| Universite
Paris Cite

Cours de Python

Introduction a la programmation Python pour la biologie

https://python.sdv.u-paris.fr/

@ python’

Patrick Fuchs et Pierre Poulain
prénom [point] nom [arobase] u-paris [point] fr
version du 29 septembre 2025

Université Paris Cité, France

Ce document est sous licence

Creative Commons Attribution - Partage dans les Mémes Conditions 3.0 France @ @
(CC BY-SA 3.0 FR)

https://creativecommons.org/licenses/by-sa/3.0/fr/

https://creativecommons.org/licenses/by-sa/3.0/fr/

Table des matieres

Avant-propos 8
Quelques mots sur l'origine de ce cours. L 8
Remerciements L L e e 8
Le livre . . o o e 8

1 Introduction 10
1.1 Qu'est-ce que Python? e 10
1.2 Conseils pour I'apprentissage de Python 11
1.3 Conseils pour installer et configurer Python 11
1.4 Notations utilisées e 11
1.5 Introduction au shell e 12
1.6 Premier contact avec Python 12
1.7 Premier programme L e e 13
1.8 Commentaires e 14
1.9 Notion de bloc d'instructions et d'indentation 14
1.10 AUtres reSSOUICES v v v vt i e e e e e e e e 15

2 Variables 16
2.1 Définition et création e 16
2.2 Lestypesdevariables e e 17
2.3 Nommage e 18
2.4 Ecriture scientifique L L 18
2.5 Opérations 19
2.6 Lafonction type() 21
2.7 Conversion de types 21
2.8 Note sur le vocabulaire et la syntaxe L 22
2.9 Minimum et maximum 22
2.10 Exercices e 22

3 Affichage 24
3.1 Lafonction print() 24
3.2 Messages d'erreur 25
3.3 Ecriture formatée et f-Strings 26

Table des matiéres Table des matieres

3.4 Ecriture scientifique 30
3.5 EXerciceso 30
4 Listes 32
4.1 Définition L e 32
4.2 Utilisation e 32
4.3 Opération surles listes L 33
4.4 Indicage négatif L 34
45 Tranches e 34
4.6 Fonction Len() 35
4.7 Les fonctions range() et List() 35
4.8 Listesdelistes L 36
4.9 Minimum, maximum et somme d'une liste 36
4.10 Probléme avec les copiesde listes L 36
4.11 Note sur le vocabulaire et la syntaxe L 37
412 EXErCiCeS o o o e 37
5 Boucles et comparaisons 39
5.1 Boucles for 39
5.2 Comparaisons e e 42
5.3 Boucleswhile e 43
5.4 EXercices e 44
6 Tests 49
6.1 Définition e 49
6.2 Tests a plusieurs cas L 49
6.3 Importance de l'indentation L 50
6.4 Tests multiples L 51
6.5 Instructions break et continue L 52
6.6 Tests de valeur surdes floats e 52
6.7 EXercices 53
7 Fichiers 58
7.1 Lecture dans un fichier e 58
7.2 Ecriture dans un fichier 61
7.3 Ouvrir deux fichiers avec l'instruction with 62
7.4 Note sur les retours a la ligne sous Unix et sous Windows 62
7.5 Importance des conversions de types avec les fichierso Lo 63
7.6 Du respect des formats de données et de fichiers. 63
T.7 EXercices e 63
8 Dictionnaires et tuples 66
8.1 Dictionnaires L e 66
8.2 Tuples . . . e 70
8.3 EXercices 73
9 Modules 76
9.1 Définition e 76
9.2 Importation de modules L 76
9.3 Obtenir de l'aide sur les modules importés 78
9.4 Quelques modules courants 79
9.5 Module random : génération de nombres aléatoires L 80
9.6 Module sys : passage d'arguments 81
9.7 Module pathlib : gestion des fichiers et des répertoires 83

Cours de Python / Université Paris Cité / UFR Sciences du Vivant 3

Table des matieres Table des matieres

0.8 EXercices e e 84
10 Fonctions 88
10.1 Principe et généralités e 38
10.2 Définition L 89
10.3 Passage d'arguments L 90
10.4 Renvoi de résultats L 90
10.5 Arguments positionnels et arguments par mot-clé Lo 91
10.6 Variables locales et variables globales 93
10.7 Principe DRY o e 97
10.8 EXErcices o o o e 97
11 Plus sur les chaines de caractéres 102
11.1 Préambule 102
11.2 Chalnes de caractéres et listes e 102
11.3 Caracteres spéciaux v i e 103
11.4 Préfixe de chalne de caractéres 103
11.5 Méthodes associées aux chaines de caractéres 105
11.6 Extraction de valeurs numériques d'une chaine de caractéres 107
11.7 Fonction map () o 107
11.8 Test d'appartenance e 108
11.9 Conversion d'une liste de chaines de caractéres en une chaine de caractéres 108
11.10Method chaining 109
T1.11EXErciCes o o 110
12 Plus sur les listes 116
12.1 Méthodes associées aux listes 116
12.2 Construction d'une liste par itération 119
12.3 Test d'appartenance e 119
12.4 Fonction Zzip () . . . o o e 119
12,5 Copiede listes e 121
12.6 Initialisation d'une liste de listes L 122
12.7 Liste de compréhension L e 123
12.8 Tris puissants de listes L 125
12.9 EXerciCes e 126
13 Plus sur les fonctions 129
13.1 Appel d'une fonction dans une fonction 129
13.2 Fonctions récursives L 130
13.3 Portée des variables o 132
13.4 Portée des listes L 133
13.5 Regle LGl o e 134
13.6 Recommandations L e 135
13.7 EXercices 136
14 Conteneurs 138
14.1 Généralités e 138
14.2 Plus sur les dictionnaires L 141
14.3 Plus sur les tuples e 144
14.4 Sets et frozensets e 148
14.5 Récapitulation des propriétés des conteneurs 151
14.6 Dictionnaires et sets de compréhension 152
14.7 Module collections 153
14.8 EXercices e 154

Cours de Python / Université Paris Cité / UFR Sciences du Vivant

Table des matiéres

15 Création de modules 158
15.1 Pourquoi créer ses propres modules? L 158
15.2 Création d'un module L e 158
15.3 Utilisation de son propre module 159
15.4 Les docCStrings 159
15.5 Visibilité des fonctions dansun module 160
15.6 Module ou script? e 161
15.7 Exercice e 162

16 Bonnes pratiques en programmation Python 163
16.1 De la bonne syntaxe avec la PEP 8 164
16.2 Les docstrings et la PEP 257 L 168
16.3 Outils de contréle qualité du code 169
16.4 Outil de formatage automatique du code 171
16.5 Organisation du code L 172
16.6 Conseils sur la conception d'un script 173
16.7 Pour terminer : la PEP 20 174

17 Expressions réguliéres et parsing 176
17.1 Définition et syntaxe L 176
17.2 Quelques ressources en ligne L 178
173 Lemodule re. e 178
174 EXErciCes o i e 181

18 Jupyter et ses notebooks 184
18.1 Installation e 184
18.2 JupyterLab e 184
18.3 Création d'un notebook L 185
18.4 Le format Markdown e 188
18.5 Des graphiques dans les notebooks L 188
18.6 Les magic commands 189
18.7 Lancement d'une commande Unix e 191

19 Module Biopython 194
19.1 Installation et convention L L 194
19.2 Chargement du module L L 194
19.3 Manipulation de séquences e 195
19.4 Interrogation de la base de données PubMedo Lo 195
19.5 Exercices 198

20 Module NumPy 201
20.1 Installation et convention e e 201
20.2 Chargement du module L 201
20.3 Objets de type array e 201
20.4 Construction automatique de matrices 212
20.5 Chargement d'un array depuis un fichier 213
20.6 Concaténation d'arrays 214
20.7 Un peu d'algebre linéaire 215
20.8 Parcours de matrice et affectation de lignes et colonnes L. 217
20.9 Masques booléens L L 218
20.10Quelques conseils L L L 221
20.11EXercices o e e e 222

Cours de Python / Université Paris Cité / UFR Sciences du Vivant

Table des matieres

Table des matieres Table des matieres

21 Module Matplotlib 226
21.1 Installation et convention L L 226
21.2 Chargement du module L 226
21.3 Représentation en nuage de points L 226
21.4 Représentation sous forme de courbe L 228
21.5 Représentation en diagramme en batons L 231

22 Module Pandas 233
22.1 Installation et convention L 233
22.2 Chargement du module L 233
22.3 Series e 234
22.4 Dataframes e e 235
22.5 Un exemple plus concret avec les kinases L 242
22.6 EXerciceso e 252

23 Avoir la classe avec les objets 254
23.1 Construction d'une classe e 255
23.2 EXErciCes e 263

24 Avoir plus la classe avec les objets 264
24.1 Espace de NOMS L e 264
24.2 Polymorphisme. e 268
24.3 Héritage e 270
24.4 Composition L 277
24.5 Différence entre les attributs de classe et d'instanceo oL 279
24.6 Acces et modifications des attributs depuis I'extérieur L 283
24.7 Bonnes pratiques pour construire et manipuler sesclasses L. 290
24.8 Note finale de sémantique L L 296
249 EXErCiCeS o . o 297

25 Fenétres graphiques et Tkinter 300
25.1 Utilité d'une GUL L o o 300
25.2 Quelques concepts liés a la programmation graphique oL 301
25.3 Notion de fonction callback e 302
25.4 Prise en main du module Tkinter 303
25.5 Construire une application Tkinter avec une classe 305
25.6 Le widget canvas e e e 306
25.7 Pour aller plus loin L 312
25.8 EXercices e 317

26 Remarques complémentaires 320
26.1 Différences Python 2 et Python 3. 320
26.2 Anciennes méthodes de formatage des chaines de caractéres 322
26.3 Fonctions lambda L 324
26.4 ltérables, itérateurs, générateurs et module itertools Lo L L 328
26.5 Gestion des exceptions 338
26.6 Shebang et /usr/bin/env python3 341
26.7 Passage d'arguments avec *args et **Kwargs 342
26.8 Décorateurs e 344
26.9 Un peu de transformée de Fourier avec NumPy 347
26.10Sauvegardez votre historique de commandes Lo 348

Cours de Python / Université Paris Cité / UFR Sciences du Vivant

Table des matiéres Table des matieres

27 Mini-projets 349
27.1 Description des projets L L 349
27.2 Accompagnement Pas @ PaS e e e e e e e e e e e e 351
27.3 Scripts de correction L. e 365

A Quelques formats de données en biologie 366
AL FASTA e 366
A2 GenBank 368
A3 PDB . . 370
A4 Format XML, CSV et TSV 376

B Installation de Python 383
B.1 Que recommande-t-on pour l'installation de Python? 383
B.2 Installation de Python avec Miniconda 384
B.3 Utilisation de conda pour installer des modules complémentaires 392
B.4 Choisir un bon éditeur de texte L. 396
B.5 Comment se mettre dans le bon répertoire dans le shell 399
B.6 Python web et mobile 400

Cours de Python / Université Paris Cité / UFR Sciences du Vivant 7

Avant-propos

Quelques mots sur I'origine de ce cours

Ce cours, développé par Patrick Fuchs et Pierre Poulain, a été concu a l'origine pour les étudiants débutants en
programmation Python des filieres de biologie et de biochimie de I'université Paris Diderot - Paris 7, devenue Université
Paris Cité ! ; et plus spécialement pour les étudiants du master Biologie Informatique.

Si vous relevez des erreurs a la lecture de ce document, merci de nous les signaler.

Le cours est disponible en version HTML? et PDF 3.

Remerciements

Merci a tous les contributeurs, occasionnels ou réguliers, entre autre : Jennifer Becq, Benoist Laurent, Hubert Santuz,
Virginie Martiny, Romain Laurent, Benjamin Boyer, Jonathan Barnoud, Amélie Bacle, Thibault Tubiana, Romain Retu-
reau, Catherine Lesourd, Philippe Label, Rémi Cuchillo, Cédric Gageat, Philibert Malbranche, Mikaél Naveau, Alexandra
Moine-Franel, Dominique Tinel, et plus généralement les promotions des masters de biologie informatique et in silico
drug design, ainsi que du dipldme universitaire en bioinformatique intégrative.

Nous remercions tout particulierement Sander Nabuurs pour la premiére version de ce cours remontant a 2003, Denis
Mestivier pour les idées de certains exercices et Philip Guo pour son site Python Tutor®.

Enfin, merci a vous tous, les curieux de Python, qui avez été nombreux a nous envoyer des retours sur ce cours, a nous
suggérer des améliorations et a nous signaler des coquilles. Cela rend le cours vivant et dynamique, continuez comme ca !

De nombreuses personnes nous ont aussi demandé les corrections des exercices. Nous ne les mettons pas sur le site
afin d'éviter la tentation de les regarder trop vite, mais vous pouvez nous écrire et nous vous les enverrons.

Le livre

Ce cours est également publié aux éditions Dunod sous le titre « Programmation en Python pour les sciences de la
vie® ». Le livre en est a sa 2e édition, vous pouvez vous le procurer dans toutes les bonnes librairies.

Afin de promouvoir le partage des connaissances et le logiciel libre, nos droits d’auteurs provenant de la vente de cet
ouvrage sont reversés a deux associations : Wikimédia France® qui s'occupe notamment de I'encyclopédie libre Wikipédia

https://www.u-paris.fr/

https://python.sdv.u-paris.fr/index.html
https://python.sdv.u-paris.fr/cours-python.pdf

http://pythontutor.com/
https://www.dunod.com/sciences-techniques/programmation-en-python-pour-sciences-vie-0
https://www.wikimedia.fr/

oL

https://www.u-paris.fr/
https://python.sdv.u-paris.fr/index.html
https://python.sdv.u-paris.fr/cours-python.pdf
http://pythontutor.com/
https://www.dunod.com/sciences-techniques/programmation-en-python-pour-sciences-vie-0
https://www.wikimedia.fr/

Table des matiéres Table des matieres

LICENCE 3 | MASTER | ECOLES D'INGENIEURS

Patrick Fuchs, Pierre Poulain

Programmation
en Python pour les
sciences de la vie

DUNOD

FIGURE 1 — Couverture livre Dunod, 2e édition.

et NumFOCUS " qui soutient le développement de logiciels libres scientifiques et notamment I'écosystéme scientifique

autour de Python.

7. https://numfocus.org/

Cours de Python / Université Paris Cité / UFR Sciences du Vivant

https://numfocus.org/

CHAPITRE 1

Introduction

1.1

Qu’est-ce que Python?

Le langage de programmation Python a été créé en 1989 par Guido van Rossum, aux Pays-Bas. Le nom Python
vient d'un hommage a la série télévisée Monty Python's Flying Circus dont G. van Rossum est fan. La premiére version
publique de ce langage a été publiée en 1991.

La derniére version de Python est la version 3. Plus précisément, la version 3.11 a été publiée en octobre 2022. La
version 2 de Python est obsoléte et n'est plus maintenue, ne |'utilisez pas.

La Python Software Foundation® est |'association qui organise le développement de Python et anime la communauté
de développeurs et d'utilisateurs.

Ce langage de programmation présente de nombreuses caractéristiques intéressantes :

Il est multiplateforme. C’est-a-dire qu'il fonctionne sur de nombreux systémes d’exploitation : Windows, Mac OS
X, Linux, Android, iOS, depuis les mini-ordinateurs Raspberry Pi jusqu'aux supercalculateurs.
[l est gratuit. Vous pouvez l'installer sur autant d’ordinateurs que vous voulez (méme sur votre téléphone!).

e (C'est un langage de haut niveau. Il demande relativement peu de connaissance sur le fonctionnement d'un ordinateur

pour étre utilisé.

C'est un langage interprété. Un script Python n'a pas besoin d'étre compilé pour étre exécuté, contrairement a des
langages comme le C ou le C++.

Il est orienté objet. C'est-a-dire qu'il est possible de concevoir en Python des entités qui miment celles du monde
réel (une molécule d'’ADN, une protéine, un atome, etc.) avec un certain nombre de régles de fonctionnement et
d'interactions.

Il est relativement simple 3 prendre en main 2.
C'est le langage de programmation le plus utilisé au monde (voir les classements TIOBE ® et IEEE Spectrum #).
Enfin, il est trés utilisé en bioinformatique, chimie-informatique et plus généralement en analyse de données.

Toutes ces caractéristiques font que Python est désormais enseigné dans de nombreuses formations, du lycée a
I’enseignement supérieur.

Ao

https://www.python.org/psf/

Nous sommes d’'accord, cette notion est trés relative.
https://www.tiobe.com/tiobe-1index/
https://spectrum.ieee.org/the-top-programming-languages-2023

10

https://www.python.org/psf/
https://www.tiobe.com/tiobe-index/
https://spectrum.ieee.org/the-top-programming-languages-2023

1.2. Conseils pour I'apprentissage de Python Chapitre 1. Introduction

1.2 Conseils pour I'apprentissage de Python

Comme tout apprentissage, apprendre la programmation Python prend du temps et nécessite de pratiquer. Contrai-
rement a d'autres activités scientifiques expérimentales (biologie moléculaire, chimie organique, électronique, etc.), pro-
grammer en Python ne nécessite pas de matériel ou de réactifs coliteux, juste un ordinateur et une connexion internet.
Par ailleurs, Python est un programme informatique qui par définition ne se fatigue pas, est patient et toujours disponible.
N'hésitez donc pas a pratiquer, pratiquer et pratiquer encore.

1.3 Conseils pour installer et configurer Python

Pour pratiquer la programmation Python, il est préférable que Python soit installé sur votre ordinateur. La bonne
nouvelle est que vous pouvez installer gratuitement Python sur votre machine, que ce soit sous Windows, Mac OS X ou
Linux. Nous donnons ici un résumé des points importants concernant cette installation. La marche a suivre pas-a-pas est
détaillée a I'adresse https://python.sdv.u-paris.fr/ dans la rubrique B. Installation de Python.

1.3.1 Python 2 ou Python 37

Ce cours est basé sur la version 3 de Python, qui est la version standard.

Si, néanmoins, vous deviez un jour travailler sur un ancien programme écrit en Python 2, sachez qu'il existe des
différences importantes entre Python 2 et Python 3. Le chapitre 26 Remarques complémentaires (en ligne) vous apportera
plus de précisions.

1.3.2 Miniconda

Nous vous conseillons d’installer Miniconda®, logiciel gratuit, disponible pour Windows, Mac OS X et Linux, et qui
installera pour vous Python 3.

Avec le gestionnaire de paquets conda, fourni avec Miniconda, vous pourrez installer des modules supplémentaires
qui sont trés utiles en bioinformatique (NumPy, scipy, matplotlib, pandas, Biopython), mais également Jupyter Lab qui
vous permettra d’éditer des notebooks Jupyter. Vous trouverez en ligne® une documentation pas-a-pas pour installer
Miniconda, Python 3 et les modules supplémentaires qui seront utilisés dans ce cours.

1.3.3 Editeur de texte

L'apprentissage d'un langage informatique comme Python va nécessiter d'écrire des lignes de codes a I'aide d’un
éditeur de texte. Si vous étes débutants, on vous conseille d'utiliser notepad++ sous Windows, BBEdit ou CotEditor
sous Mac OS X et gedit sous Linux. La configuration de ces éditeurs de texte est détaillée dans la rubrique Installation de
Python disponible en ligne. Bien siir, si vous préférez d’autres éditeurs comme Visual Studio Code, Sublime Text, emacs,
vim, geany... utilisez-les!

A toute fin utile, on rappelle que les logiciels Microsoft Word, WordPad et LibreOffice Writer ne sont pas des
éditeurs de texte, ce sont des traitements de texte qui ne peuvent pas et ne doivent pas étre utilisés pour écrire du code
informatique.

1.4 Notations utilisées

Dans cet ouvrage, les commandes, les instructions Python, les résultats et les contenus de fichiers sont indiqués avec
cette police pour les éléments ponctuels ou
sous cette forme,

sur plusieurs lignes,
pour les éléments les plus longs.

Pour ces derniers, le numéro a gauche indique le numéro de la ligne et sera utilisé pour faire référence a une instruction
particuliere. Ce numéro n'est bien siir [a qu'a titre indicatif.

Par ailleurs, dans le cas de programmes, de contenus de fichiers ou de résultats trop longs pour étre inclus dans leur
intégralité, la notation [...] indique une coupure arbitraire de plusieurs caractéres ou lignes.

5. https://conda.io/miniconda.html
6. https://python.sdv.u-paris.fr/livre-dunod

Cours de Python / Université Paris Cité / UFR Sciences du Vivant

11

https://python.sdv.u-paris.fr/
https://conda.io/miniconda.html
https://python.sdv.u-paris.fr/livre-dunod

Chapitre 1. Introduction 1.5. Introduction au shell

12

1.5 Introduction au shell

Un shell est un interpréteur de commandes interactif permettant d’interagir avec I'ordinateur. On utilisera le shell
pour lancer I'interpréteur Python.

Pour approfondir la notion de shell, vous pouvez consulter les pages Wikipedia :

e du shell Unix’ fonctionnant sous Mac OS X et Linux;

e du shell PowerShell & fonctionnant sous Windows.

Un shell posséde toujours une invite de commande, c'est-a-dire un message qui s'affiche avant I'endroit ou on entre
des commandes. Dans tout cet ouvrage, cette invite est représentée par convention par le symbole dollar $ (qui n'a rien
a avoir ici avec la monnaie), et ce quel que soit le systéme d’exploitation.

Par exemple, si on vous demande de lancer I'instruction suivante :

$ python

il faudra taper seulement python sans le $ ni I'espace apres le $.

1.6 Premier contact avec Python

Python est un langage interprété, c'est-a-dire que chaque ligne de code est lue puis interprétée afin d'étre exécutée
par I'ordinateur. Pour vous en rendre compte, ouvrez un shell puis lancez la commande :

python

La commande précédente va lancer l'interpréteur Python. Vous devriez obtenir quelque chose de ce style pour
Windows :

PS C:\Users\pierre>python

Python 3.12.2 | packaged by Anaconda, Inc. | (main, Feb 27 2024, 17:28:07) [MSC v.1916 64 bit (AMD64)] on
win32

Type "help", "copyright", "credits" or "license" for more information.

>>>

pour Mac OS X :

iMac-de-pierre:Downloads$ python

Python 3.12.2 | packaged by Anaconda, Inc. | (main, Feb 27 2024, 12:57:28) [Clang 14.0.6] on darwin
Type "help", "copyright", "credits" or "license" for more information.
>>>

ou pour Linux :

pierre@jeera:~$ python

Python 3.12.2 | packaged by conda-forge | (main, Feb 16 2024, 20:50:58) [GCC 12.3.0] on linux
Type "help", "copyright", "credits" or "license" for more information.

>>>

Les blocs

e PS C:\Users\pierre> pour Windows,

e iMac-de-pierre:Downloads$ pour Mac OS X,

e pierre@jeera:~$ pour Linux.

représentent |'invite de commande de votre shell. |l se peut que vous ayez aussi le mot (base) qui indique que vous
avez un environnement conda activé. Par la suite, cette invite de commande sera représentée simplement par le caractere
$, que vous soyez sous Windows, Mac OS X ou Linux.

Le triple chevron >>> est I'invite de commande (prompt en anglais) de l'interpréteur Python. Ici, Python attend une
commande que vous devez saisir au clavier. Tapez par exemple I'instruction :

print("Hello world!")

puis, validez cette commande en appuyant sur la touche Entrée.

Python a exécuté la commande directement et a affiché le texte Hello world!. Il attend ensuite une nouvelle
instruction en affichant l'invite de I'interpréteur Python (>>>). En résumé, voici ce qui a d{i apparaftre sur votre écran :

7. https://fr.wikipedia.org/wiki/Shell_Unix
8. https://fr.wikipedia.org/wiki/Windows_PowerShell

Cours de Python / Université Paris Cité / UFR Sciences du Vivant

https://fr.wikipedia.org/wiki/Shell_Unix
https://fr.wikipedia.org/wiki/Windows_PowerShell

1.7. Premier programme Chapitre 1. Introduction

>>> print("Hello world!")
Hello world!
>>>

Vous pouvez refaire un nouvel essai en vous servant cette fois de I'interpréteur comme d’une calculatrice :

>>> 1+1
2
>>> 6%3
18

A ce stade, vous pouvez entrer une autre commande ou bien quitter I'interpréteur Python, soit en tapant la commande
exit() puis en validant en appuyant sur la touche Entrée, soit en pressant simultanément les touches Ctrl et D sous
Linux et Mac OS X ou Ctrl et Z puis Entrée sous Windows.

En résumant, I'interpréteur fonctionne sur le modele :

>>> qdnstruction python
résultat

ol le triple chevron correspond a I'entrée (input) que |'utilisateur tape au clavier, et I'absence de chevron en début
de ligne correspond a la sortie (output) générée par Python. Une exception se présente toutefois : lorsqu’on a une longue
ligne de code, on peut la couper en deux avec le caractére \ (backslash) pour des raisons de lisibilité :

>>> Voici une longue ligne de code \

. décrite sur deux lignes
résultat

En ligne 1 on a rentré la premiére partie de la ligne de code. On termine par un \, ainsi Python sait que la ligne de
code n’est pas finie. L'interpréteur nous l'indique avec les trois points En ligne 2, on rentre la fin de la ligne de code
puis on appuie sur Entrée. A ce moment, Python nous génére le résultat. Si la ligne de code est vraiment trés longue, il
est méme possible de la découper en trois voire plus :

>>> Voici une ligne de code qui \
. est vraiment trés longue car \

. elle est découpée sur trois lignes
résultat

L'interpréteur Python est donc un systéme interactif dans lequel vous pouvez entrer des commandes, que Python
exécutera sous vos yeux (au moment oll vous validerez la commande en appuyant sur la touche Entrée).

Il existe de nombreux autres langages interprétés comme Perl® ou R19. Le gros avantage de ce type de langage est
qu’on peut immédiatement tester une commande a I'aide de I'interpréteur, ce qui est trés utile pour débugger (c’est-a-dire
trouver et corriger les éventuelles erreurs d'un programme). Gardez bien en mémoire cette propriété de Python qui pourra
parfois vous faire gagner un temps précieux !

1.7 Premier programme

Bien siir, I'interpréteur présente vite des limites dés lors que I'on veut exécuter une suite d'instructions plus complexe.
Comme tout langage informatique, on peut enregistrer ces instructions dans un fichier, que I'on appelle communément
un script (ou programme) Python.

Pour reprendre I'exemple précédent, ouvrez un éditeur de texte (pour choisir et configurer un éditeur de texte,
reportez-vous si nécessaire 3 la rubrique Installation de Python en ligne!!) et entrez le code suivant :

print("Hello world!™")

Ensuite, enregistrez votre fichier sous le nom test.py, puis quittez |'éditeur de texte.

Remarque
L'extension de fichier standard des scripts Python est .py.

9. http://www.perl.org
10. http://www.r-project.org
11. https://python.sdv.u-paris.fr/livre-dunod

Cours de Python / Université Paris Cité / UFR Sciences du Vivant

13

http://www.perl.org
http://www.r-project.org
https://python.sdv.u-paris.fr/livre-dunod

Chapitre 1. Introduction 1.8. Commentaires

14

Pour exécuter votre script, ouvrez un shell et entrez la commande : python test.py
Vous devriez obtenir un résultat similaire a ceci :

$ python test.py
Hello world!

Si c'est bien le cas, bravo! Vous avez exécuté votre premier programme Python.

1.8 Commentaires

Dans un script, tout ce qui suit le caractére # est ignoré par Python jusqu'a la fin de la ligne et est considéré comme
un commentaire.

Les commentaires doivent expliquer votre code dans un langage humain. L'utilisation des commentaires est discutée
en détail dans le chapitre 16 Bonnes pratiques en programmation Python.

Voici un exemple :

Votre premier commentaire en Python.
print("Hello world!")

D'autres commandes plus utiles pourraient suivre.

Remarque
On appelle souvent 2 tort le caractére # « diése ». On devrait plutdt parler de « croisillon 12 ».

1.9 Notion de bloc d’instructions et d’indentation

En programmation, il est courant de répéter un certain nombre de choses (avec les boucles, voir le chapitre 5 Boucles
et comparaisons) ou d'exécuter plusieurs instructions si une condition est vraie (avec les tests, voir le chapitre 6 Tests).
Par exemple, imaginons que nous souhaitions afficher chacune des bases d'une séquence d’ADN, les compter puis
afficher le nombre total de bases a la fin. Nous pourrions utiliser I'algorithme présenté en pseudo-code dans la figure 1.1.

taille <= 0

séquence <- "ATCCGACTG"

pour chaque base dans séquence:
afficher (base)
taille <- taille + 1
afficher (taille) \

bloc d’instructions

indentation

FIGURE 1.1 — Notion d'indentation et de bloc d’instructions.

Pour chaque base de la séquence ATCCGACTG, nous souhaitons effectuer deux actions : d'abord afficher la base
puis compter une base de plus. Pour indiquer cela, on décalera vers la droite ces deux instructions par rapport a la
ligne précédente (pour chaque base [...]). Ce décalage est appelé indentation et I'ensemble des lignes indentées
constitue un bloc d’instructions.

Une fois qu’'on aura réalisé ces deux actions sur chaque base, on pourra passer a la suite, c'est-a-dire afficher la taille
de la séquence. Pour bien préciser que cet affichage se fait a la fin, donc une fois I'affichage puis le comptage de chaque
base terminés, la ligne correspondante n'est pas indentée (c’'est-a-dire qu'elle n'est pas décalée vers la droite).

12. https://fr.wikipedia.org/wiki/Croisillon_(signe)

Cours de Python / Université Paris Cité / UFR Sciences du Vivant

https://fr.wikipedia.org/wiki/Croisillon_(signe)

1.10. Autres ressources Chapitre 1. Introduction

Pratiquement, I'indentation en Python doit &tre homogene (soit des espaces, soit des tabulations, mais pas un mélange
des deux). Une indentation avec 4 espaces est le style d'indentation recommandé (voir le chapitre 16 Bonnes pratiques
en programmation Python).

Si tout cela semble un peu complexe, ne vous inquiétez pas. Vous allez comprendre tous ces détails chapitre aprés
chapitre.

1.10 Autres ressources

Pour compléter votre apprentissage de Python, n'hésitez pas a consulter d'autres ressources complémentaires a cet
ouvrage. D’autres auteurs abordent I'apprentissage de Python d’une autre maniére. Nous vous conseillons les ressources
suivantes en langue francaise :

e Le livre Apprendre & programmer avec Python 3 de Gérard Swinnen. Cet ouvrage est téléchargeable gratuitement

sur le site de Gérard Swinnen 3. Les éditions Eyrolles proposent également la version papier de cet ouvrage.

e Le livre Apprendre a programmer en Python avec PyZo et Jupyter Notebook de Bob Cordeau et Laurent Pointal,
publié aux éditions Dunod. Une partie de cet ouvrage est téléchargeable gratuitement sur le site de Laurent
Pointal 1.

e Le livre Apprenez a programmer en Python de Vincent Legof|

Et pour terminer, une ressource incontournable en langue anglaise :

e Le site www.python.org'®. Il contient énormément d'informations et de liens sur Python. La page d’'index des
modules 1" est particuliérement utile (et traduite en francais).

f15 que vous trouverez sur le site Openclassroms.

13. http://www.inforef.be/swi/python.htm

14. https://perso.limsi.fr/pointal/python:courspython3

15. https://openclassrooms.com/fr/courses/235344-apprenez-a-programmer-en-python
16. http://www.python.org

17. https://docs.python.org/fr/3/py-modindex.html

Cours de Python / Université Paris Cité / UFR Sciences du Vivant

15

http://www.inforef.be/swi/python.htm
https://perso.limsi.fr/pointal/python:courspython3
https://openclassrooms.com/fr/courses/235344-apprenez-a-programmer-en-python
http://www.python.org
https://docs.python.org/fr/3/py-modindex.html

CHAPITRE 2

Variables

2.1 Définition et création

Définition

Une variable est une zone de la mémoire de |'ordinateur dans laquelle une valeur est stockée. Aux yeux du program-
meur, cette variable est définie par un nom, alors que pour |'ordinateur, il s’agit en fait d’'une adresse, c'est-a-dire d'une
zone particuliere de la mémoire.

En Python, la déclaration d'une variable et son initialisation (c'est-a-dire la premiére valeur que I'on va stocker
dedans) se font en méme temps. Pour vous en convaincre, testez les instructions suivantes aprés avoir lancé I'interpréteur :
>>> x = 2

>>> X
2

Ligne 1. Dans cet exemple, nous avons déclaré, puis initialisé la variable x avec la valeur 2. Notez bien qu'en réalité,
il s'est passé plusieurs choses :

e Python a « deviné » que la variable était un entier. On dit que Python est un langage au typage dynamique.

e Python a alloué (réservé) |'espace en mémoire pour y accueillir un entier. Chaque type de variable prend plus ou
moins d’espace en mémoire. Python a aussi fait en sorte qu'on puisse retrouver la variable sous le nom x.

e Enfin, Python a assigné la valeur 2 a la variable x.

Dans d'autres langages (en C par exemple), il faut coder ces différentes étapes une par une. Python étant un langage
dit de haut niveau, la simple instruction x = 2 a suffi a réaliser les trois étapes en une fois!

Lignes 2 et 3. L'interpréteur nous a permis de connaitre le contenu de la variable juste en tapant son nom. Retenez
ceci, car c'est une spécificité de I'interpréteur Python, trés pratique pour chasser (debugger) les erreurs dans un
programme. En revanche, la ligne d'un script Python qui contient seulement le nom d’une variable (sans aucune autre
indication) n'affichera pas la valeur de la variable a I'écran lors de |'exécution (pour autant, cette instruction reste valide
et ne générera pas d'erreur).

Depuis la version 3.10, l'interpréteur Python a amélioré ses messages d'erreur. Il est ainsi capable de suggérer des
noms de variables existants lorsqu’on fait une faute de frappe :

16

2.2. Les types de variables Chapitre 2. Variables

>>> voyelles = "aeiouy"
>>> voyelle
Traceback (most recent call last):
File "<stdin>", 1line 1, in <module>
NameError: name 'voyelle' is not defined. Did you mean: 'voyelles'?

Si le mot qu’on tape n'est pas treés éloigné, cela fonctionne également lorsqu’on se trompe a différents endroits du
mot !
pharmacie = "vente de médicaments"
>>> farmacia
Traceback (most recent call last):
File "<stdin>", 1line 1, in <module>
NameError: name 'farmacia' 1is not defined. Did you mean: 'pharmacie'?

Revenons sur le signe = ci-dessus.

Définition

Le symbole = est appelé opérateur d’affectation. |l permet d'assigner une valeur a une variable en Python. Cet
opérateur s'utilise toujours de la droite vers la gauche. Par exemple, dans l'instruction x = 2 ci-dessus, Python attribue
la valeur située a droite (ici, 2) a la variable située a gauche (ici, x). D'autres langages de programmation comme R
utilisent les symboles <~ pour rendre I'affectation d’une variable plus explicite, par exemple x <- 2.

Voici d’autres cas de figures que vous rencontrerez avec |'opérateur = :

>>> x = 2
>>> y = x
>>> y
2

>>> X
>>> x
8

1l
(6]
|
N

Ligne 2. Ici on a un nom de variable a gauche et a droite de I'opérateur =. Dans ce cas, on garde la regle d'aller
toujours de la droite vers la gauche. C'est donc le contenu de la variable y qui est affecté a la variable x.

Ligne 5. Comme on le verra plus bas, si on a a droite de I'opérateur = une expression, ici la soustraction 4 - 2, celle-ci
est d'abord évaluée et c'est le résultat de cette opération qui sera affecté a la variable x. On pourra noter également que
la valeur de x précédente (2) a été écrasée.

Attention
L'opérateur d'affectation = écrase systématiquement la valeur de la variable située a sa gauche si celle-ci existe déja.

2.2 Les types de variables

Définition

Le type d'une variable correspond a la nature de celle-ci. Les trois principaux types dont nous aurons besoin dans
un premier temps sont les entiers (integer ou int), les nombres décimaux que nous appellerons floats et les chaines de
caracteres (string ou str).

Bien siir, il existe de nombreux autres types (par exemple, les booléens, les nombres complexes, etc.). Si vous n'étes
pas effrayés, vous pouvez vous en rendre compte ici '

1. https://docs.python.org/fr/3.12/library/stdtypes.html

Cours de Python / Université Paris Cité / UFR Sciences du Vivant 17

https://docs.python.org/fr/3.12/library/stdtypes.html

Chapitre 2. Variables 2.3. Nommage

18

Dans I'exemple précédent, nous avons stocké un nombre entier (int) dans la variable x, mais il est tout a fait possible
de stocker des floats, des chaines de caractéres (string ou str) ou de nombreux autres types de variables que nous verrons
par la suite :

>>> y = 3.14
>>>y

3.14

>>> a = "bonjour"
>>> a

'bonjour’

>>> b = 'salut'
>>> b

'salut’

>>> ¢ =

>>> ¢

'girafe’

>>> d =

>>> d

'lion'

Remarque

Python reconnait certains types de variables automatiquement (entier, float). Par contre, pour une chaine de carac-
téres, il faut I'entourer de guillemets (doubles, simples, voire trois guillemets successifs doubles ou simples) afin d'indiquer
a Python le début et la fin de la chaine de caracteéres.

Dans l'interpréteur, I'affichage direct du contenu d'une chaine de caractéres se fait avec des guillemets simples, quel
que soit le type de guillemets utilisé pour définir la chaine de caracteéres.

En Python, comme dans la plupart des langages de programmation, c'est le point qui est utilisé comme séparateur
décimal. Ainsi, 3.14 est un nombre reconnu comme un float en Python alors que ce n'est pas le cas de 3, 14.

Il existe également des variables de type booléen. Un booléen? est une variable qui ne prend que deux valeurs : Vrai

ou Faux. En python, on utilise pour cela les deux mots réservés True et False :

>>> var = True

>>> var2 = False

>>> var

True

>>> var2

False

Nous verrons |'utilité des booléens dans les chapitres 5 Boucles et 6 Tests.

2.3 Nommage

Le nom des variables en Python peut étre constitué de lettres minuscules (a a z), de lettres majuscules (A a Z), de
nombres (0 a 9) ou du caractére souligné (_). Vous ne pouvez pas utiliser d'espace dans un nom de variable.

Par ailleurs, un nom de variable ne doit pas débuter par un chiffre et il n'est pas recommandé de le faire débuter par
le caractere _ (sauf cas tres particuliers).

De plus, il faut absolument éviter d'utiliser un mot « réservé » par Python comme nom de variable (par exemple :
print, range, for, from, etc.).

Dans la mesure du possible, il est conseillé de mettre des noms de variables explicites. Sauf dans de rares cas que
nous expliquerons plus tard dans le cours, évitez les noms de variables a une lettre.

Enfin, Python est sensible a la casse, ce qui signifie que les variables TesT, test et TEST sont différentes.

2.4 Ecriture scientifique

On peut écrire des nombres trés grands ou trés petits avec des puissances de 10 en utilisant le symbole e :

2. https://fr.wikipedia.org/wiki/Bool%C3%A9en

Cours de Python / Université Paris Cité / UFR Sciences du Vivant

https://fr.wikipedia.org/wiki/Bool%C3%A9en

2.5. Opérations Chapitre 2. Variables

>>> le6
1000000.0
>>> 3.12e-3
0.00312

On appelle cela écriture ou notation scientifique. On pourra noter deux choses importantes :

e 1e6 ou 3.12e-3 n'implique pas I'utilisation du nombre exponentiel e, mais signifie 1 x 10° ou 3.12 x 103 respec-

tivement ;

e méme si on ne met que des entiers 3 gauche et a droite du symbole e (comme dans 1e6), Python génére systéma-

tiquement un float.

Enfin, vous avez sans doute constaté qu'il est parfois pénible d'écrire des nombres composés de beaucoup de chiffres,
par exemple le nombre d’Avogradro 6.02214076 x 10%* ou le nombre d’humains sur Terre 3 8094752749 au 5 mars 2024
a 19h34. Pour s'y retrouver, Python autorise I'utilisation du caractére « souligné » (ou underscore) _ pour séparer des
groupes de chiffres. Par exemple :

>>> avogadro_number = 6.022_140_76e23
>>> print(avogadro_number)
6.02214076e+23

>>> humans_on_earth = 8_094_752_749
>>> print(humans_on_earth)

8094752749

Dans ces exemples, le caractére _ (underscore ou « souligné ») est utilisé pour séparer des groupes de trois chiffres,
mais on peut faire ce qu’'on veut :

>>> print(80_94_7527_49)
8094752749

2.5 Opérations

2.56.1 Opérations sur les types numériques

Les quatre opérations arithmétiques de base se font de maniére simple sur les types numériques (nombres entiers et
floats) :

>>> x = 45
>>> x + 2
47
>>> x - 2
43
>>> x x 3
135
>>> y
>>> x -y

42.5

>>> (x x 10) + vy
452.5

]
N
(6)]

Remarquez toutefois que si vous mélangez les types entiers et floats, le résultat est renvoyé comme un float (car ce
type est plus général). Par ailleurs, I'utilisation de parenthéses permet de gérer les priorités.

L'opérateur / effectue une division. Contrairement aux opérateurs +, - et *, celui-ci renvoie systématiquement un
float :

>>> 3 / 4
0.75
>>> 2.5 / 2
1.25
>>> 6 / 3
2.0
>>> 10 / 2
5.0

3. https://thepopulationproject.org/

Cours de Python / Université Paris Cité / UFR Sciences du Vivant 19

https://thepopulationproject.org/

Chapitre 2. Variables 2.5. Opérations

L'opérateur puissance utilise les symboles *x :

>>> 2x%3
8
>>> 2%x4
16

Pour obtenir le quotient et le reste d’une division entiére (voir ici* pour un petit rappel sur la division entiére), on
utilise respectivement les symboles // et modulo % :

>>> 5 // 4
1

>>> % 4

1

>>> 8 // 4
2

>>> 8 % 4

0]

Les symboles +, -, x, /, xx, // et % sont appelés opérateurs, car ils réalisent des opérations sur les variables.

Enfin, il existe des opérateurs « combinés » qui effectue une opération et une affectation en une seule étape :

>>> 9 =0
>>> 4 = 9
>>> 4

1

>>> 4 += 1
>>> 9

2

>>> 4 += 2
>>> 9

4

+ 1

L'opérateur += effectue une addition puis affecte le résultat a la méme variable. Cette opération s'appelle une «
incrémentation ».
Les opérateurs -=, x= et /= se comportent de maniére similaire pour la soustraction, la multiplication et la division.

2.5.2 Opérations sur les chaines de caracteéres

Pour les chaines de caractéres, deux opérations sont possibles, I'addition et la multiplication :

>>> chaine = "Salut"
>>> chaine

'Salut’

>>> chaine + " Python"
'Salut Python'

>>> chaine * 3
'SalutSalutSalut'

L'opérateur d'addition + concaténe (assemble) deux chaines de caractéres. On parle de concaténation.
L'opérateur de multiplication % entre un nombre entier et une chaine de caractéres duplique (répéte) plusieurs fois
une chaine de caractéres. On parle de duplication.

Attention

Vous observez que les opérateurs + et x se comportent différemment s'il s'agit d'entiers ou de chaines de caracteres.
Ainsi, I'opération 2 + 2 est une addition alors que I'opération "2'" + "2" est une concaténation. On appelle ce compor-
tement redéfinition des opérateurs. Nous serons amenés a revoir cette notion dans le chapitre 24 Avoir plus la classe
avec les objets (en ligne).

4. https://fr.wikipedia.org/wiki/Division_euclidienne

20 Cours de Python / Université Paris Cité / UFR Sciences du Vivant

https://fr.wikipedia.org/wiki/Division_euclidienne

2.6. La fonction type() Chapitre 2. Variables

2.5.3 Opérations illicites

Attention a ne pas faire d'opération illicite, car vous obtiendriez un message d’erreur :

>>> "toto" * 1.3
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
TypeError: can't multiply sequence by non-int of type 'float'
>>> "toto" + 2
Traceback (most recent call last):
File "<stdin>", 1line 1, in <module>
TypeError: can only concatenate str (not "int") to str

Notez que Python vous donne des informations dans son message d’'erreur. Dans le second exemple, il indique que
vous devez utiliser une variable de type str, c’est-a-dire une chaine de caractéres et pas un int, c'est-a-dire un entier.

2.6 La fonction type()

Si vous ne vous souvenez plus du type d'une variable, utilisez la fonction type () qui vous le rappellera.

>>> x = 2

>>> type(x)
<class 'int'>
>>> y = 2.0
>>> type(y)
<class 'float'>
>>> z = '2!
>>> type(z)
<class 'str'>
>>> type(True)
<class 'bool'>

Nous verrons plus tard ce que signifie le mot class.

Attention

Pour Python, la valeur 2 (nombre entier) est différente de 2.0 (float) et est aussi différente de '2' (chaine de
caracteres).

2.7 Conversion de types

En programmation, on est souvent amené a convertir les types, c'est-a-dire passer d'un type numérique a une chaine
de caracteres ou vice-versa. En Python, rien de plus simple avec les fonctions int(), float() et str(). Pour vous en
convaincre, regardez ces exemples :

>>> 4 = 3

>>> str(d)
Y3l

>>> i = '456'
>>> dnt ()
456

>>> float (i)
456.0

>>> i = '3.1416'
>>> float(i)
3.1416

On verra au chapitre 7 Fichiers que ces conversions sont essentielles. En effet, lorsqu’on lit ou écrit des nombres dans
un fichier, ils sont considérés comme du texte, donc des chaines de caractéres.

Toute conversion d'une variable d’un type en un autre est appelé casting en anglais, il se peut que vous croisiez ce
terme si vous consultez d'autres ressources.

Cours de Python / Université Paris Cité / UFR Sciences du Vivant 21

Chapitre 2. Variables 2.8. Note sur le vocabulaire et la syntaxe

2.8 Note sur le vocabulaire et la syntaxe

Nous avons vu dans ce chapitre la notion de variable qui est commune a tous les langages de programmation.
Toutefois, Python est un langage dit « orienté objet », il se peut que dans la suite du cours, nous employions le mot
objet pour désigner une variable. Par exemple, « une variable de type entier » sera pour nous équivalent a « un objet de
type entier ». Nous verrons dans le chapitre 23 Avoir la classe avec les objets (en ligne) ce que le mot « objet » signifie
réellement (tout comme le mot « classe »).

Par ailleurs, nous avons rencontré plusieurs fois des fonctions dans ce chapitre, notamment avec type (), int(),
float() et str(). Dans le chapitre 1 Introduction, nous avons également vu la fonction print(). On reconnait qu'il
s'agit d'une fonction, car son nom est suivi de parenthéses (par exemple, type()). En Python, la syntaxe générale est
fonction().

Ce qui se trouve entre les parenthéses d'une fonction est appelé argument et c'est ce que I'on « passe » a la fonction.
Dans l'instruction type(2), c’est I'entier 2 qui est I'argument passé a la fonction type (). Pour l'instant, on retiendra
qu'une fonction est une sorte de boite a qui on passe un (ou plusieurs) argument(s), qui effectue une action et qui peut
renvoyer un résultat ou plus généralement un objet. Par exemple, la fonction type () renvoie le type de la variable qu'on
lui a passé en argument.

Si ces notions vous semblent obscures, ne vous inquiétez pas, au fur et 3 mesure que vous avancerez dans le cours,
tout deviendra limpide.

2.9 Minimum et maximum

Python propose les fonctions min() et max () qui renvoient respectivement le minimum et le maximum de plusieurs

entiers ou floats :

>>> min(1l, -2, 4)

-2

>>> pi = 3.14

>>> e = 2.71

>>> max(e, pi)

3.14

>>> max(1l, 2.4, -6)

2.4

Par rapport a la discussion de la rubrique précédente, min() et max () sont des exemples de fonctions prenant plusieurs

arguments. En Python, quand une fonction prend plusieurs arguments, on doit les séparer par une virgule. min() et max()
prennent en argument autant d’entiers et de floats que I'on veut, mais il en faut au moins deux.

2.10 Exercices

Conseil
Pour ces exercices, utilisez |'interpréteur Python.

2.10.1 Nombres de Friedman

Les nombres de Friedman® sont des nombres qui peuvent s'exprimer avec tous leurs chiffres dans une expression
mathématique.

Par exemple, 347 est un nombre de Friedman, car il peut s'écrire sous la forme 44 7°. De méme pour 127 qui peut
s'écrire sous la forme 27 — 1.

Déterminez si les expressions suivantes correspondent a des nombres de Friedman. Pour cela, vous les écrirez en
Python puis exécuterez le code correspondant.

o 7436

° (3+4)3

e 305

5. https://fr.wikipedia.org/wiki/Nombre_de_Friedman

22 Cours de Python / Université Paris Cité / UFR Sciences du Vivant

https://fr.wikipedia.org/wiki/Nombre_de_Friedman

2.10. Exercices Chapitre 2. Variables

o (1+2%) x5
o (24187

2.10.2 Prédire le résultat : opérations

Essayez de prédire le résultat de chacune des instructions suivantes, puis vérifiez-le dans I'interpréteur Python :

(1+2)x*3

"Da" * 4

"Da" + 3
("Pa"+"La") * 2
("Da"x4) / 2
5/ 2

5// 2

5% 2

2.10.3 Prédire le résultat : opérations et conversions de types

Essayez de prédire le résultat de chacune des instructions suivantes, puis vérifiez-le dans I'interpréteur Python :

e str(4) * int("3")

e int("3") + float("3.2")
e str(3) x float("3.2")
e str(3/4) * 2

Cours de Python / Université Paris Cité / UFR Sciences du Vivant

23

CHAPITRE 3

Affichage

3.1 La fonction print()

Dans le chapitre 1 Introduction, nous avons rencontré la fonction print() qui affiche une chaine de caractéres (le
fameux "Hello world!"). En fait, la fonction print() affiche I'argument qu’on lui passe entre parenthéses et un
retour a ligne. Ce retour a ligne supplémentaire est ajouté par défaut. Si toutefois, on ne veut pas afficher ce retour a la
ligne, on peut utiliser I'argument par « mot-clé » end :

>>> print("Hello world!")
Hello world!

>>> print("Hello world!", end="")
Hello world!>>>

Ligne 1. On a utilisé I'instruction print() classiquement en passant la chaine de caractéres "Hello world!" en
argument.

Ligne 3. On a ajouté un second argument end="", en précisant le mot-clé end. Nous aborderons les arguments
par mot-clé dans le chapitre 10 Fonctions. Pour |'instant, dites-vous que cela modifie le comportement par défaut des
fonctions.

Ligne 4. L'effet de I'argument end="" est que les trois chevrons >>> se retrouvent collés apres la chaine de caracteres
"Hello world!".

Une autre maniére de s'en rendre compte est d'utiliser deux fonctions print() a la suite. Dans la portion de code
suivante, le caractére « ; » sert a séparer plusieurs instructions Python sur une méme ligne :

>>> print("Hello") ; print("Joe")

Hello

Joe

>>> print("Hello", end="") ; print("Joe")
HelloJoe

>>> print("Hello", end=" ") ; print("Joe")
Hello Joe

La fonction print() peut également afficher le contenu d’une variable quel que soit son type. Par exemple, pour un
entier :

>>> var = 3
>>> print(var)
3

24

3.2. Messages d’erreur Chapitre 3. Affichage

Il est également possible d'afficher le contenu de plusieurs variables (quel que soit leur type) en les séparant par des
virgules :
>>> x = 32
>>> nom = "John"
>>> print(nom, "a", x, "ans"
John a 32 ans

Python a écrit une phrase compléte en remplacant les variables x et nom par leur contenu. Vous remarquerez que
pour afficher plusieurs éléments de texte sur une seule ligne, nous avons utilisé le séparateur « , » entre les différents
éléments. Python a également ajouté un espace a chaque fois que I'on utilisait le séparateur « , ». On peut modifier ce
comportement en passant a la fonction print() I'argument par mot-clé sep :

>>> x = 32

>>> nom = "John"

>>> print(nom, "a", x, "ans", sep="")
Johna32ans

>>> print(nom, "a", x, "ans'", sep="-")
John-a-32-ans

>>> print(nom, "a", x, "ans", sep="_")

John_a_32_ans

Pour afficher deux chaines de caractéres I'une a c6té de I'autre, sans espace, on peut soit les concaténer, soit utiliser

I'argument par mot-clé sep avec une chaine de caracteres vide :

>>> anil = "chat"

>>> ani2 = "souris"

>>> print(anil, ani2)

chat souris

>>> print(anil + ani2)

chatsouris

>>> print(anil, ani2, sep="")

chatsouris

3.2 Messages d’erreur

Nous avons déja croisé des messages d'erreur dans le chapitre précédent sur les variables. Nous vous expliquons ici
comment les lire.

Depuis la version 3.10 de Python, I'interpréteur renvoie des messages explicites lorsqu'on fait une erreur de syntaxe.
Par exemple, on considére le script suivant (enregistré dans un fichier nommé test.py) qui contient plusieurs erreurs.
Les voyez-vous ?

print("chat"
print("souris"

print(1 / 0)
print(int("deux"))

Vous avez sans doute repéré 'oubli d'une parenthése fermante en ligne 1. Lorsqu’on lance le script, on obtient :

$ python test.py
File "test.py", line 1
print("chat"
A

SyntaxError: '(' was never closed

Comment doit-on lire ce message d'erreur ? Et bien cela se fait toujours du bas vers le haut. Le message s'appelle
une Traceback et contient plusieurs types d'information :

e Tout en bas : On a le type d'erreur qui a été généré (on verra plus tard que cela s'appelle en réalité une exception).
Ici une erreur de syntaxe appelée SyntaxError. Puis sur la méme ligne, un indice supplémentaire (ici I'absence
d'une parenthése).

e Un peu plus haut : une description de |'erreur ot on voit la parenthése ouverte qui n'a jamais été fermée.

e Encore plus haut : le numéro de ligne dans le code ou I'erreur a été détectée.

Avec cette Traceback il devient facile de corriger I'erreur.

Cours de Python / Université Paris Cité / UFR Sciences du Vivant 25

Chapitre 3. Affichage 3.3. Ecriture formatée et f-strings

26

Attention
Dans les vieilles versions de Python (< 3.10), la méme erreur conduisait a une Traceback beaucoup moins claire :

$ python3.5 test.py
File "test.py", line 2
print("souris")
A

SyntaxError: invalid syntax

L'interpréteur vous indiquait une erreur de syntaxe en ligne 2 alors que I'oubli de parenthése était en ligne 1! Pour
cette raison, utilisez dans la mesure du possible une version récente de Python (3.12 ou 3.13).

Si nous corrigeons la ligne 1 en mettant la parenthése finale et que nous relancons le script, nous aurons cette fois-ci
une erreur due a une division par zéro :

$ python test.py
chat
souris
Traceback (most recent call last):
File "test.py", line 3, in <module>
print(1 / 0)

~~ N~

ZeroDivisionError: division by zero

Si nous corrigeons cette erreur en ligne 3 en évitant la division par zéro (par exemple en mettant print(1 / 1)),
I'exécution donnera un autre message d’erreur dii a la ligne 4 ou la transformation d'une chaine de caractéres en entier
n'est pas possible :
$ python test.py
chat
souris
1
Traceback (most recent call last):

File "test.py", line 4, in <module>

print(int("deux"))
AANAANAAANANANAN

ValueError: invalid literal for int() with base 10: 'deux'

A nouveau dans ces deux derniers exemples de Traceback, vous voyez qu'on a la méme construction. Tout en bas, le
type d'erreur, puis en remontant une description du probléme et le numéro de ligne ou I'erreur a été détectée.

Conseil
Il est important de bien lire chaque message d'erreur généré par Python. En général, la clé du probleme est mentionnée
dans ce message vous donnant des éléments pour le corriger.

3.3 Ecriture formatée et f-strings
3.3.1 Définitions

Définition

L'écriture formatée est un mécanisme permettant d’afficher des variables avec un format précis, par exemple justifiées
a gauche ou a droite, ou encore avec un certain nombre de décimales pour les floats. L'écriture formatée est incontournable
lorsqu’on veut créer des fichiers organisés en « belles colonnes » comme par exemple les fichiers PDB (pour en savoir
plus sur ce format, reportez-vous a I'annexe A Quelques formats de données en biologie).

Depuis la version 3.6, Python a introduit les f-strings pour mettre en place I'écriture formatée que nous allons décrire
en détail dans cette rubrique. Il existe d’autres maniéres pour formater des chaines de caractéres qui étaient utilisées

Cours de Python / Université Paris Cité / UFR Sciences du Vivant

3.3. Ecriture formatée et f-strings Chapitre 3. Affichage

avant la version 3.6, nous expliquons cela dans le chapitre 26 Remarques complémentaires (en ligne). Toutefois, nous
vous conseillons vivement |'utilisation des f-strings si vous débutez |'apprentissage de Python. Il est inutile d'apprendre
les anciennes manieéres.

Définition

f-string est le diminutif de formatted string literals. Mais encore? Dans le chapitre précédent, nous avons vu les
chaines de caractéres ou encore strings qui étaient représentées par un texte entouré de guillemets simples ou doubles.
Par exemple :

"Ceci est une chaine de caractéres"

L'équivalent en f-string est la méme chaine de caractéres précédée du caractére f sans espace entre les deux :

f'"Ceci est une chaine de caracteres"

Ce caractere f avant les guillemets va indiquer a Python qu'il s'agit d'une f-string mettant en place le mécanisme de
I'écriture formatée, contrairement 3 une string normale.

Nous expliquons plus en détail dans le chapitre 11 Plus sur les chaines de caractéres pourquoi on doit mettre ce f et
quel est le mécanisme sous-jacent.

3.3.2 Prise en main des f-strings

Les f-strings permettent une meilleure organisation de I'affichage des variables. Reprenons I'exemple ci-dessus a propos
de notre ami John :

>>> x = 32

>>> nom = "John"

>>> print(f"{nom} a {x} ans")
John a 32 ans

Il suffit de passer un nom de variable au sein de chaque couple d’accolades et Python les remplace par leur contenu.
La syntaxe apparait plus lisible que I'équivalent vu précédemment :

>>> print(nom, "a", x, "ans")
John a 32 ans

Bien siir, il ne faut pas omettre le f avant le premier guillemet, sinon Python prendra cela pour une chaine de
caractéres normale et ne mettra pas en place le mécanisme de remplacement entre les accolades :

>>> print("{nom} a {x} ans")
{nom} a {x} ans

Remarque
Une variable est utilisable plus d'une fois pour une f-string donnée :

>>> var = "to"

>>> print(f"{var} et {var} font {var}{var}")
to et to font toto

>>>

Enfin, il est possible de mettre entre les accolades des valeurs numériques ou des chaines de caractéres :

>>> print(f"J'affiche 1'entier {10} et le float {3.14}")
J'affiche 1l'entier 10 et le float 3.14

>>> print(f"J'affiche la chaine {'Python'}")

J'affiche la chaine Python

Méme si cela ne présente que peu d’'intérét pour l'instant, il s’agit d'une commande Python parfaitement valide. Nous
verrons des exemples plus pertinents par la suite. Cela fonctionne avec n'importe quel type de variable (entiers, chaines

Cours de Python / Université Paris Cité / UFR Sciences du Vivant

27

Chapitre 3. Affichage 3.3. Ecriture formatée et f-strings

28

de caracteéres, floats, etc.). Attention toutefois pour les chaines de caractéres, utilisez des guillemets simples au sein des
accolades si vous définissez votre f-string avec des guillemets doubles.

