé du chapitre 10 Fonctions.
Dans le chapitre 10, nous avons vu qu’il était nécessaire de passer à une fonction tous les arguments positionnels

définis dans celle-ci. Il existe toutefois une astuce permettant de passer un nombre arbitraire d’arguments positionnels :
1 >>> def fct(*args):
2 ... print(args)
3 ...
4 >>> fct()
5 ()
6 >>> fct(1)
7 (1,)
8 >>> fct(1, 2, 5, "Python")
9 (1, 2, 5, 'Python')

10 >>> fct(z=1)
11 Traceback (most recent call last):
12 File "<stdin>", line 1, in <module>
13 TypeError: fct() got an unexpected keyword argument 'z'

L’utilisation de la syntaxe *args permet d’empaqueter tous les arguments positionnels dans un tuple unique args
récupéré au sein de la fonction. L’avantage est que nous pouvons passer autant d’arguments positionnels que l’on veut.
Toutefois, on s’aperçoit en ligne 10 que cette syntaxe ne fonctionne pas avec les arguments par mot-clé.

Il existe un équivalent avec les arguments par mot-clé :

34. http://fr.wikipedia.org/wiki/Shebang

342 Cours de Python / Université Paris Cité / UFR Sciences du Vivant

http://fr.wikipedia.org/wiki/Shebang

26.7. Passage d’arguments avec *args et **kwargs Chapitre 26. Remarques complémentaires

1 >>> def fct(**kwargs):
2 ... print(kwargs)
3 ...
4 >>> fct()
5 {}
6 >>> fct(z=1, gogo="toto")
7 {'gogo': 'toto', 'z': 1}
8 >>> fct(z=1, gogo="toto", y=-67)
9 {'y': -67, 'gogo': 'toto', 'z': 1}

10 >>> fct(1, 2)
11 Traceback (most recent call last):
12 File "<stdin>", line 1, in <module>
13 TypeError: fct() takes 0 positional arguments but 2 were given

La syntaxe **kwargs permet d’empaqueter l’ensemble des arguments par mot-clé, quel que soit leur nombre, dans
un dictionnaire unique kwargs récupéré dans la fonction. Les clés et valeurs de celui-ci sont les noms des arguments et les
valeurs passées à la fonction. Toutefois, on s’aperçoit en ligne 9 que cette syntaxe ne fonctionne pas avec les arguments
positionnels.

Si on attend un mélange d’arguments positionnels et par mot-clé, on peut utiliser *args et **kwargs en même
temps :

1 >>> def fct(*args, **kwargs):
2 ... print(args)
3 ... print(kwargs)
4 ...
5 >>> fct()
6 ()
7 {}
8 >>> fct(1, 2)
9 (1, 2)

10 {}
11 >>> fct(z=1, y=2)
12 ()
13 {'y': 2, 'z': 1}
14 >>> fct(1, 2, 3, z=1, y=2)
15 (1, 2, 3)
16 {'y': 2, 'z': 1}

Deux contraintes sont toutefois à respecter. Il faut toujours :
• mettre *args avant **kwargs dans la définition de la fonction ;
• passer les arguments positionnels avant ceux par mot-clé lors de l’appel de la fonction.
Il est possible de combiner des arguments positionnels avec *args et des arguments par mot-clé avec **kwargs, par

exemple :
def fct(a, b, *args, **kwargs):
Dans un tel cas, il faudra obligatoirement passer les deux arguments a et b à la fonction, ensuite on pourra mettre

un nombre arbitraire d’arguments positionnels (récupérés dans le tuple args), puis un nombre arbitraire d’arguments par
mot-clé (récupérés dans le dictionnaire kwargs).

Conseil
Les noms *args et **kwargs sont des conventions en Python, ils rappellent les mots arguments et keyword argu-

ments. Bien qu’on puisse mettre ce que l’on veut, nous vous conseillons de respecter ces conventions pour faciliter la
lecture de votre code par d’autres personnes.

L’utilisation de la syntaxe *args et **kwargs est très classique dans le module Fenêtres graphiques et Tkinter
présenté dans le chapitre 25 (en ligne).

Il est possible d’utiliser ce mécanisme d’empaquetage / désempaquetage (packing / unpacking) dans l’autre sens :

Cours de Python / Université Paris Cité / UFR Sciences du Vivant 343

Chapitre 26. Remarques complémentaires 26.8. Décorateurs

1 >>> def fct(a, b, c):
2 ... print(a,b,c)
3 ...
4 >>> t = (-5,6,7)
5 >>>
6 >>> fct(*t)
7 -5 6 7

Avec la syntaxe *t on désempaquette le tuple à la volée lors de l’appel à la fonction. Cela est aussi possible avec un
dictionnaire :

1 >>> def fct(x, y, z):
2 ... print(x, y, z)
3 ...
4 >>> dico = {'x': -1, 'y': -2, 'z': -3}
5 >>> fct(**dico)
6 -1 -2 -3

Attention toutefois à bien respecter deux choses :
• la concordance entre le nom des clés du dictionnaire et le nom des arguments dans la fonction (sinon cela renvoie

une erreur) ;
• l’utilisation d’une double étoile pour désempaqueter les valeurs du dictionnaire (si vous utilisez une seule étoile,

Python désempaquettera les clés !).
Ce mécanisme de désempaquetage est aussi utilisable avec les objets zip, on parle de zip unpacking. Souvenons-nous,

un objet zip permettait d’assembler plusieurs listes, éléments par éléments (voir Chapitre 12 Plus sur les listes) :
1 >>> animaux = ["poulain", "renard", "python"]
2 >>> couleurs = ["alezan", "roux", "vert"]
3 >>> zip(range(3), animaux, couleurs)
4 <zip object at 0x7f333febc880>
5 >>> triplets = list(zip(range(3), animaux, couleurs))
6 >>> triplets
7 [(0, 'poulain', 'alezan'), (1, 'renard', 'roux'), (2, 'python', 'vert')]

Lignes 1 à 4. On crée un objet zip avec trois objets de trois éléments.
Lignes 5 à 7. Cet objet zip en conjonction avec la fonction list() nous permet d’associer les éléments par ordre

d’apparition (tous les éléments à la position 1 se retrouve ensemble, idem pour les positions 2 et 3). Au final, l’objet
triplets est une liste de tuples de trois éléments.

L’opérateur * en combinaison avec la fonction zip va nous permettre de désempaqueter triplets pour récupérer
les listes initiales (range(3), animaux et couleurs) :

1 >>> zip(*triplets)
2 <zip object at 0x7f333fd44980>
3 >>> list(zip(*triplets))
4 [(0, 1, 2), ('poulain', 'renard', 'python'), ('alezan', 'roux', 'vert')]

Bien sûr, on peut l’utiliser l’affectation multiple :
1 >>> numéros2, animaux2, couleurs2 = zip(*triplets)
2 >>> numéros2
3 (0, 1, 2)
4 >>> animaux2
5 ('poulain', 'renard', 'python')
6 >>> couleurs2
7 ('alezan', 'roux', 'vert')

Au final, on récupère des tuples au lieu des listes initiales. Mais à ce stade, vous devriez être capable de les retransformer
en liste ;-).

26.8 Décorateurs
Dans le chapitre 24, nous avons rencontré la notion de décorateur pour déclarer des objets de type property. Cela

permettait de rendre des méthodes accessibles comme des attributs (décorateur @property), et plus généralement de

344 Cours de Python / Université Paris Cité / UFR Sciences du Vivant

26.8. Décorateurs Chapitre 26. Remarques complémentaires

contrôler l’accès, la modification et la destruction d’attributs (décorateurs @nom_attribut.setter et @nom_attribut
.deleter). Il existe d’autres décorateurs prédéfinis en Python (e.g. @staticmethod, @classmethod, etc.). Nous allons
voir dans cette section comment on crée ses propres décorateurs et les mécanismes sous-jacents. Nous vous conseillons
de bien relire commment fonctionne les fonctions de rappel, ou fonctions callback (chapitre 25 Tkinter).

Définition
Un décorateur est une fonction qui modifie le comportement d’une autre fonction.

Ceci étant dit, comme cela fonctionne-t-il ? Commençons par une fonction simple qui affiche de la nourriture :
1 def imprime_victuaille():
2 print("tomate / mozza")

On souhaite améliorer cette fonction et transformer cette victuaille en sandwich, en affichant une tranche de pain avant
et après. La stratégie va être de créer une fonction spéciale, qu’on appelle décorateur, modifiant imprime_victuaille
().

1 def transforme_en_sandwich(fonction_a_decorer):
2 def emballage():
3 print("Pain")
4 fonction_a_decorer()
5 print("Pain")
6 return emballage

La fonction transforme_en_sandwich() est notre décorateur, elle prend en argument la fonction que l’on sou-
haite décorer sous forme de callback (donc sans les parenthèses). On voit qu’à l’intérieur, on définit une sous-fonction
emballage() qui va littéralement « emballer » (wrap) notre fonction à décorer, c’est-à-dire, effectuer une action avant
et après l’appel de la fonction à décorer. Enfin, le décorateur renvoie cette sous-fonction emballage sous forme de
callback. Pour que le décorateur soit actif, il faudra « transformer » la fonction à décorer avec notre fonction décoratrice :

1 imprime_victuaille = transforme_en_sandwich(imprime_victuaille)

Voici le code complet implémentant la fonction imprime_victuaille() décorée :
1 def transforme_en_sandwich(fonction_a_decorer):
2 def emballage():
3 print("Pain")
4 fonction_a_decorer()
5 print("Pain")
6 return emballage
7
8 def imprime_victuaille():
9 print("tomate/ mozza")

10
11 if __name__ == "__main__":
12 print("Fonction non décorée:")
13 imprime_victuaille()
14 print()
15 print("Fonction décorée:")
16 imprime_victuaille = transforme_en_sandwich(imprime_victuaille)
17 imprime_victuaille()

Au final l’idée est d’appeler la fonction décoratrice plutôt que la fonction imprime_victuaille() elle-même.
Regardons ce que donne l’exécution de la fonction avant et après décoration :
Fonction non décorée:
tomate/ mozza

Fonction décorée:
Pain
tomate/ mozza
Pain

Cours de Python / Université Paris Cité / UFR Sciences du Vivant 345

Chapitre 26. Remarques complémentaires 26.8. Décorateurs

Le premier appel en ligne 13 exécute la fonction simple, alors que le second en ligne 17 exécute la fonction décorée.
Cette construction peut sembler ardue et difficile à comprendre. Heureusement, Python a une notation en « sucre
syntaxique » (syntactic sugar) qui en facilite la lecture. Celle-ci utilise le symbole @ :

1 def transforme_en_sandwich(fonction_a_decorer):
2 def emballage():
3 print("Pain")
4 fonction_a_decorer()
5 print("Pain")
6 return emballage
7
8 @transforme_en_sandwich
9 def imprime_victuaille():

10 print("tomate / mozza")
11
12 if __name__ == "__main__":
13 imprime_victuaille()

La ligne 8 transforme irrémédiablement la fonction imprime_victuaille() en fonction décorée. Cela parait déjà
un peu plus lisible. L’exécution donnera bien sûr :

Pain
tomate / mozza
Pain

Au final, la notation :

1 @decorator
2 def fct():
3 [...]

est équivalente à :

1 fct = decorator(fct)

Cela fonctionne avec n’importe quelle fonction prenant en argument une autre fonction.

Conseil
Nous vous conseillons bien sûr d’utiliser systématiquement la notation @decorator qui est plus lisible et intuitive.

Si tout cela vous semble ardu (on vous comprend…), vous devez vous dire « pourquoi utiliser une construction aussi
complexe ? ». Et bien, c’est tout simplement parce qu’un décorateur est ré-utilisable dans n’importe quelle fonction. Si
on reprend la même fonction décoratrice que ci-dessus :

1 @transforme_en_sandwich
2 def imprime_victuaille1():
3 print("tomate / mozza")
4
5 @transforme_en_sandwich
6 def imprime_victuaille2():
7 print("jambon / fromage")
8
9 if __name__ == "__main__":

10 imprime_victuaille1()
11 print()
12 imprime_victuaille2()

On a donc un décorateur permettant de transformer en sandwich n’importe quelle fonction imprimant une victuaille !
Ceci renverra :

346 Cours de Python / Université Paris Cité / UFR Sciences du Vivant

26.9. Un peu de transformée de Fourier avec NumPy Chapitre 26. Remarques complémentaires

Pain
tomate / mozza
Pain

Pain
jambon / fromage
Pain

Un exemple plus concret de décorateur pourrait être la mesure du temps d’exécution d’une fonction :
import time

def mesure_temps(fonction_a_decorer):
def emballage():

temps1 = time.time()
fonction_a_decorer()
temps2 = time.time()
print(f"Le temps d'éxécution de {fonction_a_decorer.__name__} est "

f"{temps2 - temps1} s")
return emballage

En ligne 8, l’attribut .__name__ renvoie le nom de la fonction sous forme de chaîne de caractères. Dans cet exemple,
le décorateur @mesure_temps mis devant n’importe quelle fonction affichera systématiquement le temps d’exécution de
celle-ci.

Pour finir, si on revient sur le décorateur @property vu dans le chapitre 24 Avoir plus la classe avec les objets, nous
avions vu également qu’il existait une fonction property(). Donc pour les décorateurs pré-existants que nous avons
abordés dans le chapitre 24, il existe des fonctions équivalentes. Comme dans notre exemple, la notation @decorateur
va finalement appeler la fonction décoratrice. Donc derrière une notation @quelquechose, il existe toujours une fonction
quelquechose() remplissant ce rôle de décorateur.

Pour aller plus loin
Pour aller plus loin, vous pouvez consulter ce très bon article 35 sur le site RealPython. Il y est expliqué en outre

comment on peut gérer le passage d’arguments quand on utilise des décorateurs, ainsi que l’utilisation de décorateurs
multiples.

26.9 Un peu de transformée de Fourier avec NumPy
La transformée de Fourier est très utilisée pour l’analyse de signaux, notamment lorsqu’on souhaite extraire des

périodicités au sein d’un signal bruité. Le module NumPy possède la fonction fft() (dans le sous-module fft) permettant
de calculer des transformées de Fourier.

Voici un petit exemple sur la fonction cosinus de laquelle on souhaite extraire la période à l’aide de la fonction fft() :
1 import numpy as np
2
3 debut = -2 * np.pi
4 fin = 2 * np.pi
5 pas = 0.1
6 x = np.arange(debut,fin,pas)
7 y = np.cos(x)
8
9 TF = np.fft.fft(y)

10 ABSTF = np.abs(TF)
11 pas_xABSTF = 1/(fin-debut)
12 x_ABSTF = np.arange(0,pas_xABSTF * len(ABSTF),pas_xABSTF)

Plusieurs commentaires sur cet exemple :
Ligne 1. On charge le module NumPy avec le nom raccourci np.
Lignes 3 à 6. On définit l’intervalle (de −2π à 2π radians) pour les valeurs en abscisse ainsi que le pas (0,1 radians).

35. https://realpython.com/primer-on-python-decorators/

Cours de Python / Université Paris Cité / UFR Sciences du Vivant 347

https://realpython.com/primer-on-python-decorators/

Chapitre 26. Remarques complémentaires 26.10. Sauvegardez votre historique de commandes

Lignes 7. On calcule directement les valeurs en ordonnées avec la fonction cosinus du module NumPy. On constate
ici que NumPy redéfinit certaines fonctions ou constantes mathématiques de base, comme pi, cos() ou abs() (valeur
absolue, ou module d’un nombre complexe). Ces fonctions sont directement utilisables avec un objet array.

Ligne 9. On calcule la transformée de Fourier avec la fonction fft() qui renvoie un vecteur (objet array à une
dimension) de nombres complexes. Eh oui, le module NumPy gère aussi les nombres complexes !

Ligne 10. On extrait le module du résultat précédent avec la fonction abs().
Ligne 11. La variable x_ABSTFL représente l’abscisse du spectre (en radian−1).
Ligne 12. La variable ABSTF contient le spectre lui même. L’analyse de ce dernier nous donne un pic à 0,15 radian−1,

ce qui correspond bien à 2π (c’est plutôt bon signe de retrouver ce résultat).

26.10 Sauvegardez votre historique de commandes
Vous pouvez sauvegarder l’historique des commandes utilisées dans l’interpréteur Python avec le module readline.

1 >>> print("hello")
2 hello
3 >>> a = 22
4 >>> a = a + 11
5 >>> print(a)
6 33
7 >>> import readline
8 >>> readline.write_history_file()

Quittez Python. L’historique de toutes vos commandes est dans votre répertoire personnel, dans le fichier .history.
Relancez l’interpréteur Python.

1 >>> import readline
2 >>> readline.read_history_file()

Vous pouvez accéder aux commandes de la session précédente avec la flèche du haut de votre clavier. D’abord les
commandes readline.read_history_file() et import readline de la session actuelle, puis print(a), a = a +
11, a = 22…

348 Cours de Python / Université Paris Cité / UFR Sciences du Vivant

CHAPITRE 27

Mini-projets

Dans ce chapitre, nous vous proposons quelques scénarios pour développer vos compétences en Python et mettre en
œuvre les concepts que vous avez rencontrés dans les chapitres précédents.

27.1 Description des projets
27.1.1 Mots anglais dans le protéome humain

L’objectif de ce premier projet est de découvrir si des mots anglais peuvent se retrouver dans les séquences du protéome
humain, c’est-à-dire dans les séquences de l’ensemble des protéines humaines.

Vous aurez à votre disposition :
• Le fichier english-common-words.txt 1, qui contient les 3 000 mots anglais les plus fréquents, à raison d’1 mot

par ligne.
• Le fichier human-proteome.fasta 2 qui contient le protéome humain sous la forme de séquences au format

FASTA. Attention, ce fichier est assez gros. Ce fichier provient de la banque de données UniProt à partir de cette
page 3.

Conseil
Des explications sur le format FASTA et des exemples de code sont fournis dans l’annexe A Quelques formats de

données en biologie.

27.1.2 Genbank2fasta
Ce projet consiste à écrire un convertisseur de fichier, du format GenBank au format FASTA.
Pour cela, nous allons utiliser le fichier GenBank du chromosome I de la levure de boulanger Saccharomyces cerevisiae.

Vous pouvez télécharger ce fichier :
• soit via le lien sur le site du cours NC_001133.gbk 4 ;

1. https://python.sdv.u-paris.fr/data-files/english-common-words.txt
2. https://python.sdv.u-paris.fr/data-files/human-proteome.fasta
3. https://www.uniprot.org/help/human_proteome
4. https://python.sdv.u-paris.fr/data-files/NC_001133.gbk

349

https://python.sdv.u-paris.fr/data-files/english-common-words.txt
https://python.sdv.u-paris.fr/data-files/human-proteome.fasta
https://www.uniprot.org/help/human_proteome
https://python.sdv.u-paris.fr/data-files/NC_001133.gbk

Chapitre 27. Mini-projets 27.1. Description des projets

• soit directement sur la page de Saccharomyces cerevisiae S288c chromosome I, complete sequence 5 sur le site du
NCBI, puis en cliquant sur Send to, puis Complete Record, puis Choose Destination : File, puis Format : GenBank
(full) et enfin sur le bouton Create File.

Vous trouverez des explications sur les formats FASTA et GenBank ainsi que des exemples de code dans l’annexe A
Quelques formats de données en biologie.

Vous pouvez réaliser ce projet sans ou avec des expressions régulières (abordées dans le chapitre 17).

27.1.3 Simulation d’un pendule
On se propose de réaliser une simulation d’un pendule simple 6 en Tkinter. Un pendule simple est représenté par

une masse ponctuelle (la boule du pendule) reliée à un pivot immobile par une tige rigide et sans masse. On néglige les
effets de frottement et on considère le champ gravitationnel comme uniforme. Le mouvement du pendule sera calculé en
résolvant numériquement l’équation différentielle suivante :

aθ (t) =
d2θ
dt2 (t) =−g

l
∗ sin(θ(t))

où θ représente l’angle entre la verticale et la tige du pendule, aθ l’accélération angulaire, g la gravité, et l la longueur
de la tige (note : pour la dérivation d’une telle équation vous pouvez consulter la page wikipedia 7 ou l’accompagnement
pas à pas, cf. la rubrique suivante).

Pour trouver la valeur de θ en fonction du temps, on pourra utiliser la méthode semi-implicite d’Euler 8 de résolution
d’équation différentielle. La formule ci-dessus donne l’accélération angulaire au temps t : aθ (t) = − g

l × sin(θ(t)). À
partir de celle-ci, la méthode propose le calcul de la vitesse angulaire au pas suivant : vθ (t + δ t) = vθ (t)+ aθ (t)× δ t
(où δ t représente le pas de temps entre deux étapes successives de la simulation). Enfin, cette vitesse vθ (t +δ t) donne
l’angle θ au pas suivant : θ(t +δ t) = θ(t)+ vθ (t +δ t)×δ t. On prendra un pas de temps δ t = 0.05 s, une accélération
gravitationnelle g = 9.8 m.s−2 et une longueur de tige de l = 1 m.