3.3.3 Spécification de format

Les f-strings permettent de remplacer des variables au sein d'une chaine de caractéres. On peut également spécifier
le format de leur affichage.

Prenons un exemple. Imaginez que vous vouliez calculer, puis afficher, la proportion de GC d'un génome. La proportion
de GC s'obtient comme la somme des bases Guanine (G) et Cytosine (C) divisée par le nombre total de bases (A, T, C,
G) du génome considéré. Si on a, par exemple, 4 500 bases G et 2 575 bases C, pour un total de 14 800 bases, vous
pourriez procéder comme suit (notez bien I'utilisation des parenthéses pour gérer les priorités des opérateurs) :

>>> prop_GC = (4500 + 2575) / 14800
>>> print("La proportion de GC est", prop_GC)
La proportion de GC est 0.4780405405405405

Le résultat obtenu présente trop de décimales (seize dans le cas présent). Pour écrire le résultat plus lisiblement, vous
pouvez spécifier dans les accolades {1} le format qui vous intéresse. Dans le cas présent, vous voulez formater un float
pour |'afficher avec deux puis trois décimales :

>>> print(f'"La proportion de GC est {prop_GC:.2f1}")
La proportion de GC est 0.48
>>> print(f'"La proportion de GC est {prop_GC:.3f}")
La proportion de GC est 0.478

Détaillons le contenu des accolades de la premiére ligne ({prop_GC:.2f}) :

e D'abord on a le nom de la variable a formatter, prop_GC, c'est indispensable avec les f-strings.

e Ensuite on rencontre les deux-points :, ceux-ci indiquent que ce qui suit va spécifier le format dans lequel on veut
afficher la variable prop_GC.

e A droite des deux-points on trouve .2f qui indique ce format : la lettre f indique qu’on souhaite afficher la variable
sous forme d'un float, les caractéres .2 indiquent la précision voulue, soit ici deux chiffres apres la virgule.

Notez enfin que le formatage avec .xf (x étant un entier positif) renvoie un résultat arrondi.

Vous pouvez aussi formater des entiers avec la lettre d (ici d veut dire decimal integer) :

>>> nb_G = 4500
>>> print(f"Ce génome contient {nb_G:d} guanines")
Ce génome contient 4500 guanines

ou mettre plusieurs nombres dans une méme chaine de caracteres :

>>> nb_G = 4500
>>> nb_C = 2575
>>> print(f"Ce génome contient {nb_G:d} G et {nb_C:d} C, "
.. f"soit une proportion de {prop_GC:.2f}")
Ce génome contient 4500 G et 2575 C, soit une proportion de 0.48
>>> perc_GC = prop_GC * 100
>>> print(f'"Ce génome contient {nb_G:d} G et {nb_C:d} C, "
.. f'"soit un %GC de {perc_GC:.2f} %")
Ce génome contient 4500 G et 2575 C, soit un %GC de 47.80 %

Les instructions étant longues dans cet exemple, nous avons coupé chaque chaine de caracteres sur deux lignes. Il faut
mettre a chaque fois le f pour préciser a Python qu'on utilise une f-string. Les ... indiquent que |'interpréteur attend
que I'on ferme la parenthése du print entamé sur la ligne précédente. Nous reverrons cette syntaxe dans le chapitre 11
Plus sur les chaines de caractéres.

Enfin, il est possible de préciser sur combien de caractéres vous voulez qu'un résultat soit écrit et comment se fait
I'alignement (a gauche, a droite), ou si vous voulez centrer le texte. Dans la portion de code suivante, le caractére ; sert
de séparateur entre les instructions sur une méme ligne :

Cours de Python / Université Paris Cité / UFR Sciences du Vivant

3.3. Ecriture formatée et f-strings Chapitre 3. Affichage

>>> print(10) ; print(1000)
10
1000
>>> print(f"{10:>6d}") ; print(f"{1000:>6d}")
10
1000
>>> print(f"{10:<6d}") ; print(f"{1000:<6d}")
10
1000
>>> print(f"{10:726d}") ; print(f"{1000:76d}")
10
1000
>>> print(f"{10:*xr6d}") ; print(f"{1000:*r6d}")
*%10*x%x
1000x
>>> print(f"{10:0>6d}") ; print(f"{1000:0>6d}")
000010
001000

Notez que > spécifie un alignement a droite, < spécifie un alignement a gauche et * spécifie un alignement centré.
Il est également possible d'indiquer le caractére qui servira de remplissage lors des alignements (I'espace est le caractére
par défaut).
Ce formatage est également possible sur des chaines de caractéres avec la lettre s (comme string) :
>>> print("atom HN") ; print("atom HDE1")
atom HN
atom HDE1
>>> print(f"atom {'HN':>4s}") ; print(f"atom {'HDE1l':>4s}")
atom HN
atom HDE1

Vous voyez tout de suite I'énorme avantage de I'écriture formatée. Elle vous permet d'écrire en colonnes parfaitement
alignées. Nous verrons que ceci est trés pratique si I'on veut écrire les coordonnées des atomes d'une molécule au format
PDB (pour en savoir plus sur ce format, reportez-vous a I'annexe A Quelques formats de données en biologie).

Pour les floats, il est possible de combiner le nombre de caractéres a afficher avec le nombre de décimales :

>>> print(f"{perc_GC:7.3f1}")
47.804

>>> print(f"{perc_GC:10.3f}")
47.804

L'instruction 7.3f signifie que I'on souhaite écrire un float avec 3 décimales et formaté sur 7 caractéres (par défaut
justifiés a droite). L'instruction 10.3f fait la méme chose sur 10 caractéres. Remarquez que le séparateur décimal .
compte pour un caractére. De méme, si on avait un nombre négatif, le signe - compterait aussi pour un caractére.

3.3.4 Autres détails sur les f-strings

Si on veut afficher des accolades littérales avec les f-strings, il faut les doubler pour échapper au formatage :

>>> print(f"Accolades littérales {{}} ou {{ ou }} "
. f'"et pour le formatage {103}")
Accolades littérales {} ou { ou } et pour le formatage 10

Une remarque importante, si on ne met pas de variable a formater entre les accolades dans une f-string, cela conduit
3 une erreur :

>>> print(f"accolades sans variable {}")
File "<stdin>", 1line 1
SyntaxError: f-string: empty expression not allowed

Enfin, il est important de bien comprendre qu'une f-string est indépendante de la fonction print(). Si on donne
une f-string a la fonction print(), Python évalue d'abord la f-string et c'est la chaine de caracteres qui en résulte qui
est affichée a I'écran. Tout comme dans l'instruction print (5x5), c’est d'abord la multiplication (5%5) qui est évaluée,
puis son résultat qui est affiché a I'écran. On peut s’en rendre compte de la maniére suivante dans |'interpréteur :

Cours de Python / Université Paris Cité / UFR Sciences du Vivant

29

Chapitre 3. Affichage 3.4. Ecriture scientifique

30

>>> f"{perc_GC:10.3f}"

! 47.804"

>>> type(f"{perc_GC:10.3f1}")
<class 'str'>

Python considére le résultat de I'instruction f"{perc_GC:10.3f}" comme une chaine de caractéres et la fonction
type () nous le confirme.

3.3.5 Expressions dans les f-strings

Une fonctionnalité extrémement puissante des f-strings est de supporter des expressions Python au sein des accolades.
Ainsi, il est possible d'y mettre directement une opération ou encore un appel a une fonction :

>>> print(f"Le résultat de 5 * 5 vaut {5 % 5}")

Le résultat de 5 * 5 vaut 25

>>> print(f"Résultat d'une opération avec des floats : {(4.1 x 6.7)}")
Résultat d'une opération avec des floats : 27.47

>>> print(f"Le minimum est {min(1, -2, 4)}")

Le minimum est -2

>>> entier = 2

>>> print(f"Le type de {entier} est {type(entier)}")

Le type de 2 est <class 'int'>

Nous aurons I'occasion de revenir sur cette fonctionnalité au fur et a mesure de ce cours.
Les possibilités offertes par les f-strings sont nombreuses. Pour vous y retrouver dans les différentes options de
formatage, nous vous conseillons de consulter ce mémo® (en anglais).

3.4 Ecriture scientifique

Pour les nombres trés grands ou trés petits, |'écriture formatée permet d'afficher un nombre en notation scientifique
(sous forme de puissance de 10) avec la lettre e :
>>> print(f"{1_000_000_000:e}")
1.000000e+09

>>> print(f"{0.000_000_001:e}")
1.000000e-09

Il est également possible de définir le nombre de chiffres aprés la virgule. Dans I'exemple ci-dessous, on affiche un
nombre avec aucun, 3 et 6 chiffres apres la virgule :

>>> avogadro_number = 6.022_140_76e23
>>> print(f"{avogadro_number:.0e}")
6e+23

>>> print(f"{avogadro_number:.3e}")
6.022e+23

>>> print(f"{avogadro_number:.6e}")
6.022141e+23

3.5 Exercices

Conseil
Pour les exercices 2 a 6, utilisez I'interpréteur Python.

3.56.1 Affichage dans l'interpréteur et dans un programme

Ouvrez l'interpréteur Python et tapez l'instruction 1+1. Que se passe-t-il ?

Ecrivez la méme chose dans un script test.py que vous allez créer avec un éditeur de texte. Exécutez ce script en
tapant python test.py dans un shell. Que se passe-t-il ? Pourquoi ? Faites en sorte d'afficher le résultat de I'addition
1+1 en exécutant le script dans un shell.

1. https://fstring.help/cheat/

Cours de Python / Université Paris Cité / UFR Sciences du Vivant

https://fstring.help/cheat/

3.5. Exercices Chapitre 3. Affichage

3.5.2 Poly-A

Générez une chaine de caractéres représentant un brin d’ADN poly-A (c’est-a-dire qui ne contient que des bases A)
de 20 bases de longueur, sans taper littéralement toutes les bases.

3.5.3 Poly-A et poly-GC

Sur le modéle de I'exercice précédent, générez en une ligne de code un brin d’ADN poly-A (AAAA..) de 20 bases
suivi d'un poly-GC régulier (GCGCGC...) de 40 bases.

3.5.4 Ecriture formatée

En utilisant I'écriture formatée, affichez en une seule ligne les variables a, b et ¢ dont les valeurs sont respectivement
la chaine de caractéres "salut", le nombre entier 102 et le float 10.318. La variable c sera affichée avec deux décimales.

3.5.5 Ecriture formatée 2

Dans un script percGC.py, calculez un pourcentage de GC avec l'instruction suivante :

perc_GC = ((4500 + 2575)/14800)*100

Ensuite, affichez le contenu de la variable perc_GC a I'écran avec 0, 1, 2 puis 3 décimales sous forme arrondie en
utilisant I'écriture formatée et les f-strings. On souhaite que le programme affiche la sortie suivante :
Le pourcentage de GC est 48 %

Le pourcentage de GC est 47.8 %
Le pourcentage de GC est 47.80 %

0

Le pourcentage de GC est 47.804 %

3.5.6 Décomposition de fractions

Utilisez I'opérateur modulo (%) et I'opérateur division entiere (//) pour simplifier des fractions, connaissant leur
numérateur et leur dénominateur, et afficher le résultat avec des f-strings.

Par exemple pour la fraction % le numérateur vaut 7 et le dénominateur vaut 3, et le résultat s'affichera sous la
forme :
7/3 =2+ 1/3

Ici, 2 est le quotient de la division entiére du numérateur par le dénominateur et 1 est le reste de la division entiére
du numérateur par le dénominateur.
Faites de méme pour les fractions suivantes :

92321 7
+353"

Aide : Pour chaque fraction, créez les variables numerateur et denominateur pour stocker les valeurs du numérateur
et du dénominateur. Créez ensuite les variables quotient et reste a partir des variables numerateur et denominateur
en utilisant les opérateurs // et %. Utilisez enfin ces quatre variables pour afficher le résultat dans la forme demandée
avec une f-string.

Cours de Python / Université Paris Cité / UFR Sciences du Vivant 31

CHAPITRE 4

Listes

4.1 Définition

Définition

Une liste est une structure de données qui contient une collection d'objets Python. Il s'agit d'un nouveau type par
rapport aux entiers, float, booléens et chaines de caractéres que nous avons vus jusqu'a maintenant. On parle aussi
d'objet séquentiel en ce sens qu'il contient une séquence d'autres objets.

Python autorise la construction de liste contenant des valeurs de types différents (par exemple entier et chaine de
caractéres), ce qui leur confére une grande flexibilité. Une liste est déclarée par une série de valeurs (n’oubliez pas les
guillemets, simples ou doubles, s'il s'agit de chaines de caracteres) séparées par des virgules, et le tout encadré par des
crochets. En voici quelques exemples :

>>> animaux = ["girafe", "tigre", "singe", "souris"]
>>> tailles = [5, 2.5, 1.75, 0.15]

>>> mixte = ["girafe", 5, "souris", 0.15]

>>> animaux

['girafe', 'tigre', 'singe', 'souris']

>>> tailles

[5, 2.5, 1.75, 0.15]

>>> mixte

['girafe', 5, 'souris', 0.15]

Lorsque I'on affiche une liste, Python la restitue telle qu'elle a été saisie.

4.2 Utilisation

Un des gros avantages d’'une liste est que vous accédez a ses éléments par leur position. Ce numéro est appelé indice
(ou index) de la liste.

liste : ["girafe'", "tigre", "singe", "souris"]
indice : 0] 1 2 3

Soyez trés attentif au fait que les indices d'une liste de n éléments commencent a 0 et se terminent a n— 1. Voyez
I'exemple suivant :

32

4.3. Opération sur les listes Chapitre 4. Listes

>>> animaux = ["girafe", "tigre", "singe", "souris'"]
>>> animaux[0]

'girafe’

>>> animaux[1]

'tigre'

>>> animaux[3]

'souris'

Par conséquent, si on appelle I'élément d’indice 4 de notre liste, Python renverra un message d’erreur :

>>> animaux[4]
Traceback (innermost last):

File "<stdin>", 1line 1, in ?
IndexError: list index out of range

N'oubliez pas ceci ou vous risquez d’'obtenir des bugs inattendus!

4.3 Opération sur les listes

Tout comme les chaines de caractéres, les listes supportent I'opérateur + de concaténation, ainsi que 'opérateur x

pour la duplication :

>>> anil = ["girafe", "tigre"]

>>> ani2 = ["singe", "souris"]

>>> anil + ani2

['girafe', 'tigre', 'singe', 'souris']

>>> anil x 3

['girafe', 'tigre', 'girafe', 'tigre', 'girafe', 'tigre']

L'opérateur + est trés pratique pour concaténer deux listes.
Vous pouvez aussi utiliser la méthode .append() lorsque vous souhaitez ajouter un seul élément a la fin d'une liste.

Remarque

La notion de méthode est introduite dans la rubrique Note sur le vocabulaire et la syntaxe a la fin de ce chapitre.

Dans I'exemple suivant, nous allons créer une liste vide :

>>> listel = []
>>> listel

[]

puis lui ajouter deux éléments, |'un aprés |'autre, d'abord avec la concaténation :

>>> Tlistel = listel + [15]
>>> listel
[15]

>>> listel
>>> listel
[15, -5]

listel + [-5]

puis avec la méthode .append() :

>>> Tlistel.append(13)
>>> Tlistel

[15, -5, 13]

>>> listel.append(-3)
>>> listel

[15, -5, 13, -3]

Dans cet exemple, nous ajoutons des éléments a une liste en utilisant |'opérateur de concaténation + ou la méthode
.append().

Conseil

Cours de Python / Université Paris Cité / UFR Sciences du Vivant 33

Chapitre 4. Listes 4.4. Indicage négatif

Nous vous conseillons dans ce cas précis d'utiliser la méthode .append (), dont la syntaxe est plus élégante.

Nous reverrons en détail la méthode .append () dans le chapitre 12 Plus sur les listes.

4.4 Indicage négatif

La liste peut également étre indexée avec des nombres négatifs selon le modéle suivant :

liste : ["girafe", "tigre", "singe", "souris"]

indice positif : 0 1 2 3

indice négatif : -4 -3 -2 -1
ou encore :

'L-iste : [llAH’ IIBII’ IICII’ I|D|l’ IIEH, IlFIl]

indice positif : (0] 1 2 3 4 5

indice négatif : -6 -5 -4 -3 -2 -1

Les indices négatifs reviennent a compter a partir de la fin. Leur principal avantage est que vous pouvez accéder au
dernier élément d'une liste a I'aide de I'indice -1 sans pour autant connaitre la longueur de cette liste. L'avant-dernier
élément a lui I'indice -2, I'avant-avant dernier l'indice -3, etc. :

>>> animaux = ["girafe", "tigre", "singe", "souris"]
>>> animaux[-1]

'souris’

>>> animaux[-2]

'singe’

Pour accéder au premier élément de la liste avec un indice négatif, il faut par contre connaitre le bon indice :
>>> animaux[-4]

'girafe’

Dans ce cas, on utilise plutét animaux[0].

4.5 Tranches

Un autre avantage des listes est la possibilité de sélectionner une partie d'une liste en utilisant un indicage construit
sur le modeéle [m:n+1] pour récupérer tous les éléments, du émieme au énieme (de I'élément m inclu a I'élément n+1
exclu). On dit alors qu'on récupére une tranche de la liste, par exemple :

>>> animaux = ["girafe", "tigre", "singe", "souris"]
>>> animaux[0:2]

['girafe', 'tigre']

>>> animaux[0:3]

['girafe', 'tigre', 'singe']

>>> animaux[0:]

['girafe', 'tigre', 'singe', 'souris']
>>> animaux/[:]

['girafe', 'tigre', 'singe', 'souris']

>>> animaux[1:]

['tigre', 'singe', 'souris']
>>> animaux[1l:-1]

['"tigre', 'singe']

Notez que lorsqu'aucun indice n'est indiqué a gauche ou a droite du symbole deux-points :, Python prend par défaut

tous les éléments depuis le début ou tous les éléments jusqu’'a la fin respectivement.

On peut aussi préciser le pas en ajoutant un symbole deux-points supplémentaire et en indiquant le pas par un entier :

34 Cours de Python / Université Paris Cité / UFR Sciences du Vivant

4.6. Fonction len() Chapitre 4. Listes

>>> animaux = ["girafe", "tigre", "singe", "souris'"]
>>> animaux[0:3:2]

['girafe', 'singe']

>>>x = 1[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

>>> x

[07 l’ 27 3’ 4’ 5’ 67 7’ 8, 9]

>>> x[::1]

[0) l’ 2’ 3’ 4’ 5’ 67 7’ 8, 9]
>>> x[::2]
(o, 2, 4, 6, 8]

>>> x[::3]
[0, 3, 6, 9]
>>> x[1:6:3]
[1, 4]

Finalement, on se rend compte que I'accés au contenu d'une liste fonctionne sur le modéle liste[début: fin:pas].

4.6 Fonction len()

L'instruction len() vous permet de connaitre la longueur d'une liste, c'est-a-dire le nombre d'éléments que contient
la liste. Voici un exemple d'utilisation :

>>> animaux = ["girafe", "tigre", "singe", "souris"]
>>> Tlen(animaux)

4

>>> len([1, 2, 3, 4, 5, 6, 7, 8])

8

4.7 Les fonctions range() et list()

L'instruction range () est une fonction spéciale en Python qui génére des nombres entiers compris dans un intervalle.
Lorsqu’elle est utilisée en combinaison avec la fonction 1ist (), on obtient une liste d'entiers. Par exemple :

>>> list(range(10))
[0) l, 2’ 3’ 4’ 5) 6’ 7’ 8) 9]

La commande list(range(10)) a généré une liste contenant tous les nombres entiers de 0 inclus a 10 exclu. Nous
verrons |'utilisation de la fonction range () toute seule dans le chapitre 5 Boucles et comparaisons.
Dans I'exemple ci-dessus, la fonction range() a pris un argument, mais elle peut également prendre deux ou trois
arguments, voyez plutot :
>>> list(range(0, 5))
(e, 1, 2, 3, 4]
>>> Tlist(range (15, 20))
[15, 16, 17, 18, 19]
>>> Tlist(range(0, 1000, 200))
[0, 200, 400, 600, 800]
>>> Tlist(range(2, -2, -1))
[2) 1, 0’ -1]

L'instruction range () fonctionne sur le modele range ([début,] fin[, pas]). Les arguments entre crochets sont
optionnels. Pour obtenir une liste de nombres entiers, il faut |'utiliser systématiquement avec la fonction 1ist().
Enfin, prenez garde aux arguments optionnels par défaut (0 pour début et 1 pour pas) :

>>> list(range(10,0))
[]

Ici la liste est vide car Python a pris la valeur du pas par défaut qui est de 1. Ainsi, si on commence a 10 et qu'on
avance par pas de 1, on ne pourra jamais atteindre 0. Python génére ainsi une liste vide. Pour éviter ca, il faudrait, par
exemple, préciser un pas de -1 pour obtenir une liste d'entiers décroissants :

>>> Tlist(range(10,0,-1))
[10, 9, 8, 7, 6, 5, 4, 3, 2, 1]

Cours de Python / Université Paris Cité / UFR Sciences du Vivant 35

Chapitre 4. Listes 4.8. Listes de listes

36

4.8 Listes de listes

Pour finir, sachez qu'il est tout a fait possible de construire des listes de listes. Cette fonctionnalité peut parfois étre
trés pratique. Par exemple :

>>> prairiel = ["girafe", 4]

>>> prairie2 = ["tigre", 2]

>>> prairie3 = ["singe", 5]

>>> savane = [prairiel, prairie2, prairie3]

>>> savane

[['girafe', 4], ['tigre', 2], ['singe', 5]]

Dans cet exemple, chaque sous-liste contient une catégorie d'animal et le nombre d'animaux pour chaque catégorie.
Pour accéder a un élément de la liste, on utilise I'indicage habituel :

>>> savane[1]
["tigre', 2]

Pour accéder a un élément de la sous-liste, on utilise un double indicage :
>>> savane[1][0]
'tigre'
>>> savane[1][1]
2

On verra un peu plus loin qu'il existe en Python des dictionnaires qui sont également trés pratiques pour stocker
de l'information structurée. On verra aussi qu'il existe un module nommé NumPy qui permet de créer des listes ou des
tableaux de nombres (vecteurs et matrices) et de les manipuler.

4.9 Minimum, maximum et somme d’une liste

Les fonctions min(), max() et sum() renvoient respectivement le minimum, le maximum et la somme d'une liste

passée en argument :

>>> Tlistel = list(range(10))

>>> listel

(e, 1, 2, 3, 4, 5, 6, 7, 8, 9]

>>> sum(listel)

45

>>> min(listel)

0

>>> max(listel)

9

Méme si en théorie ces fonctions peuvent prendre en argument une liste de strings, on les utilisera la plupart du temps
avec des types numériques (liste d'entiers et / ou de floats).

Nous avions déja croisé min(), max () dans le chapitre 2 Variables. Ces deux fonctions pouvaient prendre plusieurs
arguments entiers et / ou floats, par exemple :

>>> min(3, 4)
3

Attention toutefois a ne pas mélanger entiers et floats d'une part avec une liste d'autre part, car cela renvoie une
erreur :

>>> min(listel, 3, 4)
Traceback (most recent call last):
File "<stdin>", 1line 1, in <module>
TypeError: '<' not supported between qinstances of 'int' and 'list'

Soit on passe plusieurs entiers et / ou floats en argument, soit on passe une liste unique.

4.10 Probléeme avec les copies de listes

Nous attirons votre attention sur un comportement de Python qui peut paraitre étrange lorsqu'on copie une liste :

Cours de Python / Université Paris Cité / UFR Sciences du Vivant

4.11. Note sur le vocabulaire et la syntaxe

Chapitre 4. Listes

>>> Tlistel = list(range(5))
>>> list(range(5))
>>> listel

[0, 1, 2, 3, 4]

>>> liste2 = listel
>>> Tliste2

e, 1, 2, 3, 4]

>>> listel[3] = -50
>>> listel

[0, 1, 2, -50, 4]
>>> liste2

[0, 1, 2, -50, 4]

Comme vous voyez en ligne 8, la modification de 1istel a modifié également 1iste2. Cela vient du fait que Python
a effectué la copie de liste en ligne 5 par référence. Ainsi, les deux listes pointent vers le méme objet dans la mémoire.
Pour contrer ce probléme et faire en sorte que 1iste2 soit bien distincte de listel, on peut utiliser la fonction list() :

>>> listel = list(range(5))
>>> listel

[0, 1, 2, 3, 4]

>>> liste2 = list(listel)
>>> liste2

[0, 1, 2, 3, 4]

>>> listel[3] = -50

>>> listel

[0, 1, 2, -50, 4]

>>> liste2

[0’ 17 2: 3; 4]

Attention

Cette astuce ne fonctionne que pour des listes a une dimension (c'est-a-dire pour des listes qui ne contiennent que
des éléments de type simple comme des entiers, des floats, des chaines de caractéres et des booléens), mais pas pour des
listes de listes. Le chapitre 12 Plus sur les listes explique I'origine de ce comportement et comment s’en sortir a tous les

coups.

4.11 Note sur le vocabulaire et la syntaxe

Revenons quelques instants sur la notion de méthode abordée dans ce chapitre avec .append (). En Python, on peut
considérer chaque variable comme un objet sur lequel on peut appliquer des méthodes. Une méthode est simplement une
fonction qui utilise et/ou agit sur I'objet lui-méme, les deux étant connectés par un point. La syntaxe générale est de la

forme objet.méthode ().
Dans |'exemple suivant :
>>> listel = [1, 2]
>>> listel.append(3)

>>> listel
[1, 2, 31

la méthode .append() est liée a listel qui est un objet de type liste. La méthode modifie I'objet liste en lui

ajoutant un élément.

Nous aurons de nombreuses occasions de revoir cette notation objet.méthode().

4.12 Exercices

Conseil

Pour ces exercices, utilisez |'interpréteur Python.

Cours de Python / Université Paris Cité / UFR Sciences du Vivant

37

Chapitre 4. Listes 4.12. Exercices

38

4.12.1 Prédire la sortie

Soit les trois lignes de code suivantes :

listel = list(range(10, 15))
var = 0
var2 = 10

Prédisez le comportement de chaque instruction ci-dessous, sans les recopier dans un script ni dans l'interpréteur
Python :

e print(listel[2])

e print(listel[var])

e print(listel[var2])

e print(listel["var"])

Lorsqu'une instruction produit une erreur, identifiez pourquoi.

4.12.2 Jours de la semaine

Constituez une liste semaine contenant les sept jours de la semaine.

1. A partir de cette liste, comment récupérez-vous seulement les cinq premiers jours de la semaine d’une part, et ceux
du week-end d’autre part ? Utilisez pour cela l'indicage.

2. Cherchez un autre moyen pour arriver au méme résultat (en utilisant un autre indicage).

3. Trouvez deux maniéres pour accéder au dernier jour de la semaine.

4. Inversez les jours de la semaine en une commande.

4.12.3 Saisons

Créez quatre listes hiver, printemps, ete et automne contenant les mois correspondants a ces saisons. Créez
ensuite une liste saisons contenant les listes hiver, printemps, ete et automne. Prévoyez ce que renvoient les
instructions suivantes, puis vérifiez-le dans |'interpréteur :

1. saisons[2]

2. saisons[1][0]

3. saisons[1:2]

4. saisons[:][1]. Comment expliquez-vous ce dernier résultat ?

4.12.4 Table de multiplication par 9

Affichez la table de multiplication par 9 en une seule commande avec les instructions range() et list().

4.12.5 Nombres pairs

Répondez a la question suivante en une seule commande. Combien y a-t-il de nombres pairs dans l'intervalle [2,
10000] inclus?

Cours de Python / Université Paris Cité / UFR Sciences du Vivant

CHAPITRE b

Boucles et comparaisons

5.1 Boucles for
5.1.1 Principe

En programmation, on est souvent amené a répéter plusieurs fois une instruction. Incontournables a tout langage de

programmation, les boucles vont nous aider a réaliser cette tche répétitive de maniére compacte et efficace.

Imaginez par exemple que vous souhaitiez afficher les éléments d'une liste les uns aprés les autres. Dans I'état actuel

de vos connaissances, il faudrait taper quelque chose du style :

animaux = ["girafe", "tigre", "singe", "souris"]
print(animaux[0])
print(animaux[1])
print(animaux[2])
print(animaux[3])

Si votre liste ne contient que 4 éléments, ceci est encore faisable mais imaginez qu’elle en contienne 100 voire 1 000!

Pour remédier a cela, il faut utiliser les boucles . Regardez I'exemple suivant :

>>> animaux = ["girafe", "tigre", "singe", "souris"]
>>> for animal in animaux:
print(animal)
girafe
tigre
singe
souris

Commentons en détails ce qu'il s'est passé dans cet exemple :
La variable anima'l est appelée variable d’itération , elle prend successivement les différentes valeurs de la liste

animaux a chaque itérations (ou tour) de boucle. On verra un peu plus loin dans ce chapitre que I'on peut choisir le
nom que |'on veut pour cette variable. Celle-ci est créée par Python la premiére fois que la ligne contenant le for est
exécutée (si elle existait déja son contenu serait écrasé). Une fois la boucle terminée, cette variable d'itération animal
n'est pas détruite et conserve la derniére valeur de la liste animaux (ici la chaine de caractéres "souris").

Notez bien les types des variables utilisées ici :
e animaux est une liste sur laquelle on itére;
e animal est une chaine de caracteéres car chaque élément de la liste animaux est une chaine de caracteres.

39

Chapitre 5. Boucles et comparaisons 5.1. Boucles for

40

Nous verrons plus loin que la variable d'itération peut étre de n'importe quel type selon la liste parcourue. En Python,
une boucle itére la plupart du temps sur un objet dit séquentiel (c'est-a-dire un objet constitué d'autres objets) tel
qu'une liste. De tels objets sont dits itérables car on peut effectuer une boucle dessus. Nous verrons aussi plus tard
d'autres objets séquentiels sur lesquels on peut itérer dans une boucle.

D'ores et déja, prétez attention au caractere deux-points « : » a la fin de la ligne débutant par for. Cela signifie
que la boucle for attend un bloc d’instructions, en |'occurrence toutes les instructions que Python répétera a chaque
itération de la boucle. On appelle ce bloc d'instructions le corps de la boucle. Comment indique-t-on a Python ou ce
bloc commence et se termine? Cela est signalé uniquement par I'indentation, c'est-a-dire le décalage vers la droite de
la (ou des) ligne(s) du bloc d'instructions.

Remarque

Les notions de bloc d'instruction et d'indentations ont été introduites dans le chapitre 1 Introduction.

Dans I'exemple suivant, le corps de la boucle contient deux instructions (ligne 2 et ligne 3) car elles sont indentées
par rapport a la ligne débutant par for :
for animal in animaux:
print(animal)

print(animalx2)
print("C'est fini")

La ligne 4 ne fait pas partie du corps de la boucle car elle est au méme niveau que le for (c’est-a-dire non indentée par
rapport au for). Notez également que chaque instruction du corps de la boucle doit étre indentée de la méme maniére
(ici 4 espaces).

Remarque

Outre une meilleure lisibilité, les deux-points et I'indentation sont formellement requis en Python. Méme si on
peut indenter comme on veut (plusieurs espaces ou plusieurs tabulations, mais pas une combinaison des deux), les
développeurs recommandent I'utilisation de quatre espaces. Vous pouvez consulter 3 ce sujet le chapitre 16 Bonnes
pratiques de programmation en Python.

Faites en sorte de configurer votre éditeur de texte favori de facon a écrire quatre espaces lorsque vous tapez sur la
touche Tab (tabulation).

Si on oublie I'indentation, Python renvoie un message d'erreur :

>>> for animal in animaux:
print(animal)
File "<stdin>", 1line 2
print(animal)
A

IndentationError: expected an indented block
Dans les exemples ci-dessus, nous avons exécuté une boucle en itérant directement sur une liste. Une tranche d'une

liste étant elle méme une liste, on peut également itérer dessus :

>>> animaux = ["girafe", "tigre", "singe", "souris"]

>>> for animal in animaux[1:3]:

print(animal)
tigre
singe

On a vu que les boucles for pouvaient utiliser une liste contenant des chaines de caractéres, mais elles peuvent tout
aussi bien utiliser des listes contenant des entiers (ou n'importe quel type de variable) :

Cours de Python / Université Paris Cité / UFR Sciences du Vivant

5.1. Boucles for Chapitre 5. Boucles et comparaisons

>>> for i in [1, 2, 3]:
print(i)

N

5.1.2 Fonction range()
Python posséde la fonction range () que nous avons rencontrée précédemment dans le chapitre 4 Listes, pratique
pour faire une boucle sur une liste d'entiers de maniere automatique :

>>> for i 1in range(4):
print(i)

WN O

Dans cet exemple, nous pouvons faire plusieurs remarques importantes :

e Contrairement a la création de liste avec list(range(4)), la fonction range () peut étre utilisée telle quelle dans
une boucle. Il n'est pas nécessaire de taper for i in list(range(4)): méme si cela fonctionnerait également.

e Comment cela est possible? range() est une fonction qui a été spécialement concue pour cela®, c’est-a-dire
que l'on peut itérer directement dessus. Pour Python, il s’agit d'un nouveau type : par exemple dans I'instruction
x = range(3), la variable x est de type range (tout comme on avait les types int, float, str ou list) a utiliser
spécialement avec les boucles.

e L'instruction list(range(4)) se contente de transformer un objet de type range en un objet de type list. Si vous
vous souvenez bien, il s’agit d'une fonction de casting, qui convertit un type en un autre (voir chapitre 2 Variables).
Il n'y aucun intérét a utiliser dans une boucle la construction for i in list(range(4)):. C'est méme contre-
productif. En effet, range () se contente de stocker |'entier actuel, le pas pour passer a |'entier suivant, et le
dernier entier a parcourir, ce qui revient a stocker seulement 3 nombres entiers et ce quelle que soit la longueur
de la séquence, méme avec un range(1000000). Si on utilisait Tist(range(1000000)), Python construirait
d'abord une liste de 1 million d’'éléments dans la mémoire puis itérerait dessus, d’oli une énorme perte de temps !

5.1.3 Nommage de la variable d’itération

Dans I'exemple précédent, nous avons choisi le nom 1 pour la variable d'itération. Ceci est une habitude en informatique
et indique en général qu'il s'agit d'un entier (le nom 1 vient sans doute du mot indice ou index en anglais). Nous vous
conseillons de suivre cette convention afin d'éviter les confusions. Si vous itérez sur les indices, vous pouvez appeler la
variable d'itération i (par exemple dans for i in range(4):).

Si, par contre, vous itérez sur une liste comportant des chaines de caractéres (ou tout autre type de variable), utilisez
un nom explicite pour la variable d'itération. Par exemple :

for prenom 1in ["Joe", "Bill", "John"]:

ou

for proportion in [0.12, 0.53, 0.07, 0.28]:

5.1.4 Itération sur les indices ou les éléments

Revenons a notre liste animaux. Nous allons maintenant parcourir cette liste, mais cette fois par une itération sur

ses indices :

>>> animaux = ["girafe", "tigre", "singe", "souris"]

>>> for i in range(4):

print(animaux[i])

girafe

tigre

singe

souris

1. https://docs.python.org/fr/3/library/stdtypes.html#typesseq-range

Cours de Python / Université Paris Cité / UFR Sciences du Vivant 41

https://docs.python.org/fr/3/library/stdtypes.html#typesseq-range

Chapitre 5. Boucles et comparaisons 5.2. Comparaisons

La variable i prendra les valeurs successives 0, 1, 2 et 3 et on accédera a chaque élément de la liste animaux par son
indice (i.e. animaux[i1]). Notez a nouveau le nom 1 de la variable d'itération car on itére sur les indices.
Quand utiliser I'une ou I'autre des deux méthodes ? La plus efficace est celle qui réalise les itérations directement
sur les éléments :
>>> animaux = ["girafe", "tigre", "singe", "souris"]

>>> for animal in animaux:
print(animal)

girafe
tigre

singe
souris

Remarque

Dans le chapitre 18 Jupyter et ses notebooks, nous mesurerons le temps d'exécution de ces deux méthodes pour vous
montrer que |'itération sur les éléments est la méthode la plus rapide.

Toutefois, il se peut qu'au cours d'une boucle vous ayez besoin des indices, auquel cas vous devrez itérer sur les
indices :
>>> animaux = ["girafe", "tigre", "singe", "souris"]
>>> for i 1in range(len(animaux)):
print(f"L'animal {i} est un(e) {animaux[i]}")

L'animal 0 est un(e) girafe
L'animal 1 est un(e) tigre
L'animal 2 est un(e) singe
L'animal 3 est un(e) souris

Enfin, Python posséde la fonction enumerate () qui vous permet d'itérer sur les indices et les éléments eux-mémes :

>>> animaux = ["girafe", "tigre", "singe", "souris"]
>>> for i, animal in enumerate(animaux):
print(f"L'animal {i} est un(e) {animal}")

L'animal 0 est un(e) girafe
L'animal 1 est un(e) tigre
L'animal 2 est un(e) singe
L'animal 3 est un(e) souris

5.2 Comparaisons

Avant de passer aux boucles wh1ile, abordons tout de suite les comparaisons. Celles-ci seront reprises dans le chapitre
6 Tests.

Python est capable d’effectuer toute une série de comparaisons entre le contenu de deux variables, telles que :

Opérateur de comparaison Signification

== égal a

1= différent de

> strictement supérieur a
>= supérieur ou égal a

< strictement inférieur a
<= inférieur ou égal a

Observez les exemples suivants avec des nombres entiers :

42 Cours de Python / Université Paris Cité / UFR Sciences du Vivant

5.3. Boucles while Chapitre 5. Boucles et comparaisons

>>> x = 5
>>> x == 5
True
>>> x > 10
False
>>> x < 10
True

Python renvoie la valeur True si la comparaison est vraie et False si elle est fausse. True et False sont des booléens
comme nous avions vu au chapitre 2 Variables.

Faites bien attention a ne pas confondre |'opérateur d’affectation = qui affecte une valeur a une variable et
I'opérateur de comparaison == qui compare les valeurs de deux variables.

Vous pouvez également effectuer des comparaisons sur des chaines de caracteres.

>>> animal = "tigre"
>>> animal == "tig"
False

>>> animal != "tig"
True

>>> animal == "tigre"
True

Dans le cas des chaines de caracteres, a priori seuls les tests == et != ont un sens. En fait, on peut aussi utiliser les
opérateurs <, >, <= et >=. Dans ce cas, |'ordre alphabétique est pris en compte, par exemple :

>>> llall < llbll
True

"a' est inférieur a "b" car le caractére a est situé avant le caractére b dans |'ordre alphabétique. En fait, c'est
I'ordre ASCII? des caractéres qui est pris en compte (3 chaque caractére correspond un code numérique), on peut donc
aussi comparer des caractéres spéciaux (comme # ou ~) entre eux. Enfin, on peut comparer des chaines de caractéres de
plusieurs caractéres :

>>> "ali" < "alo"
True

>>> "abb" < "ada"
True

Dans ce cas, Python compare les deux chalnes de caractéres, caractére par caractére, de la gauche vers la droite (le
premier caractére avec le premier, le deuxiéme avec le deuxieéme, etc). Dés qu'un caractére est différent entre I'une et
I'autre des deux chaines, il considére que la chaine la plus petite est celle qui présente le caractére ayant le plus petit
code ASCII (les caractéres suivants de la chaine de caractéres sont ignorés dans la comparaison), comme dans |'exemple
"abb" < "ada" ci-dessus.

5.3 Boucles while

Une alternative a I'instruction for couramment utilisée en informatique est la boucle while. Avec ce type de boucle,
une série d'instructions est exécutée tant qu'une condition est vraie. Par exemple :

>>> 4 = 1

>>> while i <= 4:
print(i)
i=41+1

1

2

3

4

Remarquez qu'il est encore une fois nécessaire d’indenter le bloc d’instructions correspondant au corps de la boucle
(ici, les instructions lignes 3 et 4).

2. http://fr.wikipedia.org/wiki/American_Standard_Code_for_Information_Interchange

Cours de Python / Université Paris Cité / UFR Sciences du Vivant

43

http://fr.wikipedia.org/wiki/American_Standard_Code_for_Information_Interchange

Chapitre 5. Boucles et comparaisons 5.4. Exercices

Une boucle while nécessite généralement trois éléments pour fonctionner correctement :

1. Initialisation de la variable d'itération avant la boucle (ligne 1).

2. Test de la variable d'itération associée a l'instruction while (ligne 2).

3. Mise a jour de la variable d'itération dans le corps de la boucle (ligne 4).

Faites bien attention aux tests et a I'incrémentation que vous utilisez, car une erreur mene souvent a des « boucles
infinies » qui ne s'arrétent jamais. Vous pouvez néanmoins toujours stopper I'exécution d'un script Python a I'aide de la
combinaison de touches Ctrl-C (c'est-a-dire en pressant simultanément les touches Ctrl et C). Par exemple :

i=0
while i < 10:
print("Le Python c'est cool !")

Ici, nous avons omis de mettre a jour la variable i dans le corps de la boucle. Par conséquent, la boucle ne s'arrétera
jamais (sauf en pressant Ctrl-C) puisque la condition i < 10 sera toujours vraie.

La boucle while combinée a la fonction input () peut s’avérer commode lorsqu’on souhaite demander a I'utilisateur
une valeur numérique. Par exemple :

>>> 9 =0
>>> while i < 10:
reponse = input("Entrez un entier supérieur a 10 : ")

i = int(reponse)

Entrez un entier supérieur

alo : 4
Entrez un entier supérieur a 10 : -3
Entrez un entier supérieur a 10 : 15
>>> 4
15

La fonction input () prend en argument un message (sous la forme d’une chafne de caractéres), demande a I'utilisateur
d’entrer une valeur et renvoie celle-ci sous forme d'une chaine de caractéres, qu'il faut ensuite convertir en entier (avec
la fonction int() ligne 4). Si on reprend les trois éléments d'une boucle while, on trouve I'initialisation de la variable
d'itération en ligne 1, le test de sa valeur en ligne 2, et sa mise a jour en ligne 4.

Conseil

Comment choisir entre la boucle while et la boucle for ? La boucle while s'utilisera généralement lorsqu’'on ne sait pas
a l'avance le nombre d'itérations (comme dans le dernier exemple). Si on connait a I'avance le nombre d'itérations, par
exemple si on veut écrire 10 fois Le Python c'est cool, nous vous conseillons la boucle for.

5.4 Exercices

Conseil

Pour ces exercices, créez des scripts puis exécutez-les dans un shell.

5.4.1 Boucles de base

Soit la liste ["vache", "souris", "levure", "bacterie"]. Affichez I'ensemble des éléments de cette liste (un
élément par ligne) de trois facons différentes (deux méthodes avec for et une avec while).
5.4.2 Boucles et jours de la semaine

Constituez une liste semaine contenant les 7 jours de la semaine.
Ecrivez une série d'instructions affichant les jours de la semaine (en utilisant une boucle for), ainsi qu’une autre série
d'instructions affichant les jours du week-end (en utilisant une boucle while).

44 Cours de Python / Université Paris Cité / UFR Sciences du Vivant

5.4. Exercices Chapitre 5. Boucles et comparaisons

5.4.3 Nombres de 1 a 10 sur une ligne

Avec une boucle, affichez les nombres de 1 a 10 sur une seule ligne.

Conseil

Pensez a relire le début du chapitre 3 Affichage qui discute de la fonction print().

5.4.4 Nombres pairs et impairs

Soit impairs la liste de nombres [1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21]. Ecrivez un programme qui, 3
partir de la liste impairs, construit une liste pairs dans laquelle tous les éléments de impa+irs sont incrémentés de 1.

5.4.5 Calcul de la moyenne

Voici les notes d'un étudiant [14, 9, 6, 8, 12]. Calculez la moyenne de ces notes. Utilisez I'écriture formatée
pour afficher la valeur de la moyenne avec deux décimales.

5.4.6 Produit de nombres consécutifs

Avec les fonctions 1ist() et range(), créez la liste entiers contenant les nombres entiers pairs de 2 a 20 inclus.
Calculez ensuite le produit des nombres consécutifs deux a deux de entiers en utilisant une boucle. Exemple pour
les premieres itérations :

8

24

48
[...]

5.4.7 Triangle

Créez un script qui dessine un triangle comme celui-ci :

*kk

*k k%

* Kk kkk
*kkkkk
*kkkkkk

)k kkkkkk
*kkkkkkkk
*kAkkkkkkkk

5.4.8 Triangle inversé

Créez un script qui dessine un triangle comme celui-ci :

kkkkkkkkkk
kkkkkkkkk
*kkkkkkk
*kkkkkk
*kkkkk
*kkkk

*k k%

* Kk k

* %

*

5.4.9 Triangle gauche

Créez un script qui dessine un triangle comme celui-ci :

Cours de Python / Université Paris Cité / UFR Sciences du Vivant

45

Chapitre 5. Boucles et comparaisons 5.4. Exercices

46

*

* %

* %%

*k k)

*kkkk
*kkkkk
*kkkkkk

)k kkkkkk
*kkkkkkkk
kkkkkkkkkk

5.4.10 Pyramide

Créez un script pyra.py qui dessine une pyramide comme celle-ci :

*
* k%

*kkkk
*kkkkkk
kkkkkkkkk
K*kkkkkkhkkkkk
kkkkkkkkkkkkk
*hkkkkkkkkkkkkkx
Kkhkkkkkkhkkkkkkkkkkk
khkkkkkkkkkkhkkkkkkkk

Essayez de faire évoluer votre script pour dessiner la pyramide a partir d’'un nombre arbitraire de lignes N. Vous
pourrez demander a I'utilisateur le nombre de lignes de la pyramide avec les instructions suivantes qui utilisent la fonction
input() :

reponse = input("Entrez un nombre de lignes (entier positif): ")
N = int(reponse)

5.4.11 Parcours de matrice

Imaginons que I'on souhaite parcourir tous les éléments d'une matrice carrée, c'est-a-dire d'une matrice qui est
constituée d'autant de lignes que de colonnes.

Créez un script qui parcourt chaque élément de la matrice et qui affiche le numéro de ligne et de colonne uniquement
avec des boucles for.

Pour une matrice de dimensions 2 x 2, le schéma de la figure 5.1 vous indique comment parcourir une telle matrice.
L'affichage attendu est :

ligne colonne
1 1

1 2
2 1
2 2

Attention 3 bien respecter |'alignement des chiffres qui doit étre justifié a droite sur 4 caractéres. Testez avec une
matrice de dimensions 3 x 3, puis 5 x 5, et enfin 10 x 10.

Créez une seconde version de votre script, cette fois-ci avec deux boucles while.

5.4.12 Parcours de demi-matrice sans la diagonale (exercice ++)

En se basant sur le script précédent, on souhaite réaliser le parcours d'une demi-matrice carrée sans la diagonale. On
peut noter que cela produit tous les couples possibles une seule fois (1 et 2 est équivalent a 2 et 1), en excluant par
ailleurs chaque élément avec lui méme (1 et 1, 2 et 2, etc). Pour mieux comprendre ce qui est demandé, la figure 5.2
indique les cases a parcourir en gris :

Créez un script qui affiche le numéro de ligne et de colonne, puis la taille de la matrice N X N et le nombre total de
cases parcourues. Par exemple pour une matrice 4 x 4 (N=4) :

Cours de Python / Université Paris Cité / UFR Sciences du Vivant

5.4. Exercices Chapitre 5. Boucles et comparaisons

colonnes

1 2

1 —»
. 2 L—r.

FIGURE 5.1 — Parcours d'une matrice.

1 2 3 4

FIGURE 5.2 — Demi-matrice sans la diagonale (en gris).

ligne colonne

1 2
1 3
1 4
2 3
2 4
3 4

Pour une matrice 4x4, on a parcouru 6 cases

Testez votre script avec N=3, puis N=4 et enfin N=5.

Concevez une seconde version a partir du script précédent, ol cette fois on n'affiche plus tous les couples possibles,
mais simplement la valeur de N et le nombre de cases parcourues. Affichez cela pour des valeurs de N allant de 2 a 10.

Pouvez-vous trouver une formule générale reliant le nombre de cases parcourues a N7

5.4.13 Sauts de puce

On imagine une puce qui se déplace aléatoirement sur une ligne, en avant ou en arriére, par pas de 1 ou -1. Par
exemple, si elle est a I'emplacement 0, elle peut sauter a I'emplacement 1 ou -1; si elle est a I'emplacement 2, elle peut
sauter a I'emplacement 3 ou 1, etc.

Avec une boucle while, simulez le mouvement de cette puce de I'emplacement initial 0 a I'emplacement final 5 (voir
le schéma de la figure 5.3). Combien de sauts sont nécessaires pour réaliser ce parcours? Relancez plusieurs fois le
programme. Trouvez-vous le méme nombre de sauts a chaque exécution?

Conseil
Utilisez I'instruction random.choice([-1,1]) qui renvoie au hasard les valeurs -1 ou 1 avec la méme probabilité.

Cours de Python / Université Paris Cité / UFR Sciences du Vivant 47

Chapitre 5. Boucles et comparaisons 5.4. Exercices

départ arrivée

L L Il I L L L L I L L L L
T L] T T T T L] T T

101234567

FIGURE 5.3 — Sauts de puce.

Avant d'utiliser cette instruction, mettez au tout début de votre script la ligne
import random
Nous verrons la signification de cette syntaxe particuliére dans le chapitre 9 Modules.

5.4.14 Suite de Fibonacci (exercice +++)

La suite de Fibonacci? est une suite mathématique qui porte le nom de Leonardo Fibonacci, un mathématicien italien
du XIII® siécle. Initialement, cette suite a été concue pour décrire la croissance d'une population de lapins, mais elle
peut également étre utilisée pour décrire certains motifs géométriques retrouvés dans la nature (coquillages, fleurs de
tournesol...).

Pour la suite de Fibonacci (x,), le terme au rang n (avec n > 1) est la somme des nombres aux rangs n—1 et n—2:

Xp = Xp—1 +Xp—2

Par définition, les deux premiers termes sont xo =0 et x; = 1.

A titre d'exemple, les 10 premiers termes de la suite de Fibonacci sont donc 0, 1, 1, 2, 3, 5, 8, 13, 21 et 34.

Créez un script qui construit une liste fibo avec les 15 premiers termes de la suite de Fibonacci puis I'affiche.

Améliorez ce script en affichant, pour chaque élément de la liste fibo avec n > 1, le rapport entre I'élément de rang
n et I'élément de rang n— 1. Ce rapport tend-il vers une constante? Si oui, laquelle ?

3. https://fr.wikipedia.org/wiki/Suite_de_Fibonacci

48 Cours de Python / Université Paris Cité / UFR Sciences du Vivant

https://fr.wikipedia.org/wiki/Suite_de_Fibonacci

CHAPITRE O

Tests

6.1 Définition

Les tests sont un élément essentiel a tout langage informatique si on veut lui donner un peu de complexité car ils
permettent a I'ordinateur de prendre des décisions. Pour cela, Python utilise I'instruction if ainsi qu'une comparaison
que nous avons abordée au chapitre précédent. Voici un premier exemple :

>>> x = 2

>>> if x == 2:
print("Le test est vrai !")

Le test est vrai !

et un second :

>>> x = "souris"
>>> 9f x == "tigre":
print("Le test est vrai ")

Il'y a plusieurs remarques a faire concernant ces deux exemples :

e Dans le premier exemple, 'instruction print("Le test est vrai !") est exécutée, car le test est vrai. Dans le
second exemple, le test est faux et rien n’est affiché.

e Les blocs d'instructions dans les tests doivent forcément étre indentés comme pour les boucles for et while.
L'indentation indique la portée des instructions a exécuter si le test est vrai.

e Comme avec les boucles for et while, la ligne qui contient |'instruction if se termine par le caractére deux-points
« o

6.2 Tests a plusieurs cas

Parfois, il est pratique de tester si la condition est vraie ou si elle est fausse dans une méme instruction if. Plutét
que d'utiliser deux instructions if, on peut se servir des instructions if et else :

49

Chapitre 6. Tests 6.3. Importance de I'indentation

>>> x = 2
>>> qif x ==
print("Le test est vrai !")
else:
print("Le test est faux !")

Le test est vrai !
>>> x = 3
>>> qif x ==
print("Le test est vrai !")
else:
print("Le test est faux !")

Le test est faux !

On peut utiliser une série de tests dans la méme instruction i f, notamment pour tester plusieurs valeurs d'une méme
variable.

Par exemple, on se propose de tirer au sort une base d'ADN puis d'afficher le nom de cette derniére. Dans le code
suivant, nous utilisons I'instruction random.choice(liste) qui renvoie un élément choisi au hasard dans une liste.
L'instruction import random sera vue plus tard dans le chapitre 9 Modules, admettez pour le moment qu'elle est
nécessaire :

>>> qmport random

>>> base = random.choice(["a", "t", "c", "g"])
>>> if base == "a":
print("choix d'une adénine")
elif base == "t":
print("choix d'une thymine")
elif base == "c":
print("choix d'une cytosine'")
elif base == "g":

print("choix d'une guanine")
choix d'une cytosine
Dans cet exemple, Python teste la premiere condition puis, si et seulement si elle est fausse, teste la deuxiéme et ainsi
de suite.. Le code correspondant a la premiére condition vérifiée est exécuté puis Python sort du bloc d'instructions du

if. Il est également possible d'ajouter une condition else supplémentaire qui est exécutée si aucune des conditions du
if et des elif n'est vraie.

6.3 Importance de l'indentation

De nouveau, faites bien attention a I'indentation ! Vous devez étre trés rigoureux sur ce point. Pour vous en convaincre,
exécutez ces deux exemples de code :

Code 1

nombres = [4, 5, 6]
for nb in nombres:
if nb == 5:
print("Le test est vrai")
print(f"car la variable nb vaut {nb}")

Résultat :

Le test est vrai
car la variable nb vaut 5

50 Cours de Python / Université Paris Cité / UFR Sciences du Vivant

6.4. Tests multiples Chapitre 6. Tests

Code 2

nombres = [4, 5, 6]
for nb in nombres:
if nb == 5:
print("Le test est vrai")
print(f"car la variable nb vaut {nb}")

Résultat :

car la variable nb vaut 4
Le test est vrai

car la variable nb vaut 5
car la variable nb vaut 6

Les deux codes pourtant trés similaires produisent des résultats trés différents. Si vous observez avec attention
I'indentation des instructions sur la ligne 5, vous remarquerez que dans le code 1, l'instruction est indentée deux fois,
ce qui signifie qu'elle appartient au bloc d'instructions du test if. Dans le code 2, l'instruction de la ligne 5 n'est
indentée qu'une seule fois, ce qui fait qu'elle n’appartient plus au bloc d'instructions du test if, d'ou I'affichage de
car la variable nb vaut xx pour toutes les valeurs de nb.

6.4 Tests multiples

Les tests multiples permettent de tester plusieurs conditions en méme temps en utilisant des opérateurs booléens. Les
deux opérateurs les plus couramment utilisés sont OU et ET. Voici un petit rappel sur le fonctionnement de I'opérateur
ou :

Condition 1 Opérateur Condition 2 Résultat

Vrai ou Vrai Vrai
Vrai ou Faux Vrai
Faux ou Vrai Vrai
Faux ou Faux Faux

et de l'opérateur ET :

Condition 1 Opérateur Condition 2 Résultat

Vrai ET Vrai Vrai
Vrai ET Faux Faux
Faux ET Vrai Faux
Faux ET Faux Faux

En Python, on utilise le mot réservé and pour 'opérateur ET et le mot réservé or pour I'opérateur OU. Respectez
bien la casse des opérateurs and et or qui, en Python, s'écrivent en minuscule. En voici un exemple d'utilisation :

>>> x = 2

>>> y = 2

>>> if x == 2 and y == 2:
print("le test est vrai")

le test est vrai

Notez que le méme résultat serait obtenu en utilisant deux instructions if imbriquées :

>>> x = 2
>>> y =2
>>> q9f x == 2:

if y == 2:

print("le test est vrai")

le test est vrai

Cours de Python / Université Paris Cité / UFR Sciences du Vivant 51

Chapitre 6. Tests 6.5. Instructions break et continue

Conseil
Nous vous conseillons la syntaxe avec un and qui est plus compacte. De maniére générale, moins il y a de niveau
d'indentations mieux c'est pour la lisibilité.

Vous pouvez aussi tester directement |'effet de ces opérateurs a I'aide de True et False (attention a respecter la
casse) :

>>> True or False
True

Enfin, on peut utiliser ['opérateur logique de négation not qui inverse le résultat d'une condition :

>>> not True

False

>>> not False

True

>>> not (True and True)
False

6.5 Instructions break et continue

Ces deux instructions modifient le comportement d’une boucle (for ou while) avec un test. Ainsi, I'instruction
break stoppe la boucle en cours :

>>> for nombre in range(4):
if nombre > 1:
break
print(nombre)

L’instruction continue saute a l'itération suivante, sans exécuter la suite du bloc d'instructions de la boucle :

>>> for nombre in range(4):
if nombre == 2:
continue
print(nombre)

=

6.6 Tests de valeur sur des floats

Lorsque I'on souhaite tester la valeur d'une variable de type float, le premier réflexe serait d'utiliser I'opérateur d'égalité
comme :

>>> 1/10 == 0.1
True

Toutefois, nous vous le déconseillons formellement. Pourquoi ? Python stocke les valeurs numériques des floats sous
forme de nombres flottants (d’ou leur nom), et cela meéne certaines limitations *. Observez |'exemple suivant :
>>> (3 - 2.7) == 0.3
False

>>> 3 - 2.7
0.2999999999999998

Nous voyons que le résultat de I'opération 3 - 2.7 n'est pas exactement 0.3 d'ou le résultat False en ligne 2.
En fait, ce probléme ne vient pas de Python, mais plutot de la maniére dont un ordinateur traite les nombres flottants
(comme un rapport de nombres binaires). Ainsi certaines valeurs de float ne peuvent étre qu'approchées. Une maniére

1. https://docs.python.org/fr/3/tutorial/floatingpoint.html

52 Cours de Python / Université Paris Cité / UFR Sciences du Vivant

https://docs.python.org/fr/3/tutorial/floatingpoint.html

6.7. Exercices Chapitre 6. Tests

de s’en rendre compte est d'utiliser |'écriture formatée en demandant |'affichage d'un grand nombre de décimales :

>>> 0.3

0.3

>>> £'{0.3:.5f}"

'0.30000"

>>> f'"{0.3:.60f}"
'0.299999999999999988897769753748434595763683319091796875000000"'
>>> var = 3 - 2.7

>>> f"{var:.60f}"
'0.299999999999999822364316059974953532218933105468750000000000'"'
>>> abs(var - 0.3)

1.6653345369377348e-16

On observe que lorsqu’on tape 0.3, Python affiche une valeur arrondie. En réalité, le nombre réel 0.3 ne peut étre
qu’approché lorsqu’on le code en nombre flottant. Il est essentiel d'avoir cela en téte lorsque I'on compare deux floats.
Méme si 0.3 et 3 - 2.7 ne donnent pas le méme résultat, la différence est toutefois infinétisimale, de I'ordre de 1e-16
soit la 16™¢ décimale!

Pour ces raisons, il ne faut surtout pas utiliser I'opérateur == pour tester si un float est égal a une certaine valeur, car
cet opérateur correspond a une égalité stricte. La bonne pratique est de vérifier si un float est compris dans un intervalle
avec une certaine précision. Si on appelle cette précision delta, on peut procéder ainsi :

>>> delta = le-5

>>> var = 3.0 - 2.7

>>> 0.3 - delta < var < 0.3 + delta
True

>>> abs(var - 0.3) < delta

True

Ici on teste si var est compris dans I'intervalle 0.3 £ delta. En choisissant delta a 1e-5, on teste jusqu'a la cinquiéme
décimale. Les deux méthodes menent a un résultat strictement équivalent :

e La ligne 3 est plus intuitive car elle ressemble a un encadrement mathématique.

e La ligne 5 utilise la fonction valeur absolue abs () et est plus compacte.

Une derniére maniére pour tester la valeur d'un float, apparue en Python 3.5, est d'utiliser la fonction math.isclose

O :

>>> dmport math

>>> var = 3.0 - 2.7

>>> math.isclose(var, 0.3, abs_tol=1le-5)
True

Cette fonction prend en argument les deux floats a comparer, ainsi que |'argument par mot-clé abs_to' correspondant
a la précision souhaitée (que nous avions appelée delta ci-dessus). Nous vous conseillons de toujours préciser cet argument
abs_tol. Comme vu au dessus pour tirer une base au hasard, I'instruction import math sera vue dans le chapitre 9
Modules, admettez pour le moment qu’elle est nécessaire.

Conseil

Sur les trois maniéres de procéder pour comparer un float a une valeur, nous vous conseillons celle avec math.
isclose() qui nous parait la plus lisible.

6.7 Exercices

Conseil

Pour ces exercices, créez des scripts puis exécutez-les dans un shell.

Cours de Python / Université Paris Cité / UFR Sciences du Vivant 53

Chapitre 6. Tests 6.7. Exercices

54

6.7.1 Jours de la semaine

Constituez une liste semaine contenant le nom des sept jours de la semaine.

En utilisant une boucle, écrivez chaque jour de la semaine ainsi que les messages suivants :

e Au travail s'il s'agit du lundi au jeudi;

e Chouette c'est vendredi s'il s'agit du vendredi;

e Repos ce week-end s'il s'agit du samedi ou du dimanche.

Ces messages ne sont que des suggestions, vous pouvez laisser libre cours a votre imagination.

6.7.2 Séquence complémentaire d’un brin d’ADN

La liste ci-dessous représente la séquence d'un brin d'ADN :
[llAll lICll llGll IITII llTll llAll ||G|l ||C|l IlTll llAll llAII llCII llGll]
J J J J J J J))) J J
Créez un script qui transforme cette séquence en sa séquence complémentaire.
Rappel : la séquence complémentaire s'obtient en remplacant A par T, T par A, C par G et G par C.

6.7.3 Minimum d’une liste

La fonction min () de Python renvoie |'élément le plus petit d'une liste constituée de valeurs numériques ou de chaines
de caracteres. Sans utiliser cette fonction, créez un script qui détermine le plus petit élément de la liste [8, 4, 6, 1, 5].

6.7.4 Fréquence des acides aminés

La liste ci-dessous représente une séquence d'acides aminés :
["R”’ ||Al|, "W", "Wll, llA"’ |lW|’, ||A|l’ ||R|l’ ||W||’ ||W||, ”R", ||A||’ "G”]
Calculez la fréquence des acides aminés alanine (A), arginine (R), tryptophane (W) et glycine (G) dans cette séquence.

6.7.5 Notes et mention d’un étudiant

Voici les notes d'un étudiant : 14, 9, 13, 15 et 12. Créez un script qui affiche la note maximum (utilisez la fonction
max()), la note minimum (utilisez la fonction min()) et qui calcule la moyenne.

Affichez la valeur de la moyenne avec deux décimales. Affichez aussi la mention obtenue sachant que la mention est
« passable » si la moyenne est entre 10 inclus et 12 exclus, « assez bien » entre 12 inclus et 14 exclus et « bien » au-dela
de 14.

6.7.6 Nombres pairs

Construisez une boucle qui parcourt les nombres de 0 a 20 et qui affiche les nombres pairs inférieurs ou égaux a 10
d'une part, et les nombres impairs strictement supérieurs a 10 d’autre part.
Pour cet exercice, vous pourrez utiliser I'opérateur modulo % qui renvoie le reste de la division entiere entre deux
nombres et dont voici quelques exemples d'utilisation :
>>> 4 % 3
1
>>> 5 % 3
2
>>> 4 % 2
0
>>> 6 % 2
0

Vous remarquerez qu’'un nombre est pair lorsque le reste de sa division entiere par 2 est nul.

6.7.7 Conjecture de Syracuse (exercice +++)

La conjecture de Syracuse? est une conjecture mathématique qui reste improuvée a ce jour et qui est définie de la
maniére suivante.

Soit un entier positif n. Si n est pair, alors le diviser par 2. S'il est impair, alors le multiplier par 3 et lui ajouter 1.
En répétant cette procédure, la suite de nombres atteint la valeur 1 puis se prolonge indéfiniment par une suite de trois
valeurs triviales appelée cycle trivial.

2. http://fr.wikipedia.org/wiki/Conjecture_de_Syracuse

Cours de Python / Université Paris Cité / UFR Sciences du Vivant

http://fr.wikipedia.org/wiki/Conjecture_de_Syracuse

6.7. Exercices Chapitre 6. Tests

Jusqu'a présent, la conjecture de Syracuse, selon laquelle depuis n'importe quel entier positif la suite de Syracuse
atteint 1, n’a pas été mise en défaut.

Par exemple, les premiers éléments de la suite de Syracuse si on prend comme point de départ 10 sont : 10, 5, 16, 8,
4,2, 1.

Créez un script qui, partant d'un entier positif n (par exemple 10 ou 20), crée une liste des nombres de la suite de
Syracuse. Avec différents points de départ (c'est-a-dire avec différentes valeurs de n), la conjecture de Syracuse est-elle
toujours vérifiée ? Quels sont les nombres qui constituent le cycle trivial 7

Conseil
1. Pour cet exercice, vous avez besoin de faire un nombre d'itérations inconnu pour que la suite de Syracuse atteigne le
chiffre 1 puis entame son cycle trivial. Vous pourrez tester votre algorithme avec un nombre arbitraire d’itérations,
typiquement 20 ou 100, suivant votre nombre n de départ.
2. Un nombre est pair lorsque le reste de sa division entiére (opérateur modulo %) par 2 est nul.

6.7.8 Attribution de la structure secondaire des acides aminés d’une protéine (exercice
+++)

Dans une protéine, les différents acides aminés sont liés entre eux par une liaison peptidique. Les angles phi et psi sont
deux angles mesurés autour de cette liaison peptidique. Leurs valeurs sont utiles pour définir la conformation spatiale
(appelée « structure secondaire ») adoptée par les acides aminés.

Par exemple, les angles phi et psi d'une conformation en « hélice alpha » parfaite ont une valeur de -57 degrés et -47
degrés respectivement. Bien sir, il est trés rare que I'on trouve ces valeurs parfaites dans une protéine, et il est habituel
de tolérer une déviation de £+ 30 degrés autour des valeurs idéales de ces angles.

Vous trouverez ci-dessous une liste de listes contenant les valeurs des angles phi et psi de 15 acides aminés de la
protéine 1TFE?3 :

[[48.6, 53.4],[-124.9, 156.7],[-66.2, -30.8], \
[-58.8, -43.1],[-73.9, -40.6],[-53.7, -37.5], \
[-80.6, -26.0],[-68.5, 135.0],[-64.9, -23.5], \
[-66.9, -45.5],[-69.6, -41.0],[-62.7, -37.5], \
[-68.2, -38.3],[-61.2, -49.1],[-59.7, -41.1]]

Pour le premier acide aminé, I'angle phi vaut 48.6 et I'angle psi 53.4. Pour le deuxiéme, |'angle phi vaut -124.9 et
I'angle psi 156.7, etc.

En utilisant cette liste, créez un script qui teste, pour chaque acide aminé, s'il est ou non en hélice et affiche les
valeurs des angles phi et psi et le message adapté est en hélice ou n'est pas en hélice.

Par exemple, pour les trois premiers acides aminés :
[48.6, 53.4] n'est pas en hélice

[-124.9, 156.7] n'est pas en hélice
[-66.2, -30.8] est en hélice

D’apres vous, quelle est la structure secondaire majoritaire de ces 15 acides aminés?

Remarque

Pour en savoir plus sur le monde merveilleux des protéines, n'hésitez pas a consulter la page Wikipedia sur la structure

secondaire des protéines*.

6.7.9 Détermination des nombres premiers inférieurs a 100 (exercice +++)

Voici un extrait de I'article sur les nombres premiers tiré de I'encyclopédie en ligne Wikipédia® :

3. https://www.rcsb.org/structure/1TFE

4. https://fr.wikipedia.org/wiki/Structure_des_prot%C3%A9ines#Angles_di%C3%A8dres_et_structure_
secondaire

5. http://fr.wikipedia.org/wiki/Nombre_premier

Cours de Python / Université Paris Cité / UFR Sciences du Vivant 55

https://www.rcsb.org/structure/1TFE
https://fr.wikipedia.org/wiki/Structure_des_prot%C3%A9ines#Angles_di%C3%A8dres_et_structure_secondaire
https://fr.wikipedia.org/wiki/Structure_des_prot%C3%A9ines#Angles_di%C3%A8dres_et_structure_secondaire
http://fr.wikipedia.org/wiki/Nombre_premier

Chapitre 6. Tests 6.7. Exercices

56

Un nombre premier est un entier naturel qui admet exactement deux diviseurs distincts entiers et positifs (qui sont
alors 1 et lui-méme). Cette définition exclut 1, qui n'a qu’un seul diviseur entier positif. Par opposition, un nombre non
nul produit de deux nombres entiers différents de 1 est dit composé. Par exemple 6 = 2 x 3 est composé, tout comme
21 =3 x 7, mais 11 est premier car 1 et 11 sont les seuls diviseurs de 11. Les nombres 0 et 1 ne sont ni premiers ni
composés.

Déterminez tous les nombres premiers inférieurs a 100. Combien y a-t-il de nombres premiers entre 0 et 100 ? Pour
vous aider, nous vous proposons plusieurs méthodes.

Méthode 1 (peu optimale, mais assez intuitive)

Pour chaque nombre N de 2 3 100, calculez le reste de la division entiére (avec I'opérateur modulo %) depuis 1 jusqu'a
lui-méme. Si N est premier, il aura exactement deux nombres pour lesquels le reste de la division entiére est égal a 0 (1
et lui-méme). Si N n'est pas premier, il aura plus de deux nombres pour lesquels le reste de la division entiére est égal a
0.

Méthode 2 (quelques petites optimisations qui font gagner du temps)

On reprend la méthode 1 avec deux petites optimisations. On sait que tout entier N supérieur a 1 est divisible par
1 et par lui-méme. Ainsi, il est inutile de tester ces deux diviseurs. On propose donc de tester tous les diviseurs de 2 3
N —1. Si on ne trouve aucun diviseur, alors N est premier. A partir du moment ol on trouve un diviseur, il est inutile
de continuer a chercher d'autres diviseurs car N ne sera pas premier. On suggére ainsi de stopper la boucle (pensez a
break). Vous pourrez aussi utiliser une variable drapeau comme est_premier qui sera a True si N est premier, sinon
a False.

Méthode 3 (plus optimale et rapide, mais un peu plus compliquée)

Parcourez tous les nombres N de 2 a 100 et vérifiez si ceux-ci sont composés, c'est-a-dire s'ils sont le produit de deux
nombres premiers. Pratiquement, cela consiste a vérifier que le reste de la division entiére (opérateur modulo %) entre N
et chaque nombre premier déterminé jusqu’'a maintenant est nul. Le cas échéant, N n'est pas premier.

6.7.10 Recherche d’'un nombre par dichotomie (exercice +++)

La recherche par dichotomie® est une méthode qui consiste a diviser (en général en parties égales) un probléme pour
en trouver la solution. A titre d’exemple, voici une discussion entre Pierre et Patrick dans laquelle Pierre essaie de deviner
le nombre (compris entre 1 et 100 inclus) auquel Patrick a pensé :

[Patrick] « C'est bon, j'ai pensé a un nombre entre 1 et 100. »

[Pierre] « OK, je vais essayer de le deviner. Est-ce que ton nombre est plus petit ou plus grand que 507 »
[Patrick] « Plus grand. »

[Pierre] « Est-ce que ton nombre est plus petit, plus grand ou égal a 757 »
[Patrick] « Plus grand. »

[Pierre] « Est-ce que ton nombre est plus petit, plus grand ou égal a 877 »
[Patrick] « Plus petit. »

[Pierre] « Est-ce que ton nombre est plus petit, plus grand ou égal 3 817 »
[Patrick] « Plus petit. »

[Pierre] « Est-ce que ton nombre est plus petit, plus grand ou égal a 787 »
[Patrick] « Plus grand. »

[Pierre] « Est-ce que ton nombre est plus petit, plus grand ou égal a 797 »
[Patrick] « Egal. C'est le nombre auquel j'avais pensé. Bravo! »

Pour arriver rapidement a deviner le nombre, |'astuce consiste a prendre a chaque fois la moitié de I'intervalle dans
lequel se trouve le nombre. Voici le détail des différentes étapes :

1. Le nombre se trouve entre 1 et 100, on propose 50 (100 / 2).

2. Le nombre se trouve entre 50 et 100, on propose 75 (50 + (100-50)/2).
3. Le nombre se trouve entre 75 et 100, on propose 87 (75 + (100-75)/2).

6. https://fr.wikipedia.org/wiki/Dichotomie

Cours de Python / Université Paris Cité / UFR Sciences du Vivant

https://fr.wikipedia.org/wiki/Dichotomie

6.7. Exercices Chapitre 6. Tests

4. Le nombre se trouve entre 75 et 87, on propose 81 (75 + (87-75)/2).

5. Le nombre se trouve entre 75 et 81, on propose 78 (75 + (81-75)/2).

6. Le nombre se trouve entre 78 et 81, on propose 79 (78 + (81-78)/2).

Créez un script qui reproduit ce jeu de devinettes. Vous pensez a un nombre entre 1 et 100 et |'ordinateur essaie de
le deviner par dichotomie en vous posant des questions.

Votre programme utilisera la fonction input() pour interagir avec |'utilisateur. Voici un exemple de son fonctionne-
ment :

>>> Tlettre = input("Entrez une lettre : ")
Entrez une lettre : P

>>> print(lettre)

P

Pour vous guider, voici ce que donnerait le programme avec la conversation précédente :

Pensez a un nombre entre 1 et 100.

Est-ce votre nombre est plus grand, plus petit ou égal a 50 ? [+/-/=] +
Est-ce votre nombre est plus grand, plus petit ou égal a 75 ? [+/-/=] +
Est-ce votre nombre est plus grand, plus petit ou égal a 87 ? [+/-/=] -
Est-ce votre nombre est plus grand, plus petit ou égal a 81 ? [+/-/=] -
Est-ce votre nombre est plus grand, plus petit ou égal a 78 ? [+/-/=] +
Est-ce votre nombre est plus grand, plus petit ou égal a 79 ? [+/-/=] =

J'ai trouvé en 6 questions !

Les caractéres [+/-/=] indiquent a I'utilisateur comment il doit interagir avec |'ordinateur, c'est-a-dire entrer soit le
caractére + si le nombre choisi est plus grand que le nombre proposé par |'ordinateur, soit le caractére - si le nombre
choisi est plus petit que le nombre proposé par I'ordinateur, soit le caractére = si le nombre choisi est celui proposé par
I'ordinateur (en appuyant ensuite sur la touche Entrée).

Cours de Python / Université Paris Cité / UFR Sciences du Vivant 57

CHAPITRE [

Fichiers

7.1 Lecture dans un fichier

Une grande partie de |'information en biologie est stockée sous forme de texte dans des fichiers. Pour traiter cette
information, vous devez le plus souvent lire ou écrire dans un ou plusieurs fichiers. Python posséde pour cela de nombreux
outils qui vous simplifient la vie.

7.1.1 Méthode .readlines()

Avant de passer a un exemple concret, créez un fichier dans I'éditeur de texte de votre choix avec le contenu suivant :

girafe
tigre
singe
souris

Enregistrez ce fichier dans votre répertoire courant avec le nom animaux.txt. Puis, testez le code suivant dans
I'interpréteur Python :
>>> filin = open("animaux.txt", "r")
>>> filin
<_jo.TextIOWrapper name='animaux.txt' mode='r' encoding='UTF-8'>
>>> filin.readlines()
['girafe\n', 'tigre\n', 'singe\n', 'souris\n']
>>> filin.close()
>>> filin.readlines()
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
ValueError: I/0 operation on closed file.

Il'y a plusieurs commentaires a faire sur cet exemple :

e Ligne 1. La fonction open() ouvre le fichier animaux.txt. Ce fichier est ouvert en lecture seule, comme I'indique
le second argument r (pour read) de open (). Remarquez que le fichier n'est pas encore lu, mais simplement ouvert
(un peu comme lorsqu’on ouvre un livre, mais qu'on ne I'a pas encore lu). Le curseur de lecture est prét a lire le
premier caractere du fichier. L'instruction open("animaux.txt", "r'") suppose que le fichier animaux.txt est
dans le répertoire depuis lequel I'interpréteur Python a été lancé. Si ce n'est pas le cas, il faut préciser le chemin
d’acces au fichier. Par exemple, /home/pierre/animaux.txt pour Linux ou Mac OS X ou C:\Users\pierre
\animaux.txt pour Windows.

58

7.1. Lecture dans un fichier Chapitre 7. Fichiers

e Ligne 2. Lorsqu’on affiche le contenu de la variable filin, on se rend compte que Python la considére comme un
objet de type fichier ouvert (ligne 3).

e Ligne 4. Nous utilisons a nouveau la syntaxe objet.méthode() (présentée dans le chapitre 3 Affichage). Ici la
méthode .readlines() agit sur I'objet filin en déplacant le curseur de lecture du début a la fin du fichier, puis
elle renvoie une liste contenant toutes les lignes du fichier (dans notre analogie avec un livre, ceci correspondrait a
lire toutes les lignes du livre).

e Ligne 6. Enfin, on applique la méthode .close() sur lI'objet filin, ce qui, vous vous en doutez, ferme le fichier
(ceci reviendrait a fermer le livre). Vous remarquerez que la méthode . close () ne renvoie rien, mais modifie |'état
de I'objet filin en fichier fermé. Ainsi, si on essaie de lire a nouveau les lignes du fichier, Python renvoie une
erreur, car il ne peut pas lire un fichier fermé (lignes 7 a 10).

Voici maintenant un exemple complet de lecture d'un fichier avec Python :

>>> filin = open("animaux.txt", "r")
>>> lignes = filin.readlines()
>>> Tlignes

['girafe\n', 'tigre\n', 'singe\n', 'souris\n']
>>> for ligne in lignes:
print(ligne)
girafe
tigre
singe
souris

>>> filin.close()

Vous voyez qu’en cinq lignes de code, vous avez lu, parcouru le fichier et affiché son contenu.

Remarque

e Chaque élément de la liste 1ignes est une chaine de caractéres. C'est en effet sous forme de chaines de caractéres
que Python lit le contenu d'un fichier.

e Chaque élément de la liste 1ignes se termine par le caractére \n. Ce caractére un peu particulier correspond au «
saut de ligne ! » qui permet de passer d'une ligne 3 la suivante (en anglais line feed). Ceci est codé par un caractére
spécial que I'on représente par \n. Vous pourrez parfois rencontrer également la notation octale \012. Dans la
suite de cet ouvrage, nous emploierons aussi |'expression « retour a la ligne » que nous trouvons plus intuitive.

e Par défaut, I'instruction print() affiche quelque chose puis revient a la ligne. Ce retour a la ligne di a print()
se cumule alors avec celui de la fin de ligne (\n) de chaque ligne du fichier et donne I'impression qu'une ligne est
sautée a chaque fois.

Il existe en Python le mot-clé with qui permet d’ouvrir et de fermer un fichier de maniére efficace. Si pour une raison
ou une autre |'ouverture ou la lecture du fichier conduit a une erreur, I'utilisation de with garantit la bonne fermeture
du fichier, ce qui n'est pas le cas dans le code précédent. Voici donc le méme exemple avec with :

1. https://fr.wikipedia.org/wiki/Saut_de_ligne

Cours de Python / Université Paris Cité / UFR Sciences du Vivant

59

https://fr.wikipedia.org/wiki/Saut_de_ligne

Chapitre 7. Fichiers 7.1. Lecture dans un fichier

>>> with open("animaux.txt", 'r') as filin:
lignes = filin.readlines()
for ligne in lignes:
print(ligne)
girafe
tigre
singe

souris

>>>

Remarque

e L'instruction with introduit un bloc d'instructions qui doit étre indenté. C'est a l'intérieur de ce bloc que nous
effectuons toutes les opérations sur le fichier.

e Une fois sorti du bloc d'instructions, Python fermera automatiquement le fichier. Vous n'avez donc plus besoin
d'utiliser la méthode .close().

7.1.2 Méthode .read()

Il existe d’autres méthodes que . readlines() pour lire (et manipuler) un fichier. Par exemple, la méthode . read ()
lit tout le contenu d'un fichier et renvoie une chaine de caractéres unique :

>>> with open("animaux.txt", "r") as filin:
filin.read()

'girafe\ntigre\nsinge\nsouris\n'

>>>

7.1.3 Méthode .readline()

La méthode .readline() (sans s a la fin) lit une ligne d'un fichier et la renvoie sous forme de chaine de caracteres.
A chaque nouvel appel de .readline(), la ligne suivante est renvoyée. Associée a la boucle while, cette méthode
permet de lire un fichier ligne par ligne :

>>> with open("animaux.txt", "r") as filin:
ligne = filin.readline()
while ligne != "":
print(ligne)
ligne = filin.readline()
girafe
tigre
singe

souris

>>>

7.1.4 Iltérations directes sur le fichier

Python essaie de vous faciliter la vie au maximum. Voici un moyen a la fois simple et élégant de parcourir un fichier :

60 Cours de Python / Université Paris Cité / UFR Sciences du Vivant

7.2. Ecriture dans un fichier Chapitre 7. Fichiers

>>> with open("animaux.txt", "r") as filin:
for ligne in filin:
print(ligne)
girafe
tigre
singe
souris
>>>

L'objet filin est « itérable », ainsi la boucle for va demander a Python d’aller lire le fichier ligne par ligne.

Conseil

Privilégiez cette méthode par la suite.

Remarque

Les méthodes abordées précédemment permettent d'accéder au contenu d'un fichier, soit ligne par ligne (méthode
.readline()), soit globalement en une seule chaine de caractéres (méthode .read()), soit globalement avec les lignes
différenciées sous forme d’'une liste de chaines de caractéres (méthode .readlines()). Il est également possible en
Python de se rendre a un endroit particulier d'un fichier avec la méthode . seek () mais qui sort du cadre de cet ouvrage.

7.2 Ecriture dans un fichier

Ecrire dans un fichier est aussi simple que de le lire. Voyez I'exemple suivant :

>>> animaux2 = ["poisson", "abeille", "chat"]
>>> with open("animaux2.txt", "w") as filout:
for animal in animaux2:
filout.write(animal)

~

Quelques commentaires sur cet exemple :

e Ligne 1. Création d'une liste de chaines de caractéres animaux2.

e Ligne 2. Ouverture du fichier animaux2.txt en mode écriture, avec le caractére w pour write. L'instruction with
crée un bloc d’instructions qui doit étre indenté.

e Ligne 3. Parcours de la liste animaux2 avec une boucle for.

e Ligne 4. A chaque itération de la boucle, nous avons écrit chaque élément de la liste dans le fichier. La méthode
.write() s'applique sur I'objet filout. Notez qu'a chaque utilisation de la méthode .write(), celle-ci nous
affiche le nombre d'octets (équivalent au nombre de caractéres) écrits dans le fichier (lignes 6 a 8). Ceci est
valable uniquement dans I'interpréteur. Si vous créez un programme avec les mémes lignes de code, ces valeurs ne
s'afficheront pas a I'écran.

Si nous ouvrons le fichier animaux2.txt avec un éditeur de texte, voici ce que nous obtenons :

poissonabeillechat

Ce n'est pas exactement le résultat attendu car implicitement nous voulions le nom de chaque animal sur une ligne.

Nous avons oublié d'ajouter le caractére fin de ligne aprés chaque nom d'animal.

Pour ce faire, nous pouvons utiliser I'écriture formatée :

Cours de Python / Université Paris Cité / UFR Sciences du Vivant

61

Chapitre 7. Fichiers 7.3. Ouvrir deux fichiers avec I'instruction with

62

>>> animaux2 = ["poisson", "abeille", '"chat"]
>>> with open("animaux2.txt", "w") as filout:
for animal in animaux2:
filout.write(f"{animal}\n")

o

e Ligne 4. L'écriture formatée, vue au chapitre 3 Affichage, permet d'ajouter un retour a la ligne (\n) aprés le nom
de chaque animal.

e Lignes 6 a 8. Le nombre d’octets écrits dans le fichier est augmenté de 1 par rapport a I'exemple précédent, car
le caractére retour a la ligne compte pour un seul octet.

Le contenu du fichier animaux2. txt est alors :

poisson
abeille
chat

Vous voyez qu'il est relativement simple en Python de lire ou d'écrire dans un fichier.

7.3 Ouvrir deux fichiers avec l'instruction with

On peut avec l'instruction with ouvrir deux fichiers (ou plus) en méme temps. Voyez I'exemple suivant :

with open("animaux.txt", "r") as fichierl, open("animaux2.txt", "w'") as fichier2:
for ligne in fichierl:
fichier2.write("x " + ligne)

Si le fichier animaux.txt contient le texte suivant :

souris
girafe
lion
singe

alors le contenu de animaux2.txt sera :

souris
girafe
lion
singe

* ok % X

Dans cet exemple, with permet une notation trés compacte en s'affranchissant de deux méthodes .close().
Si vous souhaitez aller plus loin, sachez que l'instruction with est plus générale et peut étre utilisée dans d’autres
2
contextes “.

7.4 Note sur les retours a la ligne sous Unix et sous Windows

Conseil
Si vous étes débutant, vous pouvez sauter cette rubrique.

On a vu plus haut que le caractére spécial \n correspondait a un retour a la ligne. C'est le standard sous Unix (Mac
OS X et Linux).

Toutefois, Windows utilise deux caractéres spéciaux pour le retour a la ligne : \r correspondant a un retour chariot
(hérité des machines a écrire) et \n comme sous Unix.

Si vous avez commencé a programmer en Python 2, vous aurez peut-étre remarqué que, selon les versions, la lecture
de fichier supprimait parfois les \r et d'autres fois les laissait. Heureusement, la fonction open() dans Python 33 gere

2. https://docs.python.org/fr/3/reference/compound_stmts.html#the-with-statement
3. https://docs.python.org/fr/3/library/functions.html#open

Cours de Python / Université Paris Cité / UFR Sciences du Vivant

https://docs.python.org/fr/3/reference/compound_stmts.html#the-with-statement
https://docs.python.org/fr/3/library/functions.html#open

7.5. Importance des conversions de types avec les fichiers Chapitre 7. Fichiers

tout ¢a automatiquement et renvoie uniquement des sauts de ligne sous forme d'un seul \n (méme si le fichier a été
concu sous Windows et qu'il contient initialement des \r).

7.5 Importance des conversions de types avec les fichiers

Vous avez sans doute remarqué que les méthodes qui lisent un fichier (par exemple .readlines()) vous renvoient
systématiquement des chaines de caractéres. De méme, pour écrire dans un fichier, il faut fournir une chaine de caractéres
a la méthode .write().

Pour tenir compte de ces contraintes, il faudra utiliser les fonctions de conversion de types vues au chapitre 2
Variables : int(), float() et str(). Ces fonctions de conversion sont essentielles lorsqu'on lit ou écrit des nombres
dans un fichier.

En effet, les nombres dans un fichier sont considérés comme du texte, donc comme des chaines de caracteéres, par la
méthode .readlines(). Par conséquent, il faut les convertir (en entier ou en float) si on veut effectuer des opérations
numériques avec.

7.6 Du respect des formats de données et de fichiers

Maintenant que vous savez lire et écrire des fichiers en Python, vous étes capables de manipuler beaucoup d’'information
en biologie. Prenez garde cependant aux formats de fichiers, c'est-a-dire a la maniére dont est stockée I'information
biologique dans des fichiers. Nous vous renvoyons pour cela a I'annexe A Quelques formats de données en biologie.

7.7 Exercices

Conseil
Pour ces exercices, créez des scripts puis exécutez-les dans un shell.

7.7.1 Moyenne des notes

Le fichier notes.txt* contient les notes obtenues par des étudiants pour le cours de Python. Chaque ligne du fichier
ne contient qu'une note.

Téléchargez le fichier notes.txt et enregistrez-le dans votre répertoire de travail. N'hésitez pas a I'ouvrir avec un
éditeur de texte pour voir a quoi il ressemble.

Créez un script Python qui lit chaque ligne de ce fichier, extrait les notes sous forme de float et les stocke dans une
liste.

Terminez le script en calculant et affichant la moyenne des notes avec deux décimales.

7.7.2 Admis ou recalé

Téléchargez le fichier notes. txt de I'exercice précédent et enregistrez-le dans votre répertoire de travail. N'hésitez
pas I'ouvrir avec un éditeur de texte pour voir a quoi il ressemble.

Créez un script Python qui lit chaque ligne de ce fichier, extrait les notes sous forme de float et les stocke dans une
liste.

Le script réécrira ensuite les notes dans le fichier notes2.txt avec une note par ligne suivie de « recalé » si la note
est inférieure a 10 et « admis » si la note est supérieure ou égale a 10. Toutes les notes seront écrites avec une décimale.
A titre d'exemple, voici les trois premiéres lignes attendues pour le fichier notes2. txt :

13.5 admis
17.0 admis
9.5 recalé

7.7.3 Spirale (exercice +++)

Créez un script spirale.py qui calcule les coordonnées cartésiennes d’une spirale a deux dimensions.

4. https://python.sdv.u-paris.fr/data-files/notes.txt

Cours de Python / Université Paris Cité / UFR Sciences du Vivant 63

https://python.sdv.u-paris.fr/data-files/notes.txt

Chapitre 7. Fichiers

7.7. Exercices

Les coordonnées cartésiennes x4 et y4 d'un point A sur un cercle de rayon r s'expriment en fonction de I'angle 6
représenté sur la figure 7.1 comme :

xa =cos(0) xr

FIGURE 7.1 — Point A de coordonnées (x4,y4) sur le cercle de rayon r.

7 \
| \
| 1
L 8 |] x-_
L] ' -
! I
\ I}
)
’
V4
P 4

Pour calculer les coordonnées cartésiennes qui décrivent la spirale, vous allez faire varier deux variables en méme

temps :

e l'angle 6, qui va prendre des valeurs de 0 a 47 radians par pas de 0,1, ce qui correspond a deux tours complets;
e le rayon du cercle r, qui va prendre comme valeur initiale 0,5 puis que vous allez incrémenter (c'est-a-dire augmenter)

par pas de 0,1.

Les fonctions trigonométriques sinus et cosinus sont disponibles dans le module math que vous découvrirez plus en

détails dans le chapitre 9 Modules. Pour les utiliser, vous ajouterez au début de votre script I'instruction :

import math

La fonction sinus sera math.sin() et la fonction cosinus math.cos (). Ces deux fonctions prennent comme argument
une valeur d’'angle en radian. La constante mathématique 7 sera également accessible grace a ce module via math.pi.

Par exemple :

>>> math.sin(0)

0.0

>>> math.sin(math.pi/2)
1.0

>>> math.cos(math.pi)
-1.0

Sauvegardez ensuite les coordonnées cartésiennes dans le fichier spirale.dat en respectant le format suivant :

e un couple de coordonnées (x4 et y4) par ligne;
e au moins un espace entre les deux coordonnées x4 et yy ;
e les coordonnées affichées sur 10 caracteres avec 5 chiffres apres la virgule.

Les premiéres lignes de spirale.dat devrait ressembler a :

64

Cours de Python / Université Paris Cité / UFR Sciences du Vivant

7.7. Exercices Chapitre 7. Fichiers

0.50000 ©.00000
0.59700 0.05990
0.68605 0.13907
0.76427 0.23642
0.82895 0.35048
0.87758 0.47943
[...] [...]

Remarque
Le module matplotlib est utilisé ici pour la visualisation de la spirale. Son utilisation est détaillée dans le chapitre 21

Une fois que vous avez généré le fichier spirale.dat, visualisez votre spirale avec le code suivant (que vous pouvez
recopier dans un autre script ou a la suite de votre script spirale.py) :

import matplotlib.pyplot as plt

= [1

=[]

ith open("spirale.dat", "r") as f_in:
for line in f_in:

coords = line.split()
x.append(float(coords[0]))
y.append(float(coords[1]))

X
y
w

fig, ax = plt.subplots(figsize=(8,8))
mini = min(x+y) - 2

maxi = max(x+y) + 2

ax.set_xlim(mini, maxi)
ax.set_ylim(mini, maxi)

ax.plot(x, vy)
fig.savefig("spirale.png")

Visualisez I'image spirale.png ainsi créée.

Module matplotlib.

Essayez de jouer sur les paramétres O et r, et leur pas d'incrémentation, pour construire de nouvelles spirales.

Cours de Python / Université Paris Cité / UFR Sciences du Vivant

65

CHAPITRE 8

Dictionnaires et tuples

Dans ce chapitre, nous allons voir deux nouveaux types d'objet qui s'avérent extrémement utiles : les dictionnaires et
les tuples. Comme les listes vues dans le chapitre 4, les dictionnaires et tuples contiennent une collection d’autres objets.
Toutefois, nous verrons que ces trois types sont régis par des régles différentes pour accéder a leur contenu, ainsi que
dans leur fonctionnement.

8.1 Dictionnaires

8.1.1 Définition et fonctionnement

Définition

Un dictionnaire contient une collection d'objets Python auxquels on accéde a I'aide d'une clé de correspondance
plutdt qu'un indice. Ainsi, il ne s’agit pas d'objets séquentiels comme les listes, mais plutot d'objets dits de correspondance
(mapping objects en anglais) ou tableaux associatifs.

Ceci étant défini, comment fonctionnent-ils exactement ? Regardons un exemple :

>>> animall = {}

>>> animall["nom"] = "girafe"

>>> animall["taille"] = 5.0

>>> animall["poids"] = 1100

>>> animall

{'nom': 'girafe', 'taille': 5.0, 'poids': 1100}

e Ligne 1. On définit un dictionnaire vide avec les accolades {} (tout comme on peut le faire pour les listes avec
[1).

e Lignes 2 a 4. On remplit le dictionnaire avec plusieurs clés ("nom", "taille", "poids") auxquelles on affecte
des valeurs ("girafe", 5.0, 1100).

e Ligne 5. On affiche le contenu du dictionnaire. Les accolades nous montrent qu'il s'agit bien d'un dictionnaire,
et pour chaque élément séparé par une virgule on a une association du type clé: valeur. Ici, les clés sont des
chaines de caractéres (ce qui sera souvent le cas), et les valeurs peuvent &tre n'importe quel objet Python.

Une fois le dictionnaire créé, on récupere la valeur associée a une clé donnée avec une syntaxe du type dictionnaire

["clé"]. Par exemple :

66

8.1. Dictionnaires Chapitre 8. Dictionnaires et tuples

>>> animall["nom"]
'girafe’

>>> animall["taille"]
5.0

On se souvient que pour accéder a I'élément d'une liste, il fallait utiliser un indice (par exemple, liste[2]). Ici,
I'utilisation d'une clé (qui est souvent une chaine de caractéres) rend les choses plus explicites.

Vous pouvez mettre autant de couples clé / valeur que vous voulez dans un dictionnaire (tout comme vous pouvez
ajouter autant d'éléments que vous le souhaitez dans une liste).

Remarque

Jusqu’a la version 3.6 de Python, un dictionnaire était affiché sans ordre particulier. L'ordre d'affichage des éléments
n'était pas forcément le méme que celui dans lequel il avait été rempli. De méme, lorsqu’on itérait dessus, |'ordre n'était
pas garanti. Depuis Python 3.7 (inclus), ce comportement a changé : un dictionnaire est toujours affiché dans le méme
ordre que celui utilisé pour le remplir. Et si on itére sur un dictionnaire, cet ordre est aussi respecté. Ce détail provient de
I'implémentation interne des dictionnaires dans Python, mais cela nous concerne peu. Ce qui importe, c'est de se rappeler
qu'on accéde aux éléments par leur clé, et non par leur position telle que le dictionnaire est affiché. Cet ordre n'a pas
d'importance, sauf dans de rares cas.

On peut aussi initialiser toutes les clés et les valeurs d’un dictionnaire en une seule opération :

>>> animal2 = {"nom": "singe", "poids": 70, "taille": 1.75}

Mais rien ne nous empéche d'ajouter une clé et une valeur supplémentaire :

>>> animal2["age"] = 15
>>> animal2
{'nom': 'singe', 'poids': 70, 'taille': 1.75, 'age': 15}

Apres ce premier tour d'horizon, on percoit I'avantage des dictionnaires : pouvoir retrouver des éléments par des noms
(clés) plutdt que par des indices.

Les humains retiennent mieux les noms que les chiffres. Ainsi, les dictionnaires se révélent tres pratiques lorsque vous
devez manipuler des structures complexes a décrire et que les listes présentent leurs limites. L'usage des dictionnaires
rend en général le code plus lisible. Par exemple, si nous souhaitions stocker les coordonnées (x,y,z) d'un point dans
I'espace, nous pourrions utiliser coors = [0, 1, 2] pour la version liste et coors = {"x": 0, "y": 1, "z": 2}
pour la version dictionnaire. Quelqu'un qui lit le code comprendra tout de suite que coors["z"] contient la coordonnée
Z, ce sera moins intuitif avec coors[2].

Conseil

Nous verrons dans le chapitre 14 Conteneurs que plusieurs types d'objets sont utilisables en tant que clé de dictionnaire.
Malgré cela, nous conseillons de n'utiliser que des chaines de caractéres lorsque vous débutez.

8.1.2 Fonction len()

Comme pour les listes, I'instruction len() renvoie la longueur du dictionnaire, sauf qu'ici il s'agit du nombre de
couples clé / valeur. Voici un exemple d'utilisation :

ani3 = {"nom": "pinson", "poids": 0.02, "taille": 0.15}
>>> len(ani3)
3

8.1.3 Itération sur les clés pour obtenir les valeurs

Si on souhaite voir toutes les associations clés / valeurs, on peut itérer sur un dictionnaire de la maniére suivante :

Cours de Python / Université Paris Cité / UFR Sciences du Vivant 67

Chapitre 8. Dictionnaires et tuples 8.1. Dictionnaires

>>> animal2 = {'nom': 'singe', 'poids': 70, 'taille': 1.75}
>>> for key 1in animal2:
print(key, animal2[key])
poids 70
nom singe
taille 1.75

Par défaut, I'itération sur un dictionnaire se fait sur les clés. Dans cet exemple, la variable d'itération key prend
successivement la valeur de chaque clé, animal2[key] donne la valeur correspondant a chaque clé.

8.1.4 Méthodes .keys() et .values()

Les méthodes . keys () et .values() renvoient, comme vous vous en doutez, les clés et les valeurs d’un dictionnaire :

>>> animal2.keys()
dict_keys(['poids', 'nom', 'taille'])
>>> animal2.values()

dict_values([70, 'singe', 1.75])

Les mentions dict_keys et dict_values indiquent que nous avons a faire 3 des objets un peu particuliers. lls ne
sont pas indexables (on ne peut pas retrouver un élément par indice, par exemple dico.keys () [0] renverra une erreur).
Si besoin, nous pouvons les transformer en liste avec la fonction 1ist() :

>>> animal2.values()
dict_values(['singe', 70, 1.75])
>>> list(animal2.values())
['singe', 70, 1.75]

Toutefois, on peut itérer dessus dans une boucle (on dit qu'ils sont itérables) :

>>> for cle 1in animal2.keys():
print(cle)

nom

poids

taille

8.1.5 Méthode .items()

La méthode .items () renvoie un nouvel objet dict_items :

>>> dico = {@: "t", 1: "o", 2: "t", 3: "o"}
>>> dico.items()
dict_items([(0, 't'), (1, 'o'), (2, "t'), (3, 'o")])

On ne peut pas retrouver un élément par son indice dans un objet dict_items, toutefois on peut itérer dessus :

>>> dico.items()[2]
Traceback (most recent call last):
File "<stdin>", 1line 1, in <module>
TypeError: 'dict_items' object is not subscriptable
>>> for key, val in dico.items():
print(key, val)

WwWN = o -
O t O

Notez la syntaxe particuliere qui ressemble a la fonction enumerate () vue au chapitre 5 Boucles et comparaisons.
On itere a la fois sur key et sur val. Nous aurons |'explication de ce mécanisme dans la rubrique sur les tuples ci-apreés.

8.1.6 Existence d’une clé ou d’une valeur

Pour vérifier si une clé existe dans un dictionnaire, on peut utiliser le test d'appartenance avec |'opérateur in qui
renvoie un booléen :

68 Cours de Python / Université Paris Cité / UFR Sciences du Vivant

8.1. Dictionnaires Chapitre 8. Dictionnaires et tuples

>>> animal2 = {'nom': 'singe', 'poids': 70, 'taille': 1.75}
>>> "poids" in animal2
True
>>> if "poids" 1in animal2:
print("La clé 'poids' existe pour animal2")

La clé 'poids' existe pour animal2
>>> "age" din animal2
False
>>> qif "age" in animal2:
print("La clé 'age' existe pour animal2")

Dans le second test (lignes 10 a 12), le message n'est pas affiché car la clé age n'est pas présente dans le dictionnaire
animal2.
Si on souhaite tester si une valeur existe dans un dictionnaire, on peut utiliser I'opérateur in avec |'objet renvoyé par
la méthode .values() :
>>> animal2 = {'nom': 'singe', 'poids': 70, 'taille': 1.75}
>>> animal2.values()
dict_values(['singe', 70, 1.75])
>>> "singe" in animal2.values()
True

8.1.7 Meéthode .get()

Par défaut, si on demande la valeur associée a une clé qui n'existe pas, Python renvoie une erreur :

>>> animal2 = {'nom': 'singe', 'poids': 70, 'taille': 1.75}
>>> animal2["age"]
Traceback (most recent call last):
File "<stdin>", 1line 1, in <module>
KeyError: 'age'

La méthode .get () s'affranchit de ce probléme. Elle extrait la valeur associée a une clé mais ne renvoie pas d’erreur
si la clé n'existe pas :
>>> animal2.get("nom"
'singe’
>>> animal2.get("age")
>>>

Ici, la valeur associée a la clé nom est singe, mais la clé age n'existe pas. On peut également indiquer a .get () une
valeur par défaut si la clé n'existe pas :

>>> animal2.get("age", 42)
42

8.1.8 Liste de dictionnaires

En créant une liste de dictionnaires qui possédent les mémes clés, on obtient une structure qui ressemble a une base
de données :
>>> animaux = [animall, animal2]
>>> animaux
[{'nom': 'girafe', 'poids': 1100, 'taille': 5.0}, {'nom': 'singe',
'poids': 70, 'taille': 1.75}]
>>>
>>> for ani in animaux:
print(ani["nom"])

girafe
singe

Vous constatez ainsi que les dictionnaires permettent de gérer des structures complexes de maniére plus explicite que
les listes.

Cours de Python / Université Paris Cité / UFR Sciences du Vivant 69

Chapitre 8. Dictionnaires et tuples 8.2. Tuples

70

8.2 Tuples
8.2.1 Définition

Définition

Les tuples (« n-uplets » en francais) sont des objets séquentiels correspondant aux listes, mais ils sont toutefois
non modifiables. On dit aussi qu'ils sont immuables. Vous verrez ci-dessous que nous les avons déja croisés a plusieurs
reprises !

Pratiquement, on utilise les parenthéses au lieu des crochets pour les créer :

>>> tuplel = (1, 2, 3)
>>> tuplel

(1, 2, 3)

>>> type(tuplel)
<class 'tuple'>

>>> tuplel[2]

3
>>> tuplel[0:2]
(1, 2)

>>> tuplel[2] = 15
Traceback (most recent call last):
File "<stdin>", 1line 1, in <module>
TypeError: 'tuple' object does not support item assignment

L'affectation et I'indicage fonctionnent comme avec les listes. Mais si on essaie de modifier un des éléments du tuple
(en ligne 10), Python renvoie un message d’erreur car les tuples sont non modifiables. Si vous voulez ajouter un élément
(ou le modifier), vous devez créer un nouveau tuple :

>>> tuplel = (1, 2, 3)

>>> tuplel

(g 2, 3)

>>> tuplel = tuplel + (2,)
>>> tuplel

(1, 2, 3, 2)

Conseil

Cet exemple montre que les tuples sont peu adaptés lorsqu’on a besoin d’ajouter, retirer, modifier des éléments. La
création d'un nouveau tuple a chaque étape s'avére lourde et il n'y a aucune méthode pour faire cela puisque les tuples
sont non modifiables. Pour ce genre de tache, les listes sont clairement mieux adaptées.

Remarque

Pour créer un tuple d'un seul élément comme ci-dessus, utilisez une syntaxe avec une virgule (element,), pour
éviter une ambiguité avec une simple expression. Par exemple, (2) équivaut a I'entier 2, alors que I'expression (2,) est
un tuple contenant I'élément 2.

Autre particularité des tuples, il est possible de les créer sans les parenthéses, dés lors que ceci ne pose pas d'ambiguité
avec une autre expression :

>>> tuplel = (1, 2, 3)
>>> tuplel
(1, 2, 3)
>>> tuplel
>>> tuplel
(1, 2, 3)

1
=
N

-
w

Cours de Python / Université Paris Cité / UFR Sciences du Vivant

8.2. Tuples Chapitre 8. Dictionnaires et tuples

Toutefois, afin d’éviter les confusions, nous vous conseillons d'utiliser systématiquement les parenthéses lorsque vous
débutez.
Les opérateurs + et * fonctionnent comme pour les listes (concaténation et duplication) :

>>> (1, 2) + (3, 4)

(1, 2, 3, 4)

>>> (1, 2) * 4

(1, 2, 1, 2, 1, 2, 1, 2)

Enfin, on peut utiliser la fonction tuple(sequence) qui fonctionne exactement comme la fonction list(), c’est-
a-dire qu'elle prend en argument un objet et renvoie le tuple correspondant (opération de casting) :

>>> tuple([1,2,3])

1y 2, 3)

>>> tuple("ATGCCGCGAT")

(IAI’ ITI’ IGI’ ICI, ICI’ IGI’ ICI’ IGI’ IAI’ ITI)
>>> tuple(range(5))

(0, 1, 2, 3, 4)

Remarque

Comme la fonction list(), la fonction tuple() prend en argument un objet contenant d'autres objets. Elle ne
fonctionne pas avec les entiers, floats ou booléens. Par exemple, tuple(2) renvoie une erreur. On en verra plus sur ces
questions dans le chapitre 14 Conteneurs.

8.2.2 Affectation multiple

Les tuples sont souvent utilisés pour |'affectation multiple, c'est-a-dire, affecter des valeurs a plusieurs variables en
méme temps :

>>> X’ y] Z = l’ 2’ 3

>>> X

1

>>> y

2

>>> 7z

3

Attention, le nombre de variables et de valeurs doit étre cohérents a gauche et a droite de I'opérateur = :

>>> x, y =1, 2, 3
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
ValueError: too many values to unpack (expected 2)

Il est aussi possible de faire des affectations multiples avec des listes, par exemple :

[x, vy, z] = [1, 2, 3].

Toutefois, cette syntaxe est alourdie par la présence des crochets. On préférera donc la syntaxe avec les tuples sans
parentheéses.

Remarque
Nous avons appelé I'opération x, y, z = 1, 2, 3 affectation multiple pour signifier que I'on affectait des valeurs
a plusieurs variables en méme temps.
Vous pourrez rencontrer aussi I'expression tuple unpacking que I'on pourrait traduire par « désempaquetage de tuple
». De méme, il existe le list unpacking.

Ce terme tuple unpacking provient du fait que I'on peut décomposer un tuple initial de n éléments en autant de
variables différentes en une seule instruction.
Par exemple, si on crée un tuple de trois éléments :

Cours de Python / Université Paris Cité / UFR Sciences du Vivant 71

Chapitre 8. Dictionnaires et tuples 8.2. Tuples

>>> tuplel = (1, 2, 3)
>>> tuplel
(1, 2, 3)

On peut « désempaqueter » le tuple en une seule instruction :

>>> x, y, z = tuplel
>>> X
1

Cela serait possible également avec l'indicage, mais il faudrait utiliser autant d'instruction que d'éléments :

>>> X tuplel[0]
>>> y tuplel[1]
>>> z = tuplel[2]

Dans les deux cas, x vaudra 1, y vaudra 2 et z vaudra 3.

Conseil

La syntaxe x, y, z = tuplel pour désempaqueter un tuple est plus élégante, plus lisible et plus compacte. Elle
sera donc a privilégier.

L'affectation multiple est un mécanisme trés puissant et important en Python. Nous verrons qu'il est particulierement
utile avec les fonctions dans les chapitres 10 Fonctions et 13 Plus sur les fonctions.

8.2.3 Itérations sur plusieurs valeurs a la fois

Nous avons déja croisé les tuples avec la fonction enumerate () dans le chapitre 5 Boucles et comparaisons. Cette
derniére permettait d'itérer en méme temps sur les indices et les éléments d'une liste :

>>> for dindice, element in enumerate([75, -75, 0]):
print(indice, element)

0 75
1 -75
20

>>> for bidule in enumerate([75, -75, 0]):
print(bidule, type(bidule))

(0, 75) <class 'tuple'>
(1, -75) <class 'tuple'>
(2, 0) <class 'tuple'>

Lignes 7 a 12. La fonction enumerate () itére sur une série de tuples. Pouvoir séparer indice et element dans la
boucle est possible avec I'affectation multiple, par exemple : indice, element = @, 75 (voir rubrique précédente).

Dans le méme ordre d’idée, nous avons déja vu la méthode .1items() qui permettait d'itérer sur des couples clé /
valeur d'un dictionnaire :

>>> dico = {"pinson": 2, "merle": 3}
>>> for cle, valeur 1in dico.items():
print(cle, valeur)

pinson 2

merle 3

>>> for bidule in dico.items():
print(bidule, type(bidule))

('pinson', 2) <class 'tuple'>
('merle', 3) <class 'tuple'>

La méthode .1items() itére, comme enumerate(), sur une série de tuples.
Enfin, on peut itérer sur trois valeurs en méme temps a partir d'une liste de tuples de trois éléments :

72 Cours de Python / Université Paris Cité / UFR Sciences du Vivant

8.3. Exercices Chapitre 8. Dictionnaires et tuples

>>> liste = [(5, 6, 7), (6, 7, 8), (7, 8, 9)]
>>> for x, y, z in liste:
print(x, y, z)

~N o U»
e e o)]
O 00

On pourrait concevoir la méme chose sur quatre ou cinq éléments, voire plus. La seule contrainte est d'avoir une
correspondance systématique entre le nombre de variables d'itération (par exemple trois variables dans I'exemple ci-dessus
avec x, y, z) et la longueur de chaque sous-tuple de la liste sur laquelle on itére (dans I'exemple ci-dessus, chaque
sous-tuple a trois éléments).

8.2.4 Fonction divmod ()

Dans le chapitre 2 Variables, on a vu les opérateurs // et % qui renvoient respectivement le quotient et le reste d'une
division entiere. La fonction divmod () prend en argument deux valeurs, le numérateur et le dénominateur d'une division,
et renvoie le quotient et le reste de la division entiere correspondante :

>>> 3 / 4

0.75

>>> 3 // 4

(0]

>>> 3 % 4

3

>>> divmod (3, 4)
(0, 3)

En utilisant I'affectation multiple, on peut ainsi récupérer a la volée le quotient et le reste en une seule ligne :

>>> quotient, reste = divmod(3, 4)
>>> quotient

0

>>> reste

3

Cette fonction est trés pratique, notamment quand on souhaite convertir des secondes en minutes et secondes
résiduelles. Par exemple, si on veut convertir 754 secondes en minutes :
>>> 754 / 60
12.566666666666666

>>> divmod (754, 60)
(12, 34)

La division normale nous donne un float en minutes qui n'est pas trés pratique, il faut encore convertir 0.566666666666666
minute en secondes et gérer les problemes d'arrondi. La fonction divmod () renvoie le résultat directement : 12 min et
34 s. On pourrait raisonner de maniére similaire pour convertir des minutes en heures, des heures en jours, etc.

8.2.5 Remarque finale

Les listes, les dictionnaires et les tuples sont tous des objets contenant une collection d'autres objets. En Python,
on peut construire des listes qui contiennent des dictionnaires, des tuples ou d'autres listes, mais aussi des dictionnaires
contenant des tuples, des listes, etc. Les combinaisons sont infinies !

8.3 Exercices

Conseil

Pour le premier exercice, utilisez I'interpréteur Python. Pour les suivants, créez des scripts puis exécutez-les dans un
shell.

Cours de Python / Université Paris Cité / UFR Sciences du Vivant 73

Chapitre 8. Dictionnaires et tuples 8.3. Exercices

8.3.1 Prédire la sortie

Soit les deux lignes de code suivantes :

dico = {"nom": "Joe", "age": 24, "taille": 181}
var = "nom"

Prédisez le comportement de chaque instruction ci-dessous, sans les recopier dans un script ni dans l'interpréteur
Python :

e print(dico["age"])

e print(dico[var])

e print(dico[24])

e print(dico["var"])

e print(dico["taille"])

Lorsqu'une instruction produit une erreur, identifiez pourquoi. Vérifiez ensuite vos prédictions en recopiant les ins-
tructions dans l'interpréteur Python.

8.3.2 Moyennes des notes

Soit le dictionnaire suivant donnant les notes d'un étudiant :

dico_notes = {
"math": 14, "programmation": 12,
"anglais": 16, "biologie": 10,
"sport": 19

}

Calculez la moyenne de ses notes de deux manieres différentes. Calculez a nouveau la moyenne sans la note de biologie.

8.3.3 Composition en acides aminés
En utilisant un dictionnaire, déterminez le nombre d’occurrences de chaque acide aminé dans la séquence AGWPSGGASAGLAILWGASATI
. Le dictionnaire ne doit contenir que les acides aminés présents dans la séquence.
Vous ne pouvez pas utiliser autant d'instructions if que d'acides aminés différents. Pensez au test d'appartenance.
8.3.4 Convertisseur de secondes
Un athléte court un marathon, malheureusement sa montre ne mesure son temps qu'en secondes. Celle-ci affiche 11
905. Aidez-le a convertir son temps en heures, minutes et secondes avec la fonction divmod ().
8.3.5 Convertisseur de jours

L'age de Camille et Céline en jours est respectivement de 8 331 jours et 8 660 jours. Quel est leur dge en années,
mois et jours, en supposant qu’une année compte 365 jours et qu'un mois compte 30 jours? La fonction divmod () vous
aidera a nouveau.

8.3.6 Propriétés des acides aminés

Les acides aminés peuvent étre séparés en quatre grandes catégories : apolaires (a), polaires (p), chargés positivement
(+) et chargés négativement (-). Le dictionnaire suivant implémente cette classification :

aa2prop={'A': lal, (AVAR) 'a', Lt 'a', 'G': Ia', U L lal, M 'a',
W' la', TF':. lal’ 'pr. 'a',
g, lpl, C': lpl’ 'N! lpl IQI Ipl’ T lpl, Ty lpl’
'D': l_I, 'E' . l_l’
K. l+l, 'R': |+l’ TH! [}

On souhaite convertir la séquence en acide aminé du domaine transmembranaire d’une intégrine humaine SNADVVYEKQMLYLYVLSGIG
en une série de signes indiquant la nature des acides aminés (a, p, + et -). Affichez tout d'abord la séquence sur une
ligne, puis la nature des acides aminés sur une seconde ligne.

La séquence contient une hélice transmembranaire, donc une succession de résidus apolaires, essayez de la retrouver
visuellement.

74 Cours de Python / Université Paris Cité / UFR Sciences du Vivant

8.3. Exercices Chapitre 8. Dictionnaires et tuples

Pour cet exercice, nous vous conseillons d'itérer sur la chaine de caracteres contenant la séquence. Nous reverrons
cela dans le chapitre 11 Plus sur les chaines de caractéres.

8.3.7 Boucle sur plusieurs éléments simultanément

A partir de la liste de tuples suivante :

[("chien", 3), ("chat", 4), ("souris", 16)]

affichez chaque animal et son nombre en utilisant qu'une seule boucle for. Attention, pour cet exercice, il est interdit
d'utiliser I'indicage des listes.