Figure 27.1 – Application pendule.

Pour la visualisation, vous pourrez utiliser le widget canvas du module Tkinter (voir le chapitre 25 Fenêtres graphiques
et Tkinter (en ligne), rubrique Un canvas animé dans une classe). On cherche à obtenir un résultat comme montré dans
la figure 27.1.

5. https://www.ncbi.nlm.nih.gov/nuccore/NC_001133
6. https://fr.wikipedia.org/wiki/Pendule_simple
7. https://en.wikipedia.org/wiki/Pendulum_(mathematics)#math_Eq._1
8. https://en.wikipedia.org/wiki/Euler_method

350 Cours de Python / Université Paris Cité / UFR Sciences du Vivant

https://www.ncbi.nlm.nih.gov/nuccore/NC_001133
https://fr.wikipedia.org/wiki/Pendule_simple
https://en.wikipedia.org/wiki/Pendulum_(mathematics)#math_Eq._1
https://en.wikipedia.org/wiki/Euler_method

27.2. Accompagnement pas à pas Chapitre 27. Mini-projets

Nous vous conseillons de procéder d’abord à la mise en place du simulateur physique (c’est-à-dire obtenir θ en fonction
du temps ou du pas de simulation). Faites par exemple un premier script Python qui produit un fichier à deux colonnes
(temps et valeur de θ). Une fois que cela fonctionne bien, il vous faudra construire l’interface Tkinter et l’animer. Vous
pouvez ajouter un bouton pour démarrer / stopper le pendule et une règle pour modifier sa position initiale.

N’oubliez pas, il faudra mettre dans votre programme final une fonction qui convertit l’angle θ en coordonnées
cartésiennes x et y dans le plan du canvas. Faites également attention au système de coordonnées du canvas où les
ordonnées sont inversées par rapport à un repère mathématique. Pour ces deux aspects, reportez-vous à l’exercice
Polygone de Sierpinski du chapitre 25 Fenêtres graphiques et Tkinter (en ligne).

27.2 Accompagnement pas à pas
Vous trouverez ci-après les différentes étapes pour réaliser les mini-projets proposés. Prenez le temps de bien com-

prendre une étape avant de passer à la suivante.

27.2.1 Mots anglais dans le protéome humain
L’objectif de ce premier projet est de découvrir si des mots anglais peuvent se retrouver dans les séquences du protéome

humain, c’est-à-dire dans les séquences de l’ensemble des protéines humaines.

27.2.1.1 Composition aminée

Dans un premier temps, composez 5 mots anglais avec les 20 acides aminés.

27.2.1.2 Des mots

Téléchargez le fichier english-common-words.txt 9. Ce fichier contient les 3000 mots anglais les plus fréquents, à raison
d’1 mot par ligne.

Créez un script words_in_proteome.py et écrivez la fonction read_words() qui va lire les mots contenus dans le
fichier dont le nom est fourni en argument du script et renvoyer une liste contenant les mots convertis en majuscule et
composés de 3 caractères ou plus.

Dans le programme principal, affichez le nombre de mots sélectionnés.

27.2.1.3 Des protéines

Téléchargez maintenant le fichier human-proteome.fasta 10. Attention, ce fichier est assez gros. Ce fichier provient de
la banque de données UniProt à partir de cette page 11.

Voici les premières lignes de ce fichier ([...] indique une coupure que nous avons faite) :
>sp|O95139|NDUB6_HUMAN NADH dehydrogenase [ubiquinone] 1 beta [...]
MTGYTPDEKLRLQQLRELRRRWLKDQELSPREPVLPPQKMGPMEKFWNKFLENKSPWRKM
VHGVYKKSIFVFTHVLVPVWIIHYYMKYHVSEKPYGIVEKKSRIFPGDTILETGEVIPPM
KEFPDQHH
>sp|O75438|NDUB1_HUMAN NADH dehydrogenase [ubiquinone] 1 beta [...]
MVNLLQIVRDHWVHVLVPMGFVIGCYLDRKSDERLTAFRNKSMLFKRELQPSEEVTWK
>sp|Q8N4C6|NIN_HUMAN Ninein OS=Homo sapiens OX=9606 GN=NIN PE=1 SV=4
MDEVEQDQHEARLKELFDSFDTTGTGSLGQEELTDLCHMLSLEEVAPVLQQTLLQDNLLG
RVHFDQFKEALILILSRTLSNEEHFQEPDCSLEAQPKYVRGGKRYGRRSLPEFQESVEEF
PEVTVIEPLDEEARPSHIPAGDCSEHWKTQRSEEYEAEGQLRFWNPDDLNASQSGSSPPQ

Toujours dans le script words_in_proteome.py, écrivez la fonction read_sequences() qui va lire le protéome
dans le fichier dont le nom est fourni en second argument du script. Cette fonction va renvoyer un dictionnaire dont les
clefs sont les identifiants des protéines (par exemple, O95139, O75438, Q8N4C6) et dont les valeurs associées sont les
séquences.

Dans le programme principal, affichez le nombre de séquences lues. À des fins de test, affichez également la séquence
associée à la protéine O95139.

9. https://python.sdv.u-paris.fr/data-files/english-common-words.txt
10. https://python.sdv.u-paris.fr/data-files/human-proteome.fasta
11. https://www.uniprot.org/help/human_proteome

Cours de Python / Université Paris Cité / UFR Sciences du Vivant 351

https://python.sdv.u-paris.fr/data-files/english-common-words.txt
https://python.sdv.u-paris.fr/data-files/human-proteome.fasta
https://www.uniprot.org/help/human_proteome

Chapitre 27. Mini-projets 27.2. Accompagnement pas à pas

27.2.1.4 À la pêche aux mots

Écrivez maintenant la fonction search_words_in_proteome() qui prend en argument la liste de mots et le dic-
tionnaire contenant les séquences des protéines et qui va compter le nombre de séquences dans lesquelles un mot est
présent. Cette fonction renverra un dictionnaire dont les clefs sont les mots et les valeurs le nombre de séquences qui
contiennent ces mots. La fonction affichera également le message suivant pour les mots trouvés dans le protéome :
ACCESS found in 1 sequences
ACID found in 38 sequences
ACT found in 805 sequences
[...]

Cette étape prend quelques minutes. Soyez patient.

27.2.1.5 Et le mot le plus fréquent est…

Pour terminer, écrivez maintenant la fonction find_most_frequent_word() qui prend en argument le dictionnaire
renvoyé par la précédente fonction search_words_in_proteome() et qui affiche le mot trouvé dans le plus de protéines,
ainsi que le nombre de séquences dans lesquelles il a été trouvé, sous la forme :
=> xxx found in yyy sequences

Quel est ce mot ?
Quel pourcentage des séquences du protéome contiennent ce mot ?

27.2.1.6 Pour être plus complet

Jusqu’à présent, nous avions déterminé, pour chaque mot, le nombre de séquences dans lesquelles il apparaissait.
Nous pourrions aller plus loin et calculer aussi le nombre de fois que chaque mot apparaît dans les séquences.

Pour cela modifier la fonction search_words_in_proteome() de façon à compter le nombre d’occurrences d’un
mot dans les séquences. La méthode .count() vous sera utile.

Déterminez alors quel mot est le plus fréquent dans le protéome humain.

27.2.2 genbank2fasta (sans expression régulière)
Ce projet consiste à écrire un convertisseur de fichier, du format GenBank au format FASTA. L’annexe A Quelques

formats de données en biologie rappelle les caractéristiques de ces deux formats de fichiers.
Le jeu de données avec lequel nous allons travailler est le fichier GenBank du chromosome I de la levure du boulanger

Saccharomyces cerevisiae. Les indications pour le télécharger sont indiqués dans la description du projet.
Dans cette rubrique, nous allons réaliser ce projet sans expression régulière.

27.2.2.1 Lecture du fichier

Créez un script genbank2fasta.py et créez la fonction lit_fichier() qui prend en argument le nom du fichier et
qui renvoie le contenu du fichier sous forme d’une liste de lignes, chaque ligne étant elle-même une chaîne de caractères.

Testez cette fonction avec le fichier GenBank NC_001133.gbk et affichez le nombre de lignes lues.

27.2.2.2 Extraction du nom de l’organisme

Dans le même script, ajoutez la fonction extrait_organisme() qui prend en argument le contenu du fichier
précédemment obtenu avec la fonction lit_fichier() (sous la forme d’une liste de lignes) et qui renvoie le nom de
l’organisme. Pour récupérer la bonne ligne vous pourrez tester si les premiers caractères de la ligne contiennent le mot-clé
ORGANISM.

Testez cette fonction avec le fichier GenBank NC_001133.gbk et affichez le nom de l’organisme.

352 Cours de Python / Université Paris Cité / UFR Sciences du Vivant

27.2. Accompagnement pas à pas Chapitre 27. Mini-projets

27.2.2.3 Recherche des gènes

Dans le fichier GenBank, les gènes sens sont notés de cette manière :
gene 58..272

ou
gene <2480..>2707

et les gènes antisens (ou encore complémentaires) de cette façon :
gene complement(55979..56935)

ou
gene complement(<13363..>13743)

Les valeurs numériques séparées par .. indiquent la position du gène dans le génome (numéro de la première base,
numéro de la dernière base).

Remarque
Le symbole < indique un gène partiel sur l’extrémité 5’, c’est-à-dire que le codon START correspondant est incomplet.

Respectivement, le symbole > désigne un gène partiel sur l’extrémité 3’, c’est-à-dire que le codon STOP correspondant
est incomplet. Pour plus de détails, consultez la documentation du NCBI sur les délimitations des gènes 12. Nous vous
proposons ici d’ignorer ces symboles > et <.

Repérez ces différents gènes dans le fichier NC_001133.gbk. Pour récupérer ces lignes de gènes il faut tester si la
ligne commence par

gene

(c’est-à-dire 5 espaces, suivi du mot gene, suivi de 12 espaces). Pour savoir s’il s’agit d’un gène sur le brin direct ou
complémentaire, il faut tester la présence du mot complement dans la ligne lue.

Ensuite si vous souhaitez récupérer la position de début et de fin de gène, nous vous conseillons d’utiliser la fonction
replace() et de ne garder que les chiffres et les . Par exemple

gene <2480..>2707

sera transformé en
2480..2707

Enfin, avec la méthode .split() vous pourrez facilement récupérer les deux entiers de début et de fin de gène.
Dans le même script genbank2fasta.py, ajoutez la fonction recherche_genes() qui prend en argument le contenu

du fichier (sous la forme d’une liste de lignes) et qui renvoie la liste des gènes.
Chaque gène sera lui-même une liste contenant le numéro de la première base, le numéro de la dernière base et une

chaîne de caractère "sens" pour un gène sens et "antisens" pour un gène antisens.
Testez cette fonction avec le fichier GenBank NC_001133.gbk et affichez le nombre de gènes trouvés, ainsi que le

nombre de gènes sens et antisens.

27.2.2.4 Extraction de la séquence nucléique du génome

La taille du génome est indiqué sur la première ligne d’un fichier GenBank. Trouvez la taille du génome stocké dans
le fichier NC_001133.gbk.

Dans un fichier GenBank, la séquence du génome se trouve entre les lignes
ORIGIN

12. https://www.ncbi.nlm.nih.gov/Sitemap/samplerecord.html#BaseSpanB

Cours de Python / Université Paris Cité / UFR Sciences du Vivant 353

https://www.ncbi.nlm.nih.gov/Sitemap/samplerecord.html#BaseSpanB

Chapitre 27. Mini-projets 27.2. Accompagnement pas à pas

et
//

Trouvez dans le fichier NC_001133.gbk la première et dernière ligne de la séquence du génome.
Pour récupérer les lignes contenant la séquence, nous vous proposons d’utiliser un algorithme avec un drapeau

is_dnaseq (qui vaudra True ou False). Voici l’algorithme proposé en pseudo-code :
is_dnaseq <- False
Lire chaque ligne du fichier gbk

si la ligne contient "//"
is_dnaseq <- False

si is_dnaseq vaut True
accumuler la séquence

si la ligne contient "ORIGIN"
is_dnaseq <- True

Au début ce drapeau aura la valeur False. Ensuite, quand il se mettra à True, on pourra lire les lignes contenant la
séquence, puis quand il se remettra à False on arrêtera.

Une fois la séquence récupérée, il suffira d’éliminer les chiffres, retours chariots et autres espaces (Conseil : calculer
la longueur de la séquence et comparer la à celle indiquée dans le fichier gbk).

Toujours dans le même script genbank2fasta.py, ajoutez la fonction extrait_sequence() qui prend en argument
le contenu du fichier (sous la forme de liste de lignes) et qui renvoie la séquence nucléique du génome (dans une chaîne
de caractères). La séquence ne devra pas contenir d’espaces, ni de chiffres ni de retours chariots.

Testez cette fonction avec le fichier GenBank NC_001133.gbk et affichez le nombre de bases de la séquence extraite.
Vérifiez que vous n’avez pas fait d’erreur en comparant la taille de la séquence extraite avec celle que vous avez trouvée
dans le fichier GenBank.

27.2.2.5 Construction d’une séquence complémentaire inverse

Toujours dans le même script, ajoutez la fonction construit_comp_inverse() qui prend en argument une séquence
d’ADN sous forme de chaîne de caractères et qui renvoie la séquence complémentaire inverse (également sous la forme
d’une chaîne de caractères).

On rappelle que construire la séquence complémentaire inverse d’une séquence d’ADN consiste à :
• Prendre la séquence complémentaire. C’est-à-dire remplacer la base a par la base t, t par a, c par g et g par c.
• Prendre l’inverse. C’est-à-dire que la première base de la séquence complémentaire devient la dernière base et

réciproquement, la dernière base devient la première.
Pour vous faciliter le travail, ne travaillez que sur des séquences en minuscule.
Testez cette fonction avec les séquences atcg, AATTCCGG et gattaca.

27.2.2.6 Écriture d’un fichier FASTA

Toujours dans le même script, ajoutez la fonction ecrit_fasta() qui prend en argument un nom de fichier (sous
forme de chaîne de caractères), un commentaire (sous forme de chaîne de caractères) et une séquence (sous forme de
chaîne de caractères) et qui écrit un fichier FASTA. La séquence sera à écrire sur des lignes ne dépassant pas 80 caractères.

Pour rappel, un fichier FASTA suit le format suivant :
>commentaire
sequence sur une ligne de 80 caractères maxi
suite de la séquence
suite de la séquence
...

Testez cette fonction avec :
• nom de fichier : test.fasta
• commentaire : mon commentaire
• séquence :
atcgatc

354 Cours de Python / Université Paris Cité / UFR Sciences du Vivant

27.2. Accompagnement pas à pas Chapitre 27. Mini-projets

27.2.2.7 Extraction des gènes

Toujours dans le même script, ajoutez la fonction extrait_genes() qui prend en argument la liste des gènes, la
séquence nucléotidique complète (sous forme d’une chaîne de caractères) et le nom de l’organisme (sous forme d’une
chaîne de caractères) et qui pour chaque gène :

• extrait la séquence du gène dans la séquence complète ;
• prend la séquence complémentaire inverse (avec la fonction construit_comp_inverse() si le gène est antisens ;
• enregistre le gène dans un fichier au format FASTA (avec la fonction ecrit_fasta()) ;
• affiche à l’écran le numéro du gène et le nom du fichier FASTA créé.
La première ligne des fichiers FASTA sera de la forme :

>nom-organisme|numéro-du-gène|début|fin|sens ou antisens

Le numéro du gène sera un numéro consécutif depuis le premier gène jusqu’au dernier. Il n’y aura pas de différence
de numérotation entre les gènes sens et les gènes antisens.

Testez cette fonction avec le fichier GenBank NC_001133.gbk.

27.2.2.8 Assemblage du script final

Pour terminer, modifiez le script genbank2fasta.py de façon à ce que le fichier GenBank à analyser (dans cet
exemple NC_001133.gbk), soit entré comme argument du script.

Vous afficherez un message d’erreur si :
• le script genbank2fasta.py est utilisé sans argument,
• le fichier fourni en argument n’existe pas.
Pour vous aider, n’hésitez pas à jeter un œil aux descriptions des modules sys et pathlib dans le chapitre 9 Modules.
Testez votre script ainsi finalisé.
Bravo, si vous êtes arrivés jusqu’à cette étape.

27.2.3 genbank2fasta (avec expressions régulières)
Ce projet consiste à écrire un convertisseur de fichier, du format GenBank au format FASTA. L’annexe A Quelques

formats de données en biologie rappelle les caractéristiques de ces deux formats de fichiers.
Le jeu de données avec lequel nous allons travailler est le fichier GenBank du chromosome I de la levure du boulanger

Saccharomyces cerevisiae. Les indications pour le télécharger sont indiqués dans la description du projet.
Dans cette rubrique, nous allons réaliser ce projet avec des expressions régulières en utilisant le module re.

27.2.3.1 Lecture du fichier

Créez un script genbank2fasta.py et créez la fonction lit_fichier() qui prend en argument le nom du fichier et
qui renvoie le contenu du fichier sous forme d’une liste de lignes, chaque ligne étant elle-même une chaîne de caractères.

Testez cette fonction avec le fichier GenBank NC_001133.gbk et affichez le nombre de lignes lues.

27.2.3.2 Extraction du nom de l’organisme

Dans le même script, ajoutez la fonction extrait_organisme() qui prend en argument le contenu du fichier
précédemment obtenu avec la fonction lit_fichier() (sous la forme d’une liste de lignes) et qui renvoie le nom de
l’organisme. Utilisez de préférence une expression régulière.

Testez cette fonction avec le fichier GenBank NC_001133.gbk et affichez le nom de l’organisme.

27.2.3.3 Recherche des gènes

Dans le fichier GenBank, les gènes sens sont notés de cette manière :
gene 58..272

ou
gene <2480..>2707

Cours de Python / Université Paris Cité / UFR Sciences du Vivant 355

Chapitre 27. Mini-projets 27.2. Accompagnement pas à pas

et les gènes antisens de cette façon :
gene complement(55979..56935)

ou
gene complement(<13363..>13743)

Les valeurs numériques séparées par .. indiquent la position du gène dans le génome (numéro de la première base,
numéro de la dernière base).

Remarque
Le symbole < indique un gène partiel sur l’extrémité 5’, c’est-à-dire que le codon START correspondant est incomplet.

Respectivement, le symbole > désigne un gène partiel sur l’extrémité 3’, c’est-à-dire que le codon STOP correspondant
est incomplet. Pour plus de détails, consultez la documentation du NCBI sur les délimitations des gènes 13.

Repérez ces différents gènes dans le fichier NC_001133.gbk. Construisez deux expressions régulières pour extraire du
fichier GenBank les gènes sens et les gènes antisens.

Modifiez ces expressions régulières pour que les numéros de la première et de la dernière base puissent être facilement
extraits.

Dans le même script genbank2fasta.py, ajoutez la fonction recherche_genes() qui prend en argument le contenu
du fichier (sous la forme d’une liste de lignes) et qui renvoie la liste des gènes.

Chaque gène sera lui-même une liste contenant le numéro de la première base, le numéro de la dernière base et une
chaîne de caractère "sens" pour un gène sens et "antisens" pour un gène antisens.

Testez cette fonction avec le fichier GenBank NC_001133.gbk et affichez le nombre de gènes trouvés, ainsi que le
nombre de gènes sens et antisens.

27.2.3.4 Extraction de la séquence nucléique du génome

La taille du génome est indiqué sur la première ligne d’un fichier GenBank. Trouvez la taille du génome stocké dans
le fichier NC_001133.gbk.

Dans un fichier GenBank, la séquence du génome se trouve entre les lignes
ORIGIN

et
//

Trouvez dans le fichier NC_001133.gbk la première et dernière ligne de la séquence du génome.
Construisez une expression régulière pour extraire du fichier GenBank les lignes correspondantes à la séquence du

génome.
Modifiez ces expressions régulières pour que la séquence puisse être facilement extraite.
Toujours dans le même script, ajoutez la fonction extrait_sequence() qui prend en argument le contenu du fichier

(sous la forme de liste de lignes) et qui renvoie la séquence nucléique du génome (dans une chaîne de caractères). La
séquence ne devra pas contenir d’espaces.

Testez cette fonction avec le fichier GenBank NC_001133.gbk et affichez le nombre de bases de la séquence extraite.
Vérifiez que vous n’avez pas fait d’erreur en comparant la taille de la séquence extraite avec celle que vous avez trouvée
dans le fichier GenBank.