Cours de Python / Université Paris Cité / UFR Sciences du Vivant 75

CHAPITRE 9

Modules

0.1 Définition

Les modules sont des programmes Python qui contiennent des fonctions que I'on est amené a souvent réutiliser (on
les appelle aussi bibliothéques, ou libraries en anglais). Ce sont des « boftes a outils » qui vous seront trés utiles.

Les développeurs de Python ont mis au point de nombreux modules qui effectuent différentes taches. Pour cette
raison, prenez toujours le réflexe de vérifier si une partie du code que vous souhaitez écrire n'existe pas déja sous forme
de module.

La plupart de ces modules sont déja installés dans les versions standards de Python. Vous pouvez accéder a une
documentation exhaustive® sur le site de Python. N'hésitez pas a explorer un peu ce site, la quantité de modules
disponibles est impressionnante (plus de 300 modules).

9.2 Importation de modules

Dans les chapitres précédents, nous avons rencontré la notion de module plusieurs fois, notamment lorsque nous avons
voulu tirer un nombre aléatoire :

>>> dmport random
>>> random.randint(0, 10)
4

Regardons de plus prés cet exemple :
e Ligne 1. L'instruction import donne accés a toutes les fonctions du module random?.
e Ligne 2. Nous utilisons la fonction randint (0, 10) du module random. Cette fonction renvoie un nombre entier
tiré aléatoirement entre 0 inclus et 10 inclus.
Nous avons également croisé le module math lors de I'exercice sur la spirale (voir le chapitre 7 Fichiers). Ce module
nous a donné acceés aux fonctions trigonométriques sinus et cosinus, et a la constante 7 :
>>> dmport math
>>> math.cos(math.pi / 2)
6.123233995736766e-17

>>> math.sin(math.pi / 2)
1.0

1. https://docs.python.org/fr/3/py-modindex.html
2. https://docs.python.org/fr/3/library/random.html#module-random

76

https://docs.python.org/fr/3/py-modindex.html
https://docs.python.org/fr/3/library/random.html#module-random

9.2. Importation de modules Chapitre 9. Modules

En résumé, I'utilisation de la syntaxe import module permet d'importer tout une série de fonctions organisées par
« themes ». Par exemple, les fonctions gérant les nombres aléatoires avec random et les fonctions mathématiques avec
math. Python posséde de nombreux autres modules internes (c'est-a-dire présent de base lorsqu’on installe Python).

Remarque

Dans le chapitre 3 Affichage, nous avons introduit la syntaxe truc.bidule () avec truc étant un objet et .bidule()
une méthode. Nous vous avions expliqué qu'une méthode était une fonction un peu particuliére :

e clle était liée a un objet par un point;

e en général, elle agissait sur ou utilisait I'objet auquel elle était liée.

Par exemple, la méthode . append () vue dans le chapitre 4 Listes. Dans I'instruction 1istel.append(3), la méthode
.append () ajoute I'entier 3 a I'objet listel auquel elle est liée.

Avec les modules, nous rencontrons une syntaxe similaire. Par exemple, dans |'instruction math.cos (), on pourrait
penser que .cos() est aussi une méthode. En fait la documentation officielle de Python 3 précise bien que dans ce cas
.cos () est une fonction. Dans cet ouvrage, nous utiliserons ainsi le mot fonction lorsqu’on évoquera des fonctions issues
de modules.

Si cela vous parait encore ardu, ne vous inquiétez pas : c'est a force de pratiquer et de lire que vous vous approprierez
le vocabulaire. La syntaxe module.fonction() est |a pour rappeler de quel module provient la fonction en un coup
d'ceil.

Il existe un autre moyen d'importer une ou plusieurs fonctions d'un module :

>>> from random import randint
>>> randint(0,10)
7

A I'aide du mot-clé from, on peut importer une fonction spécifique d’'un module donné. Remarquez bien qu'il est
inutile de répéter le nom du module dans ce cas : seul le nom de la fonction en question est requis.

On peut également importer toutes les fonctions d'un module :
>>> from random import x
>>> randint(0,50)
46

>>> uniform(0,2.5)
0.64943174760727951

L'instruction from random -import * importe toutes les fonctions du module random. On peut utiliser toutes ses
fonctions directement, comme par exemple randint() et uniform() qui renvoient des nombres aléatoires entiers et
floats.

Dans la pratique, plutét que de charger toutes les fonctions d’'un module en une seule fois :

from random -import *

Nous vous conseillons de charger le module seul de la maniere suivante :

import random

puis d'appeler explicitement les fonctions voulues, par exemple :

>>> dmport random

>>> random.randint(l, 10)
4

>>> random.uniform(1l, 3)
1.8645753676306085

Il est également possible de définir un alias (un nom plus court) pour un module :

3. https://docs.python.org/fr/3/tutorial/modules.html

Cours de Python / Université Paris Cité / UFR Sciences du Vivant 77

https://docs.python.org/fr/3/tutorial/modules.html

Chapitre 9. Modules 9.3. Obtenir de I'aide sur les modules importés

78

>>> dmport random as rand
>>> rand.randint(1l, 10)

6

>>> rand.uniform(1, 3)
2.643472616544236

Dans cet exemple, les fonctions du module random sont accessibles via I'alias rand.
Enfin, pour vider de la mémoire un module déja chargé, on peut utiliser |'instruction del :

>>> dmport random

>>> random.randint(0,10)

2

>>> random.uniform(1l, 3)

2.825594756352219

>>> del random

>>> random.randint(0,10)

Traceback (most recent call last):

File "<stdin>", line 1, in ?
NameError: name 'random' is not defined. Did you forget to import 'random'?

On constate alors qu'un rappel (ligne 7) d'une fonction du module random, aprés |'avoir vidé de la mémoire (ligne 6),
retourne un message d'erreur (lignes 8-10). Dans le cas présent, le message d'erreur est explicite et demande a I'utilisateur
s'il n'a pas oublié d'importer le module random.

9.3 Obtenir de I'aide sur les modules importés

Pour obtenir de I'aide sur un module, rien de plus simple : il suffit d'utiliser la commande help() :

>>> dmport random
>>> help(random)

[oool

Ce qui renvoie :

Help on module random:

NAME
random - Random variable generators.

MODULE REFERENCE
https://docs.python.org/3.7/library/random

The following documentation is automatically generated from the Python
source files. It may be incomplete, incorrect or include features that
are considered implementation detail and may vary between Python
implementations. When 1in doubt, consult the module reference at the
location listed above.

DESCRIPTION
integers

uniform within range

sequences

pick random element
pick random sample

Remarque
e Pour vous déplacer dans |'aide, utilisez les fleches du haut et du bas pour le parcourir ligne par ligne, ou les touches
Page-up et Page-down pour faire défiler |'aide page par page.
e Pour quitter I'aide, appuyez sur la touche Q.
e Pour chercher du texte, tapez le caractére / puis le texte que vous cherchez, puis la touche Entrée. Par exemple,
pour chercher I'aide sur la fonction randint(), tapez /randint puis Entrée.

Cours de Python / Université Paris Cité / UFR Sciences du Vivant

9.4.

Quelques modules courants Chapitre 9. Modules

e Vous pouvez également obtenir de I'aide sur une fonction particuliére d’'un module avec :
help(random.randint)

La commande help() est en fait une commande plus générale, permettant d'avoir de I'aide sur n'importe quel objet

chargé en mémoire :

>>> t = [1, 2, 3]
>>> help(t)
Help on list object:

class list(object)
| Tist() -> new list
list(sequence) -> new list initialized from sequence's qitems
Methods defined here:

|
|
|
|
| __add__(...)
| X.__add__(y) <==> x+y
|

Enfin, pour connaitre d'un seul coup d'ceil toutes les méthodes ou variables associées a un objet, utilisez la fonction

dir() :

>>> qmport random
>>> dir(random)
['BPF', 'LOG4', 'NV_MAGICCONST', 'RECIP_BPF', 'Random', 'SG_MAGICCONST',

'SystemRandom', 'TWOPI', 'WichmannHill', '_BuiltinMethodType', '_MethodT
ype', '__all__', '__builtins__', '__doc__', '__file__', '__name__', '_ac
os', '_ceil', '_cos', '_e', '_exp', '_hexlify', '_inst', '_log', '_pi',
'_random', '_sin', '_sqrt', '_test', '_test_generator', '_urandom', '_wa
rn', 'betavariate', 'choice', 'expovariate', 'gammavariate', 'gauss', 'g
etrandbits', 'getstate', 'jumpahead', 'lognormvariate', 'normalvariate',

'paretovariate', 'randint', 'random', 'randrange', 'sample', 'seed', 's
etstate', 'shuffle', 'uniform', 'vonmisesvariate', 'weibullvariate']
>>>

9.4 Quelques modules courants

une

Il existe une série de modules que vous serez probablement amenés a utiliser si vous programmez en Python. En voici
liste non exhaustive (pour la liste compléte, reportez-vous a la page des modules? sur le site de Python) :

math?® : fonctions et constantes mathématiques de base (sin, cos, exp, pi..).

sys® : interaction avec l'interpréteur Python, notamment pour le passage d'arguments (voir plus bas).

pathlib” : gestion des fichiers et des répertoires (voir plus bas).

random?® : génération de nombres aléatoires.

time® : accés a I'heure de I'ordinateur et aux fonctions gérant le temps.

urllib1® : récupération de données sur internet depuis Python.

Tkinter'! : interface python avec Tk. Création d'objets graphiques (voir chapitre 25 Fenétres graphiques et Tkinter
(en ligne)).

e re'? : gestion des expressions régulieres (voir chapitre 17 Expressions réguliéres et parsing).

Nous vous conseillons d'aller explorer les pages de ces modules pour découvrir toutes leurs potentialités.

https://docs.python.org/fr/3/py-modindex.html
https://docs.python.org/fr/3/library/math.html#module-math
https://docs.python.org/fr/3/library/sys.html#fmodule-sys
https://docs.python.org/fr/3/library/os.html#module-os
https://docs.python.org/fr/3/library/random.html#module-random
https://docs.python.org/fr/3/library/time.html#module-time
https://docs.python.org/fr/3/library/urllib.html#module-urllib

. https://docs.python.org/fr/3/library/tkinter.html#module-tkinter
https://docs.python.org/fr/3/library/re.html#module-re

Cours de Python / Université Paris Cité / UFR Sciences du Vivant

79

https://docs.python.org/fr/3/py-modindex.html
https://docs.python.org/fr/3/library/math.html#module-math
https://docs.python.org/fr/3/library/sys.html#module-sys
https://docs.python.org/fr/3/library/os.html#module-os
https://docs.python.org/fr/3/library/random.html#module-random
https://docs.python.org/fr/3/library/time.html#module-time
https://docs.python.org/fr/3/library/urllib.html#module-urllib
https://docs.python.org/fr/3/library/tkinter.html#module-tkinter
https://docs.python.org/fr/3/library/re.html#module-re

Chapitre 9. Modules 9.5. Module random : génération de nombres aléatoires

80

Vous verrez dans le chapitre 15 Création de modules comment créer votre propre module lorsque vous souhaitez
réutiliser souvent vos propres fonctions.

Enfin, notez qu'il existe de nombreux autres modules externes qui ne sont pas installés de base dans Python, mais
qui sont treés utilisés en bioinformatique et en analyse de données. Par exemple : NumPy (manipulations de vecteurs
et de matrices), Biopython (manipulation de séquences ou de structures de biomolécules), matplotlib (représentations
graphiques), pandas (analyse de données tabulées), etc. Ces modules vous serons présentés dans les chapitres 19 a 22.

9.5 Module random : génération de nombres aléatoires

Comme indiqué précédemment, le module random > contient des fonctions pour la génération de nombres aléatoires :

>>> dmport random

>>> random.randint(0, 10)
4

>>> random.randint(0, 10)
10

>>> random.uniform(0, 10)
6.574743184892878

>>> random.uniform(0, 10)
1.1655547702189106

Le module random permet aussi de permuter aléatoirement des listes :

>>> x = [1, 2, 3, 4]
>>> random.shuffle(x)
>>> X

[2, 3, 1, 4]

>>> random.shuffle(x)
>>> X

[4, 2, 1, 3]

Mais aussi de tirer aléatoirement un élément dans une liste donnée :

>>> bases = [IIAII’ IITII, IIC"’ llGll:l
>>> random.choice(bases)

IAI

>>> random.choice(bases)

lGl

La fonction choices() (avec un s a la fin) réalise plusieurs tirages aléatoires (avec remise, c'est-a-dire qu'on peut
piocher plusieurs fois le méme élément) dans une liste donnée. Le nombre de tirages est précisé par le paramétre k :

>>> random.choices(bases, k=5)

[YGI, IAI’ IAY’ lTl, lGl]

>>> random.choices(bases, k=5)

[IAI’ ITI’ IAI’ IAI, lcl]

>>> random.choices(bases, k=10)

['Cl, ITI’ ITI’ ITI, IGI’ IAI’ ICI’ lAl, IGI’ IGI]

Si vous exécutez vous-méme les exemples précédents, vous devriez obtenir des résultats légérement différents de ceux
indiqués.

Pour des besoins de reproductibilité des analyses en science, on a souvent besoin de retrouver les mémes résultats
méme si on utilise des nombres aléatoires. Pour cela, on peut définir ce qu'on appelle la « graine aléatoire ».

Définition

En informatique, la génération de nombres aléatoires est un probléeme complexe. On utilise plutét des « générateurs
de nombres pseudo-aléatoires 14 ». Pour cela, une graine aléatoire '° doit étre définie. Cette graine est la plupart du temps
un nombre entier qu'on passe au générateur : celui-ci va alors produire une série donnée de nombres pseudo-aléatoires
qui dépendent de cette graine. Si on change la graine, la série de nombres change.

13. https://docs.python.org/fr/3/library/random.html#module-random
14. https://fr.wikipedia.org/wiki/G%C3%A9n%C3%A9rateur_de_nombres_pseudo-al%C3%A9atoires
15. https://fr.wikipedia.org/wiki/Graine_al%C3%A9atoire

Cours de Python / Université Paris Cité / UFR Sciences du Vivant

https://docs.python.org/fr/3/library/random.html#module-random
https://fr.wikipedia.org/wiki/G%C3%A9n%C3%A9rateur_de_nombres_pseudo-al%C3%A9atoires
https://fr.wikipedia.org/wiki/Graine_al%C3%A9atoire

9.6. Module sys : passage d'arguments Chapitre 9. Modules

En Python, la graine aléatoire se définit avec la fonction seed() :

>>> random.seed(42)
>>> random.randint(0, 10)

1
>>> random.randint(0, 10)
0]
>>> random.randint(0, 10)
4

Ici, la graine aléatoire est fixée a 42. Si on ne précise pas la graine, par défaut Python utilise |la date (plus précisément,
il s'agit du nombre de secondes écoulées depuis une date fixe passée). Ainsi, a chaque fois qu’on relance Python, la graine
sera différente, car ce nombre de secondes sera différent.

Si vous exécutez ces mémes lignes de code (depuis I'instruction random.seed(42)), il se peut que vous ayez des
résultats différents selon la version de Python. Néanmoins, vous devriez systématiquement obtenir les mémes résultats si
vous relancez plusieurs fois de suite ces instructions sur une méme machine.

Remarque
Quand on utilise des nombres aléatoires, il est fondamental de connaitre la distribution de probablités utilisée par la
fonction.
Par exemple, la fonction de base du module random est random. random(), elle renvoie un float aléatoire entre 0 et
1 tiré dans une distribution uniforme. Si on tire beaucoup de nombres, on aura la méme probabilité d’obtenir tous les
nombres possibles entre 0 et 1. La fonction random.randint() tire aussi un entier dans une distribution uniforme. La
fonction random. gauss () tire quant a elle un float aléatoire dans une distribution gaussienne.

9.6 Module sys : passage d’arguments

Le module sys'® contient des fonctions et des variables spécifiques a I'interpréteur Python lui-méme.

Ce module est particulierement intéressant pour récupérer les arguments passés a un script Python lorsque celui-ci
est appelé en ligne de commande.

Dans cet exemple, créons le script suivant que I'on enregistrera sous le nom test.py :

import sys
print(sys.argv)

Ensuite, dans un shell, exécutons le script test.py suivi de plusieurs arguments :

$ python test.py salut girafe 42
['test.py', 'salut', 'girafe', '42']

e Ligne 1. Le caractére $ représente l'invite du shell, test.py est le nom du script Python, salut, girafe et 42
sont les arguments passés au script (tous séparés par un espace).

e Ligne 2. Le script affiche le contenu de la variable sys.argv. Cette variable est une liste qui contient tous les
arguments de la ligne de commande, y compris le nom du script Python lui-méme qu'on retrouve comme premier
élément de cette liste dans sys.argv[0]. On peut donc accéder a chacun des différents arguments du script avec
sys.argv[1l], sys.argv[2], etc.

Toujours dans le module sys, la fonction sys.exit() est utile pour quitter un script Python. On peut donner un
argument a cette fonction (en général une chaine de caractéres) qui sera renvoyé au moment ot Python quittera le script.
Par exemple, si vous attendez au moins un argument en ligne de commande, vous pouvez renvoyer un message pour
indiquer a |'utilisateur ce que le script attend comme argument :

import sys

if len(sys.argv) != 2:
sys.exit("ERREUR : il faut exactement un argument.")

print(f"Argument vaut : {sys.argv[1]}")

16. https://docs.python.org/fr/3/library/sys.html#module-sys

Cours de Python / Université Paris Cité / UFR Sciences du Vivant

81

https://docs.python.org/fr/3/library/sys.html#module-sys

Chapitre 9. Modules

9.6. Module sys : passage d'arguments

82

Puis on I'exécute sans argument :

$ python test.py

ERREUR : il faut exactement un argument.
avec un seul argument :

$ python test.py 42

Argument vaut : 42
puis avec plusieurs :

$ python test.py 42 salut
ERREUR : il faut exactement un argument.

Remarque

On vérifie dans cet exemple que le script possede deux arguments, car le nom du script lui-méme compte pour un

argument (le tout premier).

L'intérét de récupérer des arguments passés dans la ligne de commande a I'appel du script est de pouvoir ensuite les

utiliser dans le script.

Voici comme nouvel exemple le script compte_lignes.py, qui prend comme argument le nom d'un fichier puis

affiche le nombre de lignes qu'il contient :

import sys

if len(sys.argv) != 2:

sys.exit("ERREUR : il faut exactement un argument.")

nom_fichier = sys.argv[1]
taille = 0

with open(nom_fichier, "r") as f_in:

taille = len(f_in.readlines())

print(f"{nom_fichier} contient {taille} lignes.")

Supposons que dans le méme répertoire, nous ayons le fichier animaux1.txt dont voici le contenu :

girafe
tigre
singe
souris

et le fichier animaux2.txt qui contient :

poisson
abeille
chat

Utilisons maintenant le script compte_lignes.py :

$ python compte_lignes.py

ERREUR : il faut exactement un argument.
$ python compte_lignes.py animauxl.txt
animauxl.txt contient 4 Tlignes.

$ python compte_lignes.py animaux2.txt
animaux2.txt contient 3 lignes.

$ python compte_lignes.py animauxl.txt animaux2.txt

ERREUR : il faut exactement un argument.

Notre script est donc capable de :

e vérifier si un argument lui est donné et si ce n'est pas le cas d'afficher un message d'erreur;
e d'ouvrir le fichier dont le nom est fourni en argument, de compter puis d’afficher le nombre de lignes.

Cours de Python / Université Paris Cité / UFR Sciences du Vivant

9.7. Module pathlib : gestion des fichiers et des répertoires Chapitre 9. Modules

Par contre, le script ne vérifie pas si le fichier fourni en argument existe bien :

$ python compte_lignes.py animaux3.txt
Traceback (most recent call last):
File "compte_lignes.py", line 8, in <module>
with open(nom_fichier, "r") as f_in:
AANAAAANAANANANAANAAANANAANNANANANANANAN

FileNotFoundError: [Errno 2] No such file or directory: 'animaux3.txt'

La lecture de la partie suivante va nous permettre d'améliorer notre script compte_Tlignes.py.

9.7 Module pathlib : gestion des fichiers et des répertoires

Le module pathlib'” permet de manipuler les fichiers et les répertoires.
Le plus souvent, on utilise uniquement la classe Path du module pathlib, qu'on charge de cette maniére :

>>> from pathlib import Path

La méthode .exists () vérifie la présence d'un fichier sur le disque dur :

>>> dmport sys
>>> from pathlib import Path
>>> qif Path("toto.pdb").exists():
print("le fichier est présent")
. else:
sys.exit("le fichier est absent")

le fichier est absent

Dans cet exemple, si le fichier n’existe pas sur le disque dur, on quitte le programme avec la fonction exit() du
module sys que nous venons de voir.
La méthode .cwd () renvoie le chemin complet du répertoire depuis lequel est lancé Python (cwd signifiant current
working directory) :
>>> from pathlib import Path

>>> Path().cwd()
PosixPath('/home/pierre')

On obtient un objet de type PosixPath qu'il est possible de transformer si besoin en chaine de caractéres avec la
fonction str (), que nous avons vu dans le chapitre 2 Variables :

>>> str(Path().cwd())
'/home/pierre’

Mais I'intérét de récupérer un objet de type PosixPath est qu'on peut ensuite utiliser les méthodes . name et .parent

pour obtenir respectivement le nom du répertoire (sans son chemin complet) et le répertoire parent :

>>> Path().cwd()

PosixPath('/home/pierre')

>>> Path().cwd() .name

'pierre’

>>> Path().cwd().parent

PosixPath('/home"')

Enfin, la méthode .iterdir () donne acceés au contenu du répertoire depuis lequel est lancé Python :

>>> list(Path().iterdir())
[PosixPath('demo.py'), PosixPath('tests'), PosixPath('1BTA.pdb')]

Tout comme la fonction range () (voir le chapitre 4 Listes), la méthode .iterdir() est un itérateur. La fonction
list() permet d'obtenir une liste.

Toutefois, il est possible d'itérer trés facilement sur le contenu d'un répertoire et de savoir s'il contient des fichiers
ou des sous-répertoires :

17. https://docs.python.org/fr/3/library/pathlib.html

Cours de Python / Université Paris Cité / UFR Sciences du Vivant 83

https://docs.python.org/fr/3/library/pathlib.html

Chapitre 9. Modules 9.8. Exercices

>>> for nom in Path().iterdir():
if nom.is_file():
print(f"{nom} est un fichier")
else:
print(f"{nom} n'est pas un fichier")

demo.py est un fichier
tests n'est pas un fichier
1BTA.pdb est un fichier

La méthode .1is_file() renvoie True si I'objet est un fichier, et False si ce n'est pas le cas.

La méthode .iterdir() parcourt le contenu d'un répertoire, sans en explorer les éventuels sous-répertoires. Si on
souhaite parcourir récursivement un répertoire, on utilise la méthode .glob (). Prenons I'arborescence suivante comme
exemple :
1BTA.pdb

demo.py
tests

results.csv
scriptl.py
script2.py

Le répertoire courant contient les fichiers 1BTA.pdb et demo.py, ainsi que le répertoire tests. Ce dernier contient
lui-méme les fichiers results.csv, scriptl.py et script2.py.

On souhaite maintenant lister tous les scripts Python (dont I'extension est .py) présents dans le répertoire courant
et dans ses sous-répertoires :

>>> for nom in Path().glob("*x/x.py"):
print(f"{nom}")

demo. py
tests/scriptl.py
tests/script2.py

Dans la chaine de caractéres "xx/x.py", xx recherche tous les sous-répertoires récursivement et x.py signifie
n'importe quel nom de fichier qui se termine par |'extension .py.
Il existe de nombreuse autres méthodes associées a la classe Path du module pathlib, n’hésitez pas a consulter la

documentation 8.

0.8 Exercices

Conseil
Pour les trois premiers exercices, utilisez |'interpréteur Python. Pour les exercices suivants, créez des scripts puis
exécutez-les dans un shell.

9.8.1 Racine carrée

Affichez sur la méme ligne les nombres de 10 a 20 (inclus) ainsi que leur racine carrée avec trois décimales. Utilisez
pour cela le module math avec la fonction sqrt (). Exemple :
10 3.162
11 3.317
12 3.464
13 3.606
[...]

Consultez pour cela la documentation ' de la fonction math.sqrt().

18. https://docs.python.org/3/library/pathlib.html
19. https://docs.python.org/fr/3/library/math.html#math.sqrt

84 Cours de Python / Université Paris Cité / UFR Sciences du Vivant

https://docs.python.org/3/library/pathlib.html
https://docs.python.org/fr/3/library/math.html#math.sqrt

9.8. Exercices Chapitre 9. Modules

9.8.2 Cosinus

Calculez le cosinus de /2 en utilisant le module math avec la fonction cos() et la constante pi.
Consultez pour cela la documentation 2° de la fonction math.cos () et la documentation ! de la constante math.p1.

9.8.3 Comparaison de floats

Montrez que

5+\/4+V3

est égale a e a 0,001 pres.
Montrez ensuite que

V7643

est égale a w a 0,0001 pres.

Conseil
e Jetez un oeil a la rubrique sur la comparaison de floats abordée dans le chapitre 6 Tests.
e Les constantes 7 et e sont obtenues par math.pi et math.e.

9.8.4 Chemin et contenu du répertoire courant

Affichez le chemin et le contenu du répertoire courant (celui depuis lequel vous avez lancé I'interpréteur Python).
Déterminez également le nombre total de fichiers et de répertoires présents dans le répertoire courant.

9.8.5 Affichage temporisé

Affichez les nombres de 1 a 10 avec 1 seconde d'intervalle. Utilisez pour cela le module time et sa fonction sleep().
Consultez pour cela la documentation 2> de la fonction time.sleep().

9.8.6 Séquences aléatoires de chiffres

Générez une séquence aléatoire de six chiffres, ceux-ci étant des entiers tirés entre 1 et 4. Utilisez le module random
avec la fonction randint().
Consultez pour cela la documentation ?® de la fonction random.randint().

9.8.7 Compteur de points de jeu de belote

On considére un jeu de belote avec la variante sans-atout, ou chaque carte vaut un certain nombre de points quelle
que soit sa couleur (tréfle, carreau, coeur, pique). Un dictionnaire permet de mettre la correspondance entre chaque carte
et son nombre de points :

Nombre de points de chaque carte.

(V = valet, D = dame, R = roi, # d = 10, A = as).

dico_points_sans_atouts = {"7": o, "8": 0, "9": @, "V": 2, "D": 3,
IIRII: 4’ Ildll: 10’ IIAII: ll}

Par ailleurs, on peut représenter un jeu de 32 cartes par une liste :

jeu CarteS = [ll?ll’ ||8|l’ ||9|l’ Ildll’ IIVII, IIDII, IIRII, llAll:l * 4

Créez un programme belote.py qui tire huit cartes au hasard sans remise et qui affiche le nombre de points
correspondant. Pour cela, vous pouvez utiliser la fonction random.sample() et son argument par mot-clé k. N'hésitez
pas a consulter la documentation 4. On souhaite une sortie de ce style :

20. https://docs.python.org/fr/3/library/math.html#math.cos

21. https://docs.python.org/fr/3/library/math.html#math.pi

22. https://docs.python.org/fr/3/library/time.html#time.sleep

23. https://docs.python.org/fr/3/library/random.html#random.randint
24. https://docs.python.org/fr/3/library/random.html#random.sample

Cours de Python / Université Paris Cité / UFR Sciences du Vivant 85

https://docs.python.org/fr/3/library/math.html#math.cos
https://docs.python.org/fr/3/library/math.html#math.pi
https://docs.python.org/fr/3/library/time.html#time.sleep
https://docs.python.org/fr/3/library/random.html#random.randint
https://docs.python.org/fr/3/library/random.html#random.sample

Chapitre 9. Modules 9.8. Exercices

$ python belote.py

La main est ['7', 'A', '9', 'A', 'R', 'd', 'V', 'D'].
7 --> 0 points

A --> 11 points

9 --> 0 points

A --> 11 points

R --> 4 points

d --> 10 points

V --> 2 points

D --> 3 points

Le nombre total de points de la main est 41.

9.8.8 Séquences aléatoires d’ADN

Générez une séquence aléatoire d'’ADN de 20 bases de deux maniéres différentes. Utilisez le module random avec la
fonction choice() ou choices().
9.8.9 Séquences aléatoires d’ADN avec argument

Créez un script dna_random.py qui prend comme argument un nombre de bases, construit une séquence aléatoire
d'ADN dont la longueur est le nombre de bases fourni en argument, puis affiche cette séquence.
Le script devra vérifier qu'un argument est bien fourni et renvoyer un message d'erreur si ce n'est pas le cas.

Conseil
Pour générer la séquence d'ADN, utilisez la fonction random.choice() abordée dans I'exercice précédent.

9.8.10 Compteur de lignes

Améliorez le script compte_lignes.py, dont le code a été donné précédemment, de facon a ce qu'il renvoie un
message d'erreur si le fichier n'existe pas.

Par exemple, si les fichiers animaux1.txt et animaux2.txt sont bien dans le répertoire courant, mais pas animaux3
JExt o
$ python compte_lignes.py animauxl.txt
animauxl.txt contient 4 lignes.
$ python compte_lignes.py animaux2.txt
animaux2.txt contient 3 lignes.

$ python compte_lignes.py animaux3.txt
ERREUR : animaux3.txt n'existe pas.

9.8.11 Détermination du nombre pi par la méthode Monte Carlo (exercice +++)

Soit un cercle de rayon 1 (en trait plein sur la figure 9.1) inscrit dans un carré de coté 2 (en trait pointillé).

Avec R = 1, l'aire du carré vaut (2R)? soit 4 et |'aire du disque délimité par le cercle vaut TR? soit 7.

En choisissant N points aléatoires (3 I'aide d'une distribution uniforme) a l'intérieur du carré, la probabilité que ces
points se trouvent aussi dans le cercle est :

airedu cercle 7w

P= 5 7=
aire du carré 4

Soit n, le nombre de points effectivement dans le cercle, il vient alors

d'ol
T=4x .
N

Déterminez une approximation de 7 par cette méthode. Pour cela, pour N itérations :

86 Cours de Python / Université Paris Cité / UFR Sciences du Vivant

0.8. Exercices

Chapitre 9. Modules

2.
3.

4.

-1 0

FIGURE 9.1 — Cercle de rayon 1 inscrit dans un carré de coté 2.

. Choisissez aléatoirement les coordonnées x et y d'un point entre -1 et 1. Utilisez la fonction uniform() du module

random.

Calculez la distance entre le centre du cercle et ce point.

Déterminez si cette distance est inférieure au rayon du cercle, c'est-a-dire si le point est dans le cercle ou pas.
Si le point est effectivement dans le cercle, incrémentez le compteur n.

Finalement calculez le rapport entre n et N et proposez une estimation de 7. Quelle valeur de 7 obtenez-vous pour
100 itérations 7 1000 itérations ? 10 000 itérations ? Comparez les valeurs obtenues a la valeur de & fournie par le module

math.

On rappelle que la distance d entre deux points A et B de coordonnées respectives (x4,y4) et (xg,yp) se calcule
comme :

d= \/ (xg —xa)% + (yB —ya)?

Pour vous aider, consultez la documentation 2> de la fonction random.uniform().

25. https://docs.python.org/fr/3/library/random.html#random.uniform

Cours de Python / Université Paris Cité / UFR Sciences du Vivant

87

https://docs.python.org/fr/3/library/random.html#random.uniform

cuapiTrRe 10

Fonctions

10.1 Principe et généralités

En programmation, les fonctions sont trés utiles pour réaliser plusieurs fois la méme opération au sein d'un programme.
Elles rendent également le code plus lisible et plus clair en le fractionnant en blocs logiques.

Vous connaissez déja certaines fonctions Python. Par exemple math.cos(angle) du module math renvoie le cosinus
de la variable angle exprimé en radian. Vous connaissez aussi des fonctions internes a Python comme range () ou
len(). Pour I'instant, une fonction est a vos yeux une sorte de « boite noire » :

1. A laquelle vous passez aucune, une ou plusieurs variable(s) entre parenthéses. Ces variables sont appelées argu-

ments. || peut s'agir de n'importe quel type d'objet Python.

2. Qui effectue une action.

3. Qui renvoie un objet Python ou rien du tout.

Tout cela est illustré schématiquement dans la figure ci-dessous.

2) Action effectuée

» fonction(..., ...)
1) Appel de la fonction : 3) Rrenvoi d’un objet
passage de 0, 1 ou Python ou de rien
plusieurs argument(s)
programme
principal

FIGURE 10.1 — Fonctionnement schématique d’une fonction.

Par exemple, si vous appelez la fonction len() de la maniére suivante :

88

10.2. Définition Chapitre 10. Fonctions

>>> len([0, 1, 2])
3

voici ce qu'il se passe :

1. vous appelez len() en lui passant une liste en argument (ici la liste [0, 1, 2]);

2. la fonction calcule la longueur de cette liste;

3. elle vous renvoie un entier égal a cette longueur.

Autre exemple, si vous appelez la méthode ma_liste.append() (n’oubliez pas, une méthode est une fonction qui
agit sur 'objet auquel elle est attachée par un point) :

>>> ma_liste.append(5)

1. Vous passez I'entier 5 en argument;

2. la méthode append() ajoute I'entier 5 a I'objet ma_l1iste;

3. et elle ne renvoie rien.

Aux yeux du programmeur, au contraire, une fonction est une portion de code effectuant une suite d'instructions bien
particuliére. Mais avant de vous présenter la syntaxe et la maniére de construire une fonction, revenons une derniére fois
sur cette notion de « boite noire » :

e Une fonction effectue une tache. Pour cela, elle recoit éventuellement des arguments et renvoie éventuellement
quelque chose. L'algorithme utilisé au sein de la fonction n'intéresse pas directement |'utilisateur. Par exemple, il
est inutile de savoir comment la fonction math.cos () calcule un cosinus. On a juste besoin de savoir qu'il faut lui
passer en argument un angle en radian, et qu'elle renvoie le cosinus de cet angle. Ce qui se passe a |'intérieur de
la fonction ne regarde que le programmeur.

e Chaque fonction effectue en général une tache unique et précise. Si cela se complique, il est plus judicieux d'écrire
plusieurs fonctions (qui peuvent éventuellement s'appeler les unes les autres). Cette modularité améliore la qualité
générale et la lisibilité du code. Vous verrez qu'en Python, les fonctions présentent une grande flexibilité.

Pour finir sur les généralités, nous avons utilisé dans la Figure ci-dessus le terme programme principal (main en
anglais), pour désigner I'endroit depuis lequel on appelle une fonction (on verra plus tard que I'on peut en fait appeler
une fonction de n'importe ou). Le programme principal désigne le code qui est exécuté lorsqu'on lance le script Python,
c'est-a-dire toute la suite d'instructions en dehors des fonctions. En général, dans un script Python, on écrit d’abord les
fonctions, puis le programme principal. Nous aurons |'occasion de revenir sur cette notion de programme principal plus
tard dans ce chapitre, ainsi que dans le chapitre 13 Plus sur les fonctions.

10.2 Définition

Pour définir une fonction, Python utilise le mot-clé def. Si on souhaite que la fonction renvoie quelque chose, il faut
utiliser le mot-clé return. Par exemple :

>>> def carre(x):
return x*x2

>>> print(carre(2))
4

Notez que la syntaxe de def utilise les deux-points comme les boucles for et while ainsi que les tests if : un bloc
d'instructions est donc attendu. De méme que pour les boucles et les tests, I'indentation de ce bloc d'instructions (qu'on
appelle le corps de la fonction) est obligatoire.

Dans I'exemple précédent, nous avons passé un argument a la fonction carre(), qui nous a renvoyé (ou retourné)
une valeur que nous avons immédiatement affichée a I'écran avec l'instruction print(). Que veut dire valeur renvoyée 7
Et bien cela signifie que cette derniére est récupérable dans une variable :

>>> res = carre(2)

>>> print(res)
4

Ici, le résultat renvoyé par la fonction est stocké dans la variable res. Notez qu'une fonction ne prend pas forcément
un argument et ne renvoie pas forcément une valeur, par exemple :

Cours de Python / Université Paris Cité / UFR Sciences du Vivant 89

Chapitre 10. Fonctions 10.3. Passage d’arguments

90

>>> def hello():
print("bonjour")

>>> hello()
bonjour

Dans ce cas, la fonction hello() se contente d’afficher la chaine de caractéres "bonjour" a I'écran. Elle ne prend
aucun argument et ne renvoie rien. Par conséquent, cela n'a pas de sens de vouloir récupérer dans une variable le résultat
renvoyé par une telle fonction. Si on essaie tout de méme, Python affecte la valeur None qui signifie rien en anglais :

>>> var = hello()
bonjour

>>> print(var)
None

Ceci n'est pas une faute car Python n'émet pas d’erreur, toutefois cela ne présente, la plupart du temps, guére
d'intérét.

10.3 Passage d’arguments

Le nombre d’arguments que I'on peut passer a une fonction est variable. Nous avons vu ci-dessus des fonctions
auxquelles on passait zero ou un argument. Dans les chapitres précédents, vous avez rencontré des fonctions internes a
Python qui prenaient au moins deux arguments. Souvenez-vous par exemple de range (1, 10) ou encore range(1l,
10, 2). Le nombre d'arguments est donc laissé libre a I'initiative du programmeur qui développe une nouvelle fonction.

Une particularité des fonctions en Python est que vous n'étes pas obligé de préciser le type des arguments que vous
lui passez, dés lors que les opérations que vous effectuez avec ces arguments sont valides. Python est en effet connu
comme étant un langage au « typage dynamique », c'est-a-dire qu'il reconnait pour vous le type des variables au moment
de I'exécution. Par exemple :

>>> def fois(x, y):
return xxy

>>> fois(2, 3)

6

>>> fois(3.1415, 5.23)
16.430045000000003

>>> fois("to", 2)
'toto'

>>> fois([1,3], 2)

[1, 3, 1, 3]

L’'opérateur * reconnait plusieurs types (entiers, floats, chaines de caractéres, listes). Notre fonction fois() est donc
capable d'effectuer des taches différentes! Méme si Python autorise cela, méfiez-vous tout de méme de cette grande
flexibilité qui pourrait conduire a des surprises dans vos futurs programmes. En général, il est plus judicieux que chaque
argument ait un type précis (entiers, floats, chaines de caractéres, etc.) et pas |'un ou |'autre.

10.4 Renvoi de résultats

Un énorme avantage en Python est que les fonctions sont capables de renvoyer plusieurs objets a la fois, comme dans
cette fraction de code :
>>> def carre_cube(x):
return x**2, x**x3

>>> carre_cube(2)
(4, 8)

En réalité Python ne renvoie qu'un seul objet, mais celui-ci peut étre séquentiel, c'est-a-dire contenir lui-méme
d'autres objets. Dans notre exemple, Python renvoie un objet de type tuple, type que nous avons vu dans le chapitre
8 Dictionnaires et tuples (souvenez-vous, il s'agit d'une sorte de liste avec des propriétés différentes). Notre fonction
pourrait tout autant renvoyer une liste :

Cours de Python / Université Paris Cité / UFR Sciences du Vivant

10.5. Arguments positionnels et arguments par mot-clé Chapitre 10. Fonctions

>>> def carre_cube2(x):
return [x**x2, x*x%3]

>>> carre_cube2(3)
[9, 27]

Renvoyer un tuple ou une liste de deux éléments (ou plus) est trés pratique en conjonction avec |'affectation multiple,
par exemple :
>>> z1, z2 = carre_cube2(3)
>>> z1
9

>>> z2
27

Cela permet de récupérer plusieurs valeurs renvoyées par une fonction et de les affecter a la volée a des variables
différentes.
Une fonction peut aussi renvoyer un booléen :
def est_pair(x):
if x %2 == 0:
return True

else:
return False

for chiffre in range(1, 5):
if est_pair(chiffre):
print(f"{chiffre} est pair")

Comme la fonction renvoie un booléen, on peut utiliser la notation if est_pair(chiffre): qui équivaut a if
est_pair(chiffre) == True:. Il est courant d'appeler une fonction qui renvoie un booléen est_quelquechose()
car on comprend que ca pose la question si c’est vrai ou faux. En anglais, on trouvera la notation is_even(). Nous
reverrons ces notions dans le chapitre 13 Plus sur les fonctions.

10.5 Arguments positionnels et arguments par mot-clé

Jusqu'a maintenant, nous avons systématiquement passé le nombre d'arguments que la fonction attendait. Que se
passe-t-il si une fonction attend deux arguments et que nous ne lui en passons qu'un seul ?

>>> def fois(x, y):
return xxy

>>> fois(2, 3)
6
>>> fois(2)
Traceback (most recent call last):
File "<stdin>", 1line 1, in <module>
TypeError: fois() missing 1 required positional argument: 'y'

On constate que passer un seul argument a une fonction qui en attend deux conduit a une erreur.

Définition

Lorsqu’on définit une fonction def fct(x, y): les arguments x et y sont appelés arguments positionnels (en
anglais, positional arguments). |l est strictement obligatoire de les préciser lors de I'appel de la fonction. De plus, il est
nécessaire de respecter le méme ordre lors de |'appel que dans la définition de la fonction. Dans |'exemple ci-dessus, 2
correspondra a x et 3 correspondra a y. Finalement, tout dépendra de leur position, d’ou leur qualification de positionnel.

Mais il est aussi possible de passer un ou plusieurs argument(s) de maniére facultative et de leur attribuer une valeur
par défaut :

Cours de Python / Université Paris Cité / UFR Sciences du Vivant 91

Chapitre 10. Fonctions 10.5. Arguments positionnels et arguments par mot-clé

>>> def fct(x=1):
oo return x
>>> fct()

1

>>> fct(10)
10

Définition

Un argument défini avec une syntaxe def fct(arg=val): est appelé argument par mot-clé (en anglais, keyword
argument). Le passage d'un tel argument lors de I'appel de la fonction est facultatif. Ce type d'argument ne doit pas étre
confondu avec les arguments positionnels présentés ci-dessus, dont la syntaxe est def fct(arg):.

Il est bien siir possible de passer plusieurs arguments par mot-clé :

>>> def fct(x=0, y=0, z=0):
. return x, y, z

>>> fct()

(0, 0, 0)

>>> fct(10)

(10, 0, 0)

>>> fct(10, 8)

(10, 8, 0)

>>> fct(10, 8, 3)

(10, 8, 3)

On observe que pour l'instant, les arguments par mot-clé sont pris dans I'ordre dans lesquels on les passe lors de
I'appel. Comment faire si I'on souhaitait préciser I'argument par mot-clé z et garder les valeurs de x et y par défaut?
Simplement en précisant le nom de I'argument lors de I'appel :

>>> fct(z=10)
(0, 0, 10)

Python permet méme de rentrer les arguments par mot-clé dans un ordre arbitraire :

>>> fct(z=10, x=3, y=80)

(3, 80, 10)
>>> fct(z=10, y=80)
(0, 80, 10)

Que se passe-t-il lorsque nous avons un mélange d'arguments positionnels et par mot-clé? Et bien les arguments
positionnels doivent toujours étre placés avant les arguments par mot-clé :

>>> def fct(a, b, x=0, y=0, z=0):
return a, b, x, y, z

>>> fet(l, 1)

(1, 1, 0, 0, 0)

>>> fct(l, 1, z=5)

(1’ 17 G) 07 5)

>>> fct(1, 1, z=5, y=32)
(1, 1, 0, 32, 5)

On peut toujours passer les arguments par mot-clé dans un ordre arbitraire 3 partir du moment ol on précise leur
nom. Par contre, si les deux arguments positionnels a et b ne sont pas passés a la fonction, Python renvoie une erreur.
>>> fct(z=0)
Traceback (most recent call last):
File "<stdin>", 1line 1, in <module>
TypeError: fct() missing 2 required positional arguments: 'a' and 'b'

92 Cours de Python / Université Paris Cité / UFR Sciences du Vivant

10.6. Variables locales et variables globales Chapitre 10. Fonctions

Conseil

Préciser le nom des arguments par mot-clé lors de |'appel d'une fonction est une pratique que nous vous recommandons.
Cela les distingue clairement des arguments positionnels.

L'utilisation d'arguments par mot-clé est habituelle en Python. Elle permet de modifier le comportement par défaut
de nombreuses fonctions. Par exemple, si on souhaite que la fonction print () n'affiche pas un retour a la ligne, on peut
utiliser I'argument end :

>>> print("Message ", end="")
Message >>>

Nous verrons, dans le chapitre 25 Fenétres graphiques et Tkinter (en ligne), que |'utilisation d'arguments par mot-clé
est systématique lorsqu’on crée un objet graphique (une fenétre, un bouton, etc.).

10.6 Variables locales et variables globales

Lorsqu'on manipule des fonctions, il est essentiel de bien comprendre comment se comportent les variables. Une
variable est dite locale lorsqu’elle est créée dans une fonction. Elle n'existera et ne sera visible que lors de I'exécution de
ladite fonction.

Une variable est dite globale lorsqu'elle est créée dans le programme principal. Elle sera visible partout dans le
programme.

Ceci ne vous parait pas clair? Nous allons prendre un exemple simple qui vous aidera a mieux saisir ces concepts.
Observez le code suivant :

def carre(x):
y = X*x*x2
return vy

var = 5
resultat = carre(var)
print(resultat)

Pour la suite des explications, nous allons utiliser I'excellent site Python Tutor' qui permet de visualiser I'état des
variables au fur et 3 mesure de I'exécution d'un code Python. Avant de poursuivre, nous vous conseillons de prendre 5
minutes pour tester ce site.

Regardons maintenant ce qui se passe dans le code ci-dessus, étape par étape :

e Etape 1 : Python est prét a lire la premiére ligne de code.

Python 3.11 Print output (drag lower right corner to resize)
known limitations
Définition d'une fonction carre().
- def carre(x): Frames Objects
y o= x¥¥2
return y

Programme principal.
var =5
resultat = carre(var)

print(resultat)

Edit this code

line that just executed
== next line to execute

<< First | | < Prev | Next > | | Last >>
Step 1 of 8

1. http://www.pythontutor.com

Cours de Python / Université Paris Cité / UFR Sciences du Vivant

93

http://www.pythontutor.com

Chapitre 10. Fonctions 10.6. Variables locales et variables globales

e Etape 2 : Python met en mémoire la fonction carre(). Notez qu'il ne I'exécute pas! La fonction est mise dans
un espace de la mémoire nommé Global frame, il s'agit de |'espace du programme principal. Dans cet espace
seront stockées toutes les variables globales créées dans le programme. Python est maintenant prét a exécuter le
programme principal.

Python 3.11 Print output (drag lower right corner to resize)
known limitations

Définition d'une fonction carre(). P
def carre(x): Frames Objects
y o= x®*2
return y Global frame P function
e carre(x)
carre | ¥

Programme principal.
- var = 5

resultat = carre(var)

print(resultat)

Edit this code

line that just executed
=+ next line to execute

| << First | | < Prev:\ | Next > | | Last => |

Step 2 of 8

e Etape 3 : Python lit et met en mémoire la variable var. Celle-ci étant créée dans le programme principal, il s'agira
d’une variable globale. Ainsi, elle sera également stockée dans le Global frame.

Python 3.11 Print output (drag lower right corner to resize)
known limitations

Définition d’une fonction carre().
def carre(x): Frames Objects
y = x**2
Global frame function
return J—
y - >carra(x)

7
carre | *
Programme principal.

var |5
var = 5
- resultat = carre(var)
print(resultat)

Edit this code

line that just executed
=} next line to execute

:<< First | | < Prev | | Mext > | \:Last =

Step 3 of 8

e Etape 4 : La fonction carre() est appelée et on lui passe en argument I'entier var. La fonction s'exécute et
un nouveau cadre est créé dans lequel Python Tutor va indiquer toutes les variables /ocales a la fonction. Notez
bien que la variable passée en argument, qui s'appelle x dans la fonction, est créée en tant que variable locale. On
remarquera aussi que les variables globales situées dans le Global frame sont toujours 3.

94 Cours de Python / Université Paris Cité / UFR Sciences du Vivant

10.6. Variables locales et variables globales

Chapitre 10.

Fonctions

Python 2.11 Print output (drag lower right corner to resize)

known limitations

Définition d'une fonction carre().

- def carre(x): Frames Objects
y = x¥¥2
return y Global frame function
carre(x)
carre
Programme principal. var |5
wvar = 5
resultat = carre(var) carre
print(resultat)
x |5

Edit this code

line that just executed
= next line to execute

0
[<<First| [<Prev| [Next > | [Last>> |
Step 4 of &

e Etape 5 : Python est maintenant prét a exécuter chaque ligne de code de la fonction.

Python 3.11 Print output (drag lower right corner to resize)

known limitations

Définition d'une fonction carre().

def carre(x): Frames Objects
- y = x**2
return y Global frame function
carre(x)
carre
Programme principal. var |5
wvar = 5
resultat = carre(var) carre
print(resultat)
X |5

Edit this code

line that just executed
= next line to execute

|<<First| [<Prev| [Next>| [Last >> |

Step 5 of 8

e Etape 6 : La variable y est créée dans la fonction. Celle-ci est donc stockée en tant que variable focale 3 la fonction.

Python 3.11 Print output (drag lower right corner to resize)

known limitations

Définition d'une fonction carre().

def carre(x): Frames Objects
y = x**2
— return y Global frame function
carre(x)
carre
Programme principal. var |5
var =5
resultat = carre(var)
carre
print(resultat)
x 5
Edit this code
y 25

line that just executed
== next line to execute

0
| << First | | < Prev | | Next > | | Last => |
Step 6 of 8

e Etape 7 : Python s'appréte a renvoyer la variable locale y au programme principal. Python Tutor nous indique le

contenu de la valeur renvoyée.

Cours de Python / Université Paris Cité / UFR Sciences du Vivant

95

Chapitre 10. Fonctions

10.6. Variables locales et variables globales

Python 3.11
known limitations

Définition d'une fonction carre().

def carre(x):
y = x**2

return y

Programme principal.
var = 5

resultat = carre(var)
print(resultat)

Edit this code

line that just executed
= next line to execute

|<<First| [<Prev] [Next > | [Last >> |

Step 7 of 8

Print output (drag lower right corner to resize)

Frames Objects

Global frame function
carre(x)
carre

var |5

carre
x |5

¥y |25

Return

value |25

e Etape 8 : Python quitte la fonction et la valeur renvoyée par celle-ci est affectée a la variable globale resultat.
Notez bien que lorsque Python quitte la fonction, I’espace des variables alloué a la fonction est détruit. Ainsi,
toutes les variables créées dans la fonction n’existent plus. On comprend pourquoi elles portent le nom de locales
puisqu'elles n'existent que lorsque la fonction est exécutée.

Python 3.11
known limitations
Dé&finition d'une fonction carre().
def carre(x):
y = X**2
return y

Programme principal.

var = 5

resultat = carre(var)
- print(resultat)

Edit this code

line that just executed
= next line to execute

<< First| | < Prev| |Next>| |Last >> |

Step 8 of 8

Print output (drag lower right corner to resize)

e Etape 9 : Python affiche le contenu de la variable resultat et I'exécution est terminée.

Python 3.11
known limitations
Définition d'une fonction carre().
def carre(x):
y = X**2
return y

Programme principal.
var =5

resultat = carre(var)
print(resultat)

Edit this code

line that just executed
= next line to execute

| << First | | < Prev | Next > | Last ==

Done running (& steps)

4
Frames Objects
Global frame function
—
~ carre(x)
carre 4
var |5
resultat |25
Print output (drag lower right corner to resize)
25
i
Frames Objects
Global frame ___, function
" carre(x)
carre o
var |5
resultat | 25

Nous espérons que cet exemple guidé facilitera la compréhension des concepts de variables locales et globales. Cela
viendra aussi avec la pratique. Nous irons un peu plus loin sur les fonctions dans le chapitre 13 Plus sur les fonctions.

96

Cours de Python / Université Paris Cité / UFR Sciences du Vivant

10.7. Principe DRY Chapitre 10. Fonctions

D’ici 13, essayez de vous entrainer au maximum avec les fonctions. C'est un concept ardu, mais il est impératif de le
maitriser.

Enfin, comme vous avez pu le constater, Python Tutor nous a grandement aidé a comprendre ce qui se passait.
N'hésitez pas a I'utiliser sur des exemples ponctuels, ce site vous aidera a visualiser ce qui se passe lorsqu’un code ne fait
pas ce que vous attendez.

10.7 Principe DRY

L'acronyme DRY ? signifie Don't Repeat Yourself. Les fonctions permettent de satisfaire ce principe en évitant la
duplication de code. En effet, plus un code est dupliqué plusieurs fois dans un programme, plus il sera source d'erreurs,
notamment lorsqu'il faudra le faire évoluer.

Considérons par exemple le code suivant qui convertit plusieurs températures des degrés Fahrenheit en degrés Celsius :

>>> temp_in_fahrenheit = 60

>>> (temp_in_fahrenheit - 32) x (5/8)
17.5

>>> temp_in_fahrenheit = 80

>>> (temp_in_fahrenheit - 32) x (5/8)
30.0

>>> temp_in_fahrenheit = 100

>>> (temp_in_fahrenheit - 32) x (5/8)
42.5

Malheureusement, il y a une erreur dans la formule de conversion. En effet, la formule exacte est :

temp__celsius = (temp__fahrenheit — 32) x 9

Il faut alors reprendre les lignes 2, 5 et 8 précédentes et les corriger. Cela n'est pas efficace, surtout si le méme code
est utilisé a différents endroits dans le programme.
En écrivant qu'une seule fois la formule de conversion dans une fonction, on applique le principe DRY :

>>> def convert_fahrenheit_to_celsius(temperature):
return (temperature - 32) x (5/9)

>>> temp_in_fahrenheit = 60

>>> convert_fahrenheit_to_celsius(temp_in_fahrenheit)
15.555555555555557

>>> temp_in_fahrenheit = 80

>>> convert_fahrenheit_to_celsius(temp_in_fahrenheit)
26.666666666666668

>>> temp_in_fahrenheit = 100

>>> convert_fahrenheit_to_celsius(temp_in_fahrenheit)
37.77777777777778

Et s'il y a une erreur dans la formule, il suffira de ne la corriger qu’une seule fois, dans la fonction convert_fahrenheit_to_celsiu:

OF
10.8 Exercices
Conseil

Pour le premier exercice, utilisez Python Tutor. Pour les exercices suivants, créez des scripts puis exécutez-les dans
un shell.

10.8.1 Carré et factorielle

Reprenez I'exemple précédent a I'aide du site Python Tutor? :

2. https://www.earthdatascience.org/courses/intro-to-earth-data-science/write-efficient-python-code/
intro-to-clean-code/dry-modular-code/
3. http://www.pythontutor.com

Cours de Python / Université Paris Cité / UFR Sciences du Vivant 97

https://www.earthdatascience.org/courses/intro-to-earth-data-science/write-efficient-python-code/intro-to-clean-code/dry-modular-code/
https://www.earthdatascience.org/courses/intro-to-earth-data-science/write-efficient-python-code/intro-to-clean-code/dry-modular-code/
http://www.pythontutor.com

Chapitre 10. Fonctions 10.8. Exercices

98

Définition d'une fonction carre().
def carre(x):

y = X*%2

return vy

Programme principal.

z =5
resultat = carre(z)
print(resultat)

Analysez ensuite le code suivant et tentez de prédire sa sortie :

def calc_factorielle(n):
fact = 1
for i in range(2, n+l):
fact = fact * 1
return fact

Programme principal.

nb = 4

factorielle_nb = calc_factorielle(nb)
print(f"{nb}! = {factorielle_nb}")

nb2 = 10

print(f"{nb2}! = {calc_factorielle(nb2)}")

Testez ensuite cette portion de code avec Python Tutor, en cherchant a bien comprendre chaque étape. Avez-vous
réussi a prédire la sortie correctement ?

Remarque

Une remarque concernant |'utilisation des f-strings que nous avions abordées dans le chapitre 3 Affichage. On découvre
ici une autre possibilité des f-strings dans l'instruction f"{nb23}! = {calc_factorielle(nb2)3}" : il est en effet
possible d'appeler entre les accolades une fonction (ici {calc_factorielle(nb2)})! Ainsi, il n'est pas nécessaire de
créer une variable intermédiaire dans laquelle on stocke ce que retourne la fonction.

10.8.2 Puissance

Créez une fonction calc_puissance(x, y) qui renvoie x’ en utilisant I'opérateur xx. Pour rappel :

>>> 2x%2
4
>>> 2x%3
8
>>> 2xx4
16

Dans le programme principal, calculez et affichez & I'écran 2! avec i variant de 0 a 20 inclus. On souhaite que le
résultat soit présenté avec le formatage suivant :

20 0 = 1
20 1 = 2
20 2 = 4
[...]

2120 = 1048576

10.8.3 Pyramide

Reprenez I'exercice du chapitre 5 Boucles et comparaisons qui dessine une pyramide.

Dans un script pyra.py, créez une fonction gen_pyramide() a laquelle vous passez un nombre entier N et qui
renvoie une pyramide de N lignes sous forme de chaine de caractéres. Le programme principal demandera a ['utilisateur
le nombre de lignes souhaitées (utilisez pour cela la fonction input()) et affichera la pyramide a I'écran.

Cours de Python / Université Paris Cité / UFR Sciences du Vivant

10.8. Exercices Chapitre 10. Fonctions

10.8.4 Nombres premiers

Reprenez I'exercice du chapitre 6 Tests sur les nombres premiers.

Créez une fonction est_premier () qui prend comme argument un nombre entier positif n (supérieur a 2), et qui
renvoie le booléen True si n est premier et False si n n'est pas premier. Déterminez tous les nombres premiers de 2 a
100. On souhaite avoir une sortie similaire a celle-ci :

2 est premier
3 est premier
4 n'est pas premier

[...]

100 n'est pas premier

10.8.5 Séquence complémentaire

Créez une fonction seq_comp () qui prend comme argument une liste de bases et qui renvoie la séquence complé-
mentaire d'une séquence d'ADN sous forme de liste.

Dans le programme principal, a partir de la séquence d’ADN

seq = ["A", "T", "C", "G", MA", "TM, onwgM, o nwgM, WAM wTw o ncn]

affichez seq et sa séquence complémentaire (en utilisant votre fonction seq_comp ()).

Rappel : la séquence complémentaire s'obtient en remplacant A par T, T par A, C par G et G par C.

10.8.6 Distance 3D

Créez une fonction calc_distance_3D() qui calcule la distance euclidienne en trois dimensions entre deux atomes.
Testez votre fonction sur les 2 points A(0,0,0) et B(1,1,1). Trouvez-vous bien /3 ?

On rappelle que la distance euclidienne d entre deux points A et B de coordonnées cartésiennes respectives (x4,y4,24)
et (xp,yp,zp) se calcule comme suit :

d= \/(XB —x4)2+ (y8 —ya)? + (2B — 24)?

10.8.7 Distribution et statistiques

Créez une fonction gen_distrib() qui prend comme argument trois entiers : debut, fin et n. La fonction renverra
une liste de n floats aléatoires entre debut et fin. Pour générer un nombre aléatoire dans un intervalle donné, utilisez la
fonction uniform() du module random, dont voici quelques exemples d'utilisation :

>>> dmport random
>>> random.uniform(l, 10)
8.199672607202174
>>> random.uniform(l, 10)
2.607528561528022

>>> random.uniform(l, 10)
9.000404025130946

Avec la fonction random.uniform(), les bornes passées en argument sont incluses, c'est-a-dire qu'ici, le nombre
aléatoire renvoyé est dans I'intervalle [1, 10].

Créez une autre fonction calc_stat() qui prend en argument une liste de floats et qui renvoie une liste de trois
éléments contenant respectivement le minimum, le maximum et la moyenne de la liste.

Dans le programme principal, générez 20 listes aléatoires de 100 floats compris entre 0 et 100 et affichez le minimum
(min()), le maximum (max()) et la moyenne pour chacune d’entre elles. La moyenne pourra étre calculée avec les
fonctions sum() et len().

Pour chacune des 20 listes, affichez les statistiques (valeur minimale, valeur maximale et moyenne) avec deux chiffres
apres la virgule :

Liste 1 : min = 0.17 ; max = 99.72 ; moyenne = 57.38
Liste 2 : min = 1.25 ; max = 99.99 ; moyenne = 47.41
[...]

Liste 19 : min = 1.05 ; max = 99.36 ; moyenne = 49.43
Liste 20 : min = 1.33 ; max = 97.63 ; moyenne = 46.53

Cours de Python / Université Paris Cité / UFR Sciences du Vivant 99

Chapitre 10. Fonctions

10.8. Exercices

Les écarts sur les statistiques entre les différentes listes sont-ils importants ? Relancez votre script avec des listes de
1000 éléments, puis 10 000 éléments. Les écarts changent-ils quand le nombre d'éléments par liste augmente ?

10.8.8 Distance a I'origine (exercice +++)

En reprenant votre fonction de calcul de distance euclidienne en trois dimensions calc_distance_3D(), faites-en
une version pour deux dimensions que vous appellerez calc_distance_2D().

Créez une autre fonction calc_dist2ori(), a laquelle vous passez en argument deux listes de floats 1list_x et
list_y représentant les coordonnées d'une fonction mathématique (par exemple x et sin(x)). Cette fonction renverra
une liste de floats représentant la distance entre chaque point de la fonction et I'origine (de coordonnées (0,0)).

La figure 10.2 montre un exemple sur quelques points de la fonction sin(x) (courbe en trait épais). Chaque trait
pointillé représente la distance que I'on cherche a calculer entre les points de la courbe et I'origine du repére de coordonnées

(0,0).

Votre programme générera un fichier sin2ori.dat qui contiendra deux colonnes :

sin(x)

1.0

0.5

0.0

-0.5

-1.0

F1GURE 10.2 — lllustration de la distance a I'origine.

seconde la distance entre chaque point de la fonction sin(x) a I'origine.

la premiere représente les x, la

Enfin, pour visualiser votre résultat, ajoutez le code suivant tout a la fin de votre script :

100

Cours de Python / Université Paris Cité / UFR Sciences du Vivant

10.8. Exercices Chapitre 10. Fonctions

Création d'une 1image pour la visualisation du résultat.
import matplotlib.pyplot as plt

x =[]
y = [
with open("sin2ori.dat", "r") as f_in:

for line in f_in:
coords = line.split()
x.append(float(coords[0]))
y.append(float(coords[1]))
fig, ax = plt.subplots(figsize=(6, 6))
ax.plot(x, vy)
ax.set_xlabel("x")
ax.set_ylabel("Distance de sin(x) a l'origine")
fig.savefig("sin2ori.png")

Ouvrez I'image sin2ori.png.

Remarque
Le module matplotlib sera expliqué en détail dans le chapitre 21 Module matplotlib.

Cours de Python / Université Paris Cité / UFR Sciences du Vivant 101

cHAPITRE 11

Plus sur les chalnes de caracteres

11.1 Préambule

Nous avons déja abordé les chaines de caractéres dans les chapitres 2 Variables et 3 Affichage. Ici nous allons un peu

plus loin, notamment avec les méthodes associées aux chaines de caracteres .

11.2 Chaines de caracteres et listes

Les chaines de caractéres peuvent étre considérées comme des listes (de caractéres) un peu particuliéres :

>>> animaux = "girafe tigre"
>>> animaux

'girafe tigre'

>>> Tlen(animaux)

12

>>> animaux[3]

lal

Nous pouvons donc utiliser certaines propriétés des listes comme les tranches :

>>> animaux = "girafe tigre"
>>> animaux[0:4]

'gira'

>>> animaux[9:]

Ygrel

>>> animaux[:-2]

'girafe tig'

>>> animaux[1l:-2:2]

'iaetg'

Mais a contrario des listes, les chaines de caractéres présentent toutefois une différence notable, ce sont des listes
non modifiables. Une fois une chaine de caractéres définie, vous ne pouvez plus modifier un de ses éléments. Le cas
échéant, Python renvoie un message d’erreur :

1. https://docs.python.org/fr/3/library/string.html

102

https://docs.python.org/fr/3/library/string.html

11.3. Caracteéres spéciaux Chapitre 11. Plus sur les chaines de caracteres

>>> animaux = "girafe tigre"
>>> animaux[4]

lfl

>>> animaux[4] = "F"

Traceback (most recent call last):
File "<stdin>", line 1, in <module>
TypeError: 'str' object does not support item assignment

Par conséquent, si vous voulez modifier une chaine de caractéres, vous devez en construire une nouvelle. Pour cela,
n'oubliez pas que les opérateurs de concaténation (+) et de duplication (*) (introduits dans le chapitre 2 Variables)
peuvent vous aider. Vous pouvez également générer une liste, qui elle est modifiable, puis revenir a une chaine de
caractéres (voir plus bas).

11.3 Caracteéres spéciaux

Il existe certains caractéres spéciaux comme \n que nous avons déja vu (pour le retour a la ligne). Le caractére \t
produit une tabulation. Si vous voulez écrire des guillemets simples ou doubles et que ceux-ci ne soient pas confondus
avec les guillemets de déclaration de la chaine de caractéres, vous pouvez utiliser \' ou \" :

>>> print("Un backslash n\npuis un backslash t\t puis un guillemet\"")
Un backslash n

puis un backslash t puis un guillemet"

>>> print('J\'affiche un guillemet simple')

J'affiche un guillemet simple

Vous pouvez aussi utiliser astucieusement des guillemets doubles ou simples pour déclarer votre chaine de caracteres :

>>> print("Un brin d'ADN")

Un brin d'ADN

>>> print('Python est un "super" langage de programmation')
Python est un "super" langage de programmation

Quand on souhaite écrire un texte sur plusieurs lignes, il est trés commode d'utiliser les guillemets triples qui conservent
le formatage (notamment les retours a la ligne) :

>>> x = """souris
chat
abeille

>>> X

'souris\nchat\nabeille'

>>> print(x)

souris

chat

abeille

Attention, les caractéres spéciaux n'apparaissent intérprétés que lorsqu'ils sont utilisés avec la fonction print(). Par
exemple, le \n n’apparait comme un retour a la ligne que lorsqu’il est dans une chaine de caractéres passée a la fonction
print() :

>>> "bla\nbla"
'bla\nbla’
>>> print("bla\nbla")

bla
bla

11.4 Préfixe de chaine de caracteres
Nous avons vu au chapitre 3 Affichage la notion de f-string. Il s'agit d'un mécanisme pour formater du texte au sein
d'une chaine de caractéres. Par exemple :

>>> var = "f-string"
>>> f'"voici une belle {var}"
'voici une belle f-string'

Cours de Python / Université Paris Cité / UFR Sciences du Vivant

103

Chapitre 11. Plus sur les chaines de caractéres 11.4. Préfixe de chaine de caractéres

Que signifie le f que I'on accole aux guillemets de la chaine de caractéres ? Celui-ci est appelé « préfixe de chaine de
caracteres » ou stringprefix.

Remarque

Un stringprefix modifie la maniére dont Python va interpréter ladite string. Celui-ci doit étre systématiquement «
collé » a la chaine de caracteres, c'est-a-dire sans espace entre les deux.

Il existe différents stringprefixes en Python, nous vous montrons ici les deux qui nous apparaissent les plus importants.

e Le préfixe r mis pour raw string, qui force la non-interprétation des caracteres spéciaux :

>>> s = "Voici un retour a la ligne\nEt la une autre ligne"
>>> s

'"Voici un retour a la ligne\nEt 1la une autre ligne'

>>> print(s)

Voici un retour a la ligne

Et 1a une autre ligne

>>> s = r"Voici un retour a la ligne\nEt 1a une autre ligne"
>>> s

"Voici un retour a la ligne\\nEt 1a une autre ligne'

>>> print(s)

Voici un retour a la ligne\nEt 1a une autre ligne

L'ajout du r va forcer Python a ne pas interpréter le \n comme un retour a la ligne, mais comme un backslash littéral
suivi d'un n. Quand on demande a l'interpréteur d'afficher cette chaine de caracteéres, celui-ci met deux backslashes
pour signifier qu'il s'agit d'un backslash littéral (le premier échappe le second). Finalement, |'utilisation de la syntaxe
r'"Voici un retour a la ligne\nEt 1a une autre ligne" renvoie une chaine de caracteres normale, puisqu’'on
voit ensuite que le r a disparu lorsqu'on demande 3 Python d’afficher le contenu de la variable s. Comme dans var = 2

+ 2, d'abord Python évalue 2 + 2. Puis ce résultat est affecté a la variable var. Enfin, on notera que seule I'utilisation
du print() mene a l'interprétation des caractéres spéciaux comme \n, comme expliqué dans la rubrique précédente.

Les caractéres spéciaux non interprétés dans les raw strings sont de maniére générale tout ce dont le backslash modifie
la signification, par exemple un \n, un \t, etc.

e Le préfixe f mis pour formatted string, qui met en place |'écriture formatée comme vue au chapitre 3 Affichage :

>>> animal = "renard"

>>> animal2 = "poulain"

>>> s = f"Le {animal} est un animal gentil\nLe {animal2} aussi"
>>> s

'Le renard est un animal gentil\nLe poulain aussi'

>>> print(s)

Le renard est un animal gentil

Le poulain aussi

>>> s = "Le {animal} est un animal gentil\nLe {animal2} aussi"
>>> s

'Le {animal} est un animal gentil\nLe {animal2} aussi'

>>> print(s)

Le {animal} est un animal gentil

Le {animal2} aussi

La f-string remplace le contenu des variables situées entre les accolades et interpréte le \n comme un retour a la
ligne. Pour rappel, consultez le chapitre 3 si vous souhaitez plus de détails sur le fonctionnement des f-strings.

Conseil

Il existe de nombreux autres détails concernant les préfixes qui vont au-dela de ce cours. Pour en savoir plus, vous
pouvez consulter la documentations officielle 2.

2. https://docs.python.org/fr/3/reference/lexical_analysis.html#grammar-token-stringprefix

104 Cours de Python / Université Paris Cité / UFR Sciences du Vivant

https://docs.python.org/fr/3/reference/lexical_analysis.html#grammar-token-stringprefix

11.5. Méthodes associées aux chaines de caractéres Chapitre 11. Plus sur les chaines de caractéres

11.5 Méthodes associées aux chaines de caracteéres

Voici quelques méthodes 3 spécifiques aux objets de type str :

>>> x = "girafe"
>>> x.upper ()
'GIRAFE'

>>> X

'girafe’

>>> 'TIGRE'.lower ()
'tigre'

Les méthodes . lower () et .upper () renvoient un texte en minuscule et en majuscule respectivement. On remarque
que l'utilisation de ces méthodes n'altére pas la chaine de caracteres de départ, mais renvoie une chaine de caractéres
transformée.

Pour mettre en majuscule la premiére lettre seulement, vous pouvez faire :

>>> x[0].upper() + x[1:]
'Girafe'

ou plus simplement utiliser la méthode adéquate :
>>> x.capitalize()

'Girafe'

Il existe une méthode associée aux chaines de caractéres qui est particulierement pratique, la méthode .split() :

>>> animaux = '"girafe tigre singe souris"
>>> animaux.split()
['girafe', 'tigre', 'singe', 'souris']

>>> for animal in animaux.split():
print(animal)

girafe
tigre
singe
souris

La méthode .split() découpe une chaine de caracteres en plusieurs éléments appelés champs, en utilisant comme
séparateur n'importe quelle combinaison « d'espace(s) blanc(s) ».

Définition

Un espace blanc* (whitespace en anglais) correspond aux caracteéres qui sont invisibles a I'ceil, mais qui occupent de
I'espace dans un texte. Les espaces blancs les plus classiques sont I'espace, la tabulation et le retour a la ligne.

Il est possible de modifier le séparateur de champs, par exemple :

>>> animaux = "girafe:tigre:singe::souris"
>>> animaux.split(":")
['girafe', 'tigre', 'singe', '', 'souris']

Attention, dans cet exemple, le séparateur est un seul caractéres « : » (et non pas une combinaison de un ou plusieurs
:) conduisant ainsi & une chaine vide entre singe et souriis.
Il est également intéressant d'indiquer a .split() le nombre de fois qu'on souhaite découper la chaine de caractéres
avec |'argument maxsplit :
>>> animaux = "girafe tigre singe souris"
>>> animaux.split(maxsplit=1)
['girafe', 'tigre singe souris']
>>> animaux.split(maxsplit=2)
['girafe', 'tigre', 'singe souris']

3. https://docs.python.org/fr/3/library/string.html
4. https://en.wikipedia.org/wiki/Whitespace_character

Cours de Python / Université Paris Cité / UFR Sciences du Vivant 105

https://docs.python.org/fr/3/library/string.html
https://en.wikipedia.org/wiki/Whitespace_character

Chapitre 11. Plus sur les chaines de caractéres 11.5. Méthodes associées aux chaines de caractéres

La méthode .find(), quant a elle, recherche une chaine de caractéres passée en argument :

>>> animal = "girafe"
>>> animal.find("4i")
i>> animal.find("afe")
§>> animal.find("z")
;i> animal.find("tig")
-1

Si I'élément recherché est trouvé, alors I'indice du début de I'élément dans la chaine de caractéres est renvoyé. Si
I’élément n'est pas trouvé, alors la valeur -1 est renvoyée.

Si I'élément recherché est trouvé plusieurs fois, seul I'indice de la premiére occurrence est renvoyé :

>>> animaux = "girafe tigre"
>>> animaux.find("i")
1

On trouve aussi la méthode .replace() qui substitue une chaine de caractéres par une autre :

>>> animaux = "girafe tigre"

>>> animaux.replace("tigre", "singe")
'girafe singe'

>>> animaux.replace("i", "o")

'gorafe togre'

La méthode .count() compte le nombre d'occurrences d’'une chaine de caracteres passée en argument :

>>> animaux = "girafe tigre"
>>> animaux.count("i")

2

>>> animaux.count("z")

0

>>> animaux.count("tigre")

1

La méthode .startswith() vérifie si une chaine de caractéres commence par une autre chaine de caracteéres :

>>> chaine = "Bonjour monsieur le capitaine !"
>>> chaine.startswith("Bonjour")

True

>>> chaine.startswith("Au revoir")

False

Cette méthode est particulierement utile lorsqu’on lit un fichier et que I'on veut récupérer certaines lignes commencant
par un mot-clé. Par exemple dans un fichier PDB, les lignes contenant les coordonnées des atomes commencent par le
mot-clé ATOM.

Enfin, la méthode .strip() permet de « nettoyer les bords » d'une chaine de caracteres :

>>> chaine = " Comment enlever les espaces au début et a la fin ? "
>>> chaine.strip()
'Comment enlever les espaces au début et a la fin ?'

La méthode .strip() enléve les espaces situés sur les bords de la chaine de caractére mais pas ceux situés entre des
caracteres visibles. En réalité, cette méthode enléve n'importe quel combinaison « d'espace(s) blanc(s) » sur les bords,
par exemple :

>>> chaine = " \tfonctionne avec les tabulations et les retours a la ligne\n"
>>> chaine.strip()

'fonctionne avec les tabulations et les retours a la ligne'

Cette méthode est utile pour se débarrasser des retours a la ligne quand on lit un fichier.

106 Cours de Python / Université Paris Cité / UFR Sciences du Vivant

11.6. Extraction de valeurs numériques d'une chaine de caractéres Chapitre 11. Plus sur les chaines de caracteres

11.6 Extraction de valeurs numériques d’une chaine de caracteres

Une tiche courante en Python est de lire une chaine de caractéres (provenant par exemple d'un fichier), d'en extraire
des valeurs pour ensuite les manipuler.

On consideére par exemple la chaine de caractéres chainel :

>>> chainel = "3.4 17.2 atom"

On souhaite extraire les valeurs 3.4 et 17.2 pour ensuite les additionner.
D’abord, on découpe la chaine de caractéres avec la méthode .split() :

>>> Tlistel = chainel.split()
>>> listel

['3.4', '17.2', 'atom']

>>> nbl, nb2, nom = listel
>>> nbl

'3.4'

>>> nb2

'17.2"

On obtient alors une liste de chaines de caractéres listel. Avec |'affectation multiple, on récupére les nombres
souhaités dans nb1 et nb2, mais ils sont toujours sous forme de chaine de caractéres. Il faut ensuite les convertir en floats
pour pouvoir les additionner :

>>> float(nbl) + float(nb2)
20.599999999999998

Remarque

Retenez bien I'utilisation des instructions précédentes pour extraire des valeurs numériques d'une chaine de caractéres.
Elles sont régulierement employées pour analyser des données extraites d'un fichier.

11.7 Fonction map ()

Conseil

Si vous étes débutant, vous pouvez sauter cette rubrique.

La fonction map () permet d'appliquer une fonction a plusieurs éléments d'un objet itérable. Par exemple, si on a une
chalne de caractéres avec trois entiers séparés par des espaces, on peut extraire et convertir les trois nombres en entier
en une seule ligne. La fonction map () produit un objet de type map qui est itérable et transformable en liste :

>>> Tligne = "67 946 -45"

>>> Tligne.split()

['67', '946', '-45']

>>> map(int, ligne.split())

<map object at 0x7fa34e573b20>

>>> for entier in map(int, ligne.split()):
print(entier)

67

946

-45

>>> Tist(map(int, Lligne.split()))

[67, 946, -45]

Remarque

Cours de Python / Université Paris Cité / UFR Sciences du Vivant 107

Chapitre 11. Plus sur les chaines de caractéres 11.8. Test d'appartenance

108

La fonction map() prend deux arguments. Le second est un objet itérable, souvent une liste comme dans notre
exemple. Le premier argument est le nom d'une fonction qu’'on souhaite appliquer a chaque élément de la liste, mais sans
les parenthéses (ici int et non pas int()). Une fonction passée en argument d'une autre fonction est appelée fonction
de rappel® ou callback en anglais. Nous reverrons cette notion dans le chapitre 25 Fenétres graphiques et Tkinter (en

ligne).

La fonction map () est particulierement utile lorsqu’on lit un fichier de valeurs numériques. Par exemple, si on a un
fichier data.dat contenant trois colonnes de nombres, map () en conjonction avec .split() permet de séparer les trois
nombres puis de les convertir en float en une seule ligne de code :

with open("data.dat", "r") as filin:
for line in filin:
X, ¥, z = map(float, line.split())
print(x + y + z)

Sans map (), il aurait fallu une ligne pour séparer les données x, y, z = line.split() et une autre pour les
transformer en float x, y, z = float(x), float(y), float(z).

Enfin, on peut utiliser map () avec ses propres fonctions :

>>> def calc_cube(x):
return x**3

>>> Tlist(map(calc_cube, [1, 2, 3, 4]))
[1, 8, 27, 64]

11.8 Test d’appartenance

L'opérateur 1in teste si une chaine de caractéres fait partie d'une autre chaine de caracteres :

>>> chaine = "Néfertiti"
>>> "toto" 1in chaine
False

>>> "titi" in chaine
True

>>> "ti" 1dn chaine

True

Notez que la chaine testée peut-étre présente a n'importe quelle position dans I'autre chaine. Par ailleurs, le test est
vrai si elle est présente une ou plusieurs fois.

La variation avec |'opérateur booléen not permet de vérifier qu'une chaine n'est pas présente dans une autre chaine :

>>> not "toto" in chaine
True
>>> not "fer" in chaine
False

11.9 Conversion d’une liste de chaines de caractéres en une chaine de ca-
racteres
On a vu dans le chapitre 2 Variables la conversion d'un type simple (entier, float et chaine de caractéres) en un

autre avec les fonctions int (), float() et str(). La conversion d'une liste de chaines de caractéres en une chaine de
caracteres est moins intuitive. Elle fait appelle a la méthode .join() :

5. https://fr.wikipedia.org/wiki/Fonction_de_rappel

Cours de Python / Université Paris Cité / UFR Sciences du Vivant

https://fr.wikipedia.org/wiki/Fonction_de_rappel

11.10. Method chaining Chapitre 11. Plus sur les chaines de caracteres

>>> seq = [HAII’ IITII, IIGII’ IIAII’ llTll]

>>> seq

[lAl’ ITI’ IGI’ IAI, lTl]
>>> "-" join(seq)
"A-T-G-A-T!

>>> " " join(seq)
'ATGAT

>>> """ jJoin(seq)

"ATGAT'

Les éléments de la liste initiale sont concaténés les uns a la suite des autres et intercalés par un séparateur, qui peut
étre n'importe quelle chaine de caractéres. Ici, on a utilisé un tiret, un espace et rien (une chaine de caractéres vide).

Attention, la méthode .join() ne s'applique qu'a une liste de chaines de caracteres :

>>> maliste = ["A", 5, "G"]
>>> " " Join(maliste)
Traceback (most recent call last):
File "<stdin>", 1line 1, in <module>
TypeError: sequence item 1: expected str instance, int found

On espére qu'aprés ce petit tour d'horizon vous serez convaincu de la richesse des méthodes associées aux chaines de
caractéres. Pour avoir une liste exhaustive de I'ensemble des méthodes associées a une variable particuliére, vous pouvez
utiliser la fonction dir () :

>>> animaux = "girafe tigre"

>>> dir(animaux)

['__add__'", '__class__', '__contains__', '__delattr__', '__dir__",
ey
'partition', 'replace', 'rfind', 'rindex', 'rjust', 'rpartition',
'rsplit', 'rstrip', 'split', 'splitlines', 'startswith', 'strip',
'swapcase', 'title', 'translate', 'upper', 'zfill']

Pour I'instant, vous pouvez ignorer les méthodes qui commencent et qui se terminent par deux tirets bas (underscores)
__. Nous n'avons pas mis |'ensemble de la sortie de cette commande dir () pour ne pas surcharger le texte, mais n'hésitez
pas a la tester dans I'interpréteur.

Vous pouvez également accéder a I'aide et a la documentation d’'une méthode particuliére avec help (), par exemple
pour la méthode .split() :

>>> help(animaux.split)
Help on built-in function split:

split(...)
S.split([sep [,maxsplit]]) -> list of strings

Return a list of the words in the string S, using sep as the
delimiter string. If maxsplit is given, at most maxsplit
splits are done. If sep is not specified or is None, any
whitespace string is a separator.

(END)

Attention a ne pas mettre les parentheéses a la suite du nom de la méthode. L'instruction correcte est help (animaux
.split) et non pas help(animaux.split()).

11.10 Method chaining

Il existe de nombreuses méthodes pour traiter les chaines de caracteres. Ces méthodes renvoient la plupart du temps
une chaine de caracteres modifiée.

Par exemple, si on souhaite mettre une majuscule a tous les mots d’une chaine de caractéres, puis remplacer un mot
par un autre, puis transformer cette chaine de caractéres en une liste de chaines de caractéres, on peut écrire :

Cours de Python / Université Paris Cité / UFR Sciences du Vivant

109

Chapitre 11. Plus sur les chaines de caractéres 11.11. Exercices

>>> message = "salut patrick salut pierre"
>>> messagel = message.title()

>>> messagel

'Salut Patrick Salut Pierre'

>>> message2 = messagel.replace("Salut", "Bonjour")
>>> message2

'Bonjour Patrick Bonjour Pierre'

>>> message2.split()

['Bonjour', 'Patrick', 'Bonjour', 'Pierre']

On a créé deux variables intermédiaires messagel et message2 pour stocker les chaines de caractéres modifiées par
les méthodes .title() et .replace().

Il est possible de faire la méme chose en une seule ligne, en utilisant le chainage de méthodes ou method chaining :

>>> message = "salut patrick salut pierre"
>>> message.title().replace("Salut", "Bonjour").split()
['Bonjour', 'Patrick', 'Bonjour', 'Pierre']

On évite ainsi de créer des variables intermédiaires.

Le method chaining peut créer des lignes de code trés longues. On peut couper une ligne de code en plusieurs lignes
en utilisant le caractére \ en fin de ligne :

>>> message = "salut patrick salut pierre"
>>> message.title() \
.replace("Salut", "Bonjour") \
Ltitle()

'Bonjour Patrick Bonjour Pierre'

On peut aussi utiliser des parenthéses pour couper une ligne de code en plusieurs lignes :

>>> message = "salut patrick salut pierre"
>>> (message
.title()
.replace("Salut", "Bonjour")
split()
el)
['Bonjour', 'Patrick', 'Bonjour', 'Pierre']

L'utilisation de parenthéses permet aussi de couper une chaine de caractéres en plusieurs lignes :

>>> ma_chaine = (
"voici une chaine de caracteres "
"tres longue "
... "sur plusieurs lignes")
>>> ma_chaine
'voici une chaine de caracteres trés longue sur plusieurs lignes'

Nous reverrons le method chaining dans le chapitre 22 Module Pandas.

11.11 Exercices

Conseil

Pour ces exercices, créez des scripts puis exécutez-les dans un shell.

11.11.1 Parcours d’une liste de chaines de caractéres

Soit la liste ['girafe', 'tigre', 'singe', 'souris']. Avec une boucle, affichez chaque élément ainsi que sa
taille (nombre de caracteres).

110 Cours de Python / Université Paris Cité / UFR Sciences du Vivant

11.11. Exercices Chapitre 11. Plus sur les chaines de caractéres

11.11.2 Lecture d’une séquence a partir d’un fichier FASTA

Le fichier UBI4_SCerevisiae.fasta® contient une séquence d'ADN au format FASTA.

Créez une fonction 1it_fasta() qui prend comme argument le nom d'un fichier FASTA sous la forme d'une chaine
de caracteres, lit la séquence dans le fichier FASTA et la renvoie sous la forme d'une chaine de caracteres.

Utilisez ensuite cette fonction pour récupérer la séquence d’ADN dans la variable sequence puis pour afficher les
informations suivantes :

le nom du fichier FASTA,

la longueur de la séquence (c'est-a-dire le nombre de bases qu'elle contient),
un message vérifiant que le nombre de bases est (ou non) un multiple de 3,
le nombre de codons (on rappelle qu’un codon est un bloc de 3 bases),

les 10 premieres bases,

les 10 dernieres bases.

La sortie produite par le script devrait ressembler a ca :

UBI4_SCerevisiae.fasta

La séquence contient WWW bases

La longueur de la séquence est un multiple de 3 bases
La séquence posséde XXX codons

10 premiéres bases : YYYYYVYYYYY

10 dernieres bases : 7777777777

ou WWW et XXX sont des entiers et YYYYYYYYYY et ZZ7Z7Z777777 sont des bases.

Conseil

Vous trouverez des explications sur le format FASTA et des exemples de code dans I'annexe A Quelques formats de
données en biologie.

11.11.3 Fréquence des bases dans une séquence d’ADN

Soit la séquence d'’ADN ATATACGGATCGGCTGTTGCCTGCGTAGTAGCGT. On souhaite calculer la fréquence de chaque
base A, T, C et G dans cette séquence et afficher le résultat a I'écran.

Créez pour cela une fonction calc_composition() a laquelle vous passez en argument votre séquence d'’ADN sous
forme d'une chaine de caracteéres, et qui renvoie une liste de quatre floats indiquant respectivement la fréquence en bases
A, T, Get C.

11.11.4 Distance de Hamming

La distance de Hamming’ mesure la différence entre deux séquences de méme taille en comptant le nombre de
positions qui, pour chaque séquence, ne correspondent pas au méme acide aminé.

Créez la fonction dist_hamming() qui prend en argument deux chaines de caractéres et qui renvoie la distance de
Hamming (sous la forme d'un entier) entre ces deux chaines de caractéres.

Calculez la distance de Hamming entre les séquences : AGWPSGGASAGLAIL et IGWPSAGASAGLWIL

puis entre les séquences : ATTCATACGTTACGATT et ATACTTACGTAACCATT.

11.11.5 Moyenne de notes

Le fichier notes.csv® contient des noms d’étudiant ainsi que leurs notes dans différentes matieres. Chaque donnée
est séparée par une virgule. On trouve dans I'ordre le nom de I'étudiant, la note en géographie, la note en sport, la note
en anglais.

Jason,17,3,1
william,9,18,15
Susan,3,8,10

[...]

6. https://python.sdv.u-paris.fr/data-files/UBI4_SCerevisiae.fasta
7. https://fr.wikipedia.org/wiki/Distance_de_Hamming
8. https://python.sdv.u-paris.fr/data-files/notes.csv

Cours de Python / Université Paris Cité / UFR Sciences du Vivant 111

https://python.sdv.u-paris.fr/data-files/UBI4_SCerevisiae.fasta
https://fr.wikipedia.org/wiki/Distance_de_Hamming
https://python.sdv.u-paris.fr/data-files/notes.csv

Chapitre 11. Plus sur les chaines de caractéres 11.11. Exercices

112

Créez un programme qui lit chaque ligne du fichier et construit une liste de dictionnaire du style [{"nom": "Jason",
"geo": 17, '"sport": 3, "anglais": 1}, ...]. Utilisez si possible la fonction map () pour convertir les nombres
lus dans le fichier en entiers. Réalisez ensuite une boucle sur cette liste de dictionnaires, et affichez le nom de I'étudiant,
sa note en sport et sa note en anglais. Affichez ensuite la moyenne des notes de sport et de géographie pour tous les
étudiants.

11.11.6 Conversion des acides aminés du code a trois lettres au code a une lettre

Créez une fonction convert_3_lettres_1_lettre() qui prend en argument une chaine de caractéres avec des
acides aminés en code a trois lettres et renvoie une chaine de caractéres avec les acides aminés en code a une lettre.
Vous pourrez tenter d'utiliser le method chaining dans cette fonction.

Utilisez cette fonction pour convertir la séquence protéique ALA GLY GLU ARG TRP TYR SER GLY ALA TRP.

Rappel de la nomenclature des acides aminés :

Acide aminé Code 3-lettres Code 1-lettre Acide aminé Code 3-lettres Code 1-lettre
Alanine Ala A Leucine Leu L
Arginine Arg R Lysine Lys K
Asparagine Asn N Méthionine Met M
Aspartate Asp D Phénylalanine Phe F
Cystéine Cys C Proline Pro P
Glutamate Glu E Sérine Ser S
Glutamine Gln Q Thréonine Thr T
Glycine Gly G Tryptophane Trp w
Histidine His H Tyrosine Tyr Y
Isoleucine lle | Valine Val V

11.11.7 Palindrome

Un palindrome est un mot ou une phrase dont |'ordre des lettres reste le méme si on le lit de gauche a droite ou de
droite a gauche. Par exemple, « ressasser » et « engage le jeu que je le gagne » sont des palindromes.
Créez la fonction est_palindrome() qui prend en argument une chaine de caractéres et qui renvoie un booléen
(True si I'argument est un palindrome, False si ce n'est pas le cas). Dans le programme principal, affichez xxx est
un palindrome si la fonction est_palindrome() renvoie True sinon xxx n'est pas un palindrome. Pensez a
vous débarrasser au préalable des majuscules, des signes de ponctuations et des espaces.
Testez ensuite si les expressions suivantes sont des palindromes :

e Radar

e Never odd or even

e Karine alla en Iran

e Un roc si biscornu

e Et la marine 1ira vers Malte

e Deer Madam, Reed

e rotator

e Was it a car or a cat I saw?
Conseil

Pour le nettoyage de la chaine de caractéres (retrait des majuscules, signes de ponctations et espaces), essayer d'utiliser
le method chaining.

11.11.8 Mot composable

Un mot est composable a partir d'une séquence de lettres si la séquence contient toutes les lettres du mot. Chaque
lettre de la séquence ne peut étre utilisée qu'une seule fois. Par exemple, « coucou » est composable a partir de «
uocuoceokzefhu ».

Cours de Python / Université Paris Cité / UFR Sciences du Vivant

11.11. Exercices Chapitre 11. Plus sur les chaines de caractéres

Créez la fonction est_composable(), qui prend en argument un mot (sous la forme d'une chaine de caracteres) et
une séquence de lettres (aussi comme une chaine de caractéres), et qui renvoie True si le mot est composable a partir
de la séquence, sinon False.

Dans le programme principal, créez une liste de tuples contenant les couples mot / séquence, de la forme [('motl',
'sequencel'), ('mot2', 'sequence2'), ...]. Utilisez ensuite une boucle sur tous les couples mot / séquence, et
appelez a chaque itération la fonction est_composable(). Affichez enfin Le mot xxx est composable a partir

de yyy si le mot xxx est composable a partir de la séquence de lettres (yyy). Affichez Le mot xxx n'est pas
composable a partir de yyy si ce n'est pas le cas.

Testez cette fonction avec les mots et les séquences suivantes :

Mot Séquence

python aophrtkny
python aeiouyhpq
coucou uocuoceokzezh
fonction nhwfnitvkloco

11.11.9 Alphabet et pangramme

Les codes ASCII des lettres minuscules de I'alphabet vont de 97 (lettre « a ») a 122 (lettre « z »). La fonction chr ()
prend en argument un code ASCII sous la forme d'un entier et renvoie le caractére correspondant (sous la forme d'une
chaine de caractéres). Ainsi chr(97) renvoie 'a', chr (98) renvoie 'b' et ainsi de suite.

Créez la fonction get_alphabet () qui utilise une boucle et la fonction chr () et qui renvoie une chaine de caractéres
contenant toutes les lettres de I'alphabet.

Un pangramme? est une phrase comportant au moins une fois chaque lettre de I'alphabet. Par exemple, « Portez ce
vieux whisky au juge blond qui fume » est un pangramme.

Créez la fonction est_pangramme () qui utilise la fonction get_alphabet () précédente, qui prend en argument une
chaine de caractéres xxx, et qui renvoie True si la phrase est un pangramme et False sinon.

Le programme affichera finalement xxx est un pangramme ou xxx n'est pas un pangramme. Pensez a vous
débarrasser des majuscules le cas échéant.

Testez ensuite si les expressions suivantes sont des pangrammes :

e Portez ce vieux whisky au juge blond qui fume

e Monsieur Jack vous dactylographiez bien mieux que votre ami Wolf

e Buvez de ce whisky que le patron juge fameux

e Ceci n'est pas un pangramme

11.11.10 Lecture d’une séquence a partir d’un fichier GenBank (exercice +++)

On cherche a récupérer la séquence d’ADN du chromosome | de la levure Saccharomyces cerevisiae contenu dans le
fichier au format GenBank NC_001133.gbk 1°.

Le format GenBank est présenté en détail dans I'annexe A Quelques formats de données en biologie. Pour cet exercice,
vous devez savoir que la séquence démarre aprés la ligne commencant par le mot ORIGIN et se termine avant la ligne
commencant par les caracteres // :

ORIGIN
1 ccacaccaca cccacacacc cacacaccac accacacacc acaccacacc cacacacaca

61 catcctaaca ctaccctaac acagccctaa tctaaccctg gccaacctgt ctctcaactt

[...]

230101 tgttagtgtt agtattaggg tgtggtgtgt gggtgtggtg tgggtgtggg tgtgggtgtg
230161 ggtgtgggtg tgggtgtggt gtggtgtgtg ggtgtggtgt gggtgtggtg tgtgtgegg

/7

Pour extraire la séquence d'ADN, nous vous proposons d'utiliser un algorithme de « drapeau », c'est-a-dire une variable
qui sera a True lorsqu’on lira les lignes contenant la séquence et a False pour les autres lignes.

9. http://fr.wikipedia.org/wiki/Pangramme
10. https://python.sdv.u-paris.fr/data-files/NC_001133.gbk

Cours de Python / Université Paris Cité / UFR Sciences du Vivant 113

http://fr.wikipedia.org/wiki/Pangramme
https://python.sdv.u-paris.fr/data-files/NC_001133.gbk

Chapitre 11. Plus sur les chaines de caractéres 11.11. Exercices

114

Créez une fonction 1it_genbank() qui prend comme argument le nom d'un fichier GenBank sous la forme d'une
chaine de caracteres, lit la séquence dans le fichier GenBank et la renvoie sous la forme d'une chaine de caracteres.
Utilisez ensuite cette fonction pour récupérer la séquence d'ADN dans la variable sequence dans le programme
principal. Le script affichera :
NC_001133.gbk
La séquence contient XXX bases

10 premiéres bases : YYYYYYYYYY
10 dernieres bases : 7777777777

ol XXX est un entier et YYYYYYYYYY et 2277777777 sont des bases.
Vous avez toutes les informations pour effectuer cet exercice. Si toutefois vous coincez sur la mise en place du drapeau,
voici |'algorithme en pseudo-code pour vous aider :
drapeau <- Faux
seq <- chaine de caractéres vide
Lire toutes les lignes du fichier:
si la ligne contient //:
drapeau <- Faux
si drapeau est Vrai:
on ajoute a seq la ligne (sans espace, chiffre et retour a la ligne)
si la ligne contient ORIGIN:
drapeau <- Vrai

11.11.11 Affichage des carbones alpha d’une structure de protéine

b qui correspond a la structure tridimensionnelle de la protéine barstar 12 sur le site

Téléchargez le fichier 1bta.pd
de la Protein Data Bank (PDB).

Créez la fonction trouve_calpha() qui prend en argument le nom d'un fichier PDB (sous la forme d'une chaine de
caractéres), qui sélectionne uniquement les lignes contenant des carbones alpha, qui stocke ces lignes dans une liste et
les renvoie sous la forme d'une liste de chaines de caractéres.

Utilisez la fonction trouve_calpha() pour afficher a I'écran les carbones alpha des deux premiers résidus (acides

aminés).

Conseil

Vous trouverez des explications sur le format PDB et des exemples de code pour lire ce type de fichier en Python
dans I'annexe A Quelques formats de données en biologie.

11.11.12 Calcul des distances entre les carbones alpha consécutifs d’une structure de pro-
téine (exercice +++)

En utilisant la fonction trouve_calpha() précédente, calculez la distance interatomique entre les carbones alpha
des deux premiers résidus (avec deux chiffres aprés la virgule).

Rappel : la distance euclidienne d entre deux points A et B de coordonnées cartésiennes respectives (x4,y4,z4) et
(xB,yB,z8) se calcule comme suit :

d= \/(xB —x4)*+ (v8 —ya)? + (z — 24)?

Créez ensuite la fonction calcule_distance () qui prend en argument la liste renvoyée par la fonction trouve_calpha
(), qui calcule les distances interatomiques entre carbones alpha consécutifs et affiche ces distances sous la forme :

numero_calpha_1 numero_calpha_2 distance

Les numéros des carbones alpha seront affichés sur deux caractéres. La distance sera affichée avec deux chiffres aprés
la virgule. Voici un exemple avec les premiers carbones alpha :

11. https://files.rcsb.org/download/1BTA.pdb
12. http://www.rcsb.org/pdb/explore.do?structureId=1BTA

Cours de Python / Université Paris Cité / UFR Sciences du Vivant

https://files.rcsb.org/download/1BTA.pdb
http://www.rcsb.org/pdb/explore.do?structureId=1BTA

11.11. Exercices

Chapitre 11. Plus sur les chaines de caracteres

A WN R
a b wN
w w ww
0 00 0 ™

N WO o

Modifiez maintenant la fonction calcule_distance() pour qu'elle affiche a la fin la moyenne des distances.
La distance inter-carbone alpha dans les protéines est trés stable et de |'ordre de 3,8 angstroms. Observez avec attention
les valeurs que vous avez calculées pour la protéine barstar. Repérez une valeur surprenante. Essayez de |'expliquer.

Conseil

Vous trouverez des explications sur le format PDB et des exemples de code pour lire ce type de fichier en Python
dans I'annexe A Quelques formats de données en biologie.

11.11.13 Compteur de genes dans un fichier GenBank

Dans cet exercice, on souhaite compter le nombre de geénes du fichier GenBank NC_001133.gbk '3 (chromosome |
de la levure Saccharomyces cerevisiae) et afficher la longueur de chaque geéne. Pour cela, il faudra récupérer les lignes
décrivant la position des genes. Voici par exemple les cing premiéres lignes concernées dans le fichier NC_001133.gbk :

gene
gene
gene
gene
gene

complement (<1807..>2169)
<2480..>2707

complement (<7235..>9016)
complement(<11565..>11951)
<12046..>12426

Lorsque la ligne contient le mot complement le géne est situé sur le brin complémentaire, sinon il est situé sur le brin
direct. Votre code devra récupérer le premier et le second nombre indiquant respectivement la position du début et de
fin du géne. Attention a bien les convertir en entier afin de pouvoir calculer la longueur du géne. Notez que les caractéres
> et < doivent étre ignorés, et que les .. servent a séparer la position de début et de fin.

On souhaite obtenir une sortie de la forme :

géne 1 complémentaire -> 362 bases
géne 2 direct -> 227 bases
géne 3 complémentaire -> 1781 bases
[...]

géne 99 direct -> 611 bases
géne 100 direct -> 485 bases
géne 101 direct -> 1403 bases
Conseil

Vous trouverez des

explications sur le format GenBank dans I'annexe A Quelques formats de données en biologie.

13. https://python.sdv.u-paris.fr/data-files/NC_001133.gbk

Cours de Python / Université Paris Cité / UFR Sciences du Vivant 115

https://python.sdv.u-paris.fr/data-files/NC_001133.gbk

CHAPITRE 12

Plus sur les listes

Nous avons vu les listes dés le chapitre 4 et les avons largement utilisées depuis le début de ce cours. Dans ce chapitre,
nous allons plus loin avec les méthodes associées aux listes, ainsi que d'autres caractéristiques trés puissantes telles que
les tests d'appartenance ou les listes de compréhension.

12.1 Méthodes associées aux listes

Comme pour les chaines de caracteres, les listes possédent de nombreuses méthodes qui leurs sont propres. On
rappelle qu'une méthode est une fonction qui agit sur 'objet auquel elle est attachée par un point.

12.1.1 .append()

La méthode .append(), que I'on a déja vu au chapitre 4 Listes, ajoute un élément a la fin d'une liste :

>>> Tlistel = [1, 2, 3]
>>> listel.append(5)
>>> listel

[1, 2, 3, 5]

qui est équivalent a :

>>> listel
>>> listel
>>> listel
[1: 2; 35 5]

[1, 2, 3]
listel + [5]

Conseil

Préférez la version avec .append() qui est plus compacte et facile a lire.

12.1.2 .1insert()

La méthode .1insert() insére un objet dans une liste a un indice déterminé :

116

12.1. Méthodes associées aux listes

Chapitre 12. Plus sur les listes

>>> Tlistel = [1, 2, 3]
>>> Tlistel.insert(2, -15)
>>> listel

[1, 2, -15, 3]

12.1.3 del

L'instruction de'l supprime un élément d'une liste a un indice déterminé :

>>> Tlistel = [1, 2, 3]
>>> del listel[1]

>>> listel

[1, 3]

Remarque

Contrairement aux méthodes associées aux listes présentées dans cette rubrique, del est une instruction générale de

Python, utilisable pour d'autres objets que des listes. Celle-ci ne prend pas de parenthése.

12.1.4 .remove()

La méthode .remove() supprime un élément d'une liste a partir de sa valeur :

>>> Tlistel = [1, 2, 3]
>>> listel.remove(3)
>>> listel

[1, 2]

S'il y a plusieurs fois la méme valeur dans la liste, seule la premiére est retirée. Il faut appeler la méthode . remove ()

autant de fois que nécessaire pour retirer toutes les occurences d'un méme élément :
>>> listel = [1, 2, 3, 4, 3]

>>> listel.remove(3)
>>> listel

(1, 2, 4, 3]

>>> listel.remove(3)
>>> listel

[1, 2, 4]

12.1.5 .sort()

La méthode .sort() trie les éléments d'une liste du plus petit au plus grand :

>>> listel = [3, 1, 2]
>>> listel.sort()

>>> listel

(1, 2, 3]

L'argument reverse=True spécifie le tri inverse, c'est-a-dire du plus grand au plus petit élément :

>>> listel = [3, 1, 2]

>>> listel.sort(reverse=True)

>>> listel
[3, 2, 1]

12.1.6 sorted()

La fonction sorted() trie également une liste. Contrairement a la méthode précédente .sort(), cette fonction

renvoie la liste triée et ne modifie pas la liste initiale :

>>> listel = [3, 1, 2]
>>> sorted(listel)

(1, 2, 3]
>>> listel
[3, 1, 2]

Cours de Python / Université Paris Cité / UFR Sciences du Vivant

117

Chapitre 12. Plus sur les listes

12.1. Méthodes associées aux listes

La fonction sorted() supporte aussi I'argument reverse=True :

>>> Tlistel = [3, 1, 2]
>>> sorted(listel, reverse=True)

[3, 2, 1]
>>> listel
[3, 1, 2]

12.1.7 .reverse()

La méthode .reverse() inverse une liste :

>>> Tlistel = [3, 1, 2]
>>> listel.reverse()
>>> listel

[2, 1, 3]

12.1.8 .count()

La méthode .count() compte le nombre d'éléments (passés en argument) dans une liste :

>>> listel = [1, 2, 4, 3, 1, 1]
>>> listel.count(1l)

3

>>> listel.count(4)

1

>>> listel.count(23)

(0]

12.1.9 Particularités des méthodes associées aux listes

De nombreuses méthodes mentionnées précédemment (.append(), .sort(), etc.) modifient la liste, mais ne ren-
voient pas d'objet récupérable dans une variable. Il s'agit d'un exemple d'utilisation de méthode (donc de fonction
particuliére) qui fait une action, mais qui ne renvoie rien. Pensez-y dans vos utilisations futures des listes. Ainsi, méme si

I'instruction var = listel.reverse() est une instruction Python valide, var ne contiendra que None c'est-a-dire un
objet vide en Python, préférez-lui directement I'instruction listel.reverse() :

Remarque

>>> listel = [1, 2, 3]
>>> var = listel.reverse()
>>> var

>>> print(var)

None

>>> listel

[3, 2, 1]

>>> liste2 = [5, 6, 7]
>>> liste2.reverse()
>>> liste2

[7, 6, 5]

Pour exprimer la méme idée, la documentation parle de modification de la liste « sur place » (in place en anglais) :

>>> listel = [1, 2, 3]
>>> help(listel.reverse)
Help on built-in function reverse:

reverse() method of builtins.list instance
Reverse *IN PLACE=*.

Cela signifie que la liste est modifiée « sur place », c'est-a-dire dans la méthode au moment ou elle s'exécute. La liste

étant modifiée « en dur » dans la méthode, cette derniere ne renvoie donc rien. L'explication du mécanisme sous-jacent
vous sera donnée dans la rubrique 13.4 Portée des listes du chapitre 13 Plus sur les fonctions.

Par ailleurs, certaines méthodes ou instructions des listes décalent les indices d'une liste (par exemple .insert(),

Cours de Python / Université Paris Cité / UFR Sciences du Vivant

12.2. Construction d'une liste par itération Chapitre 12. Plus sur les listes

del, etc.).

Enfin, pour obtenir une liste exhaustive des méthodes disponibles pour les listes, utilisez la fonction dir(listel)
(listel étant une liste).

12.2 Construction d’une liste par itération

La méthode .append() est trés pratique car on peut |'utiliser pour construire une liste au fur et a3 mesure des
itérations d’une boucle.

Pour cela, il est commode de définir préalablement une liste vide avec l'instruction listel = []. Voici un exemple
ou une chaine de caractéres est convertie en liste :
>>> seq = "CAAAGGTAACGC"
>>> seq_list = []
>>> seq_list

[]
>>> for base in seq:
seq_Llist.append(base)

>>> seq_list
[ICI’ IAI’ IAI’ IAI, IGI’ IGI’ ITI’ IAI’ IAI’ ICI’ IGI’ ICI]

Remarquez que dans cet exemple, vous pouvez aussi utiliser directement la fonction 1ist () qui prend n'importe quel
objet séquentiel (liste, chaine de caractéres, etc.) et qui renvoie une liste :

>>> seq = "CAAAGGTAACGC"
>>> Tlist(seq)
['Cl, IAI’ IAI’ IAI, lGl’ IGI’ ITI’ lAl, IAI’ ICI’ IGI’ ICI]

Cette méthode est certes plus simple, mais il arrive parfois qu'on doive utiliser des boucles tout de méme, comme
lorsqu’on lit un fichier. Nous vous rappellons que I'instruction 1ist(seq) convertit un objet de type chaine de caractéres
en un objet de type liste (il s'agit donc d'une opération de casting). De méme que 1ist(range(10)) convertit un objet
de type range en un objet de type list.

12.3 Test d’appartenance

L'opérateur 1in teste si un élément fait partie d'une liste :

listel = [1, 3, 5, 7, 9]
>>> 3 1in listel

True

>>> 4 qn listel

False

>>> 3 not in listel
False

>>> 4 not in listel
True

La variation avec not permet, a contrario, de vérifier qu'un élément n'est pas dans une liste.

12.4 Fonction zip()

Conseil

Si vous étes débutant, vous pouvez sauter cette rubrique.

La fonction zip() de Python permet d'itérer sur plusieurs listes en paralléle :

Cours de Python / Université Paris Cité / UFR Sciences du Vivant

119

Chapitre 12. Plus sur les listes 12.4. Fonction zip ()

120

>>> animaux = ["poulain", "renard", "python"]

>>> couleurs = ["alezan", "roux", "vert"]

>>> zip(animaux, couleurs)

<zip object at 0x7f6cf954a480>

>>> type(zip(animaux, couleurs))

<class 'zip'>

>>> for element in zip(animaux, couleurs):
print(element)

('poulain', 'alezan')

('renard', 'roux'")

('python', 'vert')

>>> for animal, couleur in zip(animaux, couleurs):
print(f"le {animal} est {couleur}")

le poulain est alezan
le renard est roux
le python est vert

N

Lignes 3 et 6. On passe en argument deux listes a zip () qui génére un nouvel objet de type zip. Comme pour les
objets de type map vu au chapitre 11 Plus sur les chaines de caractéres, les objets zip sont itérables.

Lignes 7 a 12. Lorsqu’on itére sur un objet zip, la variable d’itération est un tuple. A la premiére itération, on a un
tuple avec le premier élément de chaque liste utilisée pour générer |'objet zip, a la deuxieme itération, ce sera le deuxieme
élément, et ainsi de suite.

Lignes 13 a 18. Avec I'affectation multiple, on peut affecter a la volée les éléments a des variables différentes, comme
on I'a fait avec la fonction enumerate() (chapitre 5 Boucles) et la méthode .1items() des dictionnaires (chapitre 8
Dictionnaires et tuples).

Un objet zip est aussi utile pour générer facilement une liste de tuples.

>>> Tlist(zip(animaux, couleurs))
[('poulain', 'alezan'), ('renard', 'roux'), ('python', 'vert')]

Si une des listes passée en argument n'a pas la méme longueur, I'objet zip s’arréte sur la liste la plus courte :

>>> animaux = ["poulain", "renard", "python", "orque'"]

>>> couleurs = ["alezan", "roux", "vert"]

>>> list(zip(animaux, couleurs))

[('poulain', 'alezan'), ('renard', 'roux'), ('python', 'vert')]

On peut empécher ce comportement avec |'argument par mot-clé strict, qui renvoie une erreur si les listes n'ont
pas la méme longueur :

>>> Tlist(zip(animaux, couleurs, strict=True))
Traceback (most recent call last):
File "<stdin>", 1line 1, in <module>
ValueError: zip() argument 2 is shorter than argument 1

Enfin, il est possible de créer des objets zip avec autant de listes que 'on veut :

>>> animaux = ["poulain", "renard", "python"]

>>> couleurs = ["alezan", "roux", "vert"]

>>> numero = [1, 2, 3]

>>> list(zip(numero, animaux, couleurs))

[(1, 'poulain', 'alezan'), (2, 'renard', 'roux'), (3, 'python', 'vert')]

Remarque
La fonction zip () fonctionne sur n'importe quel objet itérable : listes, tuples, dictionnaires, objets range, etc.

Conseil
Pour les débutants, vous pouvez sauter cette remarque.

Cours de Python / Université Paris Cité / UFR Sciences du Vivant

12.5. Copie de listes Chapitre 12. Plus sur les listes

Un objet zip () comme présenté plus haut est ce qu'on appelle un itérateur. Cela implique un mode de fonctionnement
particulier, notamment le fait qu'on ne peut I'utiliser qu'une fois lorsqu'on I'a créé. Vous trouverez plus d’explications sur
la définition et le fonctionnement d'un itérateur dans le chapitre 26 Remarques complémentaires.

12.5 Copie de listes

Il est trés important de savoir que I'affectation d'une liste (a partir d'une liste préexistante) crée en réalité une

référence et non une copie :

>>> Tlistel = [1, 2, 3]

>>> liste2 = listel

>>> liste2

(1, 2, 3]

>>> listel[1l] = -15

>>> listel

[1, -15, 3]

>>> liste2

[1, -15, 3]

Vous voyez que la modification de 1istel modifie liste2 aussi! Pour comprendre ce qu'il se passe, nous allons de
nouveau utiliser le site Python Tutor avec cet exemple (Figure 12.1) :

Python 3.11 Frames Objects
known limitations

- list
listel = [1, 2, 3] Global frame \i e
L Z
liste2 = listel liste1 //—_7’ 11 s
Edit this code liste2

line that just executed
==p next line to execute

<< First| | < Prev| | Next > | Last >>

Done running (2 steps)

FIGURE 12.1 — Copie de liste.

Techniquement, Python utilise des pointeurs (comme dans le langage de programmation C) vers les mémes objets.
Python Tutor I'illustre avec des fleches qui partent des variables listel et liste2 et qui pointent vers la méme liste.
Donc, si on modifie la liste listel, la liste 1iste2 est modifiée de la méme maniére. Rappelez-vous de ceci dans vos
futurs programmes, car cela pourrait avoir des effets désastreux !

Pour éviter ce probléme, il va falloir créer une copie explicite de la liste initiale. Observez cet exemple :

>>> listel = [1, 2, 3]
>>> liste2 = listell[:]
>>> listel[1l] = -15
>>> Tliste2

(1, 2, 3]

L'instruction listel[:] a créé une copie « a la volée » de la liste 1istel. Vous pouvez utiliser aussi la fonction
list(), qui renvoie explicitement une liste :
>>> listel = [1, 2, 3]
>>> liste2 = list(listel)
>>> listel[1l] = -15
>>> Tliste2
[1, 2, 31

Si on regarde a nouveau dans Python Tutor (Figure 12.2), on voit clairement que |'utilisation d'une tranche [:] ou
de la fonction list() crée des copies explicites. Chaque fleche pointe vers une liste différente, indépendante des autres.

Cours de Python / Université Paris Cité / UFR Sciences du Vivant 121

Chapitre 12. Plus sur les listes 12.6. Initialisation d’une liste de listes

Python 3.11 Frames Objects
known limitations
- list
listel = [1, 2, 3] Global frame IE; : i
! <
liste2 = listel[:] listel & 11213
liste3 = list(listel) liste2
Edit this code liste3 \ist
line that just executed 0 ! :
— next line to execute 1 2 3
. list
| << First| | < Prev | Next> |Last>> 0o |1 |2
Done running (3 steps) 12]3

FIGURE 12.2 — Copie de liste avec une tranche [:] et la fonction list().

Attention, les deux astuces précédentes ne fonctionnent que pour les listes a une dimension, autrement dit les listes
qui ne contiennent pas elles-mémes d'autres listes. Voyez par exemple :

>>> Tlistel = [[1, 2], [3, 4]1]
>>> listel

([1, 21, [3, 411

>>> liste2 = listell[:]

>>> listel[1][1] = 55

>>> listel

[[1, 2], [3, 55]]

>>> liste2

[ry, 21, [3, 5511

et

>>> liste2 = list(listel)
>>> listel[1][1] = 77
>>> listel

(1, 21, [3, 7711

>>> liste2

[ry, 21, [3, 7711

La méthode de copie qui fonctionne a tous les coups consiste a appeler la fonction deepcopy () du module copy :

>>> dimport copy

>>> listel = [[1, 2], [3, 4]]

>>> Tlistel

[y, 21, [3, 4]11]

>>> Tliste2 = copy.deepcopy(listel)
>>> listel[1][1] = 99

>>> Tlistel

[f1, 21, 3, 9911

>>> liste2

L1, 21, [3, 4]l

12.6 Initialisation d’une liste de listes

Un dernier écueil que vous pourrez rencontrer concerne l'initialisation d'une liste de listes avec I'opérateur *. Imaginons
que l'on souhaite représenter un tableau de nombre et I'initialiser avec des 0. Nous pourrions étre tentés d'utiliser la
duplication de listes :

>>> T1listel = [[0, 0, 0]] * 5
>>> listel
tte, o, oj, o, 0, o], [0, 6, 0], [0, 6, 0], [0, 0, 0]]

Le probleme est que si on modifie un élément d'une des sous-listes :

122 Cours de Python / Université Paris Cité / UFR Sciences du Vivant

12.7. Liste de compréhension Chapitre 12. Plus sur les listes

>>> Tlistel[2][0] = -12
>>> Tlistel
[[_12; 0, O]; [_12, 0, O]; [_12’ 0, O]; [_12’ 0, O]; [_12) 0, 0]1]

Vous constatez qu'il est modifié dans chaque sous-liste! A I'aide de Python Tutor on voit que Python crée une
référence vers la méme sous-liste (Figure 12.3) :

Python 3.11 Print output (drag lower right corner to resize)
known limitations [[e, 0, @], [0, 8, @], [0, @, @], [@, @, o], [0, o, 0]]
[[-12, 0,701, [-12, o, 6], [-12, o, 6], [-12, o, €], [-12, 6, e]]

listel = [[o0, @, ©]] * 5
print(listel1)
listel[2][e] = -12 Frarme objects
print(listel)
Edit this code Global frame

line that just executed listel
= next line to execute

<<First| | <Prev| | Next > | Last >>

Done running (4 steps)

FIGURE 12.3 — Initialisation d'une liste de listes avec |'opérateur de duplication.