27.2.3.5 Construction d’une séquence complémentaire inverse

Toujours dans le même script, ajoutez la fonction construit_comp_inverse() qui prend en argument une séquence
d’ADN sous forme de chaîne de caractères et qui renvoie la séquence complémentaire inverse (également sous la forme
d’une chaîne de caractères).

On rappelle que construire la séquence complémentaire inverse d’une séquence d’ADN consiste à :
13. https://www.ncbi.nlm.nih.gov/Sitemap/samplerecord.html#BaseSpanB

356 Cours de Python / Université Paris Cité / UFR Sciences du Vivant

https://www.ncbi.nlm.nih.gov/Sitemap/samplerecord.html#BaseSpanB

27.2. Accompagnement pas à pas Chapitre 27. Mini-projets

• Prendre la séquence complémentaire. C’est-à-dire à remplacer la base a par la base t, t par a, c par g et g par c.
• Prendre l’inverse. C’est-à-dire à que la première base de la séquence complémentaire devient la dernière base et

réciproquement, la dernière base devient la première.
Pour vous faciliter le travail, ne travaillez que sur des séquences en minuscule.
Testez cette fonction avec les séquences atcg, AATTCCGG et gattaca.

27.2.3.6 Écriture d’un fichier FASTA

Toujours dans le même script, ajoutez la fonction ecrit_fasta() qui prend en argument un nom de fichier (sous
forme de chaîne de caractères), un commentaire (sous forme de chaîne de caractères) et une séquence (sous forme de
chaîne de caractères) et qui écrit un fichier FASTA. La séquence sera à écrire sur des lignes ne dépassant pas 80 caractères.

Pour rappel, un fichier FASTA suit le format suivant :
>commentaire
sequence sur une ligne de 80 caractères maxi
suite de la séquence
suite de la séquence
...

Testez cette fonction avec :
• nom de fichier : test.fasta
• commentaire : mon commentaire
• séquence :
atcgatc

27.2.3.7 Extraction des gènes

Toujours dans le même script, ajoutez la fonction extrait_genes() qui prend en argument la liste des gènes, la
séquence nucléotidique complète (sous forme d’une chaîne de caractères) et le nom de l’organisme (sous forme d’une
chaîne de caractères) et qui pour chaque gène :

• extrait la séquence du gène dans la séquence complète ;
• prend la séquence complémentaire inverse (avec la fonction construit_comp_inverse() si le gène est antisens ;
• enregistre le gène dans un fichier au format FASTA (avec la fonction ecrit_fasta()) ;
• affiche à l’écran le numéro du gène et le nom du fichier fasta créé.
La première ligne des fichiers FASTA sera de la forme :

>nom-organisme|numéro-du-gène|début|fin|sens ou antisens

Le numéro du gène sera un numéro consécutif depuis le premier gène jusqu’au dernier. Il n’y aura pas de différence
de numérotation entre les gènes sens et les gènes antisens.

Testez cette fonction avec le fichier GenBank NC_001133.gbk.

27.2.3.8 Assemblage du script final

Pour terminer, modifiez le script genbank2fasta.py de façon à ce que le fichier GenBank à analyser (dans cet
exemple NC_001133.gbk), soit entré comme argument du script.

Vous afficherez un message d’erreur si :
• le script genbank2fasta.py est utilisé sans argument,
• le fichier fourni en argument n’existe pas.
Pour vous aider, n’hésitez pas à jeter un œil aux descriptions des modules sys et pathlib dans le chapitre 9 sur les

modules.
Testez votre script ainsi finalisé.

Cours de Python / Université Paris Cité / UFR Sciences du Vivant 357

Chapitre 27. Mini-projets 27.2. Accompagnement pas à pas

27.2.4 Simulation d’un pendule
L’objectif de ce projet est de simuler un pendule simple 14 en deux dimensions, puis de le visualiser à l’aide du module

tkinter. Le projet peut s’avérer complexe. Tout d’abord, il y a l’aspect physique du projet. Nous allons faire ici tous
les rappels de mécanique nécessaires à la réalisation du projet. Ensuite, il y a la partie tkinter qui n’est pas évidente
au premier abord. Nous conseillons de bien séparer les deux parties. D’abord réaliser la simulation physique et vérifier
qu’elle fonctionne (par exemple, en écrivant un fichier de sortie permettant cette vérification). Ensuite passer à la partie
graphique tkinter si et seulement si la première partie est fonctionnelle.

27.2.4.1 Mécanique d’un pendule simple

Nous allons décrire ici ce dont nous avons besoin concernant la mécanique d’un pendule simple. Notamment, nous
allons vous montrer comment dériver l’équation différentielle permettant de calculer la position du pendule à tout moment
en fonction des conditions initiales. Cette page est largement inspirée de la page Wikipedia en anglais 15. Dans la suite,
une grandeur représentée en gras, par exemple P, représente un vecteur avec deux composantes dans le plan 2D (Px,Py).
Cette notation en gras est équivalente à la notation avec une flèche au dessus de la lettre. La même grandeur représentée
en italique, par exemple P, représente le nombre scalaire correspondant. Ce nombre peut être positif ou négatif, et sa
valeur absolue vaut la norme du vecteur.

Un pendule simple est représenté par une masse ponctuelle (la boule du pendule) reliée à un axe immobile par une
tige rigide et sans masse. Le pendule simple est un système idéal. Ainsi, on néglige les effets de frottement et on considère
le champ gravitationnel comme uniforme. La figure 27.2 montre un schéma du système ainsi qu’un bilan des forces
agissant sur la masse. Les deux forces agissant sur la boule sont son poids P et la tension T due à la tige.

La figure 27.3 montre un schéma des différentes grandeurs caractérisant le pendule. La coordonnée naturelle pour
définir la position du pendule est l’angle θ . Nous verrons plus tard comment convertir cet angle en coordonnées car-
tésiennes pour l’affichage dans un canvas tkinter. Nous choisissons de fixer θ = 0 lorsque le pendule est à sa position
d’équilibre. Il s’agit de la position où la boule est au plus bas. C’est une position à laquelle le pendule ne bougera pas
s’il n’a pas une vitesse préexistante. Nous choisissons par ailleurs de considérer θ positif lorsque le pendule se balance
à droite, et négatif de l’autre côté. g décrit l’accélération due à la gravité, avec P = mg, ou si on raisonne en scalaire
P = mg. Les deux vecteurs représentant les composantes tangentielle et orthogonale au mouvement du pendule de P sont
représentées sur le schéma (les annotations indiquent leur norme).

Si on déplace le pendule de sa position d’équilibre, il sera mû par la force F résultant de la tension T et de son poids
P (cf. plus bas). Comme le système est considéré comme parfait (pas de frottement, gravité uniforme, etc.), le pendule
ne s’arrêtera jamais. Si on le monte à θ =+20 deg et qu’on le lâche, le pendule redescendra en passant par θ = 0 deg,
remontera de l’autre côté à θ = −20 deg, puis continuera de la sorte indéfiniment, grâce à la conservation de l’énergie
dans un système fermé (c’est-à-dire sans « fuite » d’énergie).

Ici, on va tenter de simuler ce mouvement en appliquant les lois du mouvement de Newton 16 et en résolvant les
équations correspondantes numériquement. D’après la seconde loi de Newton, la force (F) agissant sur la boule est égale
à sa masse (m) fois son accélération (a) :

F = ma

Cette loi est exprimée ici dans le système de coordonnées cartésiennes (le plan à 2 dimensions). La force F et
l’accélération a sont des vecteurs dont les composantes sont respectivement (Fx,Fy) et (ax,ay). La force F correspond
à la somme vectorielle de T et P. La tige du pendule étant rigide, le mouvement de la boule est restreint sur le cercle
de rayon égal à la longueur L de la tige (dessiné en pointillé). Ainsi, seule la composante tangentielle de l’accélération a
sera prise en compte dans ce mouvement. Comment la calculer ? La force de tension T étant orthogonale au mouvement
du pendule, celle-ci n’aura pas d’effet. De même, la composante orthogonale mgcosθ due au poids P n’aura pas d’effet
non plus. Au final, on ne prendra en compte que la composante tangentielle due au poids, c’est-à-dire mgsinθ (cf. figure
27.3). Au final, on peut écrire l’expression suivante en raisonnant sur les valeurs scalaires :

F = ma =−mgsinθ

14. https://fr.wikipedia.org/wiki/Pendule_simple
15. https://en.wikipedia.org/wiki/Pendulum_(mathematics)
16. https://fr.wikipedia.org/wiki/Lois_du_mouvement_de_Newton

358 Cours de Python / Université Paris Cité / UFR Sciences du Vivant

https://fr.wikipedia.org/wiki/Pendule_simple
https://en.wikipedia.org/wiki/Pendulum_(mathematics)
https://fr.wikipedia.org/wiki/Lois_du_mouvement_de_Newton

27.2. Accompagnement pas à pas Chapitre 27. Mini-projets

Figure 27.2 – Bilan des forces dans un pendule simple.

Le signe − dans cette formule est très important. Il indique que l’accélération s’oppose systématiquement à θ . Si le
pendule se balance vers la droite et que θ devient plus positif, l’accélération tendra toujours à faire revenir la boule dans
l’autre sens vers sa position d’équilibre à θ = 0. On peut faire un raisonnement équivalent lorsque le pendule se balance
vers la gauche et que θ devient plus négatif.

Si on exprime l’accélération en fonction de θ , on trouve ce résultat qui peut sembler peu intuitif au premier abord :

a =−gsinθ

Le mouvement du pendule ne dépend pas de sa masse !
Idéalement, nous souhaiterions résoudre cette équation en l’exprimant en fonction de θ seulement. Cela est possible

en reliant θ à la longueur effective de l’arc s parcourue par le pendule :

s = θL

Pour bien comprendre cette formule, souvenez-vous de la formule bien connue du cercle l = 2πr (où l est la circon-
férence, et r le rayon) ! Elle relie la valeur de θ à la distance de l’arc entre la position actuelle de la boule et l’origine (à
θ = 0). On peut donc exprimer la vitesse du pendule en dérivant s par rapport au temps t :

v =
ds
dt

= L
dθ
dt

On peut aussi exprimer l’accélération a en dérivant l’arc s deux fois par rapport à t :

Cours de Python / Université Paris Cité / UFR Sciences du Vivant 359

Chapitre 27. Mini-projets 27.2. Accompagnement pas à pas

Figure 27.3 – Caractérisation géométrique d’un pendule simple.

a =
d2s
dt2 = L

d2θ
dt2

A nouveau, cette dernière formule exprime l’accélération de la boule lorsque le mouvement de celle-ci est restreint sur
le cercle pointillé. Si la tige n’était pas rigide, l’expression serait différente.

Si on remplace a dans la formule ci-dessus, on trouve :

L
d2θ
dt2 =−gsinθ

Soit en remaniant, on trouve l’équation différentielle en θ décrivant le mouvement du pendule :

d2θ
dt2 +

g
L

sinθ = 0

Dans la section suivante, nous allons voir comment résoudre numériquement cette équation différentielle.

27.2.4.2 Résolution de l’équation différentielle du pendule

Il existe de nombreuses méthodes numériques de résolution d’équations différentielles 17. L’objet ici n’est pas de
faire un rappel sur toutes ces méthodes ni de les comparer, mais juste d’expliquer une de ces méthodes fonctionnant
efficacement pour simuler notre pendule.

Nous allons utiliser la méthode semi-implicite d’Euler 18. Celle-ci est relativement intuitive à comprendre.

17. https://en.wikipedia.org/wiki/Numerical_methods_for_ordinary_differential_equations
18. https://en.wikipedia.org/wiki/Semi-implicit_Euler_method

360 Cours de Python / Université Paris Cité / UFR Sciences du Vivant

https://en.wikipedia.org/wiki/Numerical_methods_for_ordinary_differential_equations
https://en.wikipedia.org/wiki/Semi-implicit_Euler_method

27.2. Accompagnement pas à pas Chapitre 27. Mini-projets

Commençons d’abord par calculer l’accélération angulaire aθ au temps t en utilisant l’équation différentielle précé-
demment établie :

aθ (t) =
d2θ
dt2 (t) =−g

L
sinθ(t)

L’astuce sera de calculer ensuite la vitesse angulaire au pas suivant t +δ t grâce à la relation :

vθ (t +δ t) =
dθ
dt

(t +δ t)≈ vθ (t)+aθ (t)×δ t

Cette équation est ni plus ni moins qu’un remaniement de la définition de l’accélération, à savoir, la variation de
vitesse par rapport à un temps. Cette vitesse vθ (t +δ t) permettra au final de calculer θ au temps t +δ t (c’est-à-dire ce
que l’on cherche !) :

θ(t +δ t)≈ θ(t)+ vθ (t +δ t)×δ t

Dans une réalisation algorithmique, il suffira d’initialiser les variables de notre système puis de faire une boucle sur
un nombre de pas de simulation. A chaque pas, on calculera aθ (t), puis vθ (t +δ t) et enfin θ(t +δ t) à l’aide des formules
ci-dessus.

L’initialisation des variables pourra ressembler à cela :
L <- 1 # longueur tige en m
g <- 9.8 # accélération gravitationnelle en m/s^2
t <- 0 # temps initial en s
dt <- 0.05 # pas de temps en s
conditions initiales
theta <- pi / 4 # angle initial en rad
dtheta <- 0 # vitesse angulaire initiale en rad/s

afficher_position_pendule(t, theta) # afficher position de départ

L’initialisation des valeurs de theta et dtheta est très importante, car elle détermine le comportement du pendule.
Nous avons choisi ici d’avoir une vitesse angulaire nulle et un angle de départ du pendule θ = π/4 rad = 45 deg. Le pas
dt est également très important, c’est lui qui déterminera l’erreur faite sur l’intégration de l’équation différentielle. Plus
ce pas est petit, plus on est précis, mais plus le calcul sera long. Ici, on choisit un pas dt de 0.05 s qui constitue un bon
compromis.

À ce stade, vous avez tous les éléments pour tester votre pendule. Essayez de réaliser un petit programme python
pendule_basic.py qui utilise les conditions initiales ci-dessus et simule le mouvement du pendule. À la fin de cette
rubrique, nous proposons une solution en langage algorithmique. Essayez dans un premier temps de le faire vous-même.
À chaque pas, le programme écrira le temps t et l’angle θ dans un fichier pendule_basic.dat. Dans les équations,
θ doit être exprimé en radian, mais nous vous conseillons de convertir cet angle en degré dans le fichier (plus facile à
comprendre pour un humain !). Une fois ce fichier généré, vous pourrez observer le graphe correspondant avec matplotlib
en utilisant le code suivant :

1 import matplotlib.pyplot as plt
2 import numpy as np
3
4 # La fonction np.genfromtxt() renvoie un array à 2 dim.
5 array_data = np.genfromtxt("pendule_basic.dat")
6 # col 0: t, col 1: theta
7 t = array_data[:,0]
8 theta = array_data[:,1]
9

10 # Figure.
11 fig, ax = plt.subplots(figsize=(8, 8))
12 mini = min(theta) * 1.2
13 maxi = max(theta) * 1.2
14 ax.set_xlim(0, max(t))
15 ax.set_ylim(mini, maxi)
16 ax.set_xlabel("t (s)")
17 ax.set_ylabel("theta (deg)")
18 ax.plot(t, theta)
19 fig.savefig("pendule_basic.png")

Cours de Python / Université Paris Cité / UFR Sciences du Vivant 361

Chapitre 27. Mini-projets 27.2. Accompagnement pas à pas

Si vous observez une sinusoïde, bravo, vous venez de réaliser votre première simulation de pendule ! Vous avez
maintenant le « squelette » de votre « moteur » de simulation. N’hésitez pas à vous amuser avec d’autres conditions
initiales. Ensuite vous pourrez passer à la rubrique suivante.

Si vous avez bloqué dans l’écriture de la boucle, voici à quoi elle pourrait ressembler en langage algorithmique :
tant qu'on n'arrête pas le pendule:

acc angulaire au tps t (en rad/s^2)
d2theta <- -(g/L) * sin(theta)
v angulaire mise à jour de t -> t + dt
dtheta <- dtheta + d2theta * dt
theta mis à jour de t -> t + dt
theta <- theta + dtheta * dt
t mis à jour
t <- t + dt
mettre à jour l'affichage
afficher_position_pendule(t, theta)

27.2.4.3 Constructeur de l’application en tkinter

Nous allons maintenant construire l’application tkinter en vous guidant pas à pas. Il est bien sûr conseillé de relire le
chapitre 25 sur Fenêtres graphiques et Tkinter (en ligne) avant de vous lancer dans cette partie.

Comme expliqué largement dans les chapitres 23 Avoir la classe avec les objets et 24 Avoir plus la classe avec les
objets (en ligne), nous allons construire l’application avec une classe. Le programme principal sera donc très allégé et se
contentera d’instancier l’application, puis de lancer le gestionnaire d’événements :

1 if __name__ == "__main__":
2 """Programme principal (instancie la classe principale, donne un
3 titre et lance le gestionnaire d'événements)
4 """
5 app_pendule = AppliPendule()
6 app_pendule.title("Pendule")
7 app_pendule.mainloop()

Ensuite, nous commençons par écrire le constructeur de la classe. Dans ce constructeur, nous aurons une section
initialisant toutes les variables utilisées pour simuler le pendule (voir rubrique précédente), puis, une autre partie générant
les widgets et tous les éléments graphiques. Nous vous conseillons vivement de bien les séparer, et surtout de mettre
des commentaires pour pouvoir s’y retrouver. Voici un « squelette » pour vous aider :

1 class AppliPendule(tk.Tk):
2 def __init__(self):
3 # Instanciation de la classe Tk.
4 tk.Tk.__init__(self)
5 # Ici vous pouvez définir toutes les variables
6 # concernant la physique du pendule.
7 self.theta = np.pi / 4 # valeur intiale theta
8 self.dtheta = 0 # vitesse angulaire initiale
9 [...]

10 self.g = 9.8 # cst gravitationnelle en m/s^2
11 [...]
12 # Oci vous pouvez construire l'application graphique.
13 self.canv = tk.Canvas(self, bg='gray', height=400, width=400)
14 # Création d'un boutton demarrer, arreter, quitter.
15 # Pensez à placer les widgets avec .pack()
16 [...]

La figure 27.4 vous montre un aperçu de ce que l’on voudrait obtenir.
Pour le moment, vous pouvez oublier la réglette fixant la valeur initiale de θ , les labels affichant la valeur de θ et vθ

ainsi que les points violets « laissés en route » par le pendule. De même, nous dessinerons le pivot, la boule et la tige
plus tard. À ce stade, il est fondamental de tout de suite lancer votre application pour vérifier que les widgets sont bien
placés. N’oubliez pas, un code complexe se teste au fur et à mesure lors de son développement.

Conseil

362 Cours de Python / Université Paris Cité / UFR Sciences du Vivant

27.2. Accompagnement pas à pas Chapitre 27. Mini-projets

Figure 27.4 – Application pendule.

Pour éviter un message d’erreur si toutes les méthodes n’existe pas encore, vous pouvez indiquer command=self.quit
pour chaque bouton (vous le changerez après).

27.2.4.4 Créations des dessins dans le canvas

Le pivot et la boule pourront être créés avec la méthode .create_oval(), la tige le sera avec la méthode .
create_line(). Pensez à créer des variables pour la tige et la boule lors de l’instanciation car celles-ci bougeront par
la suite.

Comment placer ces éléments dans le canvas ? Vous avez remarqué que lors de la création de ce dernier, nous avons
fixé une dimension de 400 × 400 pixels. Le pivot se trouve au centre, c’est-à-dire au point (200,200). Pour la tige et
la boule, il sera nécessaire de connaître la position de la boule dans le repère du canvas. Or, pour l’instant, nous
définissons la position de la boule avec l’angle θ . Il va donc nous falloir convertir θ en coordonnées cartésiennes (x,y)
dans le repère mathématique défini dans la figure 27.3, puis dans le repère du canvas (xc,yc) (cf. rubrique suivante).

Conversion de θ en coordonnées (x,y) Cette étape est relativement simple si on considère le pivot comme le centre du
repère. Avec les fonctions trigonométriques sin() et cos(), vous pourrez calculer la position de la boule (voir l’exercice
sur la spirale dans le chapitre 7 Fichiers). Faites attention toutefois aux deux aspects suivants :

• la trajectoire de la boule suit les coordonnées d’un cercle de rayon L (si on choisit L = 1 m, ce sera plus simple) ;
• nous sommes décalés par rapport au cercle trigonométrique classique ; si on considère L = 1 m :

— quand θ = 0, on a le point (0,−1) (pendule en bas) ;
— quand θ =+π/2 = 90 deg, on a (1,0) (pendule à droite) ;
— quand θ =−π/2 =−90 deg, on a (−1,0) (pendule à gauche) ;
— quand θ =±π =±180 deg, on a (0,1) (pendule en haut).