Comme disent les auteurs dans la documentation officielle ! : Note that items in the sequence are not copied; they
are referenced multiple times. This often haunts new Python programmers. Pour éviter le probléme, on peut utiliser une
boucle :

>>> listel = []
>>> for i in range(5):
listel.append ([0, 0, 0])
>>> listel
(fe, o, 0], [0, 0, 0], [0, 0, 0], [0, 0, 0], [0, 0, 0]]
>>> listel[2][0] = -12
>>> listel
([o, o, 0], [0, 0, 0], [-12, 0, 0], [0, 0, 0], [0, 0, 0]]

On verra dans la rubrique suivante une maniére trés compacte de faire cela avec les listes de compréhension.

Attention

Méme si une liste de listes peut représenter un tableau de nombres, il ne faut pas la voir comme un objet mathématique
de type matrice?. En effet, le concept de lignes et colonnes n'est pas défini clairement, on ne peut pas faire d’opérations
matricielles simplement, etc. On verra dans le chapitre 20 Module Numpy qu'il existe des objets appelés arrays qui sont
faits pour ca.

12.7 Liste de compréhension

Conseil

Si vous étes débutant, vous pouvez sauter cette rubrique.

En Python, la notion de liste de compréhension (ou compréhension de listes) représente une maniére originale et trés
puissante de générer des listes. La syntaxe de base consiste au moins en une boucle for au sein de crochets précédés
d'une variable (qui peut é&tre la variable d'itération ou pas) :

1. https://docs.python.org/3/library/stdtypes.html#sequence-types-list-tuple-range
2. https://fr.wikipedia.org/wiki/Matrice

Cours de Python / Université Paris Cité / UFR Sciences du Vivant

123

https://docs.python.org/3/library/stdtypes.html#sequence-types-list-tuple-range
https://fr.wikipedia.org/wiki/Matrice

Chapitre 12. Plus sur les listes

12.7. Liste de compréhension

124

>>>

[for i in range(10)]

[O’ 17 2’ 37 4’ 5) 6? 77 8’ 9]

>>>

[2 for i in range(10)]

[2’ 2, 27 27 2’ 27 2) 27 2’ 2]

Pour plus de détails, consultez 3 ce sujet le site de Python 3 et celui de Wikipédia*.

Voici quelques exemples illustrant la puissance des listes de compréhension.

12.7.1

Initialisation d’une liste de listes

Une liste de compréhension permet ['initialisation d'une liste de listes en une ligne sans avoir I'inconvénient de faire
une référence vers la méme sous-liste (voir rubrique précédente) :

>>>
>>>

Llo,

>>>
>>>

o,

listel = [[0, 0, 0] for i in range(5)]

listel

o, o], [0, o, o], [0, @, 0], [0, 0, 0], [0, 0, 0]]
listel[2][0] = -12

listel

0, 0]: [O’ 0, 0]; [712’ 0, 0]: [G: 0, O]; [0; 0, 0]]

12.7.2 Nombres pairs compris entre 0 et 30

>>>
(o,

12.7.3

>>>
>>>
>>>

print([i for i in range(31) if i % 2 == 0])
2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30]

Jeu sur la casse des mots d’une phrase
message = "C'est sympa la BioInfo"
msg_lst = message.split()

print([[m.upper(), len(m)] for m in msg_1lst])
[["C'EST", 5], ['SYMPA', 5], ['LA', 2],

['BIOINFO', 7]1]

12.7.4 Formatage d’une séquence avec 60 caractéres par ligne

Exemple d'une séquence constituée de 150 alanines :

Exemple d'une séquence de 150 alanines.

>>>
>>>

seq = "A" % 150
width = 60

>>> seq_split = [seq[i:i+width] for i in range(0, len(seq), width)]

>>>

print("\n".join(seq_split))

AA
AA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

12.7.5 Formatage FASTA d’une séquence

Exemple d'une séquence constituée de 150 alanines :

>>>
>>>
>>>
>>>
>>>

com = "Séquence de 150 alanines"
seq = "A" % 150
width = 60

seq_split = [seq[i:i+width] for i in range(0, len(seq), width)]
print(">"+com+"\n"+"\n".join(seq_split))

>séquence de 150 alanines
AA
AA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

3. http://www.python.org/dev/peps/pep-0202/

4. http://fr.wikipedia.org/wiki/Comprehension_de_liste

Cours de Python / Université Paris Cité / UFR Sciences du Vivant

http://www.python.org/dev/peps/pep-0202/
http://fr.wikipedia.org/wiki/Comprehension_de_liste

12.8. Tris puissants de listes Chapitre 12. Plus sur les listes

12.7.6 Sélection des carbones alpha dans un fichier PDB

Exemple avec la structure de la barstar® :

>>> with open("lbta.pdb", "r") as f_pdb:
CA_lines = [
line for line in f_pdb

if line.startswith("ATOM") and line[12:16].strip() == "CA"
]
>>> print(len(CA_lines))
89
Conseil

Pour plus de lisiblité, il est possible de répartir la liste de compréhension sur plusieurs lignes.

12.7.7 Portée des variables dans une liste de compréhension

Contrairement a une boucle for, la variable d'itération d'une liste de compréhension n'est pas accessible en dehors
de la liste de compréhension elle-méme. Par exemple :

>>> liste_a = []
>>> for idx_a in range(10):
liste_a.append(idx_a)

>>> print(liste_a)
e, 1, 2, 3, 4, 5, 6, 7, 8, 9]
>>> print(idx_a)
9
>>>
>>> Tliste_b = [idx_b for didx_b in range(10)]
>>> print(liste_b)
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
>>> print(idx_b)
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
NameError: name 'idx_b' is not defined. Did you mean: 'didx_a'?

La variable d'itération idx_a reste disponible en dehors de la boucle for. Par contre, la variable d'itération idx_b

n'est pas disponible en dehors de la liste de compréhension, car elle est créée « a la volée » par Python puis éliminée une
fois I'instruction exécutée.

12.8 Tris puissants de listes

Conseil

Si vous étes débutant, vous pouvez sauter cette rubrique.

Un peu plus haut nous avons évoqué la méthode .sort () qui trie une liste sur place, ainsi que la fonction sorted()
qui renvoie une nouvelle liste triée. Nous avons également vu qu’elles supportaient I'argument par mot-clé reverse pour
trier dans le sens inverse (décroissant ou anti-ASCII). Il existe un autre argument par mot-clé nommé key permettant un
tri avec des régles alternatives que nous pouvons customiser. On doit passer a key une fonction callback (nous avions
déja croisé cette notion avec la fonction map () dans le chapitre 11 Plus sur les chaines de caractéres, pour une définition
voir le chapitre 25 Fenétres graphiques et Tkinter (en ligne)), c'est-a-dire, un nom de fonction sans les parenthéses. Par
exemple, si on passe la callback len comme ca :

5. http://www.rcsb.org/pdb/explore.do?structureId=1BTA

Cours de Python / Université Paris Cité / UFR Sciences du Vivant

125

http://www.rcsb.org/pdb/explore.do?structureId=1BTA

Chapitre 12. Plus sur les listes 12.9. Exercices

>>> mots = ["babar", "bar", "ba", "bababar"]
>>> sorted(mots, key=len)
['ba', 'bar', 'babar', 'bababar']

Python trie la liste mots en considérant la longeur de chaque élément, donc ici le nombre de lettres de chaque chaine

de caracteres. Si plusieurs mots ont la méme longueur (bar et bam dans I'exemple suivant), sorted() les laisse dans
I'ordre de la liste initiale.

>>> mots = ["bar", "babar", "bam", "ba", "bababar"]
>>> sorted(mots, key=len)

['ba', 'bar', 'bam', 'babar', 'bababar']

La ou key va se révéler puissant est quand nous allons lui passer une fonction « maison ». Voici une exemple :

>>> def compte_b(chaine):
return chaine.count("b")

>>> compte_b("babar")
2

>>> mots = ["bar", "babar", "bam", "ba", "bababar'"]
>>> sorted(mots, key=compte_b)
['bar', 'bam', 'ba', 'babar', 'bababar']

e Lignes 1 a 5. Comme son nom l'indique, la fonction compte_b() compte les lettres b dans une chaine de
caracteres.

e Lignes 7 et 8. En donnant compte_b (notez |'absence de parenthéses) a I'argument key, Python trie en fonction

du nombre de lettres b dans chaque mot ! Comme pour len, si plusieurs mots ont un nombre de lettres b identiques,
il conserve I'ordre de la liste initiale.

Remarque

L'argument key fonctionne de la méme maniére entre sorted() et la méthode .sort() qui trie sur place. Cet
argument existe aussi avec les fonctions min() et max (). Par exemple :

>>> mots = ["bar", "babar", "bam", "ba", "bababar"]
>>> min(mots, key=1len)

lbal

>>> max(mots, key=len)

'bababar’

Python renverra le premier élément avec min() ou le dernier élément avec max () aprés un tri sur la longueur de
chaque mot.

Pour aller plus loin

En Python, trier avec une fonction maison passée a I'argument key se fait plutdt avec ce qu’on appelle une fonction

lambda. Il s’agit d’une « petite » fonction que I'on écrit sur une ligne. Si vous voulez en savoir plus, vous pouvez consulter
le chapitre 26 Remarques complémentaires.

12.9 Exercices

Conseil

Pour ces exercices, créez des scripts puis exécutez-les dans un shell.

126 Cours de Python / Université Paris Cité / UFR Sciences du Vivant

12.9. Exercices Chapitre 12. Plus sur les listes

12.9.1 Tri de liste

Soit la liste de nombres [8, 3, 12.5, 45, 25.5, 52, 1]. Triez les nombres de cette liste par ordre croissant,
sans utiliser la fonction sort (). Les fonctions et méthodes min(), .append() et .remove() vous seront utiles.

12.9.2 Séquence d’ADN aléatoire

Créez une fonction seq_alea() qui prend comme argument un entier positif taille représentant le nombre de bases
de la séquence et qui renvoie une séquence d'ADN aléatoire sous forme d'une chaine de caracteres. Utilisez la fonction
random.choices () présentée dans le chapitre 9 Modules.

Utilisez la fonction seq_alea() pour générer aléatoirement une séquence d’ADN de 15 bases.

12.9.3 Séquence d’ADN complémentaire inverse

Créez une fonction gen_comp_inv () qui prend comme argument une séquence d'ADN sous la forme d'une chaine de
caracteéres, qui renvoie la séquence complémentaire inverse sous la forme d’une autre chaine de caractéres et qui utilise
des méthodes associées aux listes. Dans cette fonction, utilisez un dictionnaire {"A": "T'", "T": "A" "G": "C",
"C": "G"} donnant la correspondance entre nucléotides des brins direct et complémentaire.

Utilisez cette fonction pour transformer la séquence d’ADN TCTGTTAACCATCCACTTCG en sa séquence complémentaire
inverse.

Rappel : la séquence complémentaire inverse doit étre « inversée ». Par exemple, la séquence complémentaire inverse
de la séquence ATCG est CGAT.

12.9.4 Doublons

Soit la liste de nombres listel = [5, 1, 1, 2, 5, 6, 3, 4, 4, 4, 2].A partirde listel, créez une nouvelle
liste sans les doublons, triez-la et affichez-la.

12.9.5 Séquence d’ADN aléatoire 2

Créez une fonction seq_alea_2() qui prend comme argument un entier et quatre floats, représentant respective-
ment la longueur de la séquence et les pourcentages de chacune des quatre bases A, T, G et C. La fonction générera
aléatoirement une séquence d'ADN qui prend en compte les contraintes fournies en arguments et renverra la séquence
sous forme d'une chaine de caractéres.

Utilisez cette fonction pour générer aléatoirement une séquence d’ADN de 50 bases contenant 10 % de A, 30 % de
T, 50 % de G et 10 % de C.

Conseil
Utilisez la fonction random.choises() avec les paramétres k et weights. Le paramétre k spécifie le nombre de
tirages aléatoires a réaliser et le paramétre weights indique les probabilités de tirage.
Par exemple, pour réaliser 10 tirages aléatoires entre les lettres A et B avec 80% de A et 20% de B, on utilise la
fonction random.choices() de la maniére suivante :

>>> qmport random
>>> random.choices("AB", k=10, weights=[80, 20])
[YAI, IAI’ IAY’ lAI, IAI’ IAY’ IAI’ IBI’ YAl, lBl]

N'hésitez pas a consulter la documentation © de la fonction random.choices() pour plus de détails.

12.9.6 Le nombre mystére

Trouvez le nombre mystere qui répond aux conditions suivantes :
e [l est composé de trois chiffres.

o |l est strictement inférieur a 300.

e |l est pair.

e Deux de ses chiffres sont identiques.

6. https://docs.python.org/fr/3/library/random.html#random.choices

Cours de Python / Université Paris Cité / UFR Sciences du Vivant 127

https://docs.python.org/fr/3/library/random.html#random.choices

Chapitre 12. Plus sur les listes 12.9. Exercices

e La somme de ses chiffres est égale a 7.
On vous propose d'employer une méthode dite « brute force », c'est-a-dire d'utiliser une boucle et a chaque itération
de tester les différentes conditions.

12.9.7 Codes une et trois lettres des acides aminés

On donne les deux listes suivantes décrivant quelques acides aminés en code une et trois lettres :

COde_l_lettre = l:llAU’ IIVH’ IILII’ IIMII, HPH]
code_3_lettres = ["Ala", "Val", "Leu", "Met", "Pro"]

Avec la fonction zip () et une boucle, générez la sortie suivante :

L'acide aminé se note A ou Ala
L'acide aminé se note V ou Val
L'acide aminé se note L ou Leu
L'acide aminé se note M ou Met
L'acide aminé se note P ou Pro

12.9.8 Triangle de Pascal (exercice +++)

Voici le début du triangle de Pascal :

PR R R R
b WN R
oW

Déduisez comment une ligne est construite a partir de la précédente. Par exemple, a partir de la ligne 2 (1 1),
construisez la ligne suivante (ligne 3 : 1 2 1) et ainsi de suite.

Implémentez cette construction en Python. Généralisez a I'aide d'une boucle.

Ecrivez dans un fichier pascal.out les 10 premiéres lignes du triangle de Pascal.

128 Cours de Python / Université Paris Cité / UFR Sciences du Vivant

cHAPITRE 13

Plus sur les fonctions

Avant d'aborder ce chapitre, nous vous conseillons de relire le chapitre 10 Fonctions et de bien en assimiler toutes les
notions (et aussi d'en faire les exercices). Nous avons vu dans ce chapitre 10 le concept incontournable que représentent
les fonctions. Nous avons également introduit la notion de variables locales et globales.

Dans ce chapitre, nous allons aller un peu plus loin sur la visibilité de ces variables dans et hors des fonctions, et
aussi voir ce qui se passe lorsque ces variables sont des listes. Attention, la plupart des lignes de code ci-dessous sont
données a titre d'exemple pour bien comprendre ce qui se passe, mais nombre d'entre elles sont des aberrations en terme
de programmation. Nous ferons un récapitulatif des bonnes pratiques a la fin du chapitre. Enfin, nous vous conseillons
de tester tous les exemples ci-dessous avec le site Python Tutor® afin de suivre I'état des variables lors de I'exécution des
exemples.

13.1 Appel d’une fonction dans une fonction

Dans le chapitre 10, nous avons vu des fonctions qui étaient appelées depuis le programme principal. Il est en fait
possible d'appeler une fonction depuis une autre fonction. Et plus généralement, on peut appeler une fonction de n'importe
ol & partir du moment ol elle est visible par Python (c'est-a-dire chargée dans la mémoire). Observez cet exemple :

Définition des fonctions.
def est_pair(x):
if x % 2 == 0:
return True
else:
return False

def calc_somme_nb_pairs(debut, fin):
somme = 0
for nombre in range(debut, fin+l):
if est_pair(nombre):
somme += nombre
return somme

Programme principal.

somme = calc_somme_nb_pairs(l, 5)
print(f'"La somme des nombres pairs de 1 a 5 est {somme}'")

Nous appelons la fonction calc_somme_nb_pairs() depuis le programme principal, puis a I'intérieur de celle-ci nous

1. http://www.pythontutor.com/

129

http://www.pythontutor.com/

Chapitre 13. Plus sur les fonctions

13.2. Fonctions récursives

130

appelons I'autre fonction est_pair (). Regardons ce que Python Tutor nous montre lorsque la fonction calc_somme_nb_pairs

() est exécutée dans la Figure 13.1.

Python 3.11
known limitations

Print output (drag lower right corner to resize)

def est_pair(x): P
if x %2 ==@: Frames Objects
return True
else: Global frame Fun(timn.
est_pair(x)
- return False est_pair

calc_somme_nb_pairs

function

def calc_somme_nb_pairs(debut, fin): calc_somme_nb_pairs(debut, fin)

somme = @ .
calc_somme_nb_pairs

for nombre in range(debut, fin+1):

if est_pair(nombre): debut |1
somme += nombre fin |5
return somme somme |0
nombre |1
Programme principal.
sorrlme = calc_somme_nb_pairs(1, 5)) T
print(f"La somme des nombres de 1 3 5 est {somme}")
x |1
Edit this code —
etun False

line that just executed value
=} next line to execute

<< First| | < Prev | | Next >
Step 11 of 41

Last >>

FiGURE 13.1 — Appel d'une fonction dans une fonction.

L'espace mémoire alloué a est_pair () est grisé, indiquant que cette fonction est en cours d'exécution. La fonction
appelante calc_somme_nb_pairs() est toujours la (sur un fond blanc) car son exécution n'est pas terminée. Elle est
en quelque sorte figée dans le méme état qu'avant I'appel de est_pair(), et on pourra ainsi noter que ses variables
locales (debut, fin) sont toujours |a. De maniére générale, les variables locales d'une fonction ne seront détruites que
lorsque I'exécution de celle-ci sera terminée. Dans notre exemple, les variables locales de calc_somme_nb_pairs() ne
seront détruites que lorsque la boucle sera terminée et que la variable somme sera retournée au programme principal.
Enfin, notez bien que la fonction calc_somme_nb_pairs() appelle la fonction est_pair() a chaque itération de la
boucle.

Ainsi, le programmeur est libre de faire tous les appels qu'il souhaite. Une fonction peut appeler une autre fonction,
cette derniére peut appeler une autre fonction et ainsi de suite (et autant de fois qu'on le veut). Une fonction peut méme
s'appeler elle-méme, cela s’appelle une fonction récursive (voir la rubrique suivante). Attention toutefois a retrouver vos
petits si vous vous perdez dans les appels successifs !

Conseil

Dans la fonction est_pair() on teste si le nombre est pair et on renvoie True, sinon on renvoie False. Cette
fonction pourrait étre écrite de maniére plus compacte :

def est_pair(x):
return x % 2

Comme |'expression x % 2 renvoie un booléen directement, elle revient au méme que le if / else ci-dessus. C'est
bien siir cette derniére notation plus compacte que nous vous recommandons.

13.2 Fonctions récursives

Conseil

Cours de Python / Université Paris Cité / UFR Sciences du Vivant

13.2. Fonctions récursives Chapitre 13. Plus sur les fonctions

Si vous étes débutant, vous pouvez sauter cette rubrique.

Une fonction récursive est une fonction qui s’appelle elle-méme. Les fonctions récursives permettent d'obtenir une
efficacité redoutable dans la résolution de certains algorithmes, comme le tri rapide? (en anglais, quicksort).

Oublions la recherche d'efficacité pour l'instant et concentrons-nous sur 'exemple de la fonction mathématique
factorielle. Nous vous rappelons que la factorielle s'écrit avec un ! et se définit de la maniére suivante :

31=3x2x1=6
4'=4x3x2x1=30

n'l=nxn—1x...x2x1

Voici le code Python avec une fonction récursive :

def calc_factorielle(nb):
if nb == 1:
return 1
else:
return nb * calc_factorielle(nb - 1)

Programme principal.
print(calc_factorielle(4))

Pas si facile a comprendre, n'est-ce pas? A nouveau, aidons nous de Python Tutor pour visualiser ce qui se passe
dans la figure 13.2 (nous vous conseillons bien siir de tester vous-méme cet exemple) :

Python 3.11 Print output (drag lower right corner to resize)
known limitations

def calc_factorielle(nb): P
if nb == 1: Frames Objects
return 1
— .
else: Global frame function
) calc_factorielle(nb)
return nb * calc_factorielle(nb - 1) calc_factorielle
Programme principal. calc_factorielle
rint{calc_factorielle(4
print(calc_ @) b la
Edit this code
line that just executed calc factorielle
= next line to execute -
nb |3

| << First | | < Prev | | Mext > | | Last >> | calc_factoriclle

Step 15 of 18
nb |2

Solve Python/Pandas puzzles based on current events at Bamboo Weekly

calc_factorielle

Get AT Help |

] nb 1

Maove and hide objects Return
value =

FIGURE 13.2 — Fonction récursive : factorielle.

Ligne 8, on appelle la fonction calc_factorielle() en passant comme argument |'entier 4. Dans la fonction, la
variable locale qui récupére cet argument est nb. Au sein de la fonction, celle-ci se rappelle elle-méme (ligne 5), mais cette
fois-ci en passant la valeur 3. Au prochain appel, ce sera avec la valeur 2, puis finalement 1. Dans ce dernier cas, le test

2. https://fr.wikipedia.org/wiki/Tri_rapide

Cours de Python / Université Paris Cité / UFR Sciences du Vivant 131

https://fr.wikipedia.org/wiki/Tri_rapide

Chapitre 13. Plus sur les fonctions 13.3. Portée des variables

132

if nb == 1: est vrai et I'instruction return 1 sera exécutée. A ce moment précis de |'exécution, les appels successifs
forment une sorte de pile (voir la figure 13.2). La valeur 1 sera ainsi renvoyée au niveau de |'appel précédent, puis le
résultat 2 x 1 =2 (ou 2 correspond a nb et 1 provient de calc_factorielle(nb - 1), soit 1) va étre renvoyé a I'appel
précédent, puis 3 x 2 =6 (ol 3 correspond a nb et 2 provient de calc_factorielle(nb - 1), soit 2) va étre renvoyé
a I'appel précédent, pour finir par 4 x 6 =24 (ol 4 correspond a nb et 6 provient de calc_factorielle(nb - 1), soit
6), soit la valeur de 4!. Les appels successifs vont donc se « dépiler » et nous reviendrons dans le programme principal.

Méme si les fonctions récursives peuvent étre ardues a comprendre, notre propos est ici de vous illustrer qu'une
fonction qui en appelle une autre (ici il s’agit d’elle-méme) reste « figée » dans le méme état, jusqu'a ce que la fonction
appelée lui renvoie une valeur.

13.3 Portée des variables

Il est trés important lorsque I'on manipule des fonctions de connaitre la portée des variables (scope en anglais),
c'est-a-dire savoir 13 ou elles sont visibles. On a vu que les variables créées au sein d'une fonction ne sont pas visibles a
I'extérieur de celle-ci car elles étaient locales a la fonction. Observez le code suivant :

>>> def ma_fonction():
X = 2
print(f"x vaut {x} dans la fonction")

>>> ma_fonction()

x vaut 2 dans la fonction

>>> print(x)

Traceback (most recent call last):
File "<stdin>", 1line 1, in <module>

NameError: name 'x' is not defined

Lorsque Python exécute le code de la fonction, il connait le contenu de la variable x. Par contre, de retour dans le
module principal (dans ce cas, il s'agit de l'interpréteur Python), il ne la connait plus, d'oti le message d'erreur.
De méme, une variable passée en argument est considérée comme locale lorsqu’on arrive dans la fonction :

>>> def ma_fonction(x):
print(f"x vaut {x} dans la fonction")

>>> ma_fonction(2)

x vaut 2 dans la fonction

>>> print(x)

Traceback (most recent call last):
File "<stdin>", 1line 1, in <module>

NameError: name 'x' is not defined

Lorsqu'une variable est déclarée dans le programme principal, elle est visible dans celui-ci ainsi que dans toutes les
fonctions. On a vu qu’on parlait de variable globale :

>>> def ma_fonction():
print(x)

>>> x = 3

>>> ma_fonction()

3

>>> print(x)

3

Dans ce cas, la variable x est visible dans le module principal et dans toutes les fonctions du module. Toutefois,
Python ne permet pas la modification d'une variable globale dans une fonction :

>>> def ma_fonction():
X =x +1
>>> x = 1
>>> ma_fonction()
Traceback (most recent call last):
File "<stdin>", line 1, in <module>

File "<stdin>", 1line 2, in ma_fonction
UnboundLocalError: cannot access local variable 'x' where it is not associated with a value

Cours de Python / Université Paris Cité / UFR Sciences du Vivant

13.4. Portée des listes Chapitre 13. Plus sur les fonctions

L'erreur renvoyée montre que Python pense que x est une variable locale qui n'a pas été encore assignée. Si on veut
vraiment modifier une variable globale dans une fonction, il faut utiliser le mot-clé global :
>>> def ma_fonction():
global x
X =x +1

>>> x =1

>>> ma_fonction()
>>> X
2

Dans ce dernier cas, le mot-clé global a forcé la variable x a étre globale plutdt que locale au sein de la fonction.

13.4 Portée des listes

Attention

Les exemples de cette partie représentent des absurdités en termes de programmation. lls sont donnés a titre indicatif
pour comprendre ce qui se passe, mais il ne faut surtout pas s'en inspirer !

Soyez extrémement attentifs avec les types modifiables (tels que les listes) car vous pouvez les changer au sein d'une
fonction :

>>> def ma_fonction():
listel[1] = -127

>>> Tlistel = [1,2,3]
>>> ma_fonction()
>>> listel

[1, -127, 3]

De méme, si vous passez une liste en argument, elle est modifiable au sein de la fonction :

>>> def ma_fonction(liste_tmp):
liste_tmp[1] = -15

>>> Tlistel = [1,2,3]
>>> ma_fonction(listel)
>>> listel

[1, -15, 3]

Pour bien comprendre I'origine de ce comportement, utilisons 3 nouveau le site Python Tutor®. La figure 13.3 vous
montre le mécanisme a |'oeuvre lorsqu'on passe une liste a une fonction.

L'instruction pass dans la fonction est une instruction Python qui ne fait rien. Elle est 1a car une fonction ne peut
étre vide et doit contenir au moins une instruction Python valide.

On voit trés clairement que la variable listel passée en argument lors de I'appel de la fonction d'une part, et la
variable locale 1iste_tmp au sein de la fonction d'autre part, pointent vers le méme objet dans la mémoire. Ainsi,
si on modifie liste_tmp, on modifie aussi listel. C'est exactement le méme mécanisme que pour la copie de listes
(cf. rubrique 11.4 Copie de listes du chapitre 12 Plus sur les listes).

Si vous voulez éviter les problémes de modification malencontreuse d'une liste dans une fonction, utilisez des tuples (ils
ont présentés dans le chapitre 8 Dictionnaires et tuples), Python renverra une erreur car ces derniers sont non modifiables.

Une autre solution pour éviter la modification d’une liste, lorsqu’elle est passée comme argument a une fonction, est
de la passer explicitement (comme nous I'avons fait pour la copie de liste) afin qu’elle reste intacte dans le programme
principal :

3. http://www.pythontutor.com/

Cours de Python / Université Paris Cité / UFR Sciences du Vivant

133

http://www.pythontutor.com/

Chapitre 13. Plus sur les fonctions 13.5. Regle LGI

Python 3.11 Frames Objects
known limitations

Global frame function

—p def ma_fonction(liste tmp): ma_fonction(liste tmp)

pass ma_fonction
liste1 fise
Programme principal. = o ofr |z
listel = [1,2,3] ma_fonction /// il il
ma_fonction(listel)] ./
listel liste_tmp

Edit this code

line that just executed
== next line to execute

j << First | | < Prev | | Next > | | Last >>j

Step 4 of 7

FIGURE 13.3 — Passage d'une liste a une fonction.

>>> def ma_fonction(liste_tmp):
liste_tmp[1] = -15

>>> Tlistel = [1, 2, 3]

>>> ma_fonction(listel[:])
>>> listel

(1, 2, 3]

>>> ma_fonction(listel(y))
>>> listel

[1, 2, 3]

Dans ces deux derniers exemples, une copie de y est créée a la volée lorsqu’on appelle la fonction, ainsi la liste y du
module principal reste intacte.

D’autres suggestions sur I'envoi de liste dans une fonction vous sont données dans la rubrique Recommandations
ci-dessous.

13.5 Regle LGI

Lorsque Python rencontre une variable, il va traiter la résolution de son nom avec des priorités particulieres. D'abord
il va regarder si la variable est locale, puis si elle n'existe pas localement, il vérifiera si elle est globale et enfin si elle
n'est pas globale, il testera si elle est interne (par exemple la fonction len() est considérée comme une fonction interne
a Python, elle existe & chaque fois que vous lancez Python). On appelle cela la régle LGI pour locale, globale, interne.
En voici un exemple :
>>> def ma_fonction():
X =4
print(f"Dans la fonction x vaut {x}")
>>> x = -15
>>> ma_fonction()
Dans la fonction x vaut 4

>>> print(f"Dans le module principal x vaut {x}")
Dans le module principal x vaut -15

Dans la fonction, x a pris la valeur qui lui était définie localement en priorité sur la valeur définie dans le module
principal.

Conseil

Méme si Python accepte qu'une variable ait le méme nom que ses propres fonctions ou variables internes, évitez

134 Cours de Python / Université Paris Cité / UFR Sciences du Vivant

13.6. Recommandations Chapitre 13. Plus sur les fonctions

d'utiliser de tels noms, car ceci rendra votre code confus!

De maniere générale, la régle LGl découle de la maniére dont Python geére ce que I'on appelle « les espaces de noms ».
C'est cette gestion qui définit la portée (visibilité) de chaque variable. Nous en parlerons plus longuement dans le chapitre
24 Avoir plus la classe avec les objets (en ligne).

13.6 Recommandations

13.6.1 Evitez les variables globales

Dans ce chapitre nous avons joué avec les fonctions (et les listes) afin de vous montrer comment Python réagissait.
Toutefois, notez bien que I'utilisation de variables globales est a bannir définitivement de votre pratique de la
programmation.

Parfois on veut faire vite et on crée une variable globale visible partout dans le programme (donc dans toutes les
fonctions), car « Ca va plus vite, c’est plus simple ». C'est un trés mauvais calcul, ne serait-ce que parce que vos fonctions
ne seront pas réutilisables dans un autre contexte si elles utilisent des variables globales! Ensuite, arriverez-vous a vous
relire dans six mois ? Quelqu'un d'autre pourrait-il comprendre votre programme ? Il existe de nombreuses autres raisons *
que nous ne développerons pas ici, mais libre a vous de consulter de la documentation externe.

Heureusement, Python est orienté objet et permet « d'encapsuler » des variables dans des objets et de s’affranchir
définitivement des variables globales (nous verrons cela dans le chapitre 23 Avoir la classe avec les objets). En attendant,
et si vous ne souhaitez pas aller plus loin sur les notions d'objet (on peut tout a fait « pythonner » sans cela), retenez la
chose suivante sur les fonctions et les variables globales :

Conseil
Plutdt que d'utiliser des variables globales, passez vos variables explicitement aux fonctions comme des argument(s).

13.6.2 Modification d’une liste dans une fonction

Concernant les fonctions qui modifient une liste, nous vous conseillons de I'indiquer clairement dans votre code. Pour
cela, faites en sorte que la fonction renvoie la liste modifiée et de récupérer cette liste renvoyée dans une variable portant
le méme nom. Par exemple :

def ajoute_un(liste):
for dindice in range(len(liste)):
liste[indice] += 1
return liste

liste_notes = [10, 8, 16, 7, 15]
liste_notes = ajoute_un(liste_notes)
print(liste_notes)

La ligne 8 indique que la liste lTiste_notes passée a la fonction est écrasée par la liste renvoyée par la fonction.
Le code suivant produirait la méme sortie :
def ajoute_un(liste):

for dindice in range(len(liste)):
liste[indice] += 1

liste_notes = [10, 8, 16, 7, 15]
ajoute_un(liste_notes)
print(liste_notes)

Cela reste toutefois moins intuitif, car il n'est pas évident de comprendre que la liste est modifiée dans la fonction
en lisant la ligne 7. Dans un tel cas, il serait essentiel d'indiquer dans la documentation de la fonction que la liste est

4. http://wiki.c2.com/?GlobalVariablesAreBad

Cours de Python / Université Paris Cité / UFR Sciences du Vivant 135

http://wiki.c2.com/?GlobalVariablesAreBad

Chapitre 13. Plus sur les fonctions

13.7. Exercices

modifiée « sur place » (in place en anglais) dans la fonction. Vous verrez dans le chapitre 15 Création de modules

comment documenter vos fonctions.

Conseil

Pour les raisons évoquées ci-dessus, nous vous conseillons de privilégier la premiére version :

liste_notes = ajoute_un(liste_notes)

13.6.3 Conclusion

Vous connaissez maintenant les fonctions sous tous leurs angles. Comme indiqué en introduction du chapitre 10, elles
sont incontournables et tout programmeur se doit de les maitriser. Voici les derniers conseils que nous pouvons vous

donner :

e Lorsque vous débutez un nouveau projet de programmation, posez-vous la question : « Comment pourrais-je
décomposer en blocs chaque tache a effectuer, chaque bloc pouvant étre une fonction? ». Et n'oubliez pas que si
une fonction s'avére trop complexe, vous pouvez la décomposer en d'autres fonctions.

e Au risque de nous répéter, forcez-vous a utiliser des fonctions en permanence. Pratiquez, pratiquez... et pratiquez

encore !

13.7 Exercices

Conseil

Pour le second exercice, créez un script puis exécutez-le dans un shell.

13.7.1 Prédire la sortie

Prédisez le comportement des codes suivants, sans les recopier dans un script ni dans l'interpréteur Python :

13.7.1.1 Code 1

def hello(prenom):
print(f"Bonjour {prenom}")

hello("Patrick")
print(x)

13.7.1.2 Code 2

def hello(prenom):
print(f"Bonjour {prenom}")

x = 10
hello("Patrick")
print(x)

136

Cours de Python / Université Paris Cité / UFR Sciences du Vivant

13.7. Exercices Chapitre 13. Plus sur les fonctions

13.7.1.3 Code 3

def hello(prenom):
print(f"Bonjour {prenom}")
print(x)

Programme principal.
X =10
hello("Patrick")
print(x)

13.7.1.4 Code 4

def hello(prenom):
X = 42
print(f"Bonjour {prenom}")
print(x)

Programme principal.
X = 10
hello("Patrick")
print(x)

13.7.2 Passage de liste a une fonction

Créez une fonction ajoute_nb_alea() qui prend en argument une liste et qui ajoute un nombre entier aléatoire
entre -10 et 10 (inclus) a chaque élément. La fonction affichera a I'écran cette nouvelle liste modifiée.

Dans le programme principal, effectuez les actions suivantes :

1. Créez une variable ma_liste = [7, 3, 8, 4, 5, 1, 9, 10, 2, 6].

2. Affichez ma_l1iste a 'écran.

3. Appelez la fonction ajoute_nb_alea() en lui passant ma_liste en argument.

4. Affichez a nouveau ma_liste a I'écran.

Comment expliquez-vous le résultat obtenu ?

Cours de Python / Université Paris Cité / UFR Sciences du Vivant 137

CHAPITRE 14

Conteneurs

Dans ce chapitre, nous allons aborder la notion de conteneur, revenir sur certaines propriétés avancées des dictionnaires
et tuples, et enfin aborder les types set et frozenset. Pour les débutants, ce chapitre aborde des notions relativement
avancées. Avant de vous lancer, nous vous conseillons vivement de bien maitriser les chapitres 4 Listes et 12 Plus sur les
listes, ainsi que le chapitre 8 Dictionnaires et tuples, d'avoir effectué un maximum d’exercices, et de vous sentir a |'aise
avec toutes les notions abordées jusque |a.

14.1 Généralités
14.1.1 Définition et propriétés
Définition

Un conteneur (container en anglais) est un nom générique pour définir un objet Python qui contient une collection
d'autres objets.

Les conteneurs que nous connaissons depuis le début de ce cours sont les listes, les chaines de caracteres, les diction-
naires et les tuples. Méme si on ne I'a pas vu explicitement, les objets de type range sont également des conteneurs.
Dans la suite de cette rubrique, nous allons examiner les différentes propriétés des conteneurs. A la fin de ce chapitre,
nous ferons un tableau récapitulatif de ces propriétés.
Examinons d'abord les propriétés qui caractérisent tous les types de conteneur.
e Capacité a supporter le test d’appartenance. Souvenez-vous, il permet de vérifier si un élément était présent dans
une liste. Cela fonctionne donc aussi sur les chaines de caractéres ou tout autre conteneur :

>>> listel = [4, 5, 6]
>>> 4 in listel

True

>>> "to" in "toto"
True

e Capacité a supporter la fonction len() renvoyant la longueur du conteneur.

Voici d’autres propriétés générales que nous avons déja croisées. Un conteneur peut étre :

e Ordonné (ordered en anglais) : il y a un ordre précis des éléments; cet ordre correspond a celui utilisé lors de la
création ou de la modification du conteneur (si cela est permis); ce méme ordre est utilisé lorsqu’on itére dessus.

138

14.1. Généralités Chapitre 14. Conteneurs

e Indexable (subscriptable en anglais) : on peut retrouver un élément par son indice (c'est-a-dire sa position dans le
conteneur) ou plusieurs éléments avec une tranche; en général, tout conteneur indexable est ordonné.

o Itérable (iterable en anglais) : on peut faire une boucle dessus.

Certains conteneurs sont appelés objets séquentiels ou séquence.

Définition
Un objet séquentiel ou séquence est un conteneur itérable, ordonné et indexable. Les objets séquentiels sont les
listes, les chaines de caractéres, les objets de type range, ainsi que les tuples.

Une autre propriété importante que I'on a déja croisée, et qui nous servira dans ce chapitre, concerne la possibilité
ou non de modifier un objet.

e Un objet est dit non modifiable lorsqu’on ne peut pas le modifier, ou lorsqu'on ne peut pas en modifier un de
ses éléments si c'est un conteneur. On parle aussi d'objet immuable! (immutable object en anglais). Cela signifie
qu'une fois créé, Python ne permet plus de le modifier par la suite.

Qu’en est-il des objets que nous connaissons? Les listes sont modifiables, on peut modifier un ou plusieurs de ses
éléments et ajouter ou retirer un élément. Les dictionnaires sont modifiables : pour une clé donnée, on peut changer la
valeur correspondante et ajouter ou retirer un couple clé/valeur. Tous les autres types que nous avons vus précédemment
sont quant a eux non modifiables : les chaines de caractéres ou strings, les tuples, les objets de type range, mais également
des objets qui ne sont pas des conteneurs comme les entiers, les floats et les booléens.

On comprend bien I'immutabilité des strings comme vu au chapitre 11 Plus sur les chaines de caractéres, mais c'est
moins évident pour les entiers, floats ou booléens. Nous allons démontrer cela, mais avant nous avons besoin de définir
la notion d'identifiant d'un objet.

Définition

L'identifiant d'un objet est un nombre entier qui est garanti constant pendant toute la durée de vie de I'objet. Cet
identifiant est en général unique pour chaque objet. Toutefois, pour des raisons d'optimisation, Python crée parfois le
méme identifiant pour deux objets non modifiables différents qui ont la méme valeur. L'identifiant peut &étre assimilé
a I'adresse mémoire de I'objet qui, elle aussi, est unique. En Python, on utilise la fonction interne id () qui prend en
argument un objet et renvoie son identifiant.

Maintenant que |'identifiant est défini, regardons I'exemple suivant qui montre I'immutabilité des entiers :

>>> var = 4
>>> qd(var)
140318876873440
>>> var = 5
>>> dd(var)
140318876873472

Ligne 1 on définit I'entier var puis on regarde son identifiant.

Ligne 4, on pourrait penser que I'on modifie var. Toutefois, on voit que son identifiant ligne 6 est différent de la
ligne 3. En fait, |'affectation ligne 4 var = 5 écrase I'ancienne variable var et en crée une nouvelle, ce n'est pas la valeur
de var qui a été changée puisque I'identifiant n’est plus le méme. Le méme raisonnement peut étre tenu pour les autres
types numériques comme les floats et booléens.

Si on regarde maintenant ce qu'il se passe pour une liste :

>>> Tlistel = [1, 2, 3]
>>> qid(listel)
140318850324832

>>> listel[1] = -15
>>> dd(listel)
140318850324832

>>> Tlistel.append(5)
>>> qd(listel)
140318850324832

1. https://fr.wikipedia.org/wiki/Objet_immuable

Cours de Python / Université Paris Cité / UFR Sciences du Vivant

139

https://fr.wikipedia.org/wiki/Objet_immuable

Chapitre 14. Conteneurs 14.1. Généralités

140

La liste 1istel a été modifiée ligne 4 (changement de I'élément d'indice 1) et ligne 7 (ajout d'un élément). Pour
autant, l'identifiant de cette liste est resté identique tout du long. Ceci démontre la mutabilité des listes : quelle que soit
la maniére dont on modifie une liste, celle-ci garde le méme identifiant.

e Une derniére propriété importante est la capacité d'un conteneur (ou tout autre objet Python) a étre hachable.

Définition

Un objet Python est dit hachable (hashable en anglais) s'il est possible de calculer une valeur de hachage sur celui-ci
avec la fonction interne hash (). En programmation, la valeur de hachage peut étre vue comme une empreinte numérique
de I'objet. Elle est obtenue en passant I'objet dans une fonction de hachage et dépend du contenu de I'objet. En Python,
cette empreinte est, comme dans la plupart des langages de programmation, un entier. Au sein d'une méme session
Python, deux objets hachables qui ont un contenu identique auront strictement la méme valeur de hachage.

Attention

La valeur de hachage d'un objet renvoyée par la fonction hash() n'a pas le méme sens que son identifiant renvoyé
par la fonction id (). La valeur de hachage est obtenue en « moulinant » le contenu de |'objet dans une fonction de
hachage. L'identifiant est quant a lui attribué par Python a la création de I'objet. Il est constant tout le long de la durée
de vie de I'objet, un peu comme une carte d'identité. Tout objet a un identifiant, mais il doit &tre hachable pour avoir
une valeur de hachage.

Pour aller plus loin
Pour aller plus loin, vous pouvez consulter la page Wikipedia sur les fonctions de hachage?.

Pourquoi évoquer cette propriété de hachabilité ? D’abord, parce qu’elle est étroitement liée a I'immutabilité. En effet,
un objet non modifiable est la plupart du temps hachable. Cela permet de I'identifier en fonction de son contenu. Par
ailleurs, I'hachabilité est une implémentation qui permet un acces rapide aux éléments des conteneurs de type dictionnaire
ou set (cf. rubriques suivantes).

Les objets hachables sont les chaines de caractéres, les entiers, les floats, les booléens, les objets de type range, les
tuples (sous certaines conditions) et les frozensets; par contre, les listes, les sets et les dictionnaires sont non hachables.
Les sets et frozensets seront vus plus bas dans ce chapitre.

Voici un exemple :

>>> hash("Plouf")

5085648805260210718

>>> hash(5)

5

>>> hash(3.14)

322818021289917443

>>> hash([1, 2, 3])

Traceback (most recent call last):
File "<stdin>", 1line 1, in <module>

TypeError: unhashable type: 'list'

Les valeurs de hachage renvoyées par la fonction hash() de Python sont systématiquement des entiers. Par contre,
Python renvoie une erreur pour une liste, car elle est non hachable.

14.1.2 Conteneurs de type range

Revenons rapidement sur les objets de type range. Jusqu'a maintenant, on s'en est servi pour faire des boucles ou
générer des listes de nombres. Toutefois, on a vu ci-dessus qu'ils étaient aussi des conteneurs. lls sont ordonnés, indexables,
itérables, hachables et non modifiables :

2. https://fr.wikipedia.org/wiki/Fonction_de_hachage

Cours de Python / Université Paris Cité / UFR Sciences du Vivant

https://fr.wikipedia.org/wiki/Fonction_de_hachage

14.2. Plus sur les dictionnaires Chapitre 14. Conteneurs

>>> rangel = range(3)
>>> rangel[0]

(0]
>>> rangel[0:1]
range(0, 1)

>>> for element 1in rangel:
print(element)

0
1
2
>>> rangel[2] = 10
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
TypeError: 'range' object does not support item assignment
>>> hash(rangel)
5050907061201647097

La tentative de modification d'un élément ligne 12 conduit a la méme erreur que lorsqu’on essaie de modifier un
caractere d'une chaine de caractéres. Comme pour la plupart des objets Python non modifiables, les objets de type range
sont hachables.

14.2 Plus sur les dictionnaires

Nous revenons sur les dictionnaires qui, on I'a vu, sont des conteneurs de correspondance ol chaque valeur est associée
a une clé plutét qu'un indice. Nous allons voir certaines propriétés avancées des dictionnaires, notamment comment trier
par clé ou par valeur.

14.2.1 Objets utilisables comme clé

Toutes les clés de dictionnaire vues dans le chapitre 8 Dictionnaires et tuples et utilisées jusqu'a présent étaient des
chaines de caractéres. Toutefois, on peut utiliser d'autres types d'objets comme des entiers, des floats, voire des tuples,
cela peut s'avérer parfois trés utile. Une régle est toutefois requise : les objets utilisés comme clé doivent étre hachables
(voir la rubrique précédente pour la définition).

Pourquoi les clés doivent étre des objets hachables? C'est la raison d'étre des dictionnaires qui d'ailleurs sont aussi
appelés table de hachage® dans d’autres langages, comme Perl. Convertir chaque clé en sa valeur de hachage permet
un acces trés rapide a chacun des éléments du dictionnaire, ainsi que des comparaisons de clés entre dictionnaires
extrémement efficaces. Méme si on a vu que deux objets pouvaient avoir la méme valeur de hachage, par exemple a = 5
et b = 5, on ne peut mettre qu'une seule fois la clé 5. Ceci assure que deux clés d’'un méme dictionnaire ont forcément
une valeur de hachage différente.

Pouvoir utiliser autre chose qu'une chaine de caractéres comme clé peut se révéler trés pratique. Par exemple, pour
une protéine ou un peptide, on pourrait concevoir d'utiliser comme clé le numéro de résidu, et comme valeur le nom de
résidu. Imaginons par ailleurs que nous commencions a compter le premier acide aminé a 3 (souvent les fichiers PDB ne
commence pas a 1 pour le premier acide aminé). Par exemple :

>>> sequence = {3: 'S', 4: 'E', 5: 'Q', 6: 'P', 7: 'E', 8: 'P', 9: 'T'}
>>> sequence[5]
L
>>> sequence[9]
T
>>> for num, res in sequence.items():
print(num, res)

O oo~NOU bW
4 U mUooOmwm -

3. https://fr.wikipedia.org/wiki/Table_de_hachage

Cours de Python / Université Paris Cité / UFR Sciences du Vivant 141

https://fr.wikipedia.org/wiki/Table_de_hachage

Chapitre 14. Conteneurs 14.2. Plus sur les dictionnaires

142

Vous voyez I'énorme avantage, d'utiliser comme clé le numéro de résidu. Avec une liste ou une chaine de caractére,
I'indicage commence a zéro. Ainsi, il faudrait utiliser les indices 2 et 6 pour retrouver respectivement les acides aminés 5
et 9:

>>> sequence = ['S', 'E', 'Q', 'P', 'E', 'P', 'T']
>>> sequence[2]

IQI

>>> sequence[6]

lTl

14.2.2 Destruction d’une paire clé/valeur

Comme pour tous les objets Python, I'instruction del permet de détruire un couple clé/valeur :

>>> dico = {'nom': 'girafe', 'taille': 5.0, 'poids': 1100}
>>> del dico["nom"]

>>> dico

{'taille': 5.0, 'poids': 1100}

Pour les listes, on utilise I'indice entre crochet pour détruire I'élément, par exemple del 1liste[2]. lci, on utilise la
clé.

14.2.3 Tri par clés

On peut utiliser la fonction sorted() vue précédemment avec les listes pour trier un dictionnaire par ses clés :

>>> ani2 = {'nom': 'singe', 'taille': 1.75, 'poids': 70}
>>> sorted(ani2)
['nom', 'poids', 'taille']

Les clés sont triées ici par ordre alphabétique.

14.2.4 Tri par valeurs

Pour trier un dictionnaire par ses valeurs, il faut utiliser la fonction sorted() avec I'argument key :

>>> dico = {"a": 15, "b": 5, "c":20}
>>> sorted(dico, key=dico.get)
[lbl’ lai, 'C':l

L'argument key=dico.get indique explicitement qu'il faut réaliser le tri par les valeurs du dictionnaire. On retrouve
la méthode .get () vue au chapitre 8 Dictionnaires et tuples, mais sans les parenthéses : key=dico.get, mais pas key
=dico.get(). Une fonction ou méthode passée en argument sans les parenthéses est appelée callback, nous reverrons
cela en détail dans le chapitre 25 Fenétres graphiques et Tkinter (en ligne).

Attention, ce sont les clés du dictionnaire qui sont renvoyées, pas les valeurs. Ces clés sont cependant renvoyées dans
un ordre qui permet d'obtenir les clés triées par ordre croissant :

>>> dico = {"a": 15, "b": 5, "c":20}
>>> for key 1in sorted(dico, key=dico.get):
print(key, dico[key])

Enfin, I'argument reverse=True fonctionne également :

>>> dico = {"a": 15, "b": 5, "c":20}
>>> sorted(dico, key=dico.get, reverse=True)
['Cl, lai’ lbl:l

Remarque
Lorsqu’on trie un dictionnaire par ses valeurs, il faut étre siir que cela soit possible. Ce n'est pas le cas lorsqu'on a un
mélange de valeurs numériques et chaines de caracteres :

Cours de Python / Université Paris Cité / UFR Sciences du Vivant

14.2. Plus sur les dictionnaires Chapitre 14. Conteneurs

>>> ani2 = {'nom': 'singe', 'poids': 70, 'taille': 1.75}
>>> sorted(ani2, key=ani2.get)
Traceback (most recent call last):
File "<stdin>", 1line 1, in <module>
TypeError: '<' not supported between dinstances of 'int' and 'str'

On obtient ici une erreur, car Python ne sait pas comparer une chaine de caractéres (singe) avec des valeurs
numériques (70 et 1.75).

14.2.5 Clé associée au minimum ou au maximum des valeurs

Les fonctions min() et max(), que vous avez déja manipulées dans les chapitres précédents, acceptent également
I'argument key=. On peut ainsi obtenir la clé associée au minimum ou au maximum des valeurs d'un dictionnaire :
>>> dico = {"a": 15, "b": 5, "c":20}
>>> max(dico, key=dico.get)
ICI
>>> min(dico, key=dico.get)
lbl

14.2.6 Fonction dict()

La fonction dict() va convertir I'argument qui lui est passé en dictionnaire. |l s'agit donc d'une fonction de casting,
comme int(), str(), etc. Toutefois, I'argument qui lui est passé doit avoir une forme particuliére : un objet séquentiel
contenant d'autres objets séquentiels de deux éléments. Par exemple, une liste de listes de deux éléments :

>>> Tliste_animaux = [["girafe", 2], ["singe", 3]]

>>> dict(liste_animaux)
{'girafe': 2, 'singe': 3}

Ou un tuple de tuples de deux éléments, ou encore une combinaison liste et tuple :

>>> tuple_animaux = (("girafe", 2), ("singe", 3))
>>> dict(tuple_animaux)

{'girafe': 2, 'singe': 3}

>>>

>>> dict([("girafe", 2), ("singe", 3)])
{'girafe': 2, 'singe': 3}

Si un des sous-éléments a plus de deux éléments (ou moins), Python renvoie une erreur :

>>> dict([("girafe", 2), ("singe", 3, 4)])
Traceback (most recent call last):
File "<stdin>", 1line 1, in <module>
ValueError: dictionary update sequence element #1 has length 3; 2 is required

Attention
Une maniére intuitive utilise simplement des arguments par mot-clés, qui deviendront des clés sous forme de chaine
de caracteres :

>>> dict(un=1, deux=2, trois=3)
{'un': 1, 'deux': 2, 'trois': 3}

Nous vous déconseillons toutefois cette maniére de faire, car on ne peut pas mettre d’arguments par mot-clé variables,
on doit les écrire explicitement.

Une derniere maniére puissante pour générer des dictionnaires combine les fonctions dict () et zip (). On se souvient
que la fonction zip () peut générer une liste de tuples :

Cours de Python / Université Paris Cité / UFR Sciences du Vivant 143

Chapitre 14. Conteneurs 14.3. Plus sur les tuples

144

>>> animaux = ["poulain", "renard", "python"]

>>> couleurs = ["alezan", "roux", "vert"]

>>> Tlist(zip(animaux, couleurs))

[('poulain', 'alezan'), ('renard', 'roux'), ('python', 'vert')]

Si on utilise I'objet zip avec la fonction dict(), on obtient un dictionnaire.

>>> dict(zip(animaux, couleurs))
{'poulain': 'alezan', 'renard': 'roux', 'python': 'vert'}

Attention a ne passer que deux listes a la fonction zip(), sinon Python renvoie une erreur :

>>> dict(zip([1, 2, 3], animaux, couleurs))
Traceback (most recent call last):
File "<stdin>", 1line 1, in <module>
ValueError: dictionary update sequence element #0 has length 3; 2 s required

14.3 Plus sur les tuples

Nous revenons sur les tuples, que nous avons défini dans le chapitre 8 Dictionnaires et tuples et que nous avons
croisé a de nombreuses reprises, notamment avec les fonctions. Les tuples sont des objets séquentiels correspondant aux
listes, donc ils sont itérables, ordonnés et indexables, mais ils sont toutefois non modifiables. On verra plus bas qu'ils
sont hachables sous certaines conditions. L'intérét des tuples par rapport aux listes réside dans leur immutabilité. Cela
accélére considérablement la maniére dont Python accéde a chaque élément et ils prennent moins de place en mémoire.
Par ailleurs, on ne risque pas de modifier un de ses éléments par mégarde.

14.3.1 Immutabilité

Nous avions vu que les tuples étaient immuables :

>>> tuplel = (1, 2, 3)
>>> tuplel[2] = 15
Traceback (most recent call last):
File "<stdin>", 1line 1, in <module>
TypeError: 'tuple' object does not support item assignment

Ce message est similaire a celui que nous avions rencontré quand on essayait de modifier une chaine de caractéres
(voir chapitre 11 Plus sur les chaines de caractéres). De maniére générale, Python renverra un message TypeError: '
[...]" does not support item assignment lorsqu'on essaie de modifier un élément d'un objet non modifiable. Si
vous voulez ajouter un élément (ou le modifier), vous devez créer un nouveau tuple :

>>> tuplel = (1, 2, 3)

>>> tuplel

(1, 2, 3)

>>> qd(tuplel)
139971081704464

>>> tuplel = tuplel + (2,)
>>> tuplel

(1, 2, 3, 2)
>>> dd(tuplel)
139971081700368

La fonction id () montre que le tuple créé ligne 6 est bien différent de celui créé ligne 4, bien qu'ils aient le méme
nom. Comme on a vu plus haut, ceci est dii a I'opérateur d'affectation utilisé ligne 6 (tuplel = tuplel + (2,)) qui
crée un nouvel objet distinct de celui de la ligne 1. Cet exemple montre que les tuples sont peu adaptés lorsqu'on a besoin
d'ajouter, retirer, modifier des éléments. La création d'un nouveau tuple a chaque étape s'avere lourde et il n'y a aucune
méthode pour faire cela, puisque les tuples sont non modifiables.

Conseil
Pour ce genre de tache, les listes sont clairement mieux adaptées que les tuples.

Cours de Python / Université Paris Cité / UFR Sciences du Vivant

14.3. Plus sur les tuples Chapitre 14. Conteneurs

14.3.2 Affectation multiple et fonctions

Dans le chapitre 8 Dictionnaires et tuples, nous avons abordé I'affectation multiple. Pour rappel, elle permet d'effectuer
sur une méme ligne plusieurs affectations en méme temps, par exemple : x, y, z = 1, 2, 3.0n avuqu'il était possible
de le faire également avec les listes : [x, y, z] = [1, 2, 3]. Toutefois, cette syntaxe étant alourdie par la présence
des crochets, on préférera toujours la premiere syntaxe avec les tuples sans parenthéses.

Concernant les fonctions, nous avions croisé I'importance de I'affectation multiple dans le chapitre 10 lorsqu'une
fonction renvoyait plusieurs valeurs :

>>> def ma_fonction():
return 3, 14

>>> x, y = ma_fonction()
>>> print(x, y)
3 14

La syntaxe x, y = ma_fonction() permet de récupérer les deux valeurs renvoyées par la fonction et de les affecter
a la volée dans deux variables différentes. Cela évite I'opération laborieuse de récupérer d'abord le tuple, puis de créer les
variables en utilisant I'indicage :

>>> resultat = ma_fonction()
>>> resultat

(3, 14)

>>> x = resultat[0]

>>> y = resultat[1l]

>>> print(x, y)

3 14

Conseil

Lorsqu'une fonction renvoie plusieurs valeurs sous forme de tuple, privilégiez toujours la forme x, y = ma_fonction

OF

14.3.3 Affectation multiple et nom de variable _

Quand une fonction renvoie plusieurs valeurs, mais que I'on ne souhaite pas les utiliser toutes dans la suite du code,
on peut utiliser le nom de variable _ (caractére underscore) pour indiquer que certaines valeurs ne nous intéressent pas :

>>> def ma_fonction():
return 1, 2, 3, 4

>>> x, _, Yy, _ = ma_fonction()
>>> X

1

>>> y

3

Cela envoie le message a la personne qui lit le code « je ne m’intéresse pas aux valeurs récupérées dans les variables
_». Notez que I'on peut utiliser une ou plusieurs variables underscore(s). Dans I'exemple ci-dessus, la 2e et la 4e variable
renvoyées par la fonction seront ignorées dans la suite du code. Cela présente le mérite d'éviter de polluer I'attention de
la personne qui lit le code.

Remarque

Dans I'interpréteur interactif, la variable _ a une signification différente. Elle prend automatiquement la derniére valeur
affichée :

Cours de Python / Université Paris Cité / UFR Sciences du Vivant 145

Chapitre 14. Conteneurs 14.3. Plus sur les tuples

>>> 3

3

>>>

3

>>> "mésange"
'mésange'

>>>
'mésange’

Attention, ceci n'est vrai que dans |'interpréteur !

Remarque

Le caractére underscore (_) est couramment utilisé dans les noms de variable pour séparer les mots et &tre explicite,
par exemple seq_ADN ou liste_listes_residus. On verra dans le chapitre 16 Bonnes pratiques en programmation
Python que ce style de nommage est appelé snake_case. Toutefois, il faut éviter d'utiliser les underscores en début et/ou
en fin de nom de variable (leading et trailing underscores en anglais), par exemple : _var, var_, __var, __var__. On
verra au chapitre 23 Avoir la classe avec les objets que ces underscores ont aussi une signification particuliere.

14.3.4 Tuples contenant des listes

On a vu que les tuples étaient non modifiables. Que se passe-t-il alors si on crée un tuple contenant des objets
modifiables comme des listes 7 Examinons le code suivant :

>>> Tlistel [1, 2, 3]

>>> tuplel (listel, "Plouf")
>>> tuplel

([1, 2, 3], '"Plouf')

>>> listel[0] = -15

>>> tuplel[0].append(-632)

>>> tuplel

([-15, 2, 3, -632], 'Plouf')

Si on modifie un élément de la liste listel (ligne 5) ou bien qu’on ajoute un élément a tuplel[0] (ligne 6), Python
s'exécute et ne renvoie pas de message d'erreur. Or nous avions dit qu'un tuple était non modifiable.. Comment cela
est-il possible? Commencons d’abord par regarder comment les objets sont agencés avec Python Tutor.

Python 3.11 Frames Objects
known limitations
- list
listel = [1, 2, 3] Global frame - I,))
tuplel = (listel, "Plouf") listel | & ? 1122
- tuplel tuplel | ®—_ .-'/
- /
i i i
Edit this code * LIP‘E‘E .
line that just executed - Cu .
=) next line to execute ¢ Plouf

<< First| | < Prev | | Next > Last ==

Step 3 of 3
FIGURE 14.1 — Tuple contenant une liste.
La liste listel pointe vers le méme objet que I'élément du tuple d'indice 0. Comme pour la copie de liste (par
exemple liste_b = liste_a), ceci est attendu car, par défaut, Python crée une copie par référence (voir le chapitre

12 Plus sur les listes). Ainsi, qu'on raisonne en tant que premier élément du tuple ou bien en tant que liste 1istel, on
pointe vers la méme liste. Or, rappelez-vous, nous avons expliqué au début de ce chapitre que lorsqu’on modifiait un

146 Cours de Python / Université Paris Cité / UFR Sciences du Vivant

14.3. Plus sur les tuples Chapitre 14. Conteneurs

élément d'une liste, celle-ci gardait le méme identifiant. C'est toujours le cas ici, méme si celle-ci se trouve dans un tuple.
Regardons cela :

>>> listel = [1, 2, 3]
>>> tuplel = (listel, "Plouf")
>>> tuplel

([1, 2, 3], 'Plouf')
>>> dd(listel)
139971081980816

>>> dd(tuplel[0])
139971081980816

Nous confirmons ici le schéma de Python Tutor, c'est bien la méme liste que I'on considére listel ou tuplel[0]
puisqu'on a le méme identifiant. Maintenant, on modifie cette liste via la variable 1istel ou tuplel[0Q] :

>>> listel[2] = -15
>>> tuplel[0].append(-632)
>>> tuplel

([1, 2, -15, -632], 'Plouf')
>>> qd(listel)
139971081980816

>>> dd(tuplel[0])
139971081980816

Malgré la modification de cette liste, |'identifiant n'a toujours pas changé puisque la fonction id () nous renvoie la
méme valeur depuis le début. Méme si la liste a été modifiée « de I'intérieur », Python consideére que c'est toujours la
méme liste, puisqu’elle n'a pas changé d'identifiant. Si au contraire on essaie de remplacer cette sous-liste par autre
chose, Python renvoie une erreur :

>>> tuplel[0] = "PLlif"
Traceback (most recent call last):

File "<stdin>", 1line 1, in <module>
TypeError: 'tuple' object does not support item assignment

Cette erreur s'explique par le fait que le nouvel objet "P1if" n’a pas le méme identifiant que la sous-liste initiale. En

fait, I'immutabilité selon Python signifie qu'un objet créé doit toujours garder le méme identifiant. Cela est valable pour
tout objet non modifiable, comme un élément d’un tuple, un caractére dans une chaine de caracteéres, etc.

Conseil

Cette digression avait pour objectif de vous faire comprendre ce qu'il se passe lorsqu'on met une liste dans un tuple.
Toutefois, pouvoir modifier une liste en tant qu'élément d'un tuple va a I'encontre de I'intérét d'un objet non modifiable.
Dans la mesure du possible, nous vous déconseillons de créer des listes dans des tuples afin d’éviter les déconvenues.

14.3.5 Fonction tuple()

Nous avions vu également la fonction tuple(), qui permet de convertir un objet séquentiel en tuple (opération de
casting). Cela est possible seulement si I'objet passé en argument est itérable :

>>> tuple([1, 3])

(1, 3)

>>> tuple("a")

(ta',)

>>> tuple(2)

Traceback (most recent call last):

File "<stdin>", 1line 1, in <module>
TypeError: 'int' object is not -iterable
>>> tuple(True)

Traceback (most recent call last):

File "<stdin>", 1line 1, in <module>

TypeError: 'bool' object is not iterable

Bien siir, un entier ou un booléen ne sont pas itérables.

Cours de Python / Université Paris Cité / UFR Sciences du Vivant

147

Chapitre 14. Conteneurs 14.4. Sets et frozensets

148

14.3.6 Hachabilité des tuples

Les tuples sont hachables s'ils ne contiennent que des éléments hachables. Si un tuple contient un ou plusieurs objet(s)
non hachable(s), comme une liste, il devient non hachable :

>>> tuplel = tuple(range(10))
>>> tuplel

(0, 1, 2, 3, 4, 5, 6, 7, 8, 9)
>>> hash(tuplel)

-4181190870548101704
>>> tuple2 = ("Plouf", 2, (1, 3))
>>> tuple2

('"Plouf', 2, (1, 3))
>>> hash(tuple2)

286288423668065022
>>> tuple3d = (1, (3, 4), "Plaf", [3, 4, 5])
>>> tuple3

(1, (3, 4), 'Plaf', [3, 4, 5])

>>> hash(tuple3)

Traceback (most recent call last):
File "<stdin>", 1line 1, in <module>

TypeError: unhashable type: 'list'

Les tuples tuplel et tuple2 sont hachables car ils ne contiennent que des éléments hachables. Par contre, tuple3
ne I'est pas, car un de ses éléments est une liste.

Conseil

Mettre une ou plusieurs liste(s) dans un tuple le rend non hachable. Ceci le rend inutilisable comme clé de dictionnaire
ou, on le verra ci-aprés, comme élément d'un set ou d'un frozenset. Donc, a nouveau, ne mettez pas de listes dans vos
tuples!

14.4 Sets et frozensets

14.4.1 Définition et propriétés

Les objets de type set représentent un autre type de conteneur qui peut se révéler trés pratique. lls ont la particularité
d'étre modifiables, non hachables, non ordonnés, non indexables et de ne contenir qu'une seule copie maximum de chaque
élément. Pour créer un nouveau set on peut utiliser les accolades :

>>> setl = {4, 5, 5, 12}
>>> setl

{12, 4, 5}

>>> type(setl)

<class 'set'>

Remarquez que la répétition du chiffre 5 dans la définition du set ligne 1 produit finalement un seul chiffre 5, car
chaque élément ne peut étre présent qu'une seule fois. Comme pour les dictionnaires (jusqu'a la version 3.6), les sets
sont non ordonnés. La maniére dont Python les affiche n'a pas de sens en tant que tel et peut étre différente de celle
utilisée lors de leur création.

Les sets ne peuvent contenir que des objets hachables. On a déja eu le cas avec les clés de dictionnaire. Ceci optimise
I'accés a chaque élément du set. Pour rappel, les objets hachables que nous connaissons sont les chaines de caractéres,
les tuples, les entiers, les floats, les booléens et les frozensets (voir plus bas). Les objets non hachables que I'on connait
sont les listes, les sets et les dictionnaires. Si on essaie tout de méme de mettre une liste dans un set, Python renvoie
une erreur :

>>> setl = {3, 4, "Plouf", (1, 3)}

>>> setl

{(1, 3), 3, 4, 'Plouf'}

>>> set2 = {3.14, [1, 2]}

Traceback (most recent call last):
File "<stdin>", 1line 1, in <module>

TypeError: unhashable type: 'list'

Cours de Python / Université Paris Cité / UFR Sciences du Vivant

14.4. Sets et frozensets Chapitre 14. Conteneurs

A quoi différencie-t-on un set d'un dictionnaire alors que les deux utilisent des accolades ? Le set sera défini seulement
par des valeurs {valeur_1, valeur_2, ...} alors que le dictionnaire aura toujours des couples clé/valeur {cl1é_1:
valeur_1, clé_2: valeur_2, ...}.

La fonction interne a Python set () convertit un objet itérable passé en argument en un nouveau set (opération de
casting) :

>>> set([1, 2, 4, 1])

{1, 2, 4}

>>> set((2, 2, 2, 1))

{1, 2}

>>> set(range(5))

{0, 1, 2, 3, 4}

>>> set({"clé_1": 1, "clé_2": 2})
{'clé_1', 'clé_2'}

>>> Set([lltj‘ll’ IItoll, Iltoll])

{'ti', 'to'}

>>> set("Maitre Corbeau et Maitre Renard")
{lel’ ldl, IMI’ lrl, lnl’ ltl’ lal, ICI’ l-'l‘l’ 1 i, 'O" lul, IRI’ lbl}

Nous avons dit plus haut que les sets ne sont ni ordonnés ni indexables, il est donc impossible de récupérer un élément
par sa position. Il est également impossible de modifier un de ses éléments par I'indexation.

>>> setl = set([1, 2, 4, 1])
>>> setl[1]
Traceback (most recent call last):
File "<stdin>", 1line 1, in <module>
TypeError: 'set' object is not subscriptable
>>> setl[1] =5
Traceback (most recent call last):
File "<stdin>", 1line 1, in <module>
TypeError: 'set' object does not support item assignment

Par contre, les sets sont itérables :

>>> for element in setl:
print(element)

N

Les sets ne peuvent étre modifiés que par des méthodes spécifiques :

>>> setl = set(range(5))
>>> setl

{0, 1, 2, 3, 4}

>>> setl.add(4)

>>> setl

{o, 1, 2, 3, 4}

>>> setl.add(472)
>>> setl

{6, 1, 2, 3, 4, 472}
>>> setl.discard(0)
>>> setl

{1, 2, 3, 4, 472}

La méthode .add () ajoute au set I'élément passé en argument. Toutefois, si I'élément est déja présent dans le set,
il n'est pas ajouté puisqu'on a au plus une copie de chaque élément. La méthode .discard() retire du set I'élément
passé en argument. Si I'élément n’est pas présent dans le set, il ne se passe rien, le set reste intact. Comme les sets ne
sont pas ordonnés ni indexables, il n'y a pas de méthode pour insérer un élément a une position précise, contrairement
aux listes. Dernier point sur ces méthodes, elles modifient le set sur place (in place, en anglais) et ne renvoient rien, a
I'instar des méthodes des listes (.append(), .remove(), etc.).

Enfin, les sets ne supportent pas les opérateurs + et *.

Cours de Python / Université Paris Cité / UFR Sciences du Vivant

149

Chapitre 14. Conteneurs 14.4. Sets et frozensets

14.4.2 Utilité

Les conteneurs de type set sont trés utiles pour rechercher les éléments uniques d'une suite d'éléments. Cela revient
a éliminer tous les doublons. Par exemple :

>>> dimport random

>>> Tlistel = [random.randint(0, 9) for i in range(10)]
>>> listel

[77 97 65 6’ 71 3) 87 57 6’ 7]

>>> set(listel)

{3, 5, 6, 7, 8, 9}

On peut bien sir transformer dans |'autre sens un set en liste. Cela permet par exemple d'éliminer les doublons de la
liste initiale, tout en récupérant une liste a la fin :

>>> list(set([7, 9, 6, 6, 7, 3, 8, 5, 6, 7]))
[3, 5, 6, 7, 8, 9]

On peut faire des choses trés puissantes. Par exemple, un compteur de lettres en combinaison avec une liste de
compréhension, le tout en une ligne!

>>> seq = "atctcgatcgatcgcgctagctagectcgeccatacgtacgactacgt"”
>>> set(seq)

{ICI’ lgl, ltl’ lal}

>>> [(base, seq.count(base)) for base in set(seq)]

[('c', 15), ('g"', 10), ('t', 11), ('a', 10)]

Les sets permettent aussi I'évaluation d'union ou d'intersection mathématiques en conjonction avec les opérateurs,
respectivement | et & :

>>> listel = [3, 3, 5, 1, 3, 4, 1, 1, 4, 4]
>>> liste2 = [3, 0, 5, 3, 3, 1, 1, 1, 2, 2]
>>> set(listel) | set(liste2)

{0, 1, 2, 3, 4, 5}

>>> set(listel) & set(liste2)

{1, 3, 5}

Notez qu'il existe les méthodes .union() et .intersection permettant de réaliser ces opérations d'union et
d'intersection :

>>> setl = {1, 3, 4, 5}

>>> set2 = {0, 1, 2, 3, 5}
>>> setl.union(set2)

{6, 1, 2, 3, 4, 5}

>>> setl.intersection(set2)
{1, 3, 5}

L'instruction setl.difference(set2) renvoie sous la forme d'un nouveau set les éléments de setl qui ne sont
pas dans set2. Et inversement pour set2.difference(setl) :

>>> setl.difference(set2)

{4}
>>> set2.difference(setl)
{0, 2}

Enfin, deux autres méthodes sont trés utiles :

150 Cours de Python / Université Paris Cité / UFR Sciences du Vivant

14.5. Récapitulation des propriétés des conteneurs Chapitre 14. Conteneurs

>>> setl = set(range(10))

>>> set2 = set(range(3, 7))
>>> set3 = set(range(1l5, 17))
>>> setl

{0, 1, 2, 3, 4, 5, 6, 7, 8, 9}
>>> set2

{3, 4, 5, 6}

>>> set3

{16, 15}

>>> set2.issubset(setl)

True

>>> set3.isdisjoint(setl)
True

La méthode .issubset() indique si un set est inclus dans un autre set. La méthode isdisjoint() indique si un
set est disjoint d'un autre set, c'est-a-dire, s'ils n'ont aucun élément en commun indiquant que leur intersection est nulle.

Il existe de nombreuses autres méthodes que nous n'abordons pas ici, mais qui peuvent étre consultées sur la docu-
mentation officielle de Python %,

14.4.3 Frozensets

Les frozensets sont des sets non modifiables et hachables. Ainsi, un set peut contenir des frozensets mais pas l'inverse.
A quoi servent-ils? Comme la différence entre tuple et liste, I'immutabilité des frozensets donne I'assurance de ne pas
pouvoir les modifier par erreur. Pour créer un frozenset on utilise la fonction interne frozenset (), qui prend en argument
un objet itérable et le convertit (opération de casting) :

>>> frozenl
>>> frozen2
>>> frozenl
frozenset ({1, 3, 4, 5})
>>> frozen2
frozenset ({0, 1, 2, 3, 5})
>>> frozenl.add(5)
Traceback (most recent call last):

File "<stdin>", 1line 1, in <module>
AttributeError: 'frozenset' object has no attribute 'add'
>>> frozenl.union(frozen2)
frozenset({0, 1, 2, 3, 4, 5})
>>> frozenl.intersection(frozen2)
frozenset ({1, 3, 5})

frozenset([3, 3, 5, 1, 3, 4, 1, 1, 4,
2
) b

4
frozenset([3, 0, 5, 3, 3, 1, 1, 1 2

D
D

Les frozensets ne possédent bien siir pas les méthodes de modification des sets (.add (), .discard(), etc.) puisqu'ils
sont non modifiables. Par contre, ils possédent toutes les méthodes de comparaisons de sets (.union(), .intersection

O, etc.).

Conseil

Pour aller plus loin sur les sets et les frozensets, voici deux articles sur les sites programiz® et towardsdatascience °.

14.5 Récapitulation des propriétés des conteneurs

Apres ce tour d'horizon des différents conteneurs, voici des tableaux qui résument leurs propriétés. La mention « 1in
et len() » indique que I'on peut tester |'appartenance d'un élément a un conteneur avec |'opérateur 1in, et que I'on peut
connaitre le nombre d’éléments du conteneur avec la fonction len(). Les mentions « index. » et « modif. » indiquent
respectivement « indexable » et « modifiable ».

14.5.1 Objets séquentiels

4. https://docs.python.org/3/library/stdtypes.html#set-types-set-frozenset
5. https://www.programiz.com/python-programming/set
6. https://towardsdatascience.com/python-sets-and-set-theory-2ace093d1607

Cours de Python / Université Paris Cité / UFR Sciences du Vivant 151

https://docs.python.org/3/library/stdtypes.html#set-types-set-frozenset
https://www.programiz.com/python-programming/set
https://towardsdatascience.com/python-sets-and-set-theory-2ace093d1607

Chapitre 14. Conteneurs 14.6. Dictionnaires et sets de compréhension

152

Conteneur in et len() itérable ordonné index. modif. hachable
liste oui oui oui oui oui non
chaine de caractéres oui oui oui oui non oui
range oui oui oui oui non oui
tuple oui oui oui oui non oui*

* s'il ne contient que des objets hachables

14.5.2 Objets de mapping

Conteneur in et len() itérable ordonné index. modif. hachable

%

dictionnaire oui oui sur les clés oui non oui non

* 3 partir de Python 3.7 uniquement

14.5.3 Objets sets

Conteneur in et len() itérable ordonné index. modif. hachable
sets oui oui non non oui non
frozensets oui oui non non non oui

14.5.4 Types de base

Il est aussi intéressant de comparer ces propriétés avec celles des types numériques de base qui ne sont pas des
conteneurs.

Objet numérique in et len() itérable ordonné index. modif. hachable
entier non non non non non oui
float non non non non non oui
booléen non non non non non oui

14.5.5 Copie de conteneurs

Un dernier point qu'il peut étre utile de mentionner concerne la copie de conteneurs. On avait vu dans le chapitre
12 Plus sur les listes que la copie de listes se fait par référence. Cela est un mécanisme général pour tous les types de
conteneurs, sauf pour les chaines de caractéres. Python Tutor nous permet de visualiser cela (Figure 14.2).

Ainsi, il faut toujours faire attention quand on fait une copie d'un conteneur modfiable (liste, dictionnaire, set, etc.).
On verra que Python se comporte de la méme maniére avec les objets arrays (chapitre 20 module Numpy) ou Dataframes
(chapitre 22 Module pandas), car on peut les considérer également comme des conteneurs.

14.6 Dictionnaires et sets de compréhension

Nous avons abordé les listes de compréhension dans le chapitre 12 Plus sur les listes. |l est également possible de
générer des dictionnaires de compréhension :

>>> dico = {"a": 10, "g": 10, "t": 11, "c": 15}

>>> dico.items()

dict_items([('a', 10), ('g', 10), ('t', 11), ('c', 15)1)

>>> {key:valx2 for key, val in dico.items()}

{'a': 20, 'g': 20, '"t': 22, 'c': 30}

>>>

>>> animaux = (("singe", 3), ("girafe", 4), ("rhinocéros", 2))
>>> {animal:nombre for animal, nombre in animaux}

{'singe': 3, 'girafe': 4, 'rhinocéros': 2}

Cours de Python / Université Paris Cité / UFR Sciences du Vivant

14.7. Module collections Chapitre 14. Conteneurs

Python 3.11 Frames Objects
known limitations
. "

listel = [1, 2, 3] Global frame Iit b
liste2 = listel listel 7’ 11213

liste2
tupl = (1, 2, 3) tupl tuple
tup2 = tupl :;li 0 |1 |2

p2 1213
dicol = {1: "pinson", 2: "merle", 3: "rouge gorge"} dicol
dico2 = dicol dico2 dict

setl 1 "pinson"
setl = {1, 2, 3} o [E—
set2 = setl

frozenset1 3 "rouge gorge"
frozensetl = frozenset({1, 2, 3}) frozenset2
set
frozenset2 = frozensetl chainel | "oiseau”
. 1 2 3
: n s " chaine2 |“oiseau”

chainel = "oiseau
chaine2 = chainel frozenset instance

£ t({1, 2, 3
Edit this code rozenset ({ 2

line that just executed
% next line to execute

| << First| | < Prev| Next> | Last>>

Done running (12 steps)

FIGURE 14.2 — Copie de conteneuts.

La méthode .items () vue dans le chapitre 8 Dictionnaires et tuples est particulierement bien adaptée pour créer un
dictionnaire de compréhension, car elle permet d'itérer en méme temps sur les clés et valeurs d'un dictionnaire.
Avec un dictionnaire de compréhension, on peut rapidement compter le nombre de chaque base dans une séquence
d'ADN :
>>> sequence = "atctcgatcgatcgcgctagctagctcgeccatacgtacgactacgt”

>>> {base:seq.count(base) for base in set(sequence)}
{'a': 10, 'g': 10, 't': 11, 'c': 15}

De maniére générale, tout objet sur lequel on peut faire une double itération du type for varl, var2 in obj est
utilisable pour créer un dictionnaire de compréhension. Si vous souhaitez aller plus loin, vous pouvez consulter cet article
sur le site Datacamp .

Il est également possible de générer des sets de compréhension sur le méme modéle que les listes de compréhension :

>>> {i for i 1in range(10)}

{e, 1, 2, 3, 4, 5, 6, 7, 8, 9}

>>> {ixx2 for i 1in range(10)}

{06, 1, 64, 4, 36, 9, 16, 49, 81, 25}

>>>
>>> animaux = (("singe", 3), ("girafe", 4), ("rhinocéros", 2))
>>> {ani for ani, _ 1in animaux}

{'girafe', 'singe', 'rhinocéros'}

14.7 Module collections

Le module collections® contient d'autres types de conteneurs qui peuvent se révéler utiles, c’est une véritable mine
d'or! Nous n'aborderons pas tous ces objets ici, mais nous pouvons citer tout de méme certains d’entre eux si vous
souhaitez aller un peu plus loin :

e Les dictionnaires ordonnés ?, qui se comportent comme les dictionnaires classiques, mais qui sont ordonnés, c’est-a-

dire que si on les affiche ou on itére dessus, I'ordre sera le méme que celui utilisé pour sa création. Avant la version

7. https://www.datacamp.com/community/tutorials/python-dictionary-comprehension
8. https://docs.python.org/fr/3/library/collections.html
9. https://docs.python.org/fr/3/library/collections.html#collections.OrderedDict

Cours de Python / Université Paris Cité / UFR Sciences du Vivant

https://www.datacamp.com/community/tutorials/python-dictionary-comprehension
https://docs.python.org/fr/3/library/collections.html
https://docs.python.org/fr/3/library/collections.html#collections.OrderedDict

Chapitre 14. Conteneurs 14.8. Exercices

3.6 de Python, ces dictionnaires ordonnés avaient un intérét, car |'ordre des dictionnaires normaux était arbitraire.
Désormais, les dictionnaires normaux se comportent presque en tout point comme les dictionnaires ordonnés.
e Les defaultdicts'®, qui générent des valeurs par défaut quand on demande une clé qui n'existe pas (cela évite que
Python génére une erreur).
e Les compteurs!, dont un exemple est présenté ci-dessous.
e Les namedtuples'?, que nous évoquerons au chapitre 24 Avoir plus la classe avec les objets (en ligne).
L'objet collection.Counter () est particulierement intéressant et simple a utiliser. Il crée des compteurs a partir
d'objets itérables, par exemple :
>>> qmport collections
>>> compo_seq = collections.Counter("aatctccgatcgatcgatcgatgatc")
>>> compo_seq
Counter({'a': 7, 't': 7, 'c': 7, 'g': 5})
>>> type(compo_seq)
<class 'collections.Counter'>
>>> compo_seq["a"]
-

>>> compo_seq['"n"]
(0]

Dans cet exemple, Python a automatiquement compté chaque caractére a, t, g et c de la chaine de caracteres passée

en argument. Cela crée un objet de type Counter qui se comporte ensuite comme un dictionnaire, a une exception pres :
si on appelle une clé qui n'existe pas dans I'itérable initiale (comme le n ci-dessus), la valeur renvoyée est 0.

14.8 Exercices

Conseil
Pour ces exercices, créez des scripts puis exécutez-les dans un shell.

14.8.1 Séquence peptidique et dictionnaire

Les numéros d'acides aminés commencent rarement a 1 dans les fichiers PDB. Créez un dictionnaire ou chaque clé
est un numéro de résidu de 3 3 9, et chaque valeur est un acide aminé de la séquence peptidique suivante : SEQPEPT.
Utilisez pour cela les fonctions dict() et zip().

14.8.2 Composition en acides aminés

En utilisant un set et la méthode .count () des chaines de caractéres, déterminez le nombre d'occurrences de chaque
acide aminé dans la séquence
AGWPSGGASAGLAILWGASAIMPGALW.

14.8.3 Mots de deux et trois lettres dans une séquence d’ADN

Créez une fonction compte_mots_2_lettres(), qui prend comme argument une séquence sous la forme d'une
chaine de caractéres et qui renvoie tous les mots de deux lettres qui existent dans la séquence sous la forme d'un
dictionnaire. Par exemple pour la séquence ACCTAGCCCTA, le dictionnaire renvoyée serait :

{'AC': 1, 'CC': 3, 'CT': 2, 'TA': 2, 'AG': 1, 'GC': 1}

Créez une nouvelle fonction compte_mots_3_Tlettres(), qui a un comportement similaire a compte_mots_2_lettres
(), mais avec des mots de trois lettres.

Utilisez ces fonctions pour afficher les mots de deux et trois lettres et leurs occurrences trouvés dans la séquence
d'ADN :

ACCTAGCCATGTAGAATCGCCTAGGCTTTAGCTAGCTCTAGCTAGCTG

Voici un exemple de sortie attendue :

10. https://docs.python.org/fr/3/library/collections.html#fcollections.defaultdict
11. https://docs.python.org/fr/3/library/collections.html#collections.Counter
12. https://docs.python.org/fr/3/library/collections.html#collections.namedtuple

154 Cours de Python / Université Paris Cité / UFR Sciences du Vivant

https://docs.python.org/fr/3/library/collections.html#collections.defaultdict
https://docs.python.org/fr/3/library/collections.html#collections.Counter
https://docs.python.org/fr/3/library/collections.html#collections.namedtuple

14.8. Exercices Chapitre 14. Conteneurs

Mots de 2 lettres
AC : 1

cC : 3

CT : 8

[...]

Mots de 3 lettres
ACC : 1

CCT : 2

CTA : 5

[...]

14.8.4 Mots de deux lettres dans la séquence du chromosome | de Saccharomyces cerevi-
siae

Créez une fonction 1it_fasta() qui prend comme argument le nom d’un fichier FASTA sous la forme d'une chaine
de caracteres, lit la séquence dans le fichier FASTA et la renvoie sous la forme d'une chaine de caractéres. Inspirez-vous
d'un exercice similaire du chapitre 10 Plus sur les chaines de caractéres.

Utilisez cette fonction et la fonction compte_mots_2_lettres() de I'exercice précédent pour extraire les mots de
deux lettres et leurs occurrences dans la séquence du chromosome | de la levure du boulanger Saccharomyces cerevisiae
(fichier NC_001133. fna '3).

Le génome complet est fourni au format FASTA. Vous trouverez des explications sur ce format et des exemples de
code dans I'annexe A Quelques formats de données en biologie.

14.8.5 Mots de n lettres dans un fichier FASTA

Créez un script extract-words. py qui prend comme arguments le nom d'un fichier FASTA suivi d'un entier compris
entre 1 et 4. Ce script doit extraire du fichier FASTA tous les mots et leurs occurrences, en fonction du nombre de lettres
passé en option.

Utilisez pour ce script la fonction 1it_fasta() de I'exercice précédent. Créez également la fonction compte_mots_n_lettres
() qui prend comme argument une séquence sous la forme d'une chaine de caractéres et le nombre de lettres des mots
sous la forme d'un entier.

Testez ce script avec :

e la séquence du chromosome | de la levure du boulanger Saccharomyces cerevisiae (fichier NC_001133. fna #);

e le génome de la bactérie Escherichia coli (fichier NC_000913. fna '%).

Les deux fichiers sont au format FASTA.

Cette méthode vous parait-elle efficace sur un génome assez gros comme celui d'Escherichia coli?

14.8.6 Atomes carbone alpha d’un fichier PDB

b 16, qui correspond 2 la structure tridimensionnelle de la protéine barstar 17 sur le site

Téléchargez le fichier 1bta.pd
de la Protein Data Bank (PDB).

Créez la fonction trouve_calpha(), qui prend en argument le nom d'un fichier PDB (sous la forme d'une chaine
de caractéres), qui sélectionne uniquement les lignes contenant des carbones alpha et qui les renvoie sous la forme d'une
liste de dictionnaires. Chaque dictionnaire contient quatre clés :

e le numéro du résidu (resid) avec une valeur entiére,

e la coordonnée atomique x (x) avec une valeur float,

e la coordonnée atomique y (y) avec une valeur float,

e la coordonnée atomique z (z) avec une valeur float.

Utilisez la fonction trouve_calpha() pour afficher a I'écran le nombre total de carbones alpha de la barstar ainsi
que les coordonnées atomiques des carbones alpha des deux premiers résidus (acides aminés).

Conseil

13. https://python.sdv.u-paris.fr/data-files/NC_001133.fna
14. https://python.sdv.u-paris.fr/data-files/NC_001133.fna
15. https://python.sdv.u-paris.fr/data-files/NC_000913.fna
16. https://files.rcsb.org/download/1BTA.pdb

17. http://www.rcsb.org/pdb/explore.do?structureId=1BTA

Cours de Python / Université Paris Cité / UFR Sciences du Vivant 155

https://python.sdv.u-paris.fr/data-files/NC_001133.fna
https://python.sdv.u-paris.fr/data-files/NC_001133.fna
https://python.sdv.u-paris.fr/data-files/NC_000913.fna
https://files.rcsb.org/download/1BTA.pdb
http://www.rcsb.org/pdb/explore.do?structureId=1BTA

Chapitre 14. Conteneurs 14.8. Exercices

156

Vous trouverez des explications sur le format PDB et des exemples de code pour lire ce type de fichier en Python
dans I'annexe A Quelques formats de données en biologie.

14.8.7 Barycentre d’une protéine (exercice +++)

Téléchargez le fichier 1bta.pdb ' qui correspond 2 la structure tridimensionnelle de la protéine barstar !9 sur le site
de la Protein Data Bank (PDB).

Un carbone alpha est présent dans chaque résidu (acide aminé) d'une protéine. On peut obtenir une bonne approxi-
mation du barycentre d'une protéine en calculant le barycentre de ses carbones alpha.

Le barycentre G de coordonnées (G, Gy, G;) est obtenu a partir des n carbones alpha (CA) de coordonnées (CA,,
CA,, CA;) avec:

1 n
"E:CDALX

G, =
niz
1 n
Gy=-Y CA;,
=1
1 n
G.=-Y CA;;
ni3

Créez une fonction calcule_barycentre(), qui prend comme argument une liste de dictionnaires dont les clés
(resid, x, y et z) sont celles de I'exercice précédent et qui renvoie les coordonnées du barycentre sous la forme d'une
liste de floats.

Utilisez la fonction trouve_calpha() de I'exercice précédent et la fonction
calcule_barycentre() pour afficher, avec deux chiffres significatifs, les coordonnées du barycentre des carbones alpha
de la barstar.

14.8.8 Kinases et protéines humaines

Nous avons extrait de la base de données de protéines UniProt la liste des protéines humaines (dans le fichier
human_prote'ins.txtQO) et la liste des kinases (dans le fichier kinases_proteins.txt 21), qui sont une famille de
protéines enzymatiques %> impliquées dans la phosphorylation d'autres protéines.

Chaque fichier contient un identifiant de protéine par ligne. Voici un exemple pour le fichier human_proteins.txt :
ABAG8TX1C5
AOAGB4J2F0
ABA®B4J2F2
AGABC5B5G6
ABAGK254Q6
AGAGU1RRES5
ABA1BOGTWT
ABAVO2
AOGAV96
[...]

L'objectif de cet exercice est de déterminer quelles sont les protéines humaines qui sont des kinases. Chaque liste de
protéines contenant plusieurs milliers d'éléments, il n'est pas possible de la faire a la main. Vous aller utiliser Python et
les sets pour cela.

1. Créez un script compare_proteins.py.

2. Dans ce script, créez une fonction read_protein_file() qui prend en argument le nom d'un fichier de protéines

sous la forme d'une chaine de caractéres et qui renvoie un set contenant la liste des identifiants des protéines
contenues dans le fichier passé en argument.

18. https://files.rcsb.org/download/1BTA.pdb

19. http://www.rcsb.org/pdb/explore.do?structureId=1BTA

20. https://python.sdv.u-paris.fr/data-files/human_proteins.txt
21. https://python.sdv.u-paris.fr/data-files/kinase_proteins.txt
22. https://fr.wikipedia.org/wiki/Kinase

Cours de Python / Université Paris Cité / UFR Sciences du Vivant

https://files.rcsb.org/download/1BTA.pdb
http://www.rcsb.org/pdb/explore.do?structureId=1BTA
https://python.sdv.u-paris.fr/data-files/human_proteins.txt
https://python.sdv.u-paris.fr/data-files/kinase_proteins.txt
https://fr.wikipedia.org/wiki/Kinase

14.8. Exercices Chapitre 14. Conteneurs

3. Affichez ensuite le nombre de protéines listées dans chaque fichier.

4. En utilisant uniquement des opérations sur les sets, déterminez et affichez :
e le nombre de protéines humaines qui sont des kinases;

e le nombre de protéines humaines qui ne sont pas des kinases;

e le nombre de kinases qui ne sont pas des protéines humaines.

Cours de Python / Université Paris Cité / UFR Sciences du Vivant 157

CHAPITRE 15

Création de modules

15.1 Pourquoi créer ses propres modules ?

Dans le chapitre 9 Modules, nous avons découvert quelques modules Python comme random, math, etc. Nous avons
vu par ailleurs dans les chapitres 10 Fonctions et 13 Plus sur les fonctions que les fonctions sont utiles pour réutiliser
une fraction de code plusieurs fois au sein d'un méme programme, sans avoir a dupliquer ce code. On peut imaginer
qu’une fonction utile pourrait étre judicieusement réutilisée dans un autre programme Python. C'est justement l'intérét
de créer un module. On y regroupe un ensemble de fonctions que I'on peut étre amené a utiliser souvent. En général, les
modules sont regroupés autour d'un theme précis. Par exemple, on pourrait concevoir un module d'analyse de séquences
biologiques ou encore de gestion de fichiers PDB.

15.2 Création d’un module

En Python, la création d’'un module est tres simple. |l suffit d'écrire un ensemble de fonctions (et éventuellement de
constantes) dans un fichier, puis d'enregistrer ce dernier avec une extension .py (comme n'importe quel script Python).
A titre d'exemple, nous allons créer un module simple que nous enregistrerons sous le nom message.py :

DATE = "2024-01-05"

def bonjour (nom):

return f"Bonjour {nom}"

def ciao(nom):

return f"Ciao {nom}"

def hello(nom):

return f"Hello {nom}"

Les chaines de caracteres entre triple guillemets en téte du module et en téte de chaque fonction sont facultatives
mais elles jouent néanmoins un role essentiel dans la documentation du code.

158

15.3. Utilisation de son propre module Chapitre 15. Création de modules

Remarque

Une constante est, par définition, une variable dont la valeur n’est pas modifiée. Par convention, en Python, le nom
des constantes est écrit en majuscules (comme DATE dans notre exemple).

15.3 Utilisation de son propre module

Pour appeler une fonction ou une variable de ce module, il faut que le fichier message.py soit dans le répertoire
courant (dans lequel on travaille) ou bien dans un répertoire listé par la variable d’environnement PYTHONPATH de votre
systeme d'exploitation. Ensuite, il suffit d'importer le module et toutes ses fonctions (et constantes) vous sont alors
accessibles.

Remarque

Avec Mac OS X et Linux, il faut taper la commande suivante depuis un shell Bash pour modifier la variable d’envi-
ronnement PYTHONPATH :
export PYTHONPATH=$PYTHONPATH:/chemin/vers/mon/super/module

Avec Windows, mais depuis un shell PowerShell, il faut taper la commande suivante :
$env:PYTHONPATH += ";C:\chemin\vers\mon\super\module"

Une fois cette manipulation effectuée, vous pouvez contrdler que le chemin vers le répertoire contenant vos modules
a bien été ajouté a la variable d'environnement PYTHONPATH :

e sous Mac OS X et Linux : echo $PYTHONPATH

e sous Windows : echo $env:PYTHONPATH

Le chargement du module se fait avec la commande import message. Notez que le fichier est bien enregistré avec
une extension .py, pourtant on ne la précise pas lorsqu'on importe le module. Ensuite, on peut utiliser les fonctions
comme avec un module classique :

>>> dmport message

>>> message.hello("Joe")

'Hello Joe'

>>> message.ciao("Bill")

'Ciao Bill'

>>> message.bonjour ("Monsieur")
'Bonjour Monsieur'

>>> message.DATE

'2024-01-05"

Remarque

La premiére fois qu'un module est importé, Python crée un répertoire nommé __pycache__ contenant un fichier
avec une extension .pyc qui contient le bytecode !, c’est-3-dire le code précompilé du module.

15.4 Les docstrings

Lorsqu'on écrit un module, il est important de créer de la documentation pour expliquer ce que fait le module et
comment utiliser chaque fonction. Les chaines de caractéres entre triple guillemets, situées en début du module et de
chaque fonction, sont |a pour cela : on les appelle docstrings (« chaines de documentation » en francais). Les docstrings
seront détaillées dans le chapitre 16 Bonnes pratiques en programmation Python.

Les docstrings permettent notamment de fournir de I'aide lorsqu'on invoque la commande help() :

1. https://docs.python.org/fr/3/glossary.html#term-bytecode

Cours de Python / Université Paris Cité / UFR Sciences du Vivant 159

https://docs.python.org/fr/3/glossary.html#term-bytecode

Chapitre 15. Création de modules 15.5. Visibilité des fonctions dans un module

>>> qmport message
>>> help(message)

Help on module message:

NAME
message - Module 1inutile qui affiche des messages.

FUNCTIONS
bonjour (nom)
Dit Bonjour.

ciao(nom)
Dit Ciao.

hello(nom)
Dit Hello.

DATA
DATE = '2024-01-05'

FILE
/home/pierre/message.py

Remarque

Pour quitter I'aide, pressez la touche Q.

Vous remarquez que Python a généré automatiquement cette page d'aide, tout comme il est capable de le faire pour
les modules internes a Python (random, math, etc.) et ce grace aux docstrings. Notez que I'on peut aussi appeler I'aide
pour une seule fonction :

>>> help(message.ciao)
Help on function ciao in module message:

ciao(nom)
Dit Ciao.

En résumé, les docstrings sont destinés aux utilisateurs du module. Leur but est différent des commentaires qui, eux,
sont destinés a celui qui lit le code (pour en comprendre les subtilités). Une bonne docstring de fonction doit contenir
tout ce dont un utilisateur a besoin pour utiliser cette fonction. Une liste minimale et non exhaustive serait :

e ce que fait la fonction,
e ce qu'elle prend en argument,
e ce qu'elle renvoie.

Pour en savoir plus sur les docstrings et comment les écrire, nous vous recommandons de lire le chapitre 16 Bonnes
pratiques en programmation Python.

15.5 Visibilité des fonctions dans un module

La visibilité des fonctions au sein des modules suit des régles simples :

e Les fonctions dans un méme module peuvent s'appeler les unes les autres.

e Les fonctions dans un module peuvent appeler des fonctions situées dans un autre module s'il a été préalablement
importé. Par exemple, si la commande import autremodule est utilisée dans un module, il est possible d"appeler
une fonction avec autremodule. fonction().

Toutes ces régles viennent de la maniére dont Python gére les espaces de noms. De plus amples explications sont
données sur ce concept dans le chapitre 24 Avoir plus la classe avec les objets (en ligne).

160 Cours de Python / Université Paris Cité / UFR Sciences du Vivant

15.6. Module ou script ? Chapitre 15. Création de modules

15.6 Module ou script?

Vous avez remarqué que notre module message ne contient que des fonctions et une constante. Si on I'exécutait
comme un script classique, cela n’afficherait rien :

$ python message.py
$

Cela s'explique par |'absence de programme principal, c'est-a-dire de lignes de code que l'interpréteur exécute lorsqu’on
lance le script.

A l'inverse, que se passe-t-il si on importe un script en tant que module alors qu'il contient un programme principal
avec des lignes de code ? Prenons par exemple le script message2.py suivant :

"""Script de test."""

def bonjour (nom):
HHHD-it Bonjour.HHH
return f"Bonjour {nom}"

Programme principal.
print(bonjour("Joe"))

Si on I'importe dans l'interpréteur, on obtient :

>>> import message2
Bonjour Joe

Ceci n'est pas le comportement voulu pour un module, car on n'attend pas d'affichage particulier lors de son charge-
ment. Par exemple la commande import math n'affiche rien dans I'interpréteur.
Afin de pouvoir utiliser un code Python en tant que module ou en tant que script, nous vous conseillons la structure
suivante :
"""Script de test."""

def bonjour(nom):
"""Dit Bonjour."""
return f"Bonjour {nom}"

if __name == "__main__":

print(bonjour("Joe"))

A la ligne 9, l'instruction if __name__ == "__main__": indique a Python :
e Si le programme message2.py est exécuté en tant que script dans un shell, le résultat du test if sera alors True
et le bloc d'instructions correspondant (ligne 10) sera exécuté :

$ python message2.py
Bonjour Joe

e Si le programme message2.py est importé en tant que module, le résultat du test i f sera alors False et le bloc
d'instructions correspondant ne sera pas exécuté :

>>> dmport message2
>>>

Ce comportement est possible grace a la gestion des espaces de noms par Python (pour plus de détail, consultez le
chapitre 24 Avoir plus la classe avec les objets (en ligne)). Au dela de la commodité de pouvoir utiliser votre script en
tant que programme ou en tant que module, cela présente |'avantage de signaler clairement ou se situe le programme
principal quand on lit le code.

Conseil

Cours de Python / Université Paris Cité / UFR Sciences du Vivant 161

Chapitre 15. Création de modules 15.7. Exercice

162

Ainsi, au lieu d'ajouter le commentaire :

comme nous vous |'avions suggéré dans les chapitres 10 Fonctions et 13 Plus sur les fonctions, nous vous recomman-
dons désormais d'utiliser la ligne :
if __name__ == "__main__":

15.7 Exercice

Conseil

Pour cet exercice, créez un script puis exécutez-le dans un shell.

15.7.1 Module ADN

Dans le script adn.py, construisez un module qui va contenir les fonctions et constantes suivantes.

Fonction 1it_fasta() : prend en argument un nom de fichier sous forme d’une chaine de caracteres et renvoie la
séquence d'ADN lue dans le fichier sous forme d'une chaine de caracteéres.

Fonction seq_alea() : prend en argument une taille de séquence sous forme d'un entier et renvoie une séquence
aléatoire d'ADN de la taille correspondante sous forme d'une chaine de caractéres.

Fonction comp_inv () : prend en argument une séquence d'ADN sous forme d'une chaine de caractéres et renvoie
la séquence complémentaire inverse (aussi sous forme d’'une chaine de caractéres).

Fonction prop_gc() : prend en argument une séquence d’ADN sous forme d'une chaine de caractéres et renvoie
la proportion en GC de la séquence sous forme d'un float. Nous vous rappelons que la proportion de GC s’obtient
comme la somme des bases Guanine (G) et Cytosine (C), divisée par le nombre total de bases (A, T, C, G).
Constante BASE_COMP : dictionnaire qui contient la complémentarité des bases d'’ADN (A—T, T—C, G—C et C—G).
Ce dictionnaire sera utilisé par la fonction comp_inv ().

A la fin de votre script, proposez des exemples d'utilisation des fonctions que vous aurez créées. Ces exemples
d'utilisation ne devront pas étre exécutés lorsque le script est chargé comme un module.

Conseil

Dans cet exercice, on supposera que toutes les séquences sont manipulées comme des chaines de caractéres en
majuscules.

Pour les fonctions seq_alea() et comp_inv (), n'hésitez pas a jeter un ceil aux exercices correspondants dans le
chapitre 12 Plus sur les listes.

Voici un exemple de fichier FASTA adn.fasta? pour tester la fonction 1it_fasta().

2. https://python.sdv.u-paris.fr/data-files/adn.fasta

Cours de Python / Université Paris Cité / UFR Sciences du Vivant

https://python.sdv.u-paris.fr/data-files/adn.fasta

CHAPITRE 16

Bonnes pratiques en programmation Python

Comme vous l'avez constaté dans tous les chapitres précédents, la syntaxe de Python est trés permissive. Afin
d'uniformiser I'écriture de code en Python, la communauté des développeurs Python recommande un certain nombre de
régles afin qu'un code soit lisible. Lisible par quelqu'un d'autre, mais également, et surtout, par soi-méme. Essayez de
relire un code que vous avez écrit « rapidement » il y a un mois, six mois ou un an. Si le code ne fait que quelques lignes,
il se peut que vous vous y retrouviez, mais s'il fait plusieurs dizaines, voire centaines de lignes, vous serez perdus.

Dans ce contexte, le créateur de Python, Guido van Rossum, part d'un constat simple : « code is read much more
often than it is written » (« le code est plus souvent lu qu'écrit »). Avec |'expérience, vous vous rendrez compte que cela
est parfaitement vrai. Alors, plus de temps a perdre, voyons en quoi consistent ces bonnes pratiques.

Plusieurs choses sont nécessaires pour écrire un code lisible : la syntaxe, I'organisation du code, le découpage en
fonctions (et possiblement en classes, que nous verrons dans le chapitre 23 Avoir la classe avec les objets), mais souvent,
aussi, le bon sens. Pour cela, les « PEP » peuvent nous aider.

Définition

Afin d'améliorer le langage Python, la communauté qui développe Python publie régulierement des Python Enhance-
ment Proposal® (PEP), suivi d'un numéro. Il s'agit de propositions concretes pour améliorer le code, ajouter de nouvelles
fonctionnalités, mais aussi des recommandations sur la maniére d'utiliser Python, bien écrire du code, etc.

On va aborder dans ce chapitre sans doute la plus célebre des PEP, a savoir la PEP 8, qui est incontournable lorsque
I'on veut écrire du code Python correctement.

Définition

On parle de code pythonique lorsque ce dernier respecte les régles d'écriture définies par la communauté Python,
mais aussi les regles d'usage du langage.

1. https://www.python.org/dev/peps/

163

https://www.python.org/dev/peps/

Chapitre 16. Bonnes pratiques en programmation Python 16.1. De la bonne syntaxe avec la PEP 8

164

16.1 De la bonne syntaxe avec la PEP 8

La PEP 8 Style Guide for Python Code? est une des plus anciennes PEP (les numéros sont croissants avec le temps).
Elle consiste en un nombre important de recommandations sur la syntaxe de Python. Il est vivement recommandé de lire
la PEP 8 en entier au moins une fois pour avoir une bonne vue d’ensemble. On ne présentera ici qu'un rapide résumé de
cette PEP 8.

16.1.1 Indentation

On a vu que l'indentation est obligatoire en Python pour séparer les blocs d'instructions. Cela vient d'un constat
simple : I'indentation améliore la lisibilité d'un code. La PEP 8 recommande d'utiliser quatre espaces pour chaque niveau
d'indentation. Nous vous recommandons de suivre impérativement cette regle.

Attention

Afin de toujours utiliser cette regle des quatre espaces pour I'indentation, il est essentiel de régler correctement votre
éditeur de texte. Consultez pour cela I'annexe Installation de Python disponible en ligne 3. Avant d'écrire la moindre ligne
de code, faites en sorte que lorsque vous pressez la touche tabulation, cela ajoute quatre espaces (et non pas un caractére
tabulation).

16.1.2 Importation des modules

Comme on I'a vu dans le chapitre 9 Modules, le chargement d’un module est réalisé avec |'instruction import module
plutét qu'avec from module +import x.

Si on souhaite ensuite utiliser une fonction d'un module, la premiére syntaxe conduit a module. fonction(), ce qui
rend explicite la provenance de la fonction. Avec la seconde syntaxe, il faudrait écrire fonction(), ce qui peut :

e mener a un conflit si une de vos fonctions a le méme nom;

e rendre difficile la recherche de documentation si on ne sait pas d'ou vient la fonction, notamment si plusieurs

modules sont chargés avec |'instruction
from module import *

Par ailleurs, la premiére syntaxe définit un « espace de noms » spécifique au module (voir le chapitre 24 Avoir plus
la classe avec les objets (en ligne)).

Dans un script Python, on importe un module par ligne. D’abord les modules internes (classés par ordre alphabétique),
c'est-a-dire les modules de base de Python, puis les modules externes (ceux que vous avez installés en plus), et enfin, les
modules que vous avez créés.

Si le nom du module est trop long, on peut utiliser un alias. L'instruction from est tolérée si vous n'importez que
quelques fonctions clairement identifiées.

En résumé :

import module_interne_1
import module_interne_2
from module_interne_3 +dmport fonction_spécifique

import module_externe_1
import module_externe_2_qui_a_un_nom_long as mod2

import module_cree_par_vous

16.1.3 Regles de nommage

Les noms de variables, de fonctions et de modules doivent étre de la forme :

ma_variable
fonction_test_27()
mon_module

2. https://www.python.org/dev/peps/pep-0008/
3. https://python.sdv.u-paris.fr/livre-dunod

Cours de Python / Université Paris Cité / UFR Sciences du Vivant

https://www.python.org/dev/peps/pep-0008/
https://python.sdv.u-paris.fr/livre-dunod

16.1. De la bonne syntaxe avec la PEP 8 Chapitre 16. Bonnes pratiques en programmation Python

c'est-a-dire en minuscules avec un caractére « souligné » (« tiret du bas », ou underscore en anglais) pour séparer les
différents « mots » dans le nom.
Les constantes sont écrites en majuscules :

MA_CONSTANTE
VITESSE_LUMIERE

Les noms de classes (voir le chapitre 23 Avoir la classe avec les objets) et les exceptions (voir le chapitre 26 Remarques
complémentaires (en ligne)) sont de la forme :

MaClasse
MyException

Remarque
e Le style recommandé pour nommer les variables et les fonctions en Python est appelé snake case. Il est différent

du CamelCase utilisé pour les noms des classes et des exceptions.
e La variable _ est habituellement employée pour stocker des valeurs qui ne seront pas utilisées par la suite. Par

exemple, dans le cas d'une affectation multiple, on peut utiliser _ pour stocker une valeur qui ne nous intéresse pas
(voir chapitre 14 Conteneurs).

Pensez a donner a vos variables des noms qui ont du sens. Evitez autant que possible les a1, a2, i, truc, toto..
Les noms de variables a un caractére sont néanmoins autorisés pour les indices dans les boucles :

>>> ma_liste = [1, 3, 5, 7, 9, 11]
>>> for i 1in range(len(ma_liste)):
print(ma_liste[i])

Bien siir, une écriture plus « pythonique » de |'exemple précédent permet de se débarrasser de |'indice 7 :

>>> ma_liste = [1, 3, 5, 7, 9, 11]
>>> for entier in ma_liste:
print(entier)

Enfin, des noms de variable a une lettre peuvent &tre utilisés lorsque cela a un sens mathématique (par exemple, les
noms x, y et z évoquent des coordonnées cartésiennes).

16.1.4 Gestion des espaces

La PEP 8 recommande d'entourer les opérateurs (+, -, /, x, ==, I=, >=, not, in, and, or..) d'un espace avant et
d'un espace aprés. Par exemple :

Code recommandé
ma_variable = 3 + 7
mon_texte = "souris"
mon_texte == ma_variable
Code non recommandé
ma_variable=3+7
mon_texte="souris"
mon_texte== ma_variable

Il n'y a, par contre, pas d'espace a l'intérieur de crochets, d'accolades et de parenthéses :

Code recommandé
ma_Tliste[1]
mon_dico{"cl1é"}
ma_fonction(argument)

Code non recommandé
ma_liste[1]
mon_dico{"clé" }
ma_fonction(argument)

Ni juste avant la parenthése ouvrante d’'une fonction ou le crochet ouvrant d'une liste ou d'un dictionnaire :

Cours de Python / Université Paris Cité / UFR Sciences du Vivant

165

Chapitre 16. Bonnes pratiques en programmation Python 16.1. De la bonne syntaxe avec la PEP 8

166

Code recommandé
ma_Tliste[1]
mon_dico{"cl1é"}
ma_fonction(argument)
Code non recommandé
ma_liste [1]

mon_dico {"clé"}
ma_fonction (argument)

On met un espace apreés les caractéres : et , (mais pas avant) :

Code recommandé

ma_liste = [1, 2, 3]

mon_dico = {"clél": "valeurl", "clé2": "valeur2"}
ma_fonction(argumentl, argument2)

Code non recommandé

ma_liste = [1 , 2 ,3]

mon_dico = {"clél" : "valeurl", "clé2":"valeur2"}
ma_fonction(argumentl ,argument2)

Par contre, pour les tranches de listes, on ne met pas d'espace autour du :

ma_Lliste = [1, 3, 5, 7, 9, 1]
Code recommandé
ma_Tliste[1:3]

ma_liste[1l:4:2]

ma_Lliste[::2]

Code non recommandé
ma_liste[1l : 3]

ma_Tliste[l: 4:2]

ma_liste[: :2]

Enfin, on n’ajoute pas plusieurs espaces autour du = ou des autres opérateurs pour faire joli :

Code recommandé

x1 =1

x2 = 3

x_old = 5

Code non recommandé
x1 =1

X2 =3

x_old = 5

16.1.5 Longueur de ligne

Une ligne de code ne doit pas dépasser 79 caracteéres, pour des raisons tant historiques que de lisibilité.
On a déja vu dans le chapitre 1 Introduction que le caractére \ permet de couper des lignes trop longues. Par exemple :

>>> ma_variable = 3
>>> if ma_variable > 1 and ma_variable < 10 \
and ma_variable % 2 == 1 and ma_variable % 3 == 0:
print(f"ma variable vaut {ma_variable}")

ma variable vaut 3

A l'intérieur de parenthéses, on peut revenir a la ligne sans utiliser le caractére \. C'est particulierement utile pour

préciser les arguments d'une fonction ou d’'une méthode, lors de sa création ou lors de son utilisation :

>>> def ma_fonction(argument_1, argument_2,
argument_3, argument_4):
return argument_1 + argument_2

>>> ma_fonction("texte trés long", "tigre",
00 "singe'", "souris")
'texte treés longtigre'

Les parenthéses sont également trés pratiques, pour répartir sur plusieurs lignes une chaine de caractéres qui sera

Cours de Python / Université Paris Cité / UFR Sciences du Vivant

16.1. De la bonne syntaxe avec la PEP 8 Chapitre 16. Bonnes pratiques en programmation Python

ensuite affichée sur une seule ligne :

>>> print ("ATGCGTACAGTATCGATAAC"
000 "ATGACTGCTACGATCGGATA"
000 "CGGGTAACGCCATGTACATT")
ATGCGTACAGTATCGATAACATGACTGCTACGATCGGATACGGGTAACGCCATGTACATT

Notez qu'il n'y a pas d'opérateur + pour concaténer les trois chaines de caracteres, et que celles-ci ne sont pas séparées
par des virgules. A partir du moment ou elles sont entre parenthéses, Python les concaténe automatiquement.

On peut aussi utiliser les parenthéses pour évaluer un expression trop longue :

>>> ma_variable = 3
>>> if (ma_variable > 1 and ma_variable < 10
and ma_variable % 2 == 1 and ma_variable % 3 == 0):
print(f"ma variable vaut {ma_variable}")

ma variable vaut 3

Remarque

Les parenthéses sont aussi trés utiles lorsqu’on a besoin d'enchainer des méthodes les unes a la suite des autres. Cette
technique du method chaining a été introduite dans le chapitre 11 Plus sur les chaines de caractéres et sera trés utilisée
dans le chapitre 22 Module Pandas.

Enfin, il est possible de créer des listes ou des dictionnaires sur plusieurs lignes, en sautant une ligne aprés une virgule :

>>> ma_liste = [1, 2, 3,
4, 5, 6,

7, 8, 9]

>>> mon_dico = {"clé1": 13,
"clé": 42,
"clé3": -10}

16.1.6 Lignes vides

Dans un script, les lignes vides sont utiles pour séparer visuellement les différentes parties du code.

Il est recommandé de laisser deux lignes vides avant la définition d'une fonction ou d'une classe, et de laisser une
seule ligne vide avant la définition d'une méthode (dans une classe).

On peut aussi laisser une ligne vide dans le corps d'une fonction pour séparer les sections logiques de la fonction,
mais cela est a utiliser avec parcimonie.

16.1.7 Commentaires

Les commentaires débutent toujours par le symbole # suivi d'un espace. lls fournissent des explications sur |'utilité
du code et permettent de comprendre son fonctionnement.

Les commentaires sont sur le méme niveau d'indentation que le code qu'ils commentent. Les commentaires sont
constitués de phrases complétes, avec une majuscule au début (sauf si le premier mot est une variable qui s'écrit sans
majuscule) et un point a la fin.

La PEP 8 recommande d'écrire les commentaires en anglais, sauf si vous étes absolument certains que votre code ne
sera lu que par des francophones. Dans la mesure ou vous allez souvent développer des programmes scientifiques, nous
vous conseillons d'écrire vos commentaires en anglais.

Soyez également cohérent entre la langue utilisée pour les commentaires et la langue utilisée pour nommer les variables.
Pour un programme scientifique, les commentaires et les noms de variables sont en anglais. Ainsi ma_Tl1iste deviendra
my_Llist et ma_fonction deviendra my_function (par exemple).

Les commentaires qui suivent le code sur la méme ligne sont a éviter le plus possible et doivent étre séparés du code
par au moins deux espaces :

var_x = number / total * 100

Cours de Python / Université Paris Cité / UFR Sciences du Vivant

167

Chapitre 16. Bonnes pratiques en programmation Python 16.2. Les docstrings et la PEP 257

168

Remarque
La PEP 8 ne fournit pas de recommandation® quant a I'usage de guillemets simples ou de guillemets doubles pour
déclarer une chaine de caractéres.