La figure 27.3 montre graphiquement les valeurs de θ .
Si vous n’avez pas trouvé, voici la solution :

1 self.x = np.sin(self.theta) * self.L
2 self.y = -np.cos(self.theta) * self.L

Cours de Python / Université Paris Cité / UFR Sciences du Vivant 363

Chapitre 27. Mini-projets 27.2. Accompagnement pas à pas

Conversion des coordonnées (x,y) en (xc,yc) Il nous faut maintenant convertir les coordonnées naturelles mathéma-
tiques du pendule (x,y) en coordonnées dans le canvas (xc,yc). Plusieurs choses sont importantes pour cela :

• le centre du repère mathématique (0,0) a la coordonnée (200,200) dans le canvas ;
• il faut choisir un facteur de conversion : par exemple, si on choisit L = 1 m, on peut proposer le facteur 1 m →

100 pixels ;
• l’axe des ordonnées dans le canvas est inversé par rapport au repère mathématique.

Conseil
Dans votre classe, cela peut être une bonne idée d’écrire une méthode qui réalise cette conversion. Celle-ci pourrait

s’appeler par exemple map_realcoor2canvas().

Si vous n’avez pas trouvé, voici la solution :
1 self.conv_factor = 100
2 self.x_c = self.x*self.conv_factor + 200
3 self.y_c = -self.y*self.conv_factor + 200

27.2.4.5 Gestion des boutons

Il reste maintenant à gérer les boutons permettant de démarrer / stopper le pendule. Pour cela il faudra créer trois
méthodes dans notre classe :

• La méthode .start() : met en mouvement le pendule ; si le pendule n’a jamais été en mouvement, il part de son
point de départ ; si le pendule avait déjà été en mouvement, celui-ci repart d’où on l’avait arrêté (avec la vitesse
qu’il avait à ce moment-là).

• La méthode .stop() : arrête le mouvement du pendule.
• La méthode .move() : gère le mouvement du pendule (génère les coordonnées du pendule au pas suivant).
Le bouton « Démarrer » appellera la méthode .start(), le bouton « Arrêter » appellera la méthode .stop() et

le bouton « Quitter » quittera l’application. Pour lier une action au clic d’un bouton, on se souvient qu’il faut donner à
l’argument par mot-clé command une callback (c’est-à-dire le nom d’une fonction ou méthode sans les parenthèses) :

• btn1 = tk.Button(self, text="Quitter", command=self.quit)
• btn2 = tk.Button(self, text="Demarrer", command=self.start)
• btn3 = tk.Button(self, text="Arrêter", command=self.stop)
Ici, self.start() et self.stop() sont des méthodes que l’on doit créer, self.quit() pré-existe lorsque la fenêtre

tkinter est créée.
Nous vous proposons ici une stratégie inspirée du livre de Gérard Swinnen 19. Créons d’abord un attribut d’instance

self.is_moving dans le constructeur. Celui-ci va nous servir de « drapeau » pour définir le mouvement du pendule.
Il contiendra un entier positif ou nul. Lorsque ce drapeau sera égal à 0, le pendule sera immobile. Lorsqu’il sera > 0, le
pendule sera en mouvement. Ainsi :

• la méthode .start() ajoutera 1 à self.is_moving. Si self.is_moving est égal à 1 alors la méthode self.
move() sera appelée ;

• la méthode .stop() mettra la valeur de self.is_moving à 0.
Puisque .start() ajoute 1 à self.is_moving, le premier clic sur le bouton « Démarrer » appellera la méthode

.move() car self.is_moving vaudra 1. Si l’utilisateur appuie une deuxième fois sur le bouton « Démarrer », self

.is_moving vaudra 2, mais n’appellera pas .move() une deuxième fois ; cela sera vrai pour tout clic ultérieur de
l’utilisateur sur ce bouton. Cette astuce évite des appels concurrents de la méthode .move().

27.2.4.6 Le coeur du programme : la méthode .move()

Il nous reste maintenant à générer la méthode .move() qui meut le pendule. Pour cela vous pouvez vous inspirer de
la rubrique Un canvas animé dans une classe du chapitre 25 Fenêtres graphiques et Tkinter (en ligne).

Cette méthode va réaliser un pas de simulation de t à t +δ t. Il faudra ainsi réaliser dans l’ordre :

19. https://inforef.be/swi/python.htm

364 Cours de Python / Université Paris Cité / UFR Sciences du Vivant

https://inforef.be/swi/python.htm

27.3. Scripts de correction Chapitre 27. Mini-projets

• Calculer la nouvelle valeur de θ (self.theta) au pas t + δ t comme nous l’avons fait précédemment avec la
méthode semi-implicite d’Euler.

• Convertir la nouvelle valeur de θ (self.theta) en coordonnées cartésiennes dans le repère du pendule (self.x
et self.y).

• Convertir ces coordonnées cartésiennes dans le repère du Canvas (self.x_c et self.y_c).
• Mettre à jour le dessin de la baballe et de la tige avec la méthode self.canv.coords().
• Incrémenter le pas de temps.
• Si le drapeau self.is_moving est supérieur à 0, la méthode self.move() est rappelée après 20 millisecondes

(Conseil : la méthode .after() est votre amie).

27.2.4.7 Ressources complémentaires

Si vous êtes arrivé jusqu’ici, bravo, vous pouvez maintenant admirer votre superbe pendule en mouvement :-) !
Voici quelques indications si vous voulez aller un peu plus loin.
Si vous souhaitez mettre une réglette pour modifier la position de départ du pendule, vous pouvez utiliser la classe

tk.Scale(). Si vous souhaitez afficher la valeur de θ qui se met à jour au fur et à mesure, il faudra instancier un objet
avec la classe tk.StringVar(). Cet objet devra être passé à l’argument textvariable lors de la création de ce Label
avec tk.Label(). Ensuite, vous pourrez mettre à jour le texte du Label avec la méthode self.instance_StringVar
.set().

Pour le fun, si vous souhaitez laisser une « trace » du passage du pendule avec des points colorés, vous pouvez utiliser
tout simplement la méthode self.canv.create_line() et créer une ligne d’un pixel de hauteur et de largeur pour
dessiner un point. Pour améliorer l’esthétique, vous pouvez faire en sorte que ces points changent de couleur aléatoirement
à chaque arrêt / redémarrage du pendule.

27.3 Scripts de correction
Voici les scripts corrigés pour les différents mini-projets.

Remarque
• Prenez le temps de chercher par vous-même avant de télécharger les scripts de correction.
• Nous proposons une correction. D’autres solutions sont possibles.

• Mots anglais dans le protéome humain : words_in_proteome.py 20

• Genbank2fasta (sans expression régulière) : genbank2fasta_sans_regex.py 21

• Genbank2fasta (avec expressions régulières) : genbank2fasta_avec_regex.py 22

• Simulation d’un pendule version simple : tk_pendule.py 23

• Simulation d’un pendule++ (avec réglette et affichage se mettant à jour) : tk_pendule.py 24

20. https://python.sdv.u-paris.fr/data-files/words_in_proteome.py
21. https://python.sdv.u-paris.fr/data-files/genbank2fasta_sans_regex.py
22. https://python.sdv.u-paris.fr/data-files/genbank2fasta_avec_regex.py
23. https://python.sdv.u-paris.fr/data-files/tk_pendule_simple.py
24. https://python.sdv.u-paris.fr/data-files/tk_pendule.py

Cours de Python / Université Paris Cité / UFR Sciences du Vivant 365

https://python.sdv.u-paris.fr/data-files/words_in_proteome.py
https://python.sdv.u-paris.fr/data-files/genbank2fasta_sans_regex.py
https://python.sdv.u-paris.fr/data-files/genbank2fasta_avec_regex.py
https://python.sdv.u-paris.fr/data-files/tk_pendule_simple.py
https://python.sdv.u-paris.fr/data-files/tk_pendule.py

ANNEXE A

Quelques formats de données en biologie

A.1 FASTA
Le format FASTA est utilisé pour stocker une ou plusieurs séquences, d’ADN, d’ARN ou de protéines. Ces séquences

sont classiquement représentées sous la forme :
>en-tête
séquence avec un nombre maximum de caractères par ligne
séquence avec un nombre maximum de caractères par ligne
séquence avec un nombre maximum de caractères par ligne
séquence avec un nombre maximum de caractères par ligne
séquence avec un nombre max

La première ligne débute par le caractère > et contient une description de la séquence. On appelle souvent cette ligne
« ligne de description » ou « ligne de commentaire ».

Les lignes suivantes contiennent la séquence à proprement dite, mais avec un nombre maximum fixe de caractères
par ligne. Ce nombre maximum est généralement fixé à 60, 70 ou 80 caractères. Une séquence de plusieurs centaines de
bases ou de résidus est donc répartie sur plusieurs lignes.

Un fichier est dit multifasta lorsqu’il contient plusieurs séquences au format FASTA, les unes à la suite des autres.
Les fichiers contenant une ou plusieurs séquences au format FASTA portent la plupart du temps l’extension .fasta

mais on trouve également .seq, .fas, .fna ou .faa.

A.1.1 Exemples
La séquence protéique au format FASTA de l’insuline humaine 1, extraite de la base de données UniProt, est :

>sp|P01308|INS_HUMAN Insulin OS=Homo sapiens OX=9606 GN=INS PE=1 SV=1
MALWMRLLPLLALLALWGPDPAAAFVNQHLCGSHLVEALYLVCGERGFFYTPKTRREAED
LQVGQVELGGGPGAGSLQPLALEGSLQKRGIVEQCCTSICSLYQLENYCN

La première ligne contient la description de la séquence (Insulina), le type de base de données (ici, sp qui signifie Swiss-
Prot), son identifiant (P01308) et son nom (INS_HUMAN) dans cette base de données, ainsi que d’autres informations
(OS=Homo sapiens OX=9606 GN=INS PE=1 SV=1B).

Les lignes suivantes contiennent la séquence sur des lignes ne dépassant pas, ici, 60 caractères. La séquence de
l’insuline humaine est composée de 110 acides aminés, soit une ligne de 60 caractères et une seconde de 50 caractères.

1. https://www.uniprot.org/uniprot/P01308

366

https://www.uniprot.org/uniprot/P01308

A.1. FASTA Annexe A. Quelques formats de données en biologie

Définition
UniProt 2 est une base de données de séquences de protéines. Ces séquences proviennent elles-mêmes de deux autres

bases de données : Swiss-Prot (où les séquences sont annotées manuellement) et TrEMBL (où les séquences sont annotées
automatiquement).

Voici maintenant la séquence nucléique (ARN), au format FASTA, de l’insuline humaine 3, extraite de la base de
données GenBank 4 :
>BT006808.1 Homo sapiens insulin mRNA, complete cds
ATGGCCCTGTGGATGCGCCTCCTGCCCCTGCTGGCGCTGCTGGCCCTCTGGGGACCTGACCCAGCCGCAG
CCTTTGTGAACCAACACCTGTGCGGCTCACACCTGGTGGAAGCTCTCTACCTAGTGTGCGGGGAACGAGG
CTTCTTCTACACACCCAAGACCCGCCGGGAGGCAGAGGACCTGCAGGTGGGGCAGGTGGAGCTGGGCGGG
GGCCCTGGTGCAGGCAGCCTGCAGCCCTTGGCCCTGGAGGGGTCCCTGCAGAAGCGTGGCATTGTGGAAC
AATGCTGTACCAGCATCTGCTCCCTCTACCAGCTGGAGAACTACTGCAACTAG

On retrouve sur la première ligne la description de la séquence (Homo sapiens insulin mRNA), ainsi que son identifiant
(BT006808.1) dans la base de données GenBank.

Les lignes suivantes contiennent les 333 bases de la séquence, réparties sur cinq lignes de 70 caractères maximum. Il
est curieux de trouver la base T (thymine) dans une séquence d’ARN, qui ne devrait contenir normalement que les bases
A, U, G et C. Ici, la représentation d’une séquence d’ARN avec les bases de l’ADN est une convention.

Pour terminer, voici trois séquences protéiques, au format FASTA, qui correspondent à l’insuline humaine (Homo
sapiens), féline (Felis catus) et bovine (Bos taurus) :
>sp|P01308|INS_HUMAN Insulin OS=Homo sapiens OX=9606 GN=INS PE=1 SV=1
MALWMRLLPLLALLALWGPDPAAAFVNQHLCGSHLVEALYLVCGERGFFYTPKTRREAED
LQVGQVELGGGPGAGSLQPLALEGSLQKRGIVEQCCTSICSLYQLENYCN
>sp|P06306|INS_FELCA Insulin OS=Felis catus OX=9685 GN=INS PE=1 SV=2
MAPWTRLLPLLALLSLWIPAPTRAFVNQHLCGSHLVEALYLVCGERGFFYTPKARREAED
LQGKDAELGEAPGAGGLQPSALEAPLQKRGIVEQCCASVCSLYQLEHYCN
>sp|P01317|INS_BOVIN Insulin OS=Bos taurus OX=9913 GN=INS PE=1 SV=2
MALWTRLRPLLALLALWPPPPARAFVNQHLCGSHLVEALYLVCGERGFFYTPKARREVEG
PQVGALELAGGPGAGGLEGPPQKRGIVEQCCASVCSLYQLENYCN

Ces séquences proviennent de la base de données UniProt 5. Chaque séquence est délimitée par la ligne d’en-tête qui
débute par >.

A.1.2 Manipulation avec Python
À partir de l’exemple précédent des 3 séquences d’insuline, voici un exemple de code qui lit un fichier FASTA avec

Python :
1 prot_dict = {}
2 with open("insulin.fasta", "r") as fasta_file:
3 prot_id = ""
4 for line in fasta_file:
5 if line.startswith(">"):
6 prot_id = line[1:].split()[0]
7 prot_dict[prot_id] = ""
8 else:
9 prot_dict[prot_id] += line.strip()

10 for id in prot_dict:
11 print(id)
12 print(prot_dict[id][:30])

Pour chaque séquence lue dans le fichier FASTA, on affiche son identifiant et son nom, puis les 30 premiers résidus
de sa séquence :

2. https://www.uniprot.org/
3. https://www.ncbi.nlm.nih.gov/nuccore/BT006808.1?report=fasta
4. https://www.ncbi.nlm.nih.gov/nuccore/AY899304.1?report=genbank
5. https://www.uniprot.org/

Cours de Python / Université Paris Cité / UFR Sciences du Vivant 367

https://www.uniprot.org/
https://www.ncbi.nlm.nih.gov/nuccore/BT006808.1?report=fasta
https://www.ncbi.nlm.nih.gov/nuccore/AY899304.1?report=genbank
https://www.uniprot.org/

Annexe A. Quelques formats de données en biologie A.2. GenBank

sp|P06306|INS_FELCA
MAPWTRLLPLLALLSLWIPAPTRAFVNQHL
sp|P01317|INS_BOVIN
MALWTRLRPLLALLALWPPPPARAFVNQHL
sp|P01308|INS_HUMAN
MALWMRLLPLLALLALWGPDPAAAFVNQHL

Notez que les protéines sont stockées dans un dictionnaire (prot_dict) où les clefs sont les identifiants et les valeurs
les séquences.

On peut faire la même chose avec le module Biopython :
1 from Bio import SeqIO
2 with open("insulin.fasta", "r") as fasta_file:
3 for record in SeqIO.parse(fasta_file, "fasta"):
4 print(record.id)
5 print(str(record.seq)[:30])

Cela produit le même résultat. L’utilisation de Biopython rend le code plus compacte car on utilise ici la fonction
SeqIO.parse() qui s’occupe de lire le fichier FASTA.

Remarque
L’attribut .id renvoie l’identifiant d’une séquence, c’est-à-dire la première partie de l’entête, sans le caractère >. Pour

obtenir l’entête complet (toujours sans le caractère >), il faut utiliser l’attribut .description.

A.2 GenBank
GenBank est une banque de séquences nucléiques. Le format de fichier associé contient l’information nécessaire pour

décrire un gène ou une portion d’un génome. Les fichiers GenBank portent le plus souvent l’extension .gbk.
Le format GenBank est décrit de manière très complète sur le site du NCBI 6. En voici néanmoins les principaux

éléments, avec l’exemple du gène qui code pour la trypsine 7 chez l’Homme.

A.2.1 L’en-tête

LOCUS HUMTRPSGNA 800 bp mRNA linear PRI 14-JAN-1995
DEFINITION Human pancreatic trypsin 1 (TRY1) mRNA, complete cds.
ACCESSION M22612
VERSION M22612.1
KEYWORDS trypsinogen.
SOURCE Homo sapiens (human)
ORGANISM Homo sapiens

Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi;
Mammalia; Eutheria; Euarchontoglires; Primates; Haplorrhini;
Catarrhini; Hominidae; Homo.

[...]

• Ligne 1 (LOCUS) : le nom du locus (HUMTRPSGNA), la taille du gène (800 paires de bases), le type de molécule
(ARN messager).

• Ligne 3 (ACCESSION) : l’identifiant de la séquence (M22612).
• Ligne 4 (VERSION) : la version de la séquence (M22612.1). Le nombre qui est séparé de l’identifiant de la séquence

par un point est incrémenté pour chaque nouvelle version de la fiche GenBank. Ici, .1 indique que nous en sommes
à la première version.

• Ligne 6 (SOURCE) : la provenance de la séquence (souvent l’organisme d’origine).
• Ligne 7 (ORGANISME) : le nom scientifique de l’organisme, suivi de sa taxonomie (lignes 8 à 10).

6. https://www.ncbi.nlm.nih.gov/Sitemap/samplerecord.html
7. https://www.ncbi.nlm.nih.gov/nuccore/M22612.1

368 Cours de Python / Université Paris Cité / UFR Sciences du Vivant

https://www.ncbi.nlm.nih.gov/Sitemap/samplerecord.html
https://www.ncbi.nlm.nih.gov/nuccore/M22612.1

A.2. GenBank Annexe A. Quelques formats de données en biologie

A.2.2 Les features

[...]
FEATURES Location/Qualifiers

source 1..800
/organism="Homo sapiens"
/mol_type="mRNA"
/db_xref="taxon:9606"
/map="7q32-qter"
/tissue_type="pancreas"

gene 1..800
/gene="TRY1"

CDS 7..750
/gene="TRY1"
/codon_start=1
/product="trypsinogen"
/protein_id="AAA61231.1"
/db_xref="GDB:G00-119-620"
/translation="MNPLLILTFVAAALAAPFDDDDKIVGGYNCEENSVPYQVSLNSG
YHFCGGSLINEQWVVSAGHCYKSRIQVRLGEHNIEVLEGNEQFINAAKIIRHPQYDRK
TLNNDIMLIKLSSRAVINARVSTISLPTAPPATGTKCLISGWGNTASSGADYPDELQC
LDAPVLSQAKCEASYPGKITSNMFCVGFLEGGKDSCQGDSGGPVVCNGQLQGVVSWGD
GCAQKNKPGVYTKVYNYVKWIKNTIAANS"

sig_peptide 7..51
/gene="TRY1"
/note="G00-119-620"

[...]

• Ligne 9 (gene 1..800) : la délimitation du gène. Ici, de la base 1 à la base 800. Par ailleurs, la notation <x..y
indique que la séquence est partielle sur l’extrémité 5’. Réciproquement, x..y> indique que la séquence est partielle
sur l’extrémité 3’. Enfin, pour les séquences d’ADN, la notation complement(x..y) indique que le gène se trouve
de la base x à la base y, mais sur le brin complémentaire.

• Ligne 10 (/gene="TRY1") : le nom du gène.
• Ligne 11 (CDS 7..750) : la délimitation de la séquence codante.
• Ligne 14 (/product="trypsinogen") : le nom de la protéine produite.
• Lignes 17 à 20 (/translation="MNPLLIL...) : la séquence protéique issue de la traduction de la séquence

codante.
• Ligne 22 (sig_peptide 7..51) : la délimitation du peptide signal.

A.2.3 La séquence

[...]
ORIGIN

1 accaccatga atccactcct gatccttacc tttgtggcag ctgctcttgc tgcccccttt
61 gatgatgatg acaagatcgt tgggggctac aactgtgagg agaattctgt cccctaccag

121 gtgtccctga attctggcta ccacttctgt ggtggctccc tcatcaacga acagtgggtg
181 gtatcagcag gccactgcta caagtcccgc atccaggtga gactgggaga gcacaacatc
241 gaagtcctgg aggggaatga gcagttcatc aatgcagcca agatcatccg ccacccccaa
301 tacgacagga agactctgaa caatgacatc atgttaatca agctctcctc acgtgcagta
361 atcaacgccc gcgtgtccac catctctctg cccaccgccc ctccagccac tggcacgaag
421 tgcctcatct ctggctgggg caacactgcg agctctggcg ccgactaccc agacgagctg
481 cagtgcctgg atgctcctgt gctgagccag gctaagtgtg aagcctccta ccctggaaag
541 attaccagca acatgttctg tgtgggcttc cttgagggag gcaaggattc atgtcagggt
601 gattctggtg gccctgtggt ctgcaatgga cagctccaag gagttgtctc ctggggtgat
661 ggctgtgccc agaagaacaa gcctggagtc tacaccaagg tctacaacta cgtgaaatgg
721 attaagaaca ccatagctgc caatagctaa agcccccagt atctcttcag tctctatacc
781 aataaagtga ccctgttctc

//

La séquence est contenue entre les balises ORIGIN (ligne 2) et // (ligne 17).
Chaque ligne est composée d’une série d’espaces, puis du numéro du premier nucléotide de la ligne, puis d’au plus

6 blocs de 10 nucléotides. Chaque bloc est précédé d’un espace. Par exemple, ligne 10, le premier nucléotide de la ligne
(t) est le numéro 421 dans la séquence.

Cours de Python / Université Paris Cité / UFR Sciences du Vivant 369

Annexe A. Quelques formats de données en biologie A.3. PDB

A.2.4 Manipulation avec Python

À partir de l’exemple précédent, voici comment lire un fichier GenBank avec Python et le module Biopython :

1 from Bio import SeqIO
2 with open("M22612.gbk", "r") as gbk_file:
3 record = SeqIO.read(gbk_file, "genbank")
4 print(record.id)
5 print(record.description)
6 print(record.seq[:60])

Pour la séquence lue dans le fichier GenBank, on affiche son identifiant, sa description et les 60 premiers résidus :

M22612.1
Human pancreatic trypsin 1 (TRY1) mRNA, complete cds.
ACCACCATGAATCCACTCCTGATCCTTACCTTTGTGGCAGCTGCTCTTGCTGCCCCCTTT

Il est également possible de lire un fichier GenBank sans le module Biopython. Une activité dédiée est proposée dans
le chapitre 27 Mini-projets (en ligne).

A.3 PDB

La Protein Data Bank 8 (PDB) est une banque de données qui contient les structures de biomacromolécules (protéines,
ADN, ARN, virus…). Historiquement, le format de fichier qui y est associé est le PDB, dont une documentation détaillée
est disponible sur le site éponyme 9. Les extensions de fichier pour ce format de données sont .ent et surtout .pdb.

Un fichier PDB est constitué de deux parties principales : l’en-tête et les coordonnées.

• L’en-tête est lisible et utilisable par un être humain (comme par une machine).
• À l’inverse, les coordonnées sont surtout utilisables par un programme pour calculer certaines propriétés de la struc-

ture ou simplement la représenter sur l’écran d’un ordinateur. Bien sûr, un utilisateur expérimenté peut parfaitement
jeter un œil à cette seconde partie.

Examinons ces deux parties avec la trypsine bovine 10.

A.3.1 En-tête

Pour la trypsine bovine, l’en-tête compte 510 lignes. En voici quelques unes :

8. https://www.rcsb.org/
9. http://www.wwpdb.org/documentation/file-format-content/format33/v3.3.html

10. https://www.rcsb.org/structure/2PTN

370 Cours de Python / Université Paris Cité / UFR Sciences du Vivant

https://www.rcsb.org/
http://www.wwpdb.org/documentation/file-format-content/format33/v3.3.html
https://www.rcsb.org/structure/2PTN

A.3. PDB Annexe A. Quelques formats de données en biologie

HEADER HYDROLASE (SERINE PROTEINASE) 26-OCT-81 2PTN
TITLE ON THE DISORDERED ACTIVATION DOMAIN IN TRYPSINOGEN.
TITLE 2 CHEMICAL LABELLING AND LOW-TEMPERATURE CRYSTALLOGRAPHY
COMPND MOL_ID: 1;
COMPND 2 MOLECULE: TRYPSIN;
COMPND 3 CHAIN: A;
[...]
SOURCE 2 ORGANISM_SCIENTIFIC: BOS TAURUS;
[...]
EXPDTA X-RAY DIFFRACTION
[...]
REMARK 2 RESOLUTION. 1.55 ANGSTROMS.
[...]
DBREF 2PTN A 16 245 UNP P00760 TRY1_BOVIN 21 243
SEQRES 1 A 223 ILE VAL GLY GLY TYR THR CYS GLY ALA ASN THR VAL PRO
SEQRES 2 A 223 TYR GLN VAL SER LEU ASN SER GLY TYR HIS PHE CYS GLY
SEQRES 3 A 223 GLY SER LEU ILE ASN SER GLN TRP VAL VAL SER ALA ALA
SEQRES 4 A 223 HIS CYS TYR LYS SER GLY ILE GLN VAL ARG LEU GLY GLU
[...]
HELIX 1 H1 SER A 164 ILE A 176 1SNGL ALPHA TURN,REST IRREG. 13
HELIX 2 H2 LYS A 230 VAL A 235 5CONTIGUOUS WITH H3 6
HELIX 3 H3 SER A 236 ASN A 245 1CONTIGUOUS WITH H2 10
SHEET 1 A 7 TYR A 20 THR A 21 0
SHEET 2 A 7 LYS A 156 PRO A 161 -1 N CYS A 157 O TYR A 20
[...]
SSBOND 1 CYS A 22 CYS A 157 1555 1555 2.04
SSBOND 2 CYS A 42 CYS A 58 1555 1555 2.02
[...]

• Ligne 1. Cette ligne HEADER contient :
— le nom de la protéine : HYDROLASE (SERINE PROTEINASE),
— la date de dépôt de cette structure dans la banque de données : 26 octobre 1981
— et l’identifiant de la structure dans la PDB, on parle souvent de « code PDB » : 2PTN.

• Ligne 2. TITLE correspond au titre de l’article scientifique dans lequel a été publié cette structure.
• Lignes 4-6. COMPND indique que la trypsine est composée d’une seule chaîne peptidique, appelée ici A.
• Ligne 8. SOURCE indique le nom scientifique de l’organisme dont provient cette protéine (ici, le bœuf).
• Ligne 10. EXPDTA précise la technique expérimentale employée pour déterminer cette structure. Ici, la cristallogra-

phie aux rayons X. Mais on peut également trouver SOLUTION NMR pour de la résonance magnétique nucléaire
en solution, ELECTRON MICROSCOPY pour de la microscopie électronique.

• Ligne 12. REMARK 2 précise, dans le cas d’une détermination par cristallographie aux rayons X, la résolution
obtenue, ici 1,55 Angströms.

• Ligne 14. DBREF indique les liens éventuels vers d’autres banques de données. Ici, l’identifiant correspondant à
cette protéine dans UniProt (UNP) est P00760 11.

• Ligne 15-18. SEQRES donnent à la séquence de la protéine. Les résidus sont représentés par leur code à trois
lettres.

• Lignes 20-22 et 23-24. HELIX et SHEET correspondent aux structures secondaires hélices α et brin β de cette
protéine. Ici, H1 SER A 164 ILE A 176 indique qu’il y a une première hélice α (H1), comprise entre les résidus
Ser164 et Ile176 de la chaîne A.

• Lignes 26-27. SSBOND indique les ponts disulfures. Ici, entre les résidus Cys22 et Cys157 et entre les résidus Cys42
et Cys58.

A.3.2 Coordonnées

Avec la même protéine, la partie coordonnées représente plus de 1 700 lignes. En voici quelques unes correspondantes
au résidu leucine 99 :

11. https://www.uniprot.org/uniprot/P00760

Cours de Python / Université Paris Cité / UFR Sciences du Vivant 371

https://www.uniprot.org/uniprot/P00760

Annexe A. Quelques formats de données en biologie A.3. PDB

[...]
ATOM 601 N LEU A 99 10.007 19.687 17.536 1.00 12.25 N
ATOM 602 CA LEU A 99 9.599 18.429 18.188 1.00 12.25 C
ATOM 603 C LEU A 99 10.565 17.281 17.914 1.00 12.25 C
ATOM 604 O LEU A 99 10.256 16.101 18.215 1.00 12.25 O
ATOM 605 CB LEU A 99 8.149 18.040 17.853 1.00 12.25 C
ATOM 606 CG LEU A 99 7.125 19.029 18.438 1.00 18.18 C
ATOM 607 CD1 LEU A 99 5.695 18.554 18.168 1.00 18.18 C
ATOM 608 CD2 LEU A 99 7.323 19.236 19.952 1.00 18.18 C
[...]

Chaque ligne correspond à un atome et débute par ATOM ou HETATM. ATOM désigne un atome de la structure de la
biomolécule. HETATM est utilisé pour les atomes qui ne sont pas une biomolécule, comme les ions ou les molécules d’eau.

Toutes les lignes de coordonnées ont sensiblement le même format. Par exemple, pour la première ligne :
• ATOM (ou HETATM).
• 601 : le numéro de l’atome.
• N : le nom de l’atome. Ici, un atome d’azote du squelette peptidique. La structure complète du résidu leucine est

représentée figure A.1.
• LEU : le résidu dont fait partie l’atome. Ici, une leucine.
• A : le nom de la chaîne peptidique.
• 99 : le numéro du résidu dans la protéine.
• 10.007 : la coordonnée x de l’atome.
• 19.687 : la coordonnée y de l’atome.
• 17.536 : la coordonnée z de l’atome.
• 1.00 : le facteur d’occupation, c’est-à-dire la probabilité de trouver l’atome à cette position dans l’espace en

moyenne. Cette probabilité est inférieure à 1 lorsque, expérimentalement, on n’a pas pu déterminer avec une totale
certitude la position de l’atome. Par exemple, dans le cas d’un atome très mobile dans une structure, qui est
déterminé comme étant à deux positions possibles, chaque position aura alors la probabilité 0.50.

• 12.25 : le facteur de température, qui est proportionnel à la mobilité de l’atome dans l’espace. Les atomes situés
en périphérie d’une structure sont souvent plus mobiles que ceux situés au coeur de la structure.

• N : l’élément chimique de l’atome. Ici, l’azote.
Une documentation plus complète des différents champs qui constituent une ligne de coordonnées atomiques se trouve

sur le site de la PDB 12.
Les résidus sont ensuite décrits les uns après les autres, atome par atome. Voici par exemple les premiers résidus de

la trypsine bovine :
[...]
ATOM 1 N ILE A 16 -8.155 9.648 20.365 1.00 10.68 N
ATOM 2 CA ILE A 16 -8.150 8.766 19.179 1.00 10.68 C
ATOM 3 C ILE A 16 -9.405 9.018 18.348 1.00 10.68 C
ATOM 4 O ILE A 16 -10.533 8.888 18.870 1.00 10.68 O
ATOM 5 CB ILE A 16 -8.091 7.261 19.602 1.00 10.68 C
ATOM 6 CG1 ILE A 16 -6.898 6.882 20.508 1.00 7.42 C
ATOM 7 CG2 ILE A 16 -8.178 6.281 18.408 1.00 7.42 C
ATOM 8 CD1 ILE A 16 -5.555 6.893 19.773 1.00 7.42 C
ATOM 9 N VAL A 17 -9.224 9.305 17.090 1.00 9.63 N
ATOM 10 CA VAL A 17 -10.351 9.448 16.157 1.00 9.63 C
ATOM 11 C VAL A 17 -10.500 8.184 15.315 1.00 9.63 C
ATOM 12 O VAL A 17 -9.496 7.688 14.748 1.00 9.63 O
ATOM 13 CB VAL A 17 -10.123 10.665 15.222 1.00 9.63 C
ATOM 14 CG1 VAL A 17 -11.319 10.915 14.278 1.00 11.95 C
ATOM 15 CG2 VAL A 17 -9.737 11.970 15.970 1.00 11.95 C
[...]

Vous remarquerez que le numéro du premier résidu est 16 et non pas 1. Cela s’explique par la technique expérimentale
utilisée qui n’a pas permis de déterminer la structure des 15 premiers résidus.

La structure de la trypsine bovine n’est constituée que d’une seule chaîne peptidique (notée A). Lorsqu’une structure
est composée de plusieurs chaînes, comme dans le cas de la structure du récepteur GABAB 1 et 2 chez la drosophile

12. http://www.wwpdb.org/documentation/file-format-content/format33/sect9.html

372 Cours de Python / Université Paris Cité / UFR Sciences du Vivant

http://www.wwpdb.org/documentation/file-format-content/format33/sect9.html

A.3. PDB Annexe A. Quelques formats de données en biologie

Figure A.1 – Structure tridimensionnelle d’un résidu leucine. Les noms des atomes sont indiqués en noir.

(code PDB 5X9X 13) :

[...]
ATOM 762 HB1 ALA A 44 37.162 -2.955 2.220 1.00 0.00 H
ATOM 763 HB2 ALA A 44 38.306 -2.353 3.417 1.00 0.00 H
ATOM 764 HB3 ALA A 44 38.243 -1.621 1.814 1.00 0.00 H
TER 765 ALA A 44
ATOM 766 N GLY B 95 -18.564 3.009 13.772 1.00 0.00 N
ATOM 767 CA GLY B 95 -19.166 3.646 12.621 1.00 0.00 C
ATOM 768 C GLY B 95 -20.207 2.755 11.976 1.00 0.00 C
[...]

La première chaîne est notée A et la seconde B. La séparation entre les deux chaînes est marquée par la ligne :

TER 765 ALA A 44

Dans un fichier PDB, chaque structure porte un nom de chaîne différent (par exemple : A,B,C‘, etc.).

Enfin, lorsque la structure est déterminée par RMN, il est possible que plusieurs structures soient présentes dans le
même fichier PDB. Toutes ces structures, ou « modèles », sont des solutions possibles du jeu de contraintes mesurées
expérimentalement en RMN. Voici un exemple, toujours pour la structure du récepteur GABAB 1 et 2 chez la drosophile :

13. http://www.rcsb.org/structure/5X9X

Cours de Python / Université Paris Cité / UFR Sciences du Vivant 373

http://www.rcsb.org/structure/5X9X

Annexe A. Quelques formats de données en biologie A.3. PDB

[...]
MODEL 1
ATOM 1 N MET A 1 -27.283 -9.772 5.388 1.00 0.00 N
ATOM 2 CA MET A 1 -28.233 -8.680 5.682 1.00 0.00 C
[...]
ATOM 1499 HG2 GLU B 139 36.113 -5.242 2.536 1.00 0.00 H
ATOM 1500 HG3 GLU B 139 37.475 -4.132 2.428 1.00 0.00 H
TER 1501 GLU B 139
ENDMDL
MODEL 2
ATOM 1 N MET A 1 -29.736 -10.759 4.394 1.00 0.00 N
ATOM 2 CA MET A 1 -28.372 -10.225 4.603 1.00 0.00 C
[...]
ATOM 1499 HG2 GLU B 139 36.113 -5.242 2.536 1.00 0.00 H
ATOM 1500 HG3 GLU B 139 37.475 -4.132 2.428 1.00 0.00 H
TER 1501 GLU B 139
ENDMDL
MODEL 2
ATOM 1 N MET A 1 -29.736 -10.759 4.394 1.00 0.00 N
ATOM 2 CA MET A 1 -28.372 -10.225 4.603 1.00 0.00 C
[...]

Chaque structure est encadrée par les lignes :
MODEL n

et :
ENDMDL

où n est le numéro du modèle. Pour la structure du récepteur GABAB 1 et 2, il y a 20 modèles de décrits dans le
fichier PDB.

A.3.3 Manipulation avec Python
Le module Biopython peut également lire un fichier PDB.
Voici comment charger la structure de la trypsine bovine :

1 from Bio.PDB import PDBParser
2 parser = PDBParser()
3 prot_id = "2PTN"
4 prot_file = "2PTN.pdb"
5 structure = parser.get_structure(prot_id, prot_file)

Remarque
Les fichiers PDB sont parfois (très) mal formatés. Si Biopython ne parvient pas à lire un tel fichier, remplacez alors

la ligne 2 par parser = PDBParser(PERMISSIVE=1). Soyez néanmoins très prudent quant aux résultats obtenus.

Affichage du nom de la structure et de la technique expérimentale utilisée pour déterminer la structure :
1 print(structure.header["head"])
2 print(structure.header["structure_method"])

ce qui produit :
1 hydrolase (serine proteinase)
2 x-ray diffraction

Extraction des coordonnées de l’atome N du résidu Ile16 et de l’atome CA du résidu Val17 :

374 Cours de Python / Université Paris Cité / UFR Sciences du Vivant

A.3. PDB Annexe A. Quelques formats de données en biologie

1 model = structure[0]
2 chain = model["A"]
3 res1 = chain[16]
4 res2 = chain[17]
5 print(res1.resname, res1["N"].coord)
6 print(res2.resname, res2["CA"].coord)

ce qui produit :
1 ILE [-8.15499973 9.64799976 20.36499977]
2 VAL [-10.35099983 9.44799995 16.15699959]

L’objet res1["N"].coord est un array de NumPy (voir le chapitre 20 Module NumPy). On peut alors obtenir
simplement les coordonnées x, y et z d’un atome :

1 print(res1["N"].coord[0], res1["N"].coord[1], res1["N"].coord[2])

ce qui produit :
1 -8.155 9.648 20.365

Remarque
Biopython utilise la hiérarchie suivante :

structure > model > chain > residue > atom
même lorsque la structure ne contient qu’un seul modèle. C’est d’ailleurs le cas ici, puisque la structure a été obtenue
par cristallographie aux rayons X.

Enfin, pour afficher les coordonnées des carbones α (notés CA) des 10 premiers résidus (à partir du résidu 16, car
c’est le premier résidu dont on connaît la structure) :

1 res_start = 16
2 model = structure[0]
3 chain = model["A"]
4 for i in range(10):
5 idx = res_start + i
6 print(chain[idx].resname, idx, chain[idx]["CA"].coord)

avec pour résultat :
ILE 16 [-8.14999962 8.76599979 19.17900085]
VAL 17 [-10.35099983 9.44799995 16.15699959]
GLY 18 [-12.02099991 6.63000011 14.25899982]
GLY 19 [-10.90200043 3.89899993 16.68400002]
TYR 20 [-12.65100002 1.44200003 19.01600075]
THR 21 [-13.01799965 0.93800002 22.76000023]
CYS 22 [-10.02000046 -1.16299999 23.76000023]
GLY 23 [-11.68299961 -2.86500001 26.7140007]
ALA 24 [-10.64799976 -2.62700009 30.36100006]
ASN 25 [-6.96999979 -3.43700004 31.02000046]

Il est aussi très intéressant (et formateur) d’écrire son propre parser de fichier PDB, c’est-à-dire un programme qui
lit un fichier PDB (sans le module Biopython). Dans ce cas, la figure A.2 vous aidera à déterminer comment extraire les
différentes informations d’une ligne de coordonnées ATOM ou HETATM.

Exemple : pour extraire le nom du résidu, il faut isoler le contenu des colonnes 18 à 20 du fichier PDB, ce qui
correspond aux index de 17 à 19 pour une chaîne de caractères en Python (soit la tranche de chaîne de caractères
[17:20], car la première borne est incluse et la seconde exclue).

Pour lire le fichier PDB de la trypsine bovine (2PTN.pdb) et extraire (encore) les coordonnées des carbones α des 10
premiers résidus, nous pouvons utiliser le code suivant :

Cours de Python / Université Paris Cité / UFR Sciences du Vivant 375

Annexe A. Quelques formats de données en biologie A.4. Format XML, CSV et TSV

1 with open("2PTN.pdb", "r") as pdb_file:
2 res_count = 0
3 for line in pdb_file:
4 if line.startswith("ATOM"):
5 atom_name = line[12:16].strip()
6 res_name = line[17:20].strip()
7 res_num = int(line[22:26])
8 if atom_name == "CA":
9 res_count += 1

10 x = float(line[30:38])
11 y = float(line[38:46])
12 z = float(line[46:54])
13 print(res_name, res_num, x, y, z)
14 if res_count >= 10:
15 break

ce qui donne :
ILE 16 -8.15 8.766 19.179
VAL 17 -10.351 9.448 16.157
GLY 18 -12.021 6.63 14.259
GLY 19 -10.902 3.899 16.684
TYR 20 -12.651 1.442 19.016
THR 21 -13.018 0.938 22.76
CYS 22 -10.02 -1.163 23.76
GLY 23 -11.683 -2.865 26.714
ALA 24 -10.648 -2.627 30.361
ASN 25 -6.97 -3.437 31.02

Remarque
Pour extraire des valeurs numériques, comme des numéros de résidus ou des coordonnées atomiques, il ne faudra pas

oublier de les convertir en entiers ou en floats.

A.4 Format XML, CSV et TSV
Les formats XML, CSV et TSV dont des formats de fichiers très largement utilisés en informatique. Ils sont également

très utilisés en biologie. En voici quelques exemples :

A.4.1 XML
Le format XML est un format de fichier à balises qui permet de stocker quasiment n’importe quel type d’information

de façon structurée et hiérarchisée. L’acronyme XML signifie Extensible Markup Language qui pourrait se traduire en
français par « Langage de balisage extensible 14 ». Les balises dont il est question servent à délimiter du contenu :
<balise>contenu</balise>

La balise <balise> est une balise ouvrante. La balise </balise> est une balise fermante. Notez le caractère / qui
marque la différence entre une balise ouvrante et une balise fermante.

Il existe également des balises vides, qui sont à la fois ouvrantes et fermantes :
<balise />

Une balise peut avoir certaines propriétés, appelées attributs, qui sont définies, dans la balise ouvrante. Par exemple :
<balise propriété1=valeur1 propriété2=valeur2>contenu</balise>

Un attribut est un couple nom et valeur (par exemple propriété1 est un nom et valeur1 est la valeur associée).
Enfin, les balises peuvent être imbriquées les unes dans les autres :

14. https://fr.wikipedia.org/wiki/Extensible_Markup_Language

376 Cours de Python / Université Paris Cité / UFR Sciences du Vivant

https://fr.wikipedia.org/wiki/Extensible_Markup_Language

A.4. Format XML, CSV et TSV Annexe A. Quelques formats de données en biologie

<protein>
<element>élément 1</element>
<element>élément 2</element>
<element>élément 3</element>
</protein>

Dans cet exemple, nous avons trois balises element qui sont contenues dans une balise protein.
Voici un autre exemple avec l’enzyme trypsine 15 humaine (code P07477 16), telle qu’on peut la trouver décrite dans

la base de données UniProt :
<?xml version='1.0' encoding='UTF-8'?>
<uniprot xmlns="http://uniprot.org/uniprot" xmlns:xsi=[...]>
<entry dataset="Swiss-Prot" created="1988-04-01" modified="2018-09-12" [...]>
<accession>P07477</accession>
<accession>A1A509</accession>
[...]
<gene>
<name type="primary">PRSS1</name>
<name type="synonym">TRP1</name>
<name type="synonym">TRY1</name>
</gene>
[...]
<sequence length="247" mass="26558" checksum="DD49A487B8062813" [...]>
MNPLLILTFVAAALAAPFDDDDKIVGGYNCEENSVPYQVSLNSGYHFCGGSLINEQWVVS
AGHCYKSRIQVRLGEHNIEVLEGNEQFINAAKIIRHPQYDRKTLNNDIMLIKLSSRAVIN
ARVSTISLPTAPPATGTKCLISGWGNTASSGADYPDELQCLDAPVLSQAKCEASYPGKIT
SNMFCVGFLEGGKDSCQGDSGGPVVCNGQLQGVVSWGDGCAQKNKPGVYTKVYNYVKWIK
NTIAANS
</sequence>
</entry>
[...]
</uniprot>

• La ligne 1 indique que nous avons bien un fichier au format XML.
• La ligne 3 indique que nous avons une entrée UniProt. Il s’afit d’une balise ouvrante avec plusieurs attributs

(dataset="Swiss-Prot", created="1988-04-01", etc.).
• Les lignes 4 et 5 précisent les numéros d’accession dans la base de données UniProt qui font référence à cette

même protéine.
• Les lignes 8-10 listent les quatre gènes correspondants à cette protéine. Le premier gène porte l’attribut type
="primary" et indique qu’il s’agit du nom officiel du gène de la trypsine. L’attribut type="synonym" pour les
autres gènes indique qu’il s’agit bien de noms synonymes pour le gène PRSS1.

• Les lignes 13-18 contiennent la séquence de la trypsine. Dans les attributs de la balise <sequence>, on retrouve,
par exemple, la taille de la protéine (length="247").

Voici un exemple de code Python pour manipuler le fichier XML de la trypsine humaine :
1 from lxml import etree
2 import re
3
4 with open("P07477.xml") as xml_file:
5 xml_content = xml_file.read()
6
7 xml_content = re.sub("<uniprot [^>]+>", "<uniprot>", xml_content)
8
9 root = etree.fromstring(xml_content.encode("utf-8"))

10
11 for gene in root.xpath("/uniprot/entry/gene/name"):
12 print(f"gene : {gene.text} ({gene.get('type')})")
13
14 sequence = root.xpath("/uniprot/entry/sequence")[0]
15 print(f"sequence: {sequence.text.strip()}")
16 print(f"length: {sequence.get('length')}")

• Ligne 1. On utilise le sous-module etree du module lxml pour lire le fichier XML.
15. https://www.uniprot.org/uniprot/P07477
16. https://www.uniprot.org/uniprot/P07477.xml

Cours de Python / Université Paris Cité / UFR Sciences du Vivant 377

https://www.uniprot.org/uniprot/P07477
https://www.uniprot.org/uniprot/P07477.xml

Annexe A. Quelques formats de données en biologie A.4. Format XML, CSV et TSV

• Ligne 2. On utilise le module d’expressions régulières re pour supprimer tous les attributs de la balise uniprot
(ligne 7). Nous ne rentrerons pas dans les détails, mais ces attributs rendent plus complexe la lecture du fichier
XML.

• Ligne 9. La variable root contient le fichier XML prêt à être manipulé.
• Ligne 11. On recherche les noms des gènes (balises <name></name>) associés à la trypsine. Pour cela, on utilise

la méthode .xpath(), avec comme argument l’enchaînement des différentes balises qui conduisent aux noms des
gènes.

• Ligne 12. Pour chaque nom de gène, on va afficher son contenu (gene.text) et la valeur associée à l’attribut
type avec la méthode .get("type").

• Ligne 14. On stocke dans la variable sequence la balise associée à la séquence de la protéine. Comme root.
xpath("/uniprot/entry/sequence") renvoie un itérateur et qu’il n’y a qu’une seule balise séquence, on prend
ici le seul et unique élément root.xpath("/uniprot/entry/sequence")[0].

• Ligne 15. On affiche le contenu de la séquence sequence.text, nettoyé d’éventuels retours chariots ou espaces
sequence.text.strip().

• Ligne 16. On affiche la taille de la séquence en récupérant la valeur de l’attribut length (toujours de la balise
<sequence></sequence>).

Le résultat obtenu est le suivant :
gene : PRSS1 (primary)
gene : TRP1 (synonym)
gene : TRY1 (synonym)
gene : TRYP1 (synonym)
sequence: MNPLLILTFVAAALAAPFDDDDKIVGGYNCEENSVPYQVSLNSGYHFCGGSLINEQWVVS
AGHCYKSRIQVRLGEHNIEVLEGNEQFINAAKIIRHPQYDRKTLNNDIMLIKLSSRAVIN
ARVSTISLPTAPPATGTKCLISGWGNTASSGADYPDELQCLDAPVLSQAKCEASYPGKIT
SNMFCVGFLEGGKDSCQGDSGGPVVCNGQLQGVVSWGDGCAQKNKPGVYTKVYNYVKWIK
NTIAANS
length: 247

A.4.2 CSV et TSV

A.4.2.1 Définition des formats

L’acronyme CSV signifie « Comma-Separated values », qu’on peut traduire littéralement par « valeurs séparées par
des virgules ». De façon similaire, TSV signifie « Tabulation-Separated Values », soit des « valeurs séparées par des
tabulations ».

Ces deux formats sont utiles pour stocker des données structurées sous forme de tableau, comme vous pourriez l’avoir
dans un tableur.

À titre d’exemple, le tableau ci-dessous liste les structures associées à la transferrine, protéine présente dans le plasma
sanguin et impliquée dans la régulation du fer. Ces données proviennent de la Protein Data Bank (PDB). Pour chaque
protéine (PDB ID) est indiqué le nom de l’organisme associé (Source), la date à laquelle cette structure a été déposée
dans la PDB (Deposit Date), le nombre d’acides aminés de la protéine et sa masse moléculaire (MW).

PDB ID Source Deposit Date Length MW
1A8E Homo sapiens 1998-03-24 329 36408.40
1A8F Homo sapiens 1998-03-25 329 36408.40
1AIV Gallus gallus 1997-04-28 686 75929.00
1AOV Anas platyrhynchos 1996-12-11 686 75731.80
[…] […] […] […] […]

Voici maintenant l’équivalent en CSV 17 :

17. https://python.sdv.u-paris.fr/data-files/transferrin_report.csv

378 Cours de Python / Université Paris Cité / UFR Sciences du Vivant

https://python.sdv.u-paris.fr/data-files/transferrin_report.csv

A.4. Format XML, CSV et TSV Annexe A. Quelques formats de données en biologie

PDB ID,Source,Deposit Date,Length,MW
1A8E,Homo sapiens,1998-03-24,329,36408.40
1A8F,Homo sapiens,1998-03-25,329,36408.40
1AIV,Gallus gallus,1997-04-28,686,75929.00
1AOV,Anas platyrhynchos,1996-12-11,686,75731.80
[...]

Sur chaque ligne, les différentes valeurs sont séparées par une virgule. La première ligne contient le nom des colonnes
et est appelée ligne d’en-tête.

L’équivalent en TSV 18 est :
PDB ID Source Deposit Date Length MW
1A8E Homo sapiens 1998-03-24 329 36408.40
1A8F Homo sapiens 1998-03-25 329 36408.40
1AIV Gallus gallus 1997-04-28 686 75929.00
1AOV Anas platyrhynchos 1996-12-11 686 75731.80
[...]

Sur chaque ligne, les différentes valeurs sont séparées par une tabulation.

Attention
Le caractère tabulation est un caractère invisible « élastique », c’est-à-dire qu’il a une largeur variable suivant l’éditeur

de texte utilisé. Par exemple, dans la ligne d’en-tête, l’espace entre PDB ID et Source apparaît comme différent de
l’espace entre Deposit Date et Length alors qu’il y a pourtant une seule tabulation à chaque fois.

A.4.2.2 Lecture

En Python, le module csv de la bibliothèque standard est très pratique pour lire et écrire des fichiers au format CSV
et TSV. Nous vous conseillons de lire la documentation très complète sur ce module 19.

Voici un exemple :
1 import csv
2
3 with open("transferrin_report.csv") as f_in:
4 f_reader = csv.DictReader(f_in)
5 for row in f_reader:
6 print(row["PDB ID"], row["Deposit Date"], row["Length"])

• Ligne 1. Chargement du module csv.
• Ligne 3. Ouverture du fichier.
• Ligne 4. Utilisation du module csv pour lire le fichier CSV comme un dictionnaire (fonction DictReader()). La

ligne d’en-tête est utilisée automatiquement pour définir les clés du dictionnaire.
• Ligne 5. Parcours de toutes les lignes du fichier CSV.
• Ligne 6. Affichage des champs correspondants à PDB ID, Deposit Date, Length.
Le résultat obtenu est :

1A8E 1998-03-24 329
1A8F 1998-03-25 329
1AIV 1997-04-28 686
1AOV 1996-12-11 686
[...]

Il suffit de modifier légèrement le script précédent pour lire un fichier TSV :

18. https://python.sdv.u-paris.fr/data-files/transferrin_report.tsv
19. https://docs.python.org/fr/3.7/library/csv.html

Cours de Python / Université Paris Cité / UFR Sciences du Vivant 379

https://python.sdv.u-paris.fr/data-files/transferrin_report.tsv
https://docs.python.org/fr/3.7/library/csv.html

Annexe A. Quelques formats de données en biologie A.4. Format XML, CSV et TSV

1 import csv
2
3 with open("transferrin_PDB_report.tsv") as f_in:
4 f_reader = csv.DictReader(f_in, delimiter="\t")
5 for row in f_reader:
6 print(row["PDB ID"], row["Deposit Date"], row["Length"])

• Ligne 3. Modification du nom du fichier lu.
• Ligne 4. Utilisation de l’argument delimiter="\t", qui indique que les champs sont séparés par des tabulations.
Le résultat obtenu est strictement identique au précédent.

A.4.2.3 Écriture

Voici un exemple d’écriture de fichier CSV :
1 import csv
2
3 with open("test.csv", "w") as f_out:
4 fields = ["Name", "Quantity"]
5 f_writer = csv.DictWriter(f_out, fieldnames=fields)
6 f_writer.writeheader()
7 f_writer.writerow({"Name": "girafe", "Quantity":5})
8 f_writer.writerow({"Name": "tigre", "Quantity":3})
9 f_writer.writerow({"Name": "singe", "Quantity":8})

• Ligne 3. Ouverture du fichier test.csv en lecture.
• Ligne 4. Définition du nom des colonnes (Name et Quantity).
• Ligne 5. Utilisation du module csv pour écrire un fichier CSV à partir d’un dictionnaire.
• Ligne 6. Écriture des noms des colonnes.
• Ligne 7-9. Écriture de trois lignes. Pour chaque ligne, un dictionnaire dont les clefs sont les noms des colonnes est

fourni comme argument à la méthode .writerow().
Le contenu du fichier test.csv est alors :

Name,Quantity
girafe,5
tigre,3
singe,8

De façon très similaire, l’écriture d’un fichier TSV est réalisée avec le code suivant :
1 import csv
2
3 with open("test.tsv", "w") as f_out:
4 fields = ["Name", "Quantity"]
5 f_writer = csv.DictWriter(f_out, fieldnames=fields, delimiter="\t")
6 f_writer.writeheader()
7 f_writer.writerow({"Name": "girafe", "Quantity":5})
8 f_writer.writerow({"Name": "tigre", "Quantity":3})
9 f_writer.writerow({"Name": "singe", "Quantity":8})

• Ligne 3. Modification du nom du fichier en écriture.
• Ligne 5. Utilisation de l’argument delimiter="\t", qui indique que les champs sont séparés par des tabulations.
Le contenu du fichier test.tsv est :

Name Quantity
girafe 5
tigre 3
singe 8

Vous êtes désormais capables de lire et écrire des fichiers aux formats CSV et TSV. Les codes que nous vous avons
proposés ne sont que des exemples. À vous de poursuivre l’exploration du module csv.

Remarque

380 Cours de Python / Université Paris Cité / UFR Sciences du Vivant

A.4. Format XML, CSV et TSV Annexe A. Quelques formats de données en biologie

Le module pandas décrit dans le chapitre 22 Module Pandas est tout à fait capable de lire et écrire des fichiers CSV
et TSV. Nous vous conseillons de l’utiliser si vous analysez des données avec ces types de fichiers.

Cours de Python / Université Paris Cité / UFR Sciences du Vivant 381

Annexe A. Quelques formats de données en biologie A.4. Format XML, CSV et TSV

Figure A.2 – Format PDB et les différents champs de coordonnées.

382 Cours de Python / Université Paris Cité / UFR Sciences du Vivant

ANNEXE B

Installation de Python

Attention
La procédure d’installation ci-dessous a été testée avec la version Miniconda Latest - Conda 24.5.0 Python

3.12.4 released Jun 26, 2024.

Python est déjà présent sous Linux ou Mac OS X et s’installe très facilement sous Windows. Toutefois, nous décri-
vons dans cet ouvrage l’utilisation de modules supplémentaires qui sont très utiles en bioinformatique (NumPy, scipy,
matplotlib, pandas, Biopython), mais également les notebooks Jupyter.

On va donc utiliser un gestionnaire de paquets qui va installer ces modules supplémentaires. On souhaite également que
ce gestionnaire de paquets soit disponible pour Windows, Mac OS X et Linux. Fin 2018, il y a deux grandes alternatives :

1. Anaconda et Miniconda : Anaconda 1 est une distribution complète de Python qui contient un gestionnaire de
paquets très puissant nommé conda. Anaconda installe de très nombreux paquets et outils mais nécessite un espace
disque de plusieurs gigaoctets. Miniconda 2 est une version allégée d’Anaconda, donc plus rapide à installer et
occupant peu d’espace sur le disque dur. Le gestionnaire de paquet conda est aussi présent dans Miniconda.

2. Pip : pip 3 est le gestionnaire de paquets de Python et qui est systématiquement présent depuis la version 3.4.

B.1 Que recommande-t-on pour l’installation de Python ?
Quel que soit le système d’exploitation, nous recommandons l’utilisation de Miniconda dont la procédure d’installation

est détaillée ci-dessous pour Windows, Mac OS X et Linux. Le gestionnaire de paquets conda est très efficace. Il gère la
version de Python et les paquets compatibles avec cette dernière de manière optimale.

Par ailleurs, nous vous recommandons vivement la lecture de la rubrique sur les éditeurs de texte. Il est en effet
fondamental d’utiliser un éditeur robuste et de savoir le configurer pour « pythonner » efficacement.

Enfin, dans tout ce qui suit, nous partons du principe que vous installerez Miniconda en tant qu’utilisateur, et non
pas en tant qu’administrateur. Autrement dit, vous n’aurez pas besoin de droits spéciaux pour pouvoir installer Miniconda
et les autres modules nécessaires. La procédure proposée a été testée avec succès sous Windows 10 et 11, Mac OS X,
Ubuntu 22.04 et 24.04).

1. https://www.anaconda.com/
2. https://conda.io/miniconda.html
3. https://pip.pypa.io/en/stable/

383

https://www.anaconda.com/
https://conda.io/miniconda.html
https://pip.pypa.io/en/stable/

Annexe B. Installation de Python B.2. Installation de Python avec Miniconda

Depuis quelques années, Windows 10 (et 11) propose le WSL 4 (Windows Subsystem for Linux). Le WSL permet de
lancer un terminal Linux au sein de Windows et propose (quasiment) toutes les fonctionnalités disponibles sous un vrai
système Linux. Nous ne détaillons par comment l’installer, mais vous pouvez vous référer à la page d’installation sur le site
de Microsoft 5. Si vous avez installé WSL sur votre ordinateur, nous vous recommandons de suivre la procédure ci-dessous
comme si vous étiez sous Linux (rubrique Installation de Python avec Miniconda pour Linux), plutôt que d’installer la
version Windows.

B.2 Installation de Python avec Miniconda
Nous vous conseillons l’installation de la distribution Miniconda 6 qui présente l’avantage d’installer Python et un

puissant gestionnaire de paquets appelé conda. Dans toute la suite de cette annexe, l’indication avec le $ et un espace
comme suit :
$

signifie l’invite d’un shell quel qu’il soit (PowerShell sous Windows, bash sous Mac OS X et Linux).

B.2.1 Installation de Python avec Miniconda pour Linux
Dans un navigateur internet, ouvrez la page du site Miniconda https://conda.io/miniconda.html puis

cliquez sur le lien Miniconda3 Linux 64-bit correspondant à Linuxet et Python 3.12.
Vous allez télécharger un fichier dont le nom ressemble à quelque chose du type :
Miniconda3-latest-Linux-x86_64.sh.
Dans un shell, lancez l’installation de Miniconda avec la commande :

$ bash Miniconda3-latest-Linux-x86_64.sh

Dans un premier temps, validez la lecture de la licence d’utilisation :
Welcome to Miniconda3 py312_24.5.0-0

In order to continue the installation process, please review the license
agreement.
Please, press ENTER to continue
>>>

Comme demandé, appuyez sur la touche Entrée. Faites ensuite défiler la licence d’utilisation avec la touche Espace.
Tapez yes puis appuyez sur la touche Entrée pour valider :
Do you accept the license terms? [yes|no]
[no] >>> yes

Le programme d’installation vous propose ensuite d’installer Miniconda dans le répertoire miniconda3 dans votre
répertoire personnel. Par exemple, dans le répertoire /home/pierre/miniconda3 si votre nom d’utilisateur est pierre.
Validez cette proposition en appuyant sur la touche Entrée :
Miniconda3 will now be installed into this location:
/home/pierre/miniconda3

- Press ENTER to confirm the location
- Press CTRL-C to abort the installation
- Or specify a different location below

[/home/pierre/miniconda3] >>>

Le programme d’installation va alors installer Python et le gestionnaire de paquets conda.
Cette étape terminée, le programme d’installation vous propose d’initialiser conda pour que celui-ci soit accessible à

chaque fois que vous ouvrez un shell. Nous vous conseillons d’accepter en tapant yes puis en appuyant sur la touche
Entrée.

4. https://fr.wikipedia.org/wiki/Windows_Subsystem_for_Linux
5. https://learn.microsoft.com/fr-fr/windows/wsl/install
6. https://conda.io/miniconda.html

384 Cours de Python / Université Paris Cité / UFR Sciences du Vivant

https://conda.io/miniconda.html
https://fr.wikipedia.org/wiki/Windows_Subsystem_for_Linux
https://learn.microsoft.com/fr-fr/windows/wsl/install
https://conda.io/miniconda.html

B.2. Installation de Python avec Miniconda Annexe B. Installation de Python

Do you wish the installer to initialize Miniconda3
by running conda init? [yes|no]
[no] >>> yes

L’installation de Miniconda est terminée. L’espace utilisé par Miniconda sur votre disque dur est d’environ 450 Mo.

B.2.1.1 Test de l’interpréteur Python

Ouvrez un nouveau shell. Vous devriez voir dans votre invite la chaîne (base) indiquant que l’environnement conda
de base est activé. À partir de maintenant, lorsque vous taperez la commande python, c’est le Python 3 de Miniconda
qui sera lancé :
$ python
Python 3.12.4 | packaged by Anaconda, Inc. | (main, Jun 18 2024, 15:12:24) [GCC 11.2.0] on linux
Type "help", "copyright", "credits" or "license" for more information.
>>>

Quittez Python en tapant la commande exit() puis appuyant sur la touche Entrée.

B.2.1.2 Test du gestionnaire de paquets conda

De retour dans le shell, testez si le gestionnaire de paquets conda est fonctionnel. Tapez la commande conda dans
le shell, vous devriez avoir la sortie suivante :
$ conda
usage: conda [-h] [-v] [--no-plugins] [-V] COMMAND ...

conda is a tool for managing and deploying applications, environments and packages.

options:
-h, --help Show this help message and exit.

[...]

Si c’est bien le cas, bravo, conda et bien installé et vous pouvez passez à la suite (rendez-vous à la rubrique Installation
des modules supplémentaires) !

B.2.1.3 Désinstallation de Miniconda

Si vous souhaitez supprimer Miniconda, rien de plus simple, il suffit de suivre ces deux étapes :
Étape 1. Supprimer le répertoire de Miniconda. Par exemple pour l’utilisateur pierre :

$ rm -rf /home/pierre/miniconda3

Étape 2. Dans le fichier de configuration du shell Bash, supprimer les lignes comprises entre
>>> conda initialize >>>

et
<<< conda initialize <<<

B.2.2 Installation de Python avec Miniconda pour Mac OS X
Dans un navigateur internet, ouvrez la page du site Miniconda https://conda.io/miniconda.html puis

cliquez sur le lien Miniconda3 macOS Intel x86 64-bit bash correspondant à Mac OS X et Python 3.12.
Vous allez télécharger un fichier dont le nom ressemble à quelque chose du type :
Miniconda3-latest-MacOSX-x86_64.sh.
Le système d’exploitation Mac OS X étant basé sur Unix, la suite de la procédure est en tout point identique à la

procédure détaillée à la rubrique précédente pour Linux.
Donc, lancez la commande :

$ bash Miniconda3-latest-MacOSX-x86_64.sh

Cours de Python / Université Paris Cité / UFR Sciences du Vivant 385

https://conda.io/miniconda.html

Annexe B. Installation de Python B.2. Installation de Python avec Miniconda

puis suivez les mêmes instructions que dans la rubrique précédente (la seule petite subtilité est pour le chemin,
choisissez /User/votre_nom_utilisateur/miniconda3 sous Mac au lieu de /home/votre_nom_utilisateur/
miniconda3 sous Linux).

B.2.3 Installation de Python avec Miniconda pour Windows 10 et 11
Dans cette rubrique, nous détaillons l’installation de Miniconda sous Windows.

Attention
Nous partons du principe qu’aucune version d’Anaconda, Miniconda, ou encore de Python « classique » (obtenue sur

le site officiel de Python 7) n’est installée sur votre ordinateur. Si tel est le cas, nous vous recommandons vivement de la
désinstaller pour éviter des conflits de version.

• Dans un navigateur internet, ouvrez la page du site Miniconda https://conda.io/miniconda.html puis
cliquez sur le lien Miniconda3 Windows 64-bit correspondant à Windows et Python 3.12. Vous allez télécharger un
fichier dont le nom ressemble à quelque chose du type : Miniconda3-latest-Windows-x86_64.exe.

• Une fois téléchargé, double-cliquez sur ce fichier, cela lancera l’installateur de Miniconda :

Figure B.1 – Installation Miniconda étape 1.

• Cliquez sur Next, vous arrivez alors sur l’écran suivant :
• Lisez la licence et (si vous êtes d’accord) cliquez sur I agree. Vous aurez ensuite :
• Gardez le choix de l’installation seulement pour vous (case cochée à Just me (recommended)), puis cliquez sur

Next. Vous aurez ensuite :
• L’installateur vous demande où installer Miniconda, nous vous recommandons de laisser le choix par défaut (res-

semblant à C:\Users\votre_nom_utilisateur\Miniconda3). Cliquez sur Next, vous arriverez sur :
• Gardez la case Register Anaconda as my default Python 3.12 cochée et ne cochez pas la case Add Anaconda to

my PATH environment variable. Vous pouvez garder la case Create Shortcuts cochée. Cliquez ensuite sur Install,
l’installation se lance et durera quelques minutes :

• À la fin, vous obtiendrez :
• Décochez les cases Learn more about Anaconda Cloud et Learn how to get started with Anaconda et cliquez sur

Finish. Miniconda est maintenant installé.

7. https://www.python.org/downloads/

386 Cours de Python / Université Paris Cité / UFR Sciences du Vivant

https://conda.io/miniconda.html
https://www.python.org/downloads/

B.2. Installation de Python avec Miniconda Annexe B. Installation de Python

Figure B.2 – Installation Miniconda étape 2.

Figure B.3 – Installation Miniconda étape 3.

B.2.3.1 Initialisation de conda

Il nous faut maintenant initialiser conda. Cette manipulation va permettre de le rendre visible dans n’importe quel
shell Powershell.

L’installateur a en principe ajouté des nouveaux raccourcis dans le Menu Démarrer contenant le mot Anaconda :

• Anaconda Powershell Prompt (Miniconda3) : pour lancer un shell Powershell (shell standard de Windows
équivalent du bash sous Linux) avec conda qui est activé correctement ;

• Anaconda Prompt (Miniconda3) : même chose mais avec le shell nommé cmd ; ce vieux shell est limité et nous
vous en déconseillons l’utilisation.

Nous allons maintenant initialiser conda « à la main ». Cliquez sur Anaconda Powershell Prompt (Miniconda3)
qui va lancer un Powershell avec conda activé, puis tapez la commande conda init :

Lorsque vous presserez la touche Entrée vous obtiendrez une sortie de ce style :

Cours de Python / Université Paris Cité / UFR Sciences du Vivant 387

Annexe B. Installation de Python B.2. Installation de Python avec Miniconda

Figure B.4 – Installation Miniconda étape 4.

Figure B.5 – Installation Miniconda étape 5.

$ conda init
no change C:\Users\Pat\miniconda3\Scripts\conda.exe
no change C:\Users\Pat\miniconda3\Scripts\conda-env.exe
no change C:\Users\Pat\miniconda3\Scripts\conda-script.py
no change C:\Users\Pat\miniconda3\Scripts\conda-env-script.py
no change C:\Users\Pat\miniconda3\condabin\conda.bat
no change C:\Users\Pat\miniconda3\Library\bin\conda.bat
no change C:\Users\Pat\miniconda3\condabin_conda_activate.bat
no change C:\Users\Pat\miniconda3\condabin\rename_tmp.bat
no change C:\Users\Pat\miniconda3\condabin\conda_auto_activate.bat
no change C:\Users\Pat\miniconda3\condabin\conda_hook.bat
no change C:\Users\Pat\miniconda3\Scripts\activate.bat
no change C:\Users\Pat\miniconda3\condabin\activate.bat
no change C:\Users\Pat\miniconda3\condabin\deactivate.bat
modified C:\Users\Pat\miniconda3\Scripts\activate
modified C:\Users\Pat\miniconda3\Scripts\deactivate
modified C:\Users\Pat\miniconda3\etc\profile.d\conda.sh
modified C:\Users\Pat\miniconda3\etc\fish\conf.d\conda.fish
no change C:\Users\Pat\miniconda3\shell\condabin\Conda.psm1
modified C:\Users\Pat\miniconda3\shell\condabin\conda-hook.ps1
no change C:\Users\Pat\miniconda3\Lib\site-packages\xontrib\conda.xsh
modified C:\Users\Pat\miniconda3\etc\profile.d\conda.csh
modified C:\Users\Pat\Documents\WindowsPowerShell\profile.ps1
modified HKEY_CURRENT_USER\Software\Microsoft\Command Processor\AutoRun

==> For changes to take effect, close and re-open your current shell. <==
$ conda init
no change C:\Users\Pat\Miniconda3\Scripts\conda.exe
no change C:\Users\Pat\Miniconda3\Scripts\conda-env.exe
no change C:\Users\Pat\Miniconda3\Scripts\conda-script.py

388 Cours de Python / Université Paris Cité / UFR Sciences du Vivant

B.2. Installation de Python avec Miniconda Annexe B. Installation de Python

Figure B.6 – Installation Miniconda étape 6.

Figure B.7 – Installation Miniconda étape 7.

Notez que cette manipulation créera automatiquement un fichier
C:\Users\nom_utilisateur\Documents\WindowsPowerShell\profile.ps1.
Ce fichier sera exécuté à chaque lancement d’un Powershell (équivalent du .bashrc sous bash) et fera en sorte que

conda soit bien activé.

B.2.3.2 Test de l’interpréteur Python

Nous sommes maintenant prêts à tester l’interpréteur Python. En premier lieu, il faut lancer un shell PowerShell. Pour
cela, cliquez sur le bouton Windows et tapez powershell. Vous devriez voir apparaitre le menu suivant :

Cliquez sur l’icône Windows PowerShell, cela va lancer un shell PowerShell avec un fond bleu (couleur que l’on
peut bien sûr modifier en cliquant sur la petite icône représentant un terminal dans la barre de titre). En principe, l’invite
du shell doit ressembler à (base) PS C:\Users\Pat>. La partie (base) indique que conda a bien été activé suite à
l’initialisation faite si dessus (plus exactement c’est son environnement de base qui est activé, mais ça ne nous importe
pas pour l’instant). Pour tester si Python est bien installé, il suffit alors de lancer l’interpréteur Python en tapant la
commande python :

Si tout s’est bien passé, vous devriez avoir un affichage de ce style :

Cours de Python / Université Paris Cité / UFR Sciences du Vivant 389

Annexe B. Installation de Python B.2. Installation de Python avec Miniconda

Figure B.8 – Menu Anaconda Powershell Prompt

Figure B.9 – Initialisation de conda

Figure B.10 – Menu pour lancer un PowerShell.

(base) PS C:\Users\Pat> python
Python 3.12.4 | packaged by Anaconda, Inc. | (main, Jun 18 2024, 15:03:56) [MSC v.1929 64 bit (AMD64)] on

win32
Type "help", "copyright", "credits" or "license" for more information.
>>>

Cela signifie que vous êtes bien dans l’interpréteur Python. À partir de là vous pouvez taper exit() puis appuyer sur

390 Cours de Python / Université Paris Cité / UFR Sciences du Vivant

B.2. Installation de Python avec Miniconda Annexe B. Installation de Python

Figure B.11 – Lancement de l’interpréteur Python dans un PowerShell.

la touche Entrée pour sortir de l’interpréteur Python.

B.2.3.3 Test du gestionnaire de paquets conda

Une fois revenu dans le shell, tapez la commande conda, vous devriez obtenir :
usage: conda-script.py [-h] [-v] [--no-plugins] [-V] COMMAND ...

conda is a tool for managing and deploying applications, environments and packages.

options:
-h, --help Show this help message and exit.
-v, --verbose Can be used multiple times. Once for detailed output, twice for INFO logging, thrice

for DEBUG
logging, four times for TRACE logging.

--no-plugins Disable all plugins that are not built into conda.
-V, --version Show the conda version number and exit.

[...]

Si c’est le cas, bravo, conda est bien installé et vous pouvez passez à la suite (rendez-vous à la rubrique Installation
des modules supplémentaires) !

B.2.3.4 Désinstallation de Miniconda

Si vous souhaitez désinstaller Miniconda, rien de plus simple. Dans le menu Windows, tapez Anaconda puis Désins-
taller. Cela vous emmènera dans le panneau de configuration. Faites alors un clic droit sur Miniconda3 py312..., puis
cliquez sur Désinstaller. Cela devrait ouvrir la fenêtre suivante :

Cliquez sur Next. Vous aurez alors l’écran suivant :
Cliquez sur Uninstall, puis à l’écran suivant confirmez que vous souhaitez désintaller Miniconda :
Le désinstallateur se lancera alors (cela peut prendre quelques minutes) :
Une fois la désinstallation terminée, cliquez sur Next :
Puis enfin sur Finish :
À ce point, Miniconda est bien désinstallé. Il reste toutefois une dernière manipulation que l’installateur n’a pas

effectué : il faut détruire à la main le fichier
C:\Users\nom_utilisateur\Documents\WindowsPowerShell\profile.ps1
(bien sûr, remplacez nom_utilisateur par votre propre nom d’utilisateur). Si vous ne le faites pas, cela affichera

un message d’erreur à chaque fois que vous lancerez un Powershell.

Cours de Python / Université Paris Cité / UFR Sciences du Vivant 391

Annexe B. Installation de Python B.3. Utilisation de conda pour installer des modules complémentaires

Figure B.12 – Désinstallation de Miniconda (étape 1).

Figure B.13 – Désinstallation de Miniconda (étape 2).

B.3 Utilisation de conda pour installer des modules complémentaires
B.3.1 Installation des modules supplémentaires

Cette étape sera commune pour les trois systèmes d’exploitation. À nouveau, lancez un shell (c’est-à-dire PowerShell
sous Windows ou un terminal pour Mac OS X ou Linux).

Dans le shell, tapez la ligne suivante puis appuyez sur la touche Entrée :
$ conda install numpy pandas matplotlib scipy biopython jupyterlab

Cette commande va lancer l’installation des modules externes NumPy, pandas, matplotlib, scipy, Biopython et Jupyter
lab. Ces modules vont être téléchargés depuis internet par conda, il faut bien sûr que votre connexion internent soit
fonctionnelle. Au début, conda va déterminer les versions des paquets à télécharger en fonction de la version de Python
ainsi que d’autres paramètres (cela prend une à deux minutes). Cela devrait donner la sortie suivante :

392 Cours de Python / Université Paris Cité / UFR Sciences du Vivant

B.3. Utilisation de conda pour installer des modules complémentaires Annexe B. Installation de Python

Figure B.14 – Désinstallation de Miniconda (étape 3).

Figure B.15 – Désinstallation de Miniconda (étape 4).

Channels:
- defaults
Platform: linux-64
Collecting package metadata (repodata.json): done
Solving environment: done

Package Plan

environment location: /home/fuchs/miniconda3

added / updated specs:
- biopython
- jupyterlab
- matplotlib
- numpy
- pandas
- scipy

The following packages will be downloaded:

package	build
anyio-4.2.0 | py312h06a4308_0 238 KB
argon2-cffi-21.3.0 | pyhd3eb1b0_0 15 KB
argon2-cffi-bindings-21.2.0| py312h5eee18b_0 33 KB
asttokens-2.0.5 | pyhd3eb1b0_0 20 KB

[...]

The following NEW packages will be INSTALLED:

anyio pkgs/main/linux-64::anyio-4.2.0-py312h06a4308_0
argon2-cffi pkgs/main/noarch::argon2-cffi-21.3.0-pyhd3eb1b0_0
argon2-cffi-bindi~ pkgs/main/linux-64::argon2-cffi-bindings-21.2.0-py312h5eee18b_0
asttokens pkgs/main/noarch::asttokens-2.0.5-pyhd3eb1b0_0

[...]
Proceed ([y]/n)?

Cours de Python / Université Paris Cité / UFR Sciences du Vivant 393

Annexe B. Installation de Python B.3. Utilisation de conda pour installer des modules complémentaires

Figure B.16 – Désinstallation de Miniconda (étape 5).

Figure B.17 – Désinstallation de Miniconda (étape 6).

Une fois que les versions des paquets ont été déterminées, conda vous demande confirmation avant de démarrer
le téléchargement. Tapez y puis appuyez sur la touche Entrée pour confirmer. S’en suit alors le téléchargement et
l’installation de tous les paquets (cela prendra quelques minutes) :

Une fois que tout cela est terminé, vous récupérez la main dans le shell :
[...]
Downloading and Extracting Packages:
mkl-2023.1.0 | 171.5 MB | #

##4
| 92%

Preparing transaction: done
Verifying transaction: done
Executing transaction: done
$

B.3.2 Test des modules supplémentaires
Pour tester la bonne installation des modules, lancez l’interpréteur Python :

$ python

394 Cours de Python / Université Paris Cité / UFR Sciences du Vivant

B.3. Utilisation de conda pour installer des modules complémentaires Annexe B. Installation de Python

Puis tapez les lignes suivantes :
1 import numpy
2 import scipy
3 import Bio
4 import matplotlib
5 import pandas

Vous devriez obtenir la sortie suivante :
>>> import numpy
>>> import scipy
>>> import Bio
>>> import matplotlib
>>> import pandas
>>>

Si aucune erreur ne s’affiche et que vous récupérez la main dans l’interpréteur, bravo, ces modules sont bien installés.
Quittez l’interpréteur Python en tapant la commande exit() puis en appuyant sur la touche Entrée.

Vous êtes de nouveau dans le shell. Nous allons maintenant pouvoir tester Jupyter. Tapez dans le shell :
$ jupyter lab

Cette commande devrait ouvrir votre navigateur internet par défaut et lancer Jupyter :

Figure B.18 – Test de Jupyter : ouverture dans un navigateur.

Pour quitter Jupyter, allez dans le menu File puis sélectionnez Quit. Vous pourrez alors fermer l’onglet de Jupyter.
Pendant ces manipulations dans le navigateur, de nombreuses lignes ont été affichées dans l’interpréteur :
(base) PS C:\Users\Pat> jupyter lab
[I 18:26:05.544 LabApp] JupyterLab extension loaded from C:\Users\Pat\Miniconda3\lib\site-packages\

jupyterlab
[I 18:26:05.544 LabApp] JupyterLab application directory is C:\Users\Pat\Miniconda3\share\jupyter\lab
[...]
[I 18:27:20.645 LabApp] Interrupted...
[I 18:27:32.986 LabApp] Shutting down 0 kernels
(base) PS C:\Users\Pat>

Il s’agit d’un comportement normal. Quand Jupyter est actif, vous n’avez plus la main dans l’interpréteur et tous ces
messages s’affichent. Une fois que vous quittez Jupyter, vous devriez récupérer la main dans l’interpréteur. Si ce n’est
pas le cas, pressez deux fois la combinaison de touches Ctrl + C

Si tous ces tests ont bien fonctionné, bravo, vous avez installé correctement Python avec Miniconda ainsi que tous
les modules qui seront utilisés pour ce cours. Vous pouvez quitter le shell en tapant exit puis en appuyant sur la touche
Entrée et aller faire une pause !

B.3.3 Un mot sur pip pour installer des modules complémentaires

Conseil
Si vous êtes débutant, vous pouvez sauter cette rubrique.

Cours de Python / Université Paris Cité / UFR Sciences du Vivant 395

Annexe B. Installation de Python B.4. Choisir un bon éditeur de texte

Comme indiqué au début de ce chapitre, pip 8 est un gestionnaire de paquets pour Python et permet d’installer des
modules externes. Pip est également présent dans Miniconda, donc utilisable et parfaitement fonctionnel. Vous pouvez
vous poser la question « Pourquoi utiliser le gestionnaire de paquets pip si le gestionnaire de paquets conda est déjà
présent ? ». La réponse est simple, certains modules ne sont présents que sur les dépôts pip. Si vous souhaitez les installer
il faudra impérativement utiliser pip. Inversement, certains modules ne sont présents que dans les dépôts de conda.
Toutefois, pour les modules classiques (comme NumPy, scipy, etc), tout est gérable avec conda.

Sauf cas exceptionnel, nous vous conseillons l’utilisation de conda pour gérer l’installation de modules
supplémentaires.

Si vous souhaitez installer un paquet qui n’est pas présent sur un dépôt conda avec pip, assurez vous d’abord que
votre environnement conda est bien activé (avec conda activate ou conda activate nom_environnement). La
syntaxe est ensuite très simple :
$ pip install nom_du_paquet

Si votre environnement conda était bien activé lors de l’appel de cette commande, celle-ci aura installé votre paquet
dans l’environnement conda. Tout est donc bien encapsulé dans l’environnement conda, et l’ajout de tous ces paquets
ne risque pas d’interférer avec le Python du système d’exploitation, rendant ainsi les choses bien « propres ».

B.4 Choisir un bon éditeur de texte
La programmation nécessite d’écrire des lignes de code en utilisant un éditeur de texte. Le choix de cet éditeur

est donc fondamental, celui-ci doit nous aider à repérer rapidement certaines zones du programme afin d’être efficace.
Outre les fonctions de manipulation / remplacement / recherche de texte, un bon éditeur doit absolument posséder la
coloration syntaxique (syntax highlighting en anglais). Celle-ci change la couleur et / ou la police de certaines zones
du code comme les mot-clés du langage, les zones entre guillemets, les commentaires, etc. Dans ce qui suit, nous vous
montrons des éditeurs faciles à prendre en main par les débutants pour Linux, Windows et Mac OS X.

B.4.1 Installation et réglage de gedit sous Linux
Pour Linux, on vous recommande l’utilisation de l’éditeur de texte gedit qui a les avantages d’être simple à utiliser et

présent dans la plupart des distributions Linux.
Si gedit n’est pas installé, vous pouvez l’installer avec la commande :

$ sudo apt install -y gedit

Il faudra entrer votre mot de passe utilisateur puis valider en appuyant sur la touche Entrée.
Pour lancer cet éditeur, tapez la commande gedit dans un shell ou cherchez gedit dans le lanceur d’applications.

Vous devriez obtenir une fenêtre similaire à celle-ci :
On configure ensuite gedit pour que l’appui sur la touche Tab corresponde à une indentation de 4 espaces, comme

recommandée par la PEP 8 (chapitre 15 Bonnes pratiques en programmation Python). Pour cela, cliquez sur l’icône en
forme de 3 petites barres horizontales en haut à droite de la fenêtre de gedit, puis sélectionnez Préférences. Dans la
nouvelle fenêtre qui s’ouvre, sélectionnez l’onglet Éditeur puis fixez la largeur des tabulations à 4 et cochez la case Insérer
des espaces au lieu des tabulations :

Si vous le souhaitez, vous pouvez également cochez la case Activer l’indentation automatique qui indentera automati-
quement votre code quand vous êtes dans un bloc d’instructions. Fermez la fenêtre de paramètres une fois la configuration
terminée.

B.4.2 Installation et réglage de Notepad++ sous Windows
Sous Windows, nous vous recommandons l’excellent éditeur Notepad++ 9. Une fois cet éditeur installé, il est important

de le régler correctement. En suivant le menu Paramètres, Préférences, vous arriverez sur un panneau vous permettant
de configurer Notepad++.

En premier on va configurer l’appui sur la touche Tab afin qu’il corresponde à une indentation de 4 espaces, comme
recommandé par la PEP 8 (chapitre 15 Bonnes pratiques en programmation Python). Dans la liste sur la gauche, cliquez

8. https://pip.pypa.io/en/stable/
9. https://notepad-plus-plus.org/download

396 Cours de Python / Université Paris Cité / UFR Sciences du Vivant

https://pip.pypa.io/en/stable/
https://notepad-plus-plus.org/download

B.4. Choisir un bon éditeur de texte Annexe B. Installation de Python

Figure B.19 – Éditeur de texte gedit.

Figure B.20 – Configuration de gedit.

sur Langage, puis à droite dans le carré Tabulations cochez la case Insérer des espaces en réglant sur 4 espaces
comme indiqué ci-dessous :

Ensuite, il est important de faire en sorte que Notepad++ affiche les numéros de ligne sur la gauche (très pratique
lorsque l’interpréteur nous indique qu’il y a une erreur, par exemple, à la ligne 47). Toujours dans la fenêtre Préférences,
dans la liste sur la gauche cliquez sur Zones d'édition, puis sur la droite cochez la case Afficher la numérotation
des lignes comme indiqué ici :

Cours de Python / Université Paris Cité / UFR Sciences du Vivant 397

Annexe B. Installation de Python B.4. Choisir un bon éditeur de texte

Figure B.21 – Configuration de Notepad++ : indentation avec des espaces.

Figure B.22 – Configuration de Notepad++ : numéro de ligne.

B.4.3 Installation et réglage de TextWrangler/BBedit sous Mac OS X

Sur les anciennes versions de Mac OS X (< 10.14), TextWrangler 10 était un éditeur de texte simple, intuitif et
efficace. Toutefois son développement a été arrêté car il fonctionnait en 32-bits. Il a été remplacé par BBedit 11 qui
possède de nombreuses fonctionnalités supplémentaires mais qui doit en principe être acheté. Toutefois, ce dernier est
utilisable gratuitement avec les mêmes fonctionnalités que TextWrangler, sans les nouvelles fonctionnalités étendues. Ne
possédant pas de Mac, nous nous contentons ici de vous donner quelques liens utiles :

• La page de téléchargement 12 ;
• La page vers de nombreuses ressources 13 utiles ;
• Le manuel d’utilisation 14 (avec toutes les instructions pour son installation au chapitre 2) ;
• Une page sur Stackoverflow 15 qui vous montre comment faire en sorte que l’appui sur la touche Tab affiche 4

espaces plutôt qu’une tabulation.

10. http://www.barebones.com/products/textwrangler/
11. https://www.barebones.com/products/bbedit/
12. http://www.barebones.com/products/bbedit/download.html
13. https://www.barebones.com/support/bbedit/
14. https://s3.amazonaws.com/BBSW-download/BBEdit_12.6.6_User_Manual.pdf
15. https://stackoverflow.com/questions/5750361/auto-convert-tab-to-4-spaces-in-textwrangler

398 Cours de Python / Université Paris Cité / UFR Sciences du Vivant

http://www.barebones.com/products/textwrangler/
https://www.barebones.com/products/bbedit/
http://www.barebones.com/products/bbedit/download.html
https://www.barebones.com/support/bbedit/
https://s3.amazonaws.com/BBSW-download/BBEdit_12.6.6_User_Manual.pdf
https://stackoverflow.com/questions/5750361/auto-convert-tab-to-4-spaces-in-textwrangler

B.5. Comment se mettre dans le bon répertoire dans le shell Annexe B. Installation de Python

B.4.4 Pour aller plus loin
Jusque là, nous vous avons montré des éditeurs de texte simples qui sont, selon nous, idéaux pour apprendre un langage

de programmation. Ainsi, on se concentre sur le langage Python plutôt que toutes les options de l’éditeur. Toutefois, pour
les utilisateurs plus avancés, nous vous conseillons des plateformes de développement 16 ou IDE (integrated development
environment) qui, au-delà de l’édition, permettent par exemple d’exécuter le code et de le debugger (c’est-à-dire, y
chasser les erreurs). On peut citer par exemple les IDE libres Visual Studio code 17 et Spyder 18.

B.5 Comment se mettre dans le bon répertoire dans le shell
Pour apprendre Python, nous allons devoir écrire des scripts, les enregistrer dans un répertoire, puis les exécuter avec

l’interpréteur Python. Il faut pour cela être capable d’ouvrir un shell et de se mettre dans le répertoire où se trouve ce
script.

Notre livre n’est pas un cours d’Unix, mais il convient au moins de savoir se déplacer dans l’arborescence avant de
lancer Python. Sous Linux et sous Mac il est donc fondamental de connaître les commandes Unix cd, pwd, ls et la
signification de .. (point point).

Sous Linux, il existe une astuce très pratique. Si vous utilisez l’explorateur de fichiers Nautilus, quand vous êtes dans un
répertoire, faites un clic droit et choisissez dans le menu Ouvrir dans un terminal. Vous vous retrouverez automatiquement
dans le bon répertoire (vous pouvez vous en assurer avec la commande Unix pwd).

Figure B.23 – Lancement d’un terminal depuis un répertoire donné avec Nautilus).

De façon similaire sous Windows, il existe deux astuces très pratiques. Lorsqu’on utilise l’explorateur Windows et que
l’on est dans un répertoire donné :

Figure B.24 – Lancement d’un powershell depuis un répertoire donné (étape 1).

16. https://fr.wikipedia.org/wiki/Environnement_de_d%C3%A9veloppement
17. https://code.visualstudio.com/
18. https://www.spyder-ide.org/

Cours de Python / Université Paris Cité / UFR Sciences du Vivant 399

https://fr.wikipedia.org/wiki/Environnement_de_d%C3%A9veloppement
https://code.visualstudio.com/
https://www.spyder-ide.org/

Annexe B. Installation de Python B.6. Python web et mobile

Il est possible d’ouvrir un PowerShell directement dans ce répertoire :
Première astuce
Il suffit de taper powershell dans la barre qui indique le chemin :

Figure B.25 – Lancement d’un powershell depuis un répertoire donné (étape 2).

puis on appuie sur entrée et le PowerShell se lance en étant directement dans le bon répertoire !
Deuxième astuce
En pressant la touche Shift et en faisant un clic droit dans un endroit de l’explorateur qui ne contient pas de fichier

(attention, ne pas faire de clic droit sur un fichier !). Vous verrez alors s’afficher le menu contextuel suivant :
Cliquez sur Ouvrir la fenêtre PowerShell ici, à nouveau votre Powershell sera directement dans le bon répertoire !
Vérification
La figure suivante montre le PowerShell, ouvert de la première ou la deuxième façon, dans lequel nous avons lancé

la commande ls qui affiche le nom du répertoire courant (celui dans lequel on se trouve, dans notre exemple D:\PAT\
Python) ainsi que les fichiers s’y trouvant (ici il n’y a qu’un fichier : test.py). Ensuite nous avons lancé l’exécution de
ce fichier test.py en tapant python test.py.

À votre tour !
Pour tester si vous avez bien compris, ouvrez votre éditeur favori, tapez les lignes suivantes puis enregistrez ce fichier

avec le nom test.py dans le répertoire de votre choix.
1 import tkinter as tk
2
3 racine = tk.Tk()
4 label = tk.Label(racine, text="J'adore Python !")
5 bouton = tk.Button(racine, text="Quitter", command=racine.quit)
6 bouton["fg"] = "red"
7 label.pack()
8 bouton.pack()
9 racine.mainloop()

10 print("C'est fini !")

Comme nous vous l’avons montré ci-dessus, ouvrez un shell et déplacez-vous dans le répertoire où se trouve test.py.
Lancez le script avec l’interpréteur Python :
$ python test.py

Si vous avez fait les choses correctement, cela devrait afficher une petite fenêtre avec un message « J’adore Python !
» et un bouton Quitter.

B.6 Python web et mobile
Si vous ne pouvez ou ne souhaitez pas installer Python sur votre ordinateur (quel dommage !), des solutions alternatives

s’offrent à vous.
Des sites internet vous proposent l’équivalent d’un interpréteur Python utilisable depuis votre navigateur web :
• repl.it 19 ;
• Tutorials Point 20 ;

19. https://repl.it/languages/python3
20. https://www.tutorialspoint.com/execute_python3_online.php

400 Cours de Python / Université Paris Cité / UFR Sciences du Vivant

https://repl.it/languages/python3
https://www.tutorialspoint.com/execute_python3_online.php

B.6. Python web et mobile Annexe B. Installation de Python

Figure B.26 – Lancement d’un powershell depuis un répertoire donné (étape 2bis).

• et bien sur l’incontournable Python Tutor 21.
Des applications mobiles vous permettent aussi de « pythonner » avec votre smartphone :
• Pydroid 3 22 pour Android ;

21. http://pythontutor.com/visualize.html#mode=edit
22. https://play.google.com/store/apps/details?id=ru.iiec.pydroid3

Cours de Python / Université Paris Cité / UFR Sciences du Vivant 401

http://pythontutor.com/visualize.html#mode=edit
https://play.google.com/store/apps/details?id=ru.iiec.pydroid3

Annexe B. Installation de Python B.6. Python web et mobile

Figure B.27 – Lancement d’un powershell depuis un répertoire donné (étape 3).

• Pythonista 3 23 pour iOS (payant).
Soyez néanmoins conscient que ces applications web ou mobiles peuvent être limitées, notamment sur leur capacité

à installer des modules supplémentaires et à gérer les fichiers.

23. https://itunes.apple.com/us/app/pythonista-3/id1085978097

402 Cours de Python / Université Paris Cité / UFR Sciences du Vivant

https://itunes.apple.com/us/app/pythonista-3/id1085978097

	Avant-propos
	Quelques mots sur l'origine de ce cours
	Remerciements
	Le livre

	1 Introduction
	1.1 Qu'est-ce que Python ?
	1.2 Conseils pour l'apprentissage de Python
	1.3 Conseils pour installer et configurer Python
	1.4 Notations utilisées
	1.5 Introduction au shell
	1.6 Premier contact avec Python
	1.7 Premier programme
	1.8 Commentaires
	1.9 Notion de bloc d'instructions et d'indentation
	1.10 Autres ressources

	2 Variables
	2.1 Définition et création
	2.2 Les types de variables
	2.3 Nommage
	2.4 Écriture scientifique
	2.5 Opérations
	2.6 La fonction type()
	2.7 Conversion de types
	2.8 Note sur le vocabulaire et la syntaxe
	2.9 Minimum et maximum
	2.10 Exercices

	3 Affichage
	3.1 La fonction print()
	3.2 Messages d'erreur
	3.3 Écriture formatée et f-strings
	3.4 Écriture scientifique
	3.5 Exercices

	4 Listes
	4.1 Définition
	4.2 Utilisation
	4.3 Opération sur les listes
	4.4 Indiçage négatif
	4.5 Tranches
	4.6 Fonction len()
	4.7 Les fonctions range() et list()
	4.8 Listes de listes
	4.9 Minimum, maximum et somme d'une liste
	4.10 Problème avec les copies de listes
	4.11 Note sur le vocabulaire et la syntaxe
	4.12 Exercices

	5 Boucles et comparaisons
	5.1 Boucles for
	5.2 Comparaisons
	5.3 Boucles while
	5.4 Exercices

	6 Tests
	6.1 Définition
	6.2 Tests à plusieurs cas
	6.3 Importance de l'indentation
	6.4 Tests multiples
	6.5 Instructions break et continue
	6.6 Tests de valeur sur des floats
	6.7 Exercices

	7 Fichiers
	7.1 Lecture dans un fichier
	7.2 Écriture dans un fichier
	7.3 Ouvrir deux fichiers avec l'instruction with
	7.4 Note sur les retours à la ligne sous Unix et sous Windows
	7.5 Importance des conversions de types avec les fichiers
	7.6 Du respect des formats de données et de fichiers
	7.7 Exercices

	8 Dictionnaires et tuples
	8.1 Dictionnaires
	8.2 Tuples
	8.3 Exercices

	9 Modules
	9.1 Définition
	9.2 Importation de modules
	9.3 Obtenir de l'aide sur les modules importés
	9.4 Quelques modules courants
	9.5 Module random : génération de nombres aléatoires
	9.6 Module sys : passage d'arguments
	9.7 Module pathlib : gestion des fichiers et des répertoires
	9.8 Exercices

	10 Fonctions
	10.1 Principe et généralités
	10.2 Définition
	10.3 Passage d'arguments
	10.4 Renvoi de résultats
	10.5 Arguments positionnels et arguments par mot-clé
	10.6 Variables locales et variables globales
	10.7 Principe DRY
	10.8 Exercices

	11 Plus sur les chaînes de caractères
	11.1 Préambule
	11.2 Chaînes de caractères et listes
	11.3 Caractères spéciaux
	11.4 Préfixe de chaîne de caractères
	11.5 Méthodes associées aux chaînes de caractères
	11.6 Extraction de valeurs numériques d'une chaîne de caractères
	11.7 Fonction map()
	11.8 Test d'appartenance
	11.9 Conversion d'une liste de chaînes de caractères en une chaîne de caractères
	11.10 Method chaining
	11.11 Exercices

	12 Plus sur les listes
	12.1 Méthodes associées aux listes
	12.2 Construction d'une liste par itération
	12.3 Test d'appartenance
	12.4 Fonction zip()
	12.5 Copie de listes
	12.6 Initialisation d'une liste de listes
	12.7 Liste de compréhension
	12.8 Tris puissants de listes
	12.9 Exercices

	13 Plus sur les fonctions
	13.1 Appel d'une fonction dans une fonction
	13.2 Fonctions récursives
	13.3 Portée des variables
	13.4 Portée des listes
	13.5 Règle LGI
	13.6 Recommandations
	13.7 Exercices

	14 Conteneurs
	14.1 Généralités
	14.2 Plus sur les dictionnaires
	14.3 Plus sur les tuples
	14.4 Sets et frozensets
	14.5 Récapitulation des propriétés des conteneurs
	14.6 Dictionnaires et sets de compréhension
	14.7 Module collections
	14.8 Exercices

	15 Création de modules
	15.1 Pourquoi créer ses propres modules ?
	15.2 Création d'un module
	15.3 Utilisation de son propre module
	15.4 Les docstrings
	15.5 Visibilité des fonctions dans un module
	15.6 Module ou script ?
	15.7 Exercice

	16 Bonnes pratiques en programmation Python
	16.1 De la bonne syntaxe avec la PEP 8
	16.2 Les docstrings et la PEP 257
	16.3 Outils de contrôle qualité du code
	16.4 Outil de formatage automatique du code
	16.5 Organisation du code
	16.6 Conseils sur la conception d'un script
	16.7 Pour terminer : la PEP 20

	17 Expressions régulières et parsing
	17.1 Définition et syntaxe
	17.2 Quelques ressources en ligne
	17.3 Le module re
	17.4 Exercices

	18 Jupyter et ses notebooks
	18.1 Installation
	18.2 JupyterLab
	18.3 Création d'un notebook
	18.4 Le format Markdown
	18.5 Des graphiques dans les notebooks
	18.6 Les magic commands
	18.7 Lancement d'une commande Unix

	19 Module Biopython
	19.1 Installation et convention
	19.2 Chargement du module
	19.3 Manipulation de séquences
	19.4 Interrogation de la base de données PubMed
	19.5 Exercices

	20 Module NumPy
	20.1 Installation et convention
	20.2 Chargement du module
	20.3 Objets de type array
	20.4 Construction automatique de matrices
	20.5 Chargement d'un array depuis un fichier
	20.6 Concaténation d'arrays
	20.7 Un peu d'algèbre linéaire
	20.8 Parcours de matrice et affectation de lignes et colonnes
	20.9 Masques booléens
	20.10 Quelques conseils
	20.11 Exercices

	21 Module Matplotlib
	21.1 Installation et convention
	21.2 Chargement du module
	21.3 Représentation en nuage de points
	21.4 Représentation sous forme de courbe
	21.5 Représentation en diagramme en bâtons

	22 Module Pandas
	22.1 Installation et convention
	22.2 Chargement du module
	22.3 Series
	22.4 Dataframes
	22.5 Un exemple plus concret avec les kinases
	22.6 Exercices

	23 Avoir la classe avec les objets
	23.1 Construction d'une classe
	23.2 Exercices

	24 Avoir plus la classe avec les objets
	24.1 Espace de noms
	24.2 Polymorphisme
	24.3 Héritage
	24.4 Composition
	24.5 Différence entre les attributs de classe et d'instance
	24.6 Accès et modifications des attributs depuis l'extérieur
	24.7 Bonnes pratiques pour construire et manipuler ses classes
	24.8 Note finale de sémantique
	24.9 Exercices

	25 Fenêtres graphiques et Tkinter
	25.1 Utilité d'une GUI
	25.2 Quelques concepts liés à la programmation graphique
	25.3 Notion de fonction callback
	25.4 Prise en main du module Tkinter
	25.5 Construire une application Tkinter avec une classe
	25.6 Le widget canvas
	25.7 Pour aller plus loin
	25.8 Exercices

	26 Remarques complémentaires
	26.1 Différences Python 2 et Python 3
	26.2 Anciennes méthodes de formatage des chaînes de caractères
	26.3 Fonctions lambda
	26.4 Itérables, itérateurs, générateurs et module itertools
	26.5 Gestion des exceptions
	26.6 Shebang et /usr/bin/env python3
	26.7 Passage d'arguments avec *args et **kwargs
	26.8 Décorateurs
	26.9 Un peu de transformée de Fourier avec NumPy
	26.10 Sauvegardez votre historique de commandes

	27 Mini-projets
	27.1 Description des projets
	27.2 Accompagnement pas à pas
	27.3 Scripts de correction

	A Quelques formats de données en biologie
	A.1 FASTA
	A.2 GenBank
	A.3 PDB
	A.4 Format XML, CSV et TSV

	B Installation de Python
	B.1 Que recommande-t-on pour l'installation de Python ?
	B.2 Installation de Python avec Miniconda
	B.3 Utilisation de conda pour installer des modules complémentaires
	B.4 Choisir un bon éditeur de texte
	B.5 Comment se mettre dans le bon répertoire dans le shell
	B.6 Python web et mobile