>>> var_1l = "Ma chaine de caractéres"
>>> var_1

'Ma chaine de caractéres'

>>> var_2 = 'Ma chaine de caracteres'
>>> var_2

'Ma chaine de caracteres'

>>> var_1l == var_2

True

Vous constatez dans |'exemple ci-dessus que, pour Python, les guillemets simples et doubles sont équivalents. Nous
vous conseillons cependant d'utiliser les guillemets doubles car ceux-ci sont, de notre point de vue, plus lisibles.

16.2 Les docstrings et la PEP 257

Les docstrings, que I'on pourrait traduire par « chaines de documentation » en francais, sont un élément essentiel
des programmes Python, comme on I'a vu au chapitre 15 Création de modules. A nouveau, les développeurs de Python
ont émis des recommandations dans la PEP 8, et plus exhaustivement dans la PEP 257°, sur la maniére de rédiger
correctement les docstrings. En voici un résumé succinct.

16.2.1 Les principales regles

De maniére générale, écrivez des docstrings pour les modules, les fonctions, les classes et les méthodes que vous
développez.

Lorsque I'explication est courte et compacte, comme dans certaines fonctions ou méthodes simples, utilisez des
docstrings d'une ligne :

"""Docstring simple d'une ligne se finissant par un point."""

Lorsque vous avez besoin de décrire plus en détail un module, une fonction, une classe ou une méthode, utilisez une
docstring sur plusieurs lignes :

"""Docstring de plusieurs lignes, la premiere ligne est un résumé.

Apres avoir sauté une ligne, on décrit les détails de cette docstring.
On termine la docstring avec les triples guillemets

sur la ligne suivante.
mmn

Remarque
La PEP 257 recommande d'écrire des docstrings avec trois doubles guillemets, c’est-a-dire :
"""Ceci est une docstring recommandée.""
mais pas :

'""'"Ceci n'est pas une docstring recommandée.'''

Comme indiqué dans le chapitre 15 Création de modules, n'oubliez pas que les docstrings sont destinées aux utilisateurs
des modules, fonctions, méthodes et classes que vous avez développés. Les éléments essentiels pour les fonctions et les
méthodes sont :

1. ce que fait la fonction ou la méthode,

2. ce qu'elle prend en argument,

3. ce qu'elle renvoie.

4. https://peps.python.org/pep-0008/#string-quotes
5. https://www.python.org/dev/peps/pep-0257/

Cours de Python / Université Paris Cité / UFR Sciences du Vivant

https://peps.python.org/pep-0008/#string-quotes
https://www.python.org/dev/peps/pep-0257/

16.3. Outils de contrdle qualité du code Chapitre 16. Bonnes pratiques en programmation Python

Pour les modules et les classes, on ajoute également des informations générales sur leur fonctionnement.
Pour autant, la PEP 257 ne dit pas explicitement comment organiser les docstrings pour les fonctions et les méthodes.
Pour répondre a ce besoin, deux solutions ont émergées :
e la solution Google avec le Google Style Python Docstrings®,
e la solution NumPy avec le NumPy Style Python Docstrings’. NumPy est un module complémentaire 3 Python,
trés utilisé en analyse de données et dont on parlera dans le chapitre 20.

16.2.2 Un exemple concret

On illustre ici la solution de docstrings NumPy pour des raisons de golit personnel. Sentez-vous libre d’explorer la
proposition de Google.
Voici un exemple pour une fonction qui prend en argument deux entiers et qui renvoie leur produit :

def multiplie_nombres(nombrel, nombre2):

return nombrel * nombre2

e Lignes 6 et 7. La section Parameters précise les paramétres de la fonction. Les tirets sur la ligne 7 soulignent le
nom de la section pour la rendre visible.

e Lignes 8 et 9. On indique le nom et le type du paramétre, séparés par le caractére deux-points. Le type n'est pas
obligatoire. En dessous, on indique une description du parametre en question. La description est indentée.

e Lignes 10 a 12. Méme chose pour le second paramétre. La description du paramétre peut s'étaler sur plusieurs
lignes.

e Lignes 14 et 15. La section Returns indique ce qui est renvoyé par la fonction (le cas échéant).

e Lignes 16 et 17. La mention du type renvoyé est obligatoire. En dessous, on indique une description de ce qui est
renvoyé par la fonction. Cette description est aussi indentée.

Attention

L'étre humain a une facheuse tendance a la procrastination (le fameux « Bah je le ferai demain..») et écrire de la
documentation peut étre un sérieux motif de procrastination. Soyez vigilant sur ce point, et rédigez vos docstrings au
moment ol vous écrivez vos modules, fonctions, classes ou méthodes. Passer une journée (voire plusieurs) a écrire les
docstrings d'un gros projet est particulierement pénible. Croyez-nous!

16.3 Outils de contrédle qualité du code

Pour évaluer la qualité d'un code Python, c'est-a-dire sa conformité avec les recommandations de la PEP 8 et de la
PEP 257, on peut utiliser les outils pycodestyle, pydocstyle et pylint.

Ces outils ne sont fournis dans I'installation de base de Python et doivent étre installés sur votre machine. Avec la
distribution Miniconda, cette étape d'installation se résume a une ligne de commande :

6. https://sphinxcontrib-napoleon.readthedocs.io/en/latest/example_google.html
7. https://sphinxcontrib-napoleon.readthedocs.io/en/latest/example_numpy.html

Cours de Python / Université Paris Cité / UFR Sciences du Vivant 169

https://sphinxcontrib-napoleon.readthedocs.io/en/latest/example_google.html
https://sphinxcontrib-napoleon.readthedocs.io/en/latest/example_numpy.html

Chapitre 16. Bonnes pratiques en programmation Python

16.3. Outils de contrdle qualité du code

$ conda install -c conda-forge pycodestyle pydocstyle pylint

Définition

Les outils pycodestyle, pydocstyle et pylint sont des linters, c'est-a-dire des programmes qui vont chercher les
sources potentielles d'erreurs dans un code informatique. Ces erreurs peuvent étre des erreurs de style (PEP 8 et 257) ou
des erreurs logiques (manipulation d'une variable, chargement de module).

Voici le contenu du script script_quality_not_ok.py® que nous allons analyser par la suite :

"""Un script de multiplication.

import os

def Multiplie_nombres(nombrel,nombre2):

if

"""Multiplication de deux nombres entiers
Cette fonction ne sert pas a grand chose.

Parameters

nombrel : 1int
Le premier nombre entier.
nombre2 : 1int
Le second nombre entier.
Tres utile.

Returns

Le produit des deux nombres.

return nombrel *nombre2

__hame == main__":

print(f"2 x 3 = {Multiplie_nombres(2, 3)}")
print (f"4 x 5 = {Multiplie_nombres(4, 5)1}")

Ce script est d'ailleurs parfaitement fonctionnel :

$ py
2 x
4 x

g w

hon script_quality_not_ok.py

6
20

On va tout d'abord vérifier la conformité avec la PEP 8 grace a I'outil pycodestyle :

$ pycodestyle script_quality_not_ok.py

script_quality_not_ok.py:6:1: E302 expected 2 blank lines,

found 1

script_quality_not_ok.py:6:30: E231 missing whitespace after ','

script_quality_not_ok.py:6:38: E202 whitespace before ')'

script_quality_not_ok.py:26:21: E225 missing whitespace around operator

script_quality_not_ok.py:31:10: E211 whitespace before '('

e Ligne 2. Le bloc script_quality_not_ok.py:6:1: désigne le nom du script (script_quality_not_ok.
py), le numéro de la ligne (6) et le numéro de la colonne (1) ol se trouve la non-conformité avec la PEP 8.
Ensuite, pycodestyle fournit un code et un message explicatif. Ici, il faut deux lignes vides avant la fonction
Multiplie_nombres().

e Ligne 3. Il manque un espace apres la virgule qui sépare les arguments nombrel et nombre2 dans la définition de
la fonction Multiplie_nombres() a la ligne 6 (colonne 30) du script.

8. https://python.sdv.u-paris.fr/data-files/script_quality_not_ok.py

170

Cours de Python / Université Paris Cité / UFR Sciences du Vivant

https://python.sdv.u-paris.fr/data-files/script_quality_not_ok.py

16.4. Outil de formatage automatique du code Chapitre 16. Bonnes pratiques en programmation Python

e Ligne 4. Il y un espace de trop apres le second argument nombre2 dans la définition de la fonction Multiplie_nombres
() a la ligne 6 (colonne 38) du script.
e Ligne 5. Il manque un espace aprés I'opérateur x a la ligne 26 (colonne 21) du script.
e Ligne 6. Il y a un espace de trop entre print et (a la ligne 31 (colonne 10) du script.
Assez curieusement, pycodestyle n'a pas détecté que le nom de la fonction Multiplie_nombres() ne respecte
pas la convention de nommage (pas de majuscule).
Ensuite, I'outil pydocstyle va vérifier la conformité avec la PEP 257 et s'intéresser particuliérement aux docstrings :
$ pydocstyle script_quality_not_ok.py
script_quality_not_ok.py:1 at module level:
D200: One-line docstring should fit on one line with quotes (found 2)
script_quality_not_ok.py:7 1in public function "Multiplie_nombres":
D205: 1 blank line required between summary line and description (found 0)

script_quality_not_ok.py:7 in public function ‘Multiplie_nombres’:
D400: First line should end with a period (not 's')

e Lignes 2 et 3. pydocstyle indique que la docstring a la ligne 1 du script est sur deux lignes, alors qu'elle devrait

étre sur une seule ligne.

e Lignes 4 et 5. Dans la docstring de la fonction Multiplie_nombres() (ligne 7 du script), il manque une ligne

vide entre la ligne résumé et la description plus compléte.

e Lignes 6 et 7. Dans la docstring de la fonction Multiplie_nombres() (ligne 7 du script), il manque un point

a la fin de la premiere ligne.

Les outils pycodestyle et pydocstyle vont simplement vérifier la conformité aux PEP 8 et 257. L'outil pylint
va lui aussi vérifier une partie de ces régles mais il va également essayer de comprendre le contexte du code et proposer
des éléments d'amélioration. Par exemple :
$ pylint script_quality_not_ok.py
*kkkxxx*k*k*k*kxx Module script_quality_not_ok
script_quality_not_ok.py:6:0: C0103: Function name "Multiplie_nombres"

doesn't conform to snake_case naming style (invalid-name)
script_quality_not_ok.py:4:0: WO611l: Unused import os (unused-import)

Your code has been rated at 6.67/10

e Lignes 3 et 4. pylint indique que nom de la fonction Multiplie_nombres() ne respecte pas la convention
PEP 8 (ligne 6 du script).

e Ligne 5. Le module os est chargé mais pas utilisé (ligne 4 du script).

e Ligne 8. pylint produit également une note sur 10. Ne soyez pas surpris si cette note est trés basse (voire
négative) la premiére fois que vous analysez votre script avec pylint. Cet outil fournit de nombreuses suggestions
d’amélioration et la note attribuée a votre script devrait rapidement augmenter. Pour autant, la note de 10 est
parfois difficile a obtenir. Ne soyez pas trop exigeant.

Une version améliorée du script précédent est disponible en ligne°.

16.4 Outil de formatage automatique du code

Se souvenir de toutes les régles PEP 8 est fastidieux. |l existe des outils pour formater automatiquement le code
Python pour qu'il soit conforme a la PEP 8. L'outil le plus connu est black.

Cet outil n'est pas fourni dans l'installation de base de Python et doit étre installé sur votre machine. Avec la
distribution Miniconda, cette étape d'installation se résume a une ligne de commande :

$ conda 1install -c conda-forge black

Voici un exemple d'utilisation :

$ black script_quality_not_ok.py
reformatted script_quality_not_ok.py

All done!
1 file reformatted.

9. https://python.sdv.u-paris.fr/data-files/script_quality_ok.py

Cours de Python / Université Paris Cité / UFR Sciences du Vivant 171

https://python.sdv.u-paris.fr/data-files/script_quality_ok.py

Chapitre 16. Bonnes pratiques en programmation Python 16.5. Organisation du code

Le script script_quality_not_ok.py a été modifié pour étre conforme a la PEP 8, ce qu'on peut vérifier avec
pycodestyle :

$ pycodestyle script_quality_not_ok.py

qui ne renvoie aucune erreur.

black peut modifier votre code de maniére significative. Il est donc recommandé de I'utiliser avec I'option —-diff
au préalable pour afficher les modifications apportées. Par exemple, avec le programme script_quality_not_ok.py
qui n'aurait pas été modifié :

$ black --diff script_quality_not_ok.py
--- script_quality_not_ok.py 2024-02-05 12:07:04.851491+00:00
+++ script_quality_not_ok.py 2024-02-05 12:07:10.418009+00:00
@@ -1,11 +1,12 @@

"""Un script de multiplication.

import os

-def Multiplie_nombres(nombrel,nombre2):
¥

+def Multiplie_nombres(nombrel, nombre2):

[...]

Conseil

black est trés pratique. N'hésitez pas a |'utiliser pour formater automatiquement votre code.

Attention

e black ne fait qu'une entorse a la PEP 8 : il autorise des longueurs de lignes jusqu’'a 88 caracteéres. Si vous souhaitez
respecter strictement la PEP 8, utilisez I'option --1ine-length 79.

e black se limite a la PEP 8. Il ne vérifie pas la conformité avec la PEP 257 ni la qualité du code (imports inutiles,
etc.). Utilisez toujours pydocstyle et pylint en complément.

16.5 Organisation du code

Il est important de toujours structurer son code de la méme maniére. Ainsi, on sait tout de suite ou trouver |'information
et un autre programmeur pourra s'y retrouver. Voici un exemple de code avec les différents éléments dans le bon ordre :

172 Cours de Python / Université Paris Cité / UFR Sciences du Vivant

16.6. Conseils sur la conception d'un script Chapitre 16. Bonnes pratiques en programmation Python

"""Docstring d'une ligne décrivant briévement ce que fait le programme.

python nom_de_ce_super_script.py argumentl argument2

argumentl: un entier signifiant un truc
argument2: une chaine de caracteres décrivant un bidule

__authors__ = ("Johny B Good", "Hubert de la Pate Feuilletée")
__contact__ = ("johny@bgood.us", "hub@pate.feuilletee.fr")
__copyright__ = "MIT"

__date__ = "2030-01-01"

__version__ = "1.2.3"

import module_interne
import module_interne_2 as mod2

import module_externe
import my_module

UNE_CONSTANTE = valeur

def une_fonction_complexe(argl, arg2, arg3):
"""Résumé de la docstring décrivant la fonction.

Description détaillée.

faoo]

return une_chose

def une_fonction_simple(argl, arg2):
"""Docstring d'une ligne décrivant la fonction."""
[...]

return autre_chose

if __name__ == "__main__":
Ici débute le programme principal.
Loool

e Lignes 1 a4 9. Cette docstring décrit globalement le script. Cette docstring (ainsi que les autres) seront visibles si
on importe le script en tant que module, puis en invoquant la commande help() (voir chapitre 15 Création de
modules).

e Lignes 11 a 15. On définit ici un certain nombre de variables avec des doubles underscores donnant quelques
informations sur la version du script, les auteurs, etc. Il s'agit de métadonnées que la commande help() pourra
afficher. Ces métadonnées sont utiles lorsque le code est distribué a la communauté.

e Lignes 17 a 22. Importation des modules. D'abord les modules internes a Python (fournis en standard), puis les
modules externes (ceux qu'il faut installer en plus), puis les modules créés localement. Un module par ligne.

e Ligne 24. Définition des constantes. Le nom des constantes est en majuscule.

e Lignes 27 a 39. Définition des fonctions. Avant chaque fonction, on laisse deux lignes vides.

e Lignes 42 a 44. On écrit le programme principal. Le test ligne 42 n’est vrai que si le script est utilisé en tant que
programme.

16.6 Conseils sur la conception d’un script

Voici quelques conseils pour vous aider a concevoir un script Python.

o Réfléchissez avec un papier, un crayon... et un cerveau (voire méme plusieurs) ! Reformulez avec vos propres mots
les consignes qui vous ont été données. Dessinez des schémas si cela vous aide.

e Découpez en fonctions chaque élément de votre programme. Vous pourrez ainsi tester chaque élément indépen-

Cours de Python / Université Paris Cité / UFR Sciences du Vivant 173

Chapitre 16. Bonnes pratiques en programmation Python 16.7. Pour terminer : la PEP 20

damment du reste. Pensez a écrire les docstrings en méme temps que vous écrivez vos fonctions.

e Documentez-vous. L'algorithme dont vous avez besoin existe-t-il déja dans un autre module? De quels outils
mathématiques avez-vous besoin dans votre algorithme ?

e Quand I'algorithme est complexe, commentez votre code pour expliquer votre raisonnement. Utiliser des fonctions
(ou méthodes) encore plus petites peut aussi étre une solution.

e Utilisez des noms de variables explicites, qui signifient quelque chose. En lisant votre code, on doit comprendre
ce que vous faites. Choisir des noms de variables pertinents permet aussi de réduire les commentaires.

e Quand vous construisez une structure de données complexe (par exemple une liste de dictionnaires contenant
d'autres objets), documentez |'organisation de cette structure de données avec un exemple simple.

e Si vous créez ou manipulez une entité cohérente avec des propriétés propres, essayez de construire une classe.
Reportez-vous, pour cela, au chapitre 23 Avoir la classe avec les objets.

e Testez votre code sur un petit jeu de données, pour comprendre rapidement ce qui se passe et corriger d'éven-
tuelles erreurs. Par exemple, une séquence d’ADN de 1 000 bases est plus facile a manipuler que le génome humain
(3 x 10° bases) !

e Lorsque votre programme « plante », lisez le message d’erreur. Python tente de vous expliquer ce qui ne va pas.
Le numéro de la ligne qui pose probléme est aussi indiqué.

e Discutez avec des gens. Faites tester votre programme par d'autres. Les instructions d'utilisation sont-elles
claires?

e Enfin, si vous distribuez votre code :

— Rédigez une documentation claire.
— Testez votre programme (jetez un ceil aux tests unitaires
— Précisez une licence d'utilisation (voir le site Choose an open source license

10)
11)

16.7 Pour terminer : la PEP 20

La PEP 20 est une sorte de réflexion philosophique avec des phrases simples qui devraient guider tout programmeur.
Comme les développeurs de Python ne manque pas d'humour, celle-ci est accessible sous la forme d'un « ceuf de Paques
» (easter egg, en anglais) ou encore « fonctionnalité cachée d'un programme » en important un module nommé this :

>>> qmport this
The Zen of Python, by Tim Peters

Beautiful is better than ugly.

Explicit is better than implicit.

Simple 1is better than complex.

Complex is better than complicated.

Flat is better than nested.

Sparse 1is better than dense.

Readability counts.

Special cases aren't special enough to break the rules.

Although practicality beats purity.

Errors should never pass silently.

Unless explicitly silenced.

In the face of ambiguity, refuse the temptation to guess.

There should be one-- and preferably only one --obvious way to do it.
Although that way may not be obvious at first unless you're Dutch.
Now 1is better than never.

Although never 1is often better than *rightx now.

If the implementation is hard to explain, it's a bad idea.

If the implementation is easy to explain, it may be a good 1idea.
Namespaces are one honking great idea -- let's do more of those!

Et si I'aventure et les easter eggs vous plaisent, testez également la commande

>>> dmport antigravity

Il vous faudra un navigateur et une connexion internet.

10. https://fr.wikipedia.org/wiki/Test_unitaire
11. https://choosealicense.com/

174 Cours de Python / Université Paris Cité / UFR Sciences du Vivant

https://fr.wikipedia.org/wiki/Test_unitaire
https://choosealicense.com/

16.7. Pour terminer : la PEP 20 Chapitre 16. Bonnes pratiques en programmation Python

Pour aller plus loin
e L'article Python Code Quality : Tools & Best Practices'? du site Real Python est une ressource intéressante pour

explorer plus en détail la notion de qualité pour un code Python. De nombreux linters y sont présentés.
e Les articles Assimilez les bonnes pratiques de la PEP 82 du site OpenClassrooms et Structuring Python Programs
du site Real Python rappellent les regles d'écriture et les bonnes pratiques vues dans ce chapitre.

14

12. https://realpython.com/python-code-quality/
13. https://openclassrooms.com/fr/courses/4425111-perfectionnez-vous-en-python/4464230-assimilez-les-bonnes-pratiqu

14. https://realpython.com/python-program-structure/

Cours de Python / Université Paris Cité / UFR Sciences du Vivant 175

https://realpython.com/python-code-quality/
https://openclassrooms.com/fr/courses/4425111-perfectionnez-vous-en-python/4464230-assimilez-les-bonnes-pratiques-de-la-pep-8
https://realpython.com/python-program-structure/

CHAPITRE 17

Expressions régulieres et parsing

Le module re permet d'utiliser des expressions régulieres avec Python. Les expressions régulieres sont aussi appelées
en anglais regular expressions, ou en plus court regex. Dans la suite de ce chapitre, nous utiliserons souvent le mot regex
pour désigner une expression réguliere. Les expressions réguliéres sont puissantes et incontournables en bioinformatique,
surtout lorsque vous souhaitez récupérer des informations dans de gros fichiers.

Cette action de recherche de données dans un fichier est appelée généralement parsing (qui signifie littéralement «
analyse syntaxique »). Le parsing fait partie du travail quotidien du bioinformaticien, il est sans arrét en train de « fouiller
» dans des fichiers pour en extraire des informations d'intérét, par exemple récupérer les coordonnées 3D des atomes
d'une protéine dans un fichier PDB, ou encore extraire les genes d'un fichier GenBank.

Dans ce chapitre, nous ne ferons que quelques rappels sur les expressions régulieres. Pour une documentation plus
compléte, référez-vous a la page d'aide des expressions régulieres® sur le site officiel de Python.

17.1 Définition et syntaxe

Une expression réguliere est une suite de caractéres qui a pour but de décrire un fragment de texte. Cette suite de
caractéres est encore appelée motif (en anglais, pattern), qui est constitué de deux types de caracteéres :

e les caractéres dits normaux;

e les métacaractéres ayant une signification particuliére, par exemple le caractére » signifie début de ligne, et non

pas le caractere « chapeau » littéral.

Avant de présenter les regex en Python, nous allons faire un petit détour par Unix. En effet, certains programmes,
comme egrep, sed ou encore awk, savent interpréter les expressions régulieres. Tous ces programmes fonctionnent
généralement selon le schéma suivant :

e le programme lit un fichier ligne par ligne;

e pour chaque ligne lue, si I'expression réguliére passée en argument est retrouvée dans la ligne, alors le programme

effectue une action.

Par exemple, pour le programme egrep :

$ egrep "ADEF" herp_virus.gbk
DEFINITION Human herpesvirus 2, complete genome.

Ici, egrep affiche toutes les lignes du fichier du virus de 'herpés (herp_virus.gbk) dans lesquelles la regex "DEF
(c’est-a-dire le mot DEF en début de ligne) est retrouvée.

1. https://docs.python.org/fr/3/library/re.html

176

https://docs.python.org/fr/3/library/re.html

17.1. Définition et syntaxe Chapitre 17. Expressions réguliéres et parsing

Remarque

Il est intéressant de faire un point sur le vocabulaire utilisé en anglais et en francais. En général, on utilise le verbe
to match pour indiquer qu'une regex « a fonctionné ». Bien qu'il n'y ait pas de traduction littérale en francais, on peut
utiliser les verbes « retrouver » ou « correspondre ». Par exemple, on pourra traduire I'expression « The regex matches
the line » par « La regex est retrouvée dans la ligne » ou encore « La regex correspond dans la ligne ».

Apreés avoir introduit le vocabulaire des regex, voici quelques éléments de syntaxe des métacaracteres :
A Début de chaine de caracteéres ou de ligne.
Exemple : la regex "ATG est retrouvée dans la chafne de caracteres ATGCGT mais pas dans la chaine CCATGTT.

$ Fin de chaine de caractéres ou de ligne.

Exemple : la regex ATGS est retrouvée dans la chafne de caracteres TGCATG mais pas dans la chaine CCATGTT.
. N'importe quel caractére (mais un caractére quand méme).

Exemple : la regex A.G est retrouvée dans ATG, AtG, A4G, mais aussi dans A-G ou dans A G.

[ABC] Le caractére A ou B ou C (un seul caractére).
Exemple : la regex T[ABC]G est retrouvée dans TAG, TBG ou TCG, mais pas dans TG.
[A-Z] N’importe quelle lettre majuscule.
Exemple : la regex C[A-Z]T est retrouvée dans CAT, CBT, CCT...
[a-z] N’importe quelle lettre minuscule.
[6-9] N'importe quel chiffre.
[A-Za-z0-9] N'importe quel caractére alphanumérique.
[AAB] N'importe quel caractére sauf A et B.
Exemple : la regex CG[AAB]T est retrouvée dans CGOT, CGCT... mais pas dans CGAT ni dans CGBT.
\ Caractére d'échappement (pour protéger certains caractéres).
Exemple : la regex \+ désigne le caractére + littéral. La regex A\ .G est retrouvée dans A.G et non pas dans A suivi
de n'importe quel caractére, suivi de G.
* 0 a n fois le caractére précédent ou I'expression entre parenthéses précédente.
Exemple : la regex A(CG) *T est retrouvée dans AT, ACGT, ACGCGT...
+ 1 a n fois le caractére précédent ou I'expression entre parenthéses précédente.
Exemple : la regex A(CG)+T est retrouvée dans ACGT, ACGCGT... mais pas dans AT.

-~

0 a 1 fois le caractére précédent ou |'expression entre parenthéses précédente.
Exemple : la regex A(CG) ?T est retrouvée dans AT ou ACGT.
{n} nfois le caractére précédent ou |'expression entre parenthéses précédente.
Exemple : la regex A(CG) {23} T est retrouvée dans ACGCGT mais pas dans ACGT, ACGCGCGT ou ACGCG.
{n,m} n 3 m fois le caractére précédent ou |'expression entre parenthéses précédente.
Exemple : la regex A(C){2,4}T est retrouvée dans ACCT, ACCCT et ACCCCT mais pas dans ACT, ACCCCCT ou ACCC.

{n,} Au moins n fois le caractére précédent ou |'expression entre parenthéses précédente.
Exemple : la regex A(C){2,3}T est retrouvée dans ACCT, ACCCT et ACCCCT mais pas a ACT ou ACCC.

{,m} Au plus m fois le caractére précédent ou |'expression entre parenthéses précédente.
Exemple : la regex A(C){,23}T est retrouvée dans AT, ACT et ACCT mais pas dans ACCCT ou ACC.

(CG|TT) Les chaines de caractéres CG ou TT.
Exemple : la regex A(CG|TT)C est retrouvée dans ACGC ou ATTC.

Enfin, il existe des caractéres spéciaux qui sont bien commodes et qui peuvent étre utilisés en tant que métacaracteéres :
\d remplace n'importe quel chiffre (d signifie digit), équivalent a [0-9].

\w remplace n'importe quel caractére alphanumérique et le caractére souligné (underscore) (w signifie word character),
équivalent a [0-9A-Za-z_].

Cours de Python / Université Paris Cité / UFR Sciences du Vivant 177

Chapitre 17. Expressions réguliéres et parsing 17.2. Quelques ressources en ligne

178

\'s remplace n'importe quel « espace blanc » (whitespace) (s signifie space), équivalent a [\t\n\r\f]. La notion
d’'espace blanc a été abordée dans le chapitre 11 Plus sur les chaines de caractéres. Les espaces blancs les plus
classiques sont I'espace , la tabulation \t, le retour a la ligne \n, mais il en existe d'autres comme \r et \ f que nous
ne développerons pas ici. \s est trés pratique pour détecter une combinaison d'espace(s) et/ou de tabulation(s).

Comme vous le constatez, les métacaractéres sont nombreux et leur signification est parfois difficile a maitriser. Faites
particulierement attention aux métacaracteres ., + et x qui, combinés ensemble, peuvent donner des résultats ambigus.

Attention

Il est important de savoir par ailleurs que les regex sont « avides » (greedy en anglais) lorsqu’on utilise les métaca-
ractéres + et *. Cela signifie que la regex cherchera a « s'étendre » au maximum. Par exemple, si on utilise la regex A+
pour faire une recherche dans la chaine TTTAAAAAAAAGC, tous les A de cette chaine (huit en tout) seront concernés, bien
que AA, AAA, etc. « fonctionnent » également avec cette regex.

17.2 Quelques ressources en ligne

Nous vous conseillons de tester systématiquement vos expressions régulieres sur des exemples simples. Pour vous
aider, nous vous recommandons plusieurs sites internet :

e RegexOne? : tutoriel en ligne trés bien fait.

e RegExr? et ExtendsClass* : visualisent tous les endroits ot une regex est retrouvée dans un texte.

e pythex.org® : interface simple et efficace, dédiée & Python.

e Regular-Expressions.info® : documentation exhaustive sur les regex (il y a méme une section sur Python).

N'hésitez pas a explorer ces sites avant de vous lancer dans les exercices ou dans |'écriture de vos propres regex !

17.3 Le module re

17.3.1 La fonction search()

Dans le module re, la fonction search() est incontournable. Elle permet de rechercher un motif, c'est-a-dire une
regex, au sein d'une chaine de caractéres avec une syntaxe de la forme search(motif, chaine). Simotif est retrouvé
dans chaine, Python renvoie un objet du type SRE_Match.

Sans entrer dans les détails propres au langage orienté objet, si on utilise un objet du type SRE_Match dans un test,
il sera considéré comme vrai. Par exemple, si on recherche le motif tigre dans la chaine de caractéres "girafe tigre

singe

>>> dmport re

>>> animaux = '"girafe tigre singe"

>>> re.search("tigre", animaux)

<_sre.SRE_Match object at 0x7fefdaefe2a0>

>>> if re.search("tigre", animaux):
print("OK")

OK

Attention
Le motif que vous utilisez comme premier argument de la fonction search () sera interprété en tant que regex. Ainsi,
ADEF correspondra au mot DEF en début de chaine et pas au caractere littéral Asuivi du mot DEF.

https://regexone.com/

https://regexr.com/
https://extendsclass.com/regex-tester.html#python
https://pythex.org/
https://www.regular-expressions.info

oukrwbd

Cours de Python / Université Paris Cité / UFR Sciences du Vivant

https://regexone.com/
https://regexr.com/
https://extendsclass.com/regex-tester.html#python
https://pythex.org/
https://www.regular-expressions.info

17.3. Le module re Chapitre 17. Expressions réguliéres et parsing

17.3.2 Les fonctions match() et fullmatch()

Il existe aussi la fonction match() dans le module re qui fonctionne sur le modéle de search(). La différence est
qu’elle renvoie un objet du type SRE_Match seulement lorsque la regex correspond au début de la chaine de caractéres
(3 partir du premier caractere) :

>>> animaux = '"girafe tigre singe"

>>> re.search("tigre", animaux)

<_sre.SRE_Match object at 0x7fefdaefe718>

>>> re.match("tigre", animaux)

>>>

>>> animaux = "tigre singe"

>>> re.match("tigre", animaux)

<_sre.SRE_Match object; span=(0, 5), match='tigre'>
>>>

Il existe également la fonction fullmatch (), qui renvoie un objet du type SRE_Match si et seulement si |'expression
réguliere correspond exactement a la chaine de caracteres.

>>> animaux = "tigre "
>>> re.fullmatch("tigre", animaux)
>>> animaux = "tigre"

>>> re.fullmatch("tigre", animaux)
<_sre.SRE_Match object; span=(0, 5), match='tigre'>

De maniére générale, nous vous recommandons |'usage de la fonction search(). Si vous souhaitez avoir une cor-
respondance avec le début de la chaine de caractéres comme dans la fonction match (), vous pouvez toujours utiliser
I'accroche de début de ligne . Si vous voulez une correspondance exacte, comme dans la fonction fullmatch(), vous
pouvez utiliser les métacaractéres * et S, par exemple tigres.

17.3.3 Compilation d’expressions régulieres

Lorsqu'on a besoin de tester la méme expression réguliére sur plusieurs milliers de chaines de caractéres, il est pratique
de compiler préalablement la regex a |'aide de la fonction compile(), qui renvoie un objet de type SRE_Pattern :
>>> regex = re.compile("*tigre")

>>> regex
<_sre.SRE_Pattern object at Ox7fefdafdodfo>

On peut alors utiliser directement cet objet avec la méthode .search() :

>>> animaux = "girafe tigre singe"
>>> regex.search(animaux)
>>> animaux = "tigre singe"

>>> regex.search(animaux)

<_sre.SRE_Match object at 0x7fefdaefe718>
>>> animaux = "singe tigre"

>>> regex.search(animaux)

17.3.4 Groupes

L'intérét de I'objet de type SRE_Match renvoyé par Python lorsqu’une regex trouve une correspondance dans une
chalne de caractéres est de pouvoir ensuite récupérer certaines zones précises :

>>> regex = re.compile("([0-9]+)\.([06-9]+)")

Dans cet exemple, on recherche un nombre décimal, c’est-a-dire une chaine de caractéres :
e qui débute par un ou plusieurs chiffres [0-9]+,
e suivi d'un point \. (le point a d'habitude une signification de métacaractére, donc il faut I'échapper avec \ pour
qu'il retrouve sa signification de point),
e et qui se termine encore par un ou plusieurs chiffres [0-9]+.
Les parenthéses dans la regex créent des groupes ([0-9]+ deux fois) qui seront récupérés ultérieurement par la
méthode .group().

Cours de Python / Université Paris Cité / UFR Sciences du Vivant 179

Chapitre 17. Expressions réguliéres et parsing 17.3. Le module re

180

>>> resultat = regex.search("pi vaut 3.14")
>>> resultat.group(0)
'3.14'

>>> resultat.group(1)
|3l

>>> resultat.group(2)
|14|

>>> resultat.start()
8

>>> resultat.end()

12

La totalité de la correspondance est donnée par .group(0), le premier élément entre parenthéses est donné par
.group (1) et le second par .group(2).
Les méthodes .start() et .end() donnent respectivement la position de début et de fin de la zone qui correspond
a la regex. Notez que la méthode .search() ne renvoie que la premiére zone qui correspond a |'expression réguliere,
méme s'il en existe plusieurs :
>>> resultat = regex.search("pi vaut 3.14 et e vaut 2.72")

>>> resultat.group(0)
'3.14"

17.3.5 La méthode .findall()

Pour récupérer chaque zone dans la regex, s'il y en a plusieurs, vous pouvez utiliser la méthode .findall() qui
renvoie une liste des éléments en correspondance :
>>> regex = re.compile("[0-9]+\.[0-9]+")
>>> resultat = regex.findall("pi vaut 3.14 et e vaut 2.72")

>>> resultat
['3.14', '2.72']

L'utilisation des groupes entre parenthéses est également possible, ceux-ci sont alors renvoyés sous la forme de tuples :

>>> regex = re.compile("([0-9]+)\.([6-9]+)")

>>> resultat = regex.findall("pi vaut 3.14 et e vaut 2.72")
>>> resultat

('3, '14'), ('2', '72")]

17.3.6 La méthode .sub()

Enfin, la méthode .sub() permet d'effectuer des remplacements assez puissants. Par défaut, la méthode .sub(
chainel, chaine2) remplace toutes les occurrences trouvées par |'expression réguliere dans chaine2 par chainel.
Si vous souhaitez ne remplacer que les n premiéres occurrences, utilisez I'argument count=n :

>>> regex = re.compile("[0-9]+\.[0-9]+")

>>> regex.sub("quelque chose", "pi vaut 3.14 et e vaut 2.72")
'pi vaut quelque chose et e vaut quelque chose'
>>> regex.sub("quelque chose", "pi vaut 3.14 et e vaut 2.72", count=1)

'pi vaut quelque chose et e vaut 2.72'

Encore plus puissant, il est possible d'utiliser dans le remplacement des groupes qui ont été « capturés » avec des
parentheses :
>>> regex = re.compile("([0-9]+)\.([6-9]+)")
>>> phrase = "pi vaut 3.14 et e vaut 2.72"
>>> regex.sub("approximativement \\1", phrase)
'pi vaut approximativement 3 et e vaut vaut approximativement 2'

>>> regex.sub("approximativement \\1 (puis .\\2)",phrase)
'pi vaut approximativement 3 (puis .14) et e vaut approximativement 2 (puis .72)'

Si vous avez capturé des groupes, il suffit d'utiliser \\1, \\2 (etc.) pour utiliser les groupes correspondants dans la

chaine de caracteres substituée. On notera que la syntaxe générale pour récupérer des groupes dans les outils qui gérent
les regex est \1, \2, etc. Toutefois, Python nous oblige a mettre un deuxiéme backslash car il y a ici deux niveaux : un

Cours de Python / Université Paris Cité / UFR Sciences du Vivant

17.4. Exercices Chapitre 17. Expressions réguliéres et parsing

premier niveau Python ol on veut mettre un backslash littéral (donc \\), puis un second niveau regex dans lequel on
veut retrouver \1. Si cela est confus, retenez seulement qu'il faut mettre un \\ devant le numéro de groupe.
Enfin, sachez que la réutilisation d'un groupe précédemment capturé est aussi utilisable lors d'une utilisation classique
de regex. Par exemple :
>>> re.search("(pan)\\1", "bambi et panpan")
<_sre.SRE_Match object; span=(9, 15), match='panpan'>

>>> re.search("(pan)\\1", "le pistolet a fait pan !")
>>>

Dans la regex (pan)\\1, on capture d’abord le groupe (pan) gréce aux parentheéses (il s'agit du groupe 1, puisque
c'est le premier jeu de parenthéses), immédiatement suivi du méme groupe grace au \\1. Dans cet exemple, on capture
donc le mot panpan (lignes 1 et 2). Si, par contre, on a une seule occurrence du mot pan, cette regex ne fonctionne
pas, ce qui est le cas ligne 3.

Bien sir, si on avait eu un deuxieme groupe, on aurait pu le réutiliser avec \\2, un troisieme groupe avec \\3, etc.

Nous espérons vous avoir convaincu de la puissance du module re et des expressions réguliéres. Alors, plus de temps
a perdre, a vos regex !

17.4 Exercices

Conseil
Pour ces exercices, créez des scripts puis exécutez-les dans un shell.

17.4.1 Regex de base

Dans cet exercice, nous allons manipuler le fichier GenBank NC_001133.gbk ’ correspondant au chromosome | de Ia
levure Saccharomyces cerevisiae.
Créez un script regex_genbank.py :
e qui recherche le mot DEFINITION en début de ligne dans le fichier GenBank, puis affiche la ligne correspondante;
e qui recherche tous les journaux (mot-clé JOURNAL) dans lesquels ont été publiés les travaux sur cette séquence,
puis affiche les lignes correspondantes.

Conseil
e Utilisez des regex pour trouver les lignes demandées.
e Des explications sur le format GenBank et des exemples de code sont fournies dans I'annexe A Quelques formats
de données en biologie.

17.4.2 Enzyme de restriction

Une enzyme de restriction est une protéine capable de couper une molécule d'’ADN. Cette coupure se fait sur le site
de restriction de I'ADN qui correspond a une séquence particuliere de nucléotides (bases).

Pour chacune des enzymes ci-dessous, déterminez les expressions régulieres qui décrivent leurs sites de restriction. Le
symbole N correspond aux bases A, T, C ou G. W correspond a A ou T. Y correspond a C ou T. R correspond a A ou G.

Enzyme Site de restriction

HinFlI GANTC
EcoRlI CCWGG
BbvBI GGYRCC
Bcol CYCGRG
Psp5ll RGGWCCY

7. https://python.sdv.u-paris.fr/data-files/NC_001133.gbk

Cours de Python / Université Paris Cité / UFR Sciences du Vivant

181

https://python.sdv.u-paris.fr/data-files/NC_001133.gbk

Chapitre 17. Expressions réguliéres et parsing 17.4. Exercices

182

Enzyme Site de restriction

BbvAl GAANNNNTTC

17.4.3 Nettoyeur d’espaces

Le fichier cigale_fourmi.txt® contient la célebre fable de Jean de la Fontaine. Malheureusement, la personne qui
I'a recopié a parfois mis plusieurs espaces au lieu d'un seul entre les mots.

Créez un script cigale_fourmi.py qui, grace a une regex et a la fonction sub (), remplace plusieurs espaces par un
seul dans le texte ci-dessus. Le nouveau texte, ainsi nettoyé, sera enregistré dans un fichier cigale_fourmi_propre.txt.

17.4.4 Liste des protéines humaines

Téléchargez le fichier human-proteome.fasta® qui contient le protéome humain, c'est-a-dire les séquences de
I’ensemble des protéines chez I'Homme. Ce fichier est au format FASTA.
On souhaite lister toutes ces protéines et les indexer avec un numéro croissant.
Créez un script liste_proteome.py qui :
e lit le fichier human-proteome. fasta;
e extrait, avec une regex, le numéro d'accession de la protéine de toutes les lignes de commentaires des séquences;
e affiche le mot protein, suivi d'un numéro qui s'incrémente, suivi du numéro d’accession.
Voici un exemple de sortie attendue :
protein 00001 095139
protein 00002 075438

protein 00003 Q8N4C6

[...]

protein 20371 Q8IzJ1
protein 20372 Q9UKP6
protein 20373 Q96HZ7

Conseil
e Des explications sur le format FASTA et des exemples de code sont fournis dans I'annexe A Quelques formats de
données en biologie.
e La ligne de commentaire d'une séquence au format FASTA est de la forme
>sp| 095139 |NDUB6_HUMAN NADH dehydrogenase [...]
Elle débute toujours pas le caractere >. Le numéro d'accession 095139 se situe entre le premier et le second symbole
| (symbole pipe). Attention, il faudra « échapper » ce symbole car il a une signification particuliére dans une regex.
e Le numéro qui s'incrémente débutera a 1 et sera affiché sur 5 caractéres, avec des 0 a sa gauche si nécessaires
(formatage {:05d}).

17.4.5 Le défi du dé-HTMLiseur (exercice +++)

Le format HTML permet d'afficher des pages web dans un navigateur. |l s'agit d'un langage a balise qui fonctionne
avec des balises ouvrantes <balise> et des balises fermantes </balise>.

Créez un script dehtmliseur.py qui lit le fichier fichier_a_dehtmliser.htm
a I'écran tout le texte de ce fichier sans les balises HTML.

Nous vous conseillons tout d'abord d'ouvrir le fichier HTML dans un éditeur de texte et de bien I'observer. N'hésitez
pas a vous aider des sites mentionnés dans les ressources en ligne.

119 au format HTML et qui renvoie

17.4.6 Nettoyeur de doublons (exercice +++)

Téléchargez le fichier breves_doublons.txt ' qui contient des mots répétés deux fois. Par exemple :

8. https://python.sdv.u-paris.fr/data-files/cigale_fourmi.txt

9. https://python.sdv.u-paris.fr/data-files/human-proteome. fasta

10. https://python.sdv.u-paris.fr/data-files/fichier_a_dehtmliser.html
11. https://python.sdv.u-paris.fr/data-files/breves_doublons.txt

Cours de Python / Université Paris Cité / UFR Sciences du Vivant

https://python.sdv.u-paris.fr/data-files/cigale_fourmi.txt
https://python.sdv.u-paris.fr/data-files/human-proteome.fasta
https://python.sdv.u-paris.fr/data-files/fichier_a_dehtmliser.html
https://python.sdv.u-paris.fr/data-files/breves_doublons.txt

17.4. Exercices Chapitre 17. Expressions réguliéres et parsing

Le cinéma est devenu parlant, la radio radio finira en images.
La sardine, c'est un petit petit poisson sans téte qui vit dans l'huile.

[...]

Ecrivez un script ote_doublons.py qui lit le fichier breves_doublons.txt et qui supprime tous les doublons a
I'aide d'une regex. Le script affichera le nouveau texte a |'écran.

Conseil
Utilisez la méthode .sub ().

Cours de Python / Université Paris Cité / UFR Sciences du Vivant 183

CHAPITRE 18

Jupyter et ses notebooks

Les notebooks Jupyter sont des cahiers électroniques qui, dans le méme document, peuvent rassembler du texte,
des images, des formules mathématiques, des tableaux, des graphiques et du code informatique exécutable. lls sont
manipulables interactivement dans un navigateur web.

Initialement développés pour les langages de programmation Julia, Python et R (d'ou le nom Jupyter), les notebooks
Jupyter supportent prés de 40 langages différents.

La cellule est I'élément de base d'un notebook Jupyter. Elle peut contenir du texte formaté au format Markdown ou
du code informatique qui pourra étre exécuté.

Voici un exemple de notebook Jupyter (figure 18.1) :

Ce notebook est constitué de cinq cellules : deux avec du texte en Markdown (la premiére et la derniére) et trois avec
du code Python (légérement grisées).

18.1 Installation

Avec la distribution Miniconda, les notebooks Jupyter s'installent avec la commande :

$ conda install -c conda-forge -y jupyterlab

Pour étre exact, la commande précédente installe un peu plus que les notebooks Jupyter, mais nous verrons cela par
la suite.

18.2 JupyterLab

En 2018, le consortium Jupyter a lancé JupyterLab, qui est un environnement complet de programmation et d'analyse
de données.

Pour obtenir cette interface, lancez la commande suivante depuis un shell :

$ jupyter lab

Une nouvelle page devrait s'ouvrir dans votre navigateur web et vous devriez obtenir une interface similaire a la figure
18.2, avec a gauche un navigateur de fichiers et a droite le « Launcher », qui permet de créer un nouveau notebook
Jupyter, de lancer un terminal ou d'éditer un fichier texte, un fichier Mardown, un script Python...

L'interface proposée par JupyterLab est trés riche. On peut y organiser un notebook Jupyter, un éditeur de fichier
texte, un terminal.. Les possibilités sont nombreuses et nous vous invitons a explorer cette interface par vous-méme.

184

18.3. Création d'un notebook Chapitre 18. Jupyter et ses notebooks

M| jupyter-exemple.ipynb X |+
B+ X MO OB » 8 ¢ » Markdown v # Python 3 (ipykernel) O

Exemple de notebook Jupyter

Cette cellule contient du texte formaté en Markdown.

On peut ajouter du texte en gras ou bien en italique.

Cette cellule contient du code Python
qul est exécuté.
print("Hello Python !")

Hello Python !

Une autre cellule avec du code Python
mais qui ne renvoie rien.
o def ma_fonction(x):
return x + 2

Une autre cellule avec du code Python

mais qui renvoie quelque chose.

Méme si la fonction print() n'est pas utilisé

ce comportement ressemble a celui de 1'interpréteur Python.
ma_fonction(3)

5

B ™

I+
o
]

~ Encore du texte

o avec une équation:

T
H'i =n!

i=1

FIGURE 18.1 — Exemple de notebook Jupyter. Les chiffres entourés désignent les différentes cellules.

18.3 Création d’'un notebook

Pour créer un notebook, cliquez sur le bouton Python 3 situé dans la rubrique Notebook dans le Launcher (figure
18.3).

Le notebook fraichement créé ne contient qu'une cellule vide.

La premiére chose a faire est de donner un nom a votre notebook. Pour cela, cliquer avec le bouton droit de la souris
sur Untitled.ipynb, en haut du notebook. Si le nom de votre notebook est test.ipynb, alors le fichier test.ipynb sera créé
dans le répertoire depuis lequel vous avez lancé JupyterLab.

Remarque
L'extension .ipynb est |'extension de fichier des notebooks Jupyter.

Vous pouvez entrer des instructions Python dans la premiere cellule. Par exemple :

Cours de Python / Université Paris Cité / UFR Sciences du Vivant

185

Chapitre 18. Jupyter et ses notebooks

18.3. Création d'un notebook

: File Edit View Run Kernel Tabs Settings Help
[* & Launcher o
o ‘Fitterfitesbyname Q‘
- 3
./ |E| Notebook
Name - Last Modified

A jupyter-exemple.ipynb
jupyter-logo.png
A testipynb

46 seconds ago

46 seconds ago

46 seconds ago

FIGURE 18.2 — Interface de JupyterlLab.

: File Edit View Run Kernel Tabs Settings Help

A

Python 3
(ipykernel)

Console

Python 3
(ipykernel)

Other

Terminal

Text File

M
v

Markdown File

A

Python File

=1

Show
Contextual Help

[Launcher

B______________ 1’

- e o
‘ Filter files by name Q

o .

— Name - Last Modified

- [A] jupyter-exemple.ipynb 46 seconds ago

* M jupyter-logo.png 46 seconds ago

[test.ipynb

46 seconds ago

E Notebook

Python 3
(ipykernel)

~

Console

Python 3
(ipykernel)

FIGURE 18.3 — Création d'un nouveau notebook.

W untitled.ipynb
DO

Python 3 (ipykernel) O

BT L&

= |

FIGURE 18.4 — Nouveau notebook avec une cellule vide.

1 a=2
2 b =3
3 print(a+b)

186

Cours de Python / Université Paris Cité / UFR Sciences du Vivant

18.3. Création d'un notebook Chapitre 18. Jupyter et ses notebooks

Pour exécuter le contenu de cette cellule, vous avez plusieurs possibilités :

e Cliquer sur le menu Run, puis Run Selected Cells.

e Cliquer sur le bouton dans la barre de menu au dessus du notebook.

e Presser simultanément les touches Ctrl + Entrée.

Dans tous les cas, vous devriez obtenir un résultat similaire a la figure 18.5. La notation [1] a gauche de la cellule
indique qu'il s'agit de la premiére cellule de code qui a été exécutée.

test.ipynb e +
B + X O » m C » code v # python 3 (ipykernel) O
[11: a=2 o] s F 8
b=3
print(a+b)

I 5
FIGURE 18.5 — Exécution d'une premiére cellule.

Pour créer une nouvelle cellule, vous avez, ici encore, plusieurs possibilités :

e Cliquer sur I'icone + dans la barre de menu au dessus du notebook.

e Cliquer sur la 2e icone a partir de la droite (juste a c6té de la poubelle), dans les icénes situées a l'intérieur de la

cellule, a droite.

Une nouvelle cellule vide devrait apparaitre.

Vous pouvez également créer une nouvelle cellule, en positionnant votre curseur dans la premiere cellule, puis en
pressant simultanément les touches Alt + Entrée. Si vous utilisez cette combinaison de touches, vous remarquerez que
le numéro a gauche de la premiére cellule est passée de [1] a [2], car vous avez exécuté une nouvelle fois la premiére
cellule puis créé une nouvelle cellule.

Vous pouvez ainsi créer plusieurs cellules les unes a la suite des autres. Un objet créé dans une cellule antérieure sera
disponible dans les cellules suivantes. Par exemple, dans la figure 18.6, nous avons quatre cellules.

test.ipynb e |+
B + X O » m C » code v # Python 3 (ipykernel) O
a=2
b =3
print(a+b)
5

def ma fonction(x, y):
return x + y

ma_fonction(a, 10)

12
I [4]: ma_fonction("Bonjour", "Jupyter") B Mt ER e |
I [4]: 'BonjourJupyter'

FIGURE 18.6 — Notebook avec plusieurs cellules de code Python.

Dans un notebook Jupyter, il est parfaitement possible de réexécuter une cellule précédente. Par exemple la premiére
cellule, qui porte désormais a sa gauche la numérotation [5] (voir figure 18.7).

Cours de Python / Université Paris Cité / UFR Sciences du Vivant 187

Chapitre 18. Jupyter et ses notebooks 18.4. Le format Markdown

188

test.ipynb ® |+

B + XMO B » & C » code v # python 3 (ipykernel) O
a=2
b=3
print(a+b)
5

[2]: def ma_fonction(x, y): B ™ Vv & F R
return x + y

ma fonction(a, 10)

12
ma_fonction("Bonjour", "Jupyter")
'BonjourJupyter'’

FIGURE 18.7 — Notebook avec une cellule ré-exécutée.

Attention
La possibilité d'exécuter les cellules d'un notebook Jupyter dans un ordre arbitraire peut préter a confusion, notamment
si vous modifiez la méme variable dans plusieurs cellules.

Nous vous recommandons de régulierement relancer complétement |'exécution de toutes les cellules de votre notebook,
de la premiére a la derniére, en cliquant sur le menu Kernel puis Restart Kernel and Run All Cells et enfin de valider le
message Restart Kernel 7 en cliquant sur le bouton Restart.

18.4 Le format Markdown

Dans le tout premier exemple (figure 18.1), nous avons vu qu'il était possible de mettre du texte au format Markdown
dans une cellule.

Il faut cependant indiquer a Jupyter que cette cellule est au format Markdown en cliquant sur Code, sous la barre de
menu au dessus du notebook, puis en choisissant Markdown.

Le format Markdown permet de rédiger du texte formaté (gras, italique, liens, titres, images, formules mathéma-
tiques...) avec quelques balises trés simples. Voici un exemple dans un notebook Jupyter (figure 18.8 (A)) et le rendu
lorsque la cellule est exécutée (figure 18.8 (B)). Notez qu'une cellule Markdown est sur fond blanc (comme sur la figure
18.8 (B)).

Le format Markdown permet de rédiger du texte structuré rapidement et simplement. Ce cours est par exemple
complétement rédigé en Markdown. Nous vous conseillons d'explorer les possibilités du Markdown en consultant la page

Wikipédia ! ou directement la page de référence?.

18.5 Des graphiques dans les notebooks

Un autre intérét des notebooks Jupyter est de pouvoir y incorporer des graphiques réalisés avec la bibliotheque
matplotlib (que nous verrons prochainement).

Voici un exemple, d'un graphique qui sera présenté dans le chapitre 21 Module Matplotlib (figure 18.9).

L'instruction %matplotlib inline n'est pas nécessaire dans les versions récentes de JupyterLab. Mais avec d’'an-
ciennes versions, vous pourriez en avoir besoin pour que les graphiques s'affichent dans le notebook.

1. https://fr.wikipedia.org/wiki/Markdown
2. https://daringfireball.net/projects/markdown/syntax

Cours de Python / Université Paris Cité / UFR Sciences du Vivant

https://fr.wikipedia.org/wiki/Markdown
https://daringfireball.net/projects/markdown/syntax

18.6. Les magic commands Chapitre 18. Jupyter et ses notebooks

Remarque

Pour quitter I'interface JupyterLab, il y a plusieurs possibilités :

e Dans le menu en haut a gauche de l'interface, cliquer sur File, puis Shut Down, puis confirmer en cliquant sur le
bouton Shut Down.

e Une méthode plus radicale est de revenir sur le shell depuis lequel JupyterLab a été lancé, puis de presser deux fois
de suite la combinaison de touches Ctrl 4+ C.

18.6 Les magic commands

La commande précédente (%¥matplotlib inline) est une magic command. Les magic commands® apportent des
fonctionnalités supplémentaires dans un notebook. Il en existe beaucoup, nous allons en aborder ici quelques unes.

Remarque

Dans cette rubrique, nous vous montrerons quelques exemples d'utilisation de magic commands exécutées dans un
notebook Jupyter.

Les cellules de code apparaitront de cette maniére
dans un notebook Jupyter, avec des numéros de lignes a gauche.

Les résultats seront affichés de cette manieére,
éventuellement sur plusieurs lignes.

18.6.1 %whos

La commande %whos liste tous les objets (variables, fonctions, modules...) utilisés dans un notebook.
Si une cellule précédente contenait le code :

a =2
b =3

def ma_fonction(x, y):
return x +y

resultat_1 = ma_fonction(a, 10)
resultat_2 = ma_fonction("Bonjour", "Jupyter")

alors I'exécution de :

%whos

renvoie :
Variable Type Data/Info
a int 2
b int 3
ma_fonction function <function ma_fonction at 0x7f219c2d04a0>
resultat_1 int 12
resultat_2 str BonjourJupyter

18.6.2 %history

La commande %history liste toutes les commandes Python lancées dans un notebook :

%history

3. https://ipython.readthedocs.io/en/stable/interactive/magics.html

Cours de Python / Université Paris Cité / UFR Sciences du Vivant 189

https://ipython.readthedocs.io/en/stable/interactive/magics.html

Chapitre 18. Jupyter et ses notebooks 18.6. Les magic commands

190

a =2
b =3
print(a + b)
def ma_fonction(x, y):
return x + vy
ma_fonction(a, 10)
ma_fonction("Bonjour", "Jupyter")
%whos
%history

18.6.3 %%time

La commande %%time (avec deux symboles %) va mesurer le temps d’'exécution d'une cellule. C'est trés utile pour
faire des tests de performance. On peut, par exemple, comparer les vitesses de parcours d'une liste avec une boucle for,
par les éléments ou par les indices des éléments.

Ainsi, cette cellule :

%%time
concentrations = [5.5, 7.2, 11.8, 13.6, 19.1, 21.7, 29.4]
somme_carres = 0.0
for conc in concentrations:
somme_carres += CONnc**2

renvoie :

CPU times: user 8 ps, sys: 2 ps, total: 10 us
Wall time: 11.9 us

et celle-ci :

%%time
concentrations = [5.5, 7.2, 11.8, 13.6, 19.1, 21.7, 29.4]
somme_carres = 0.0
for idx in range(len(concentrations)):
somme_carres += concentrations[idx]*x2

renvoie :

CPU times: user 26 ps, sys: 5 ps, total: 31 ps
Wall time: 37.4 us

Comme attendu, la premiére méthode (itération par les éléments) est plus rapide que la seconde (itération par les
indices des éléments). Les temps obtenus dépendent de la machine sur laquelle vous exécutez ces commandes. Mais, sur
une méme machine, les résultats peuvent fluctuer d’une exécution a I'autre en fonction de I'activité de la machine. Ces
fluctuations seront d'autant plus importantes que le temps d’exécution est court.

18.6.4 % %timeit

Pour palier a ce probléeme, la magic command %%time1it va exécuter plusieurs fois la cellule et donner une estimation
du temps d'exécution moyen. Python détermine automatiquement le nombre d'itérations et le nombre de répétitions a
effectuer pour obtenir un temps global d'exécution raisonnable.
En reprenant I'exemple précédent, on obtient :
%%timeit
concentrations = [5.5, 7.2, 11.8, 13.6, 19.1, 21.7, 29.4]
somme_carres = 0.0

for conc in concentrations:
somme_carres += CONCx*2

492 ns + 11.8 ns per loop (mean + std. dev. of 7 runs, 1,000,000 loops each)

et

Cours de Python / Université Paris Cité / UFR Sciences du Vivant

18.7. Lancement d'une commande Unix Chapitre 18. Jupyter et ses notebooks

%%timeit
concentrations = [5.5, 7.2, 11.8, 13.6, 19.1, 21.7, 29.4]
somme_carres = 0.0
for idx in range(len(concentrations)):
somme_carres += concentrations[idx]*x*2

606 ns t 21.6 ns per loop (mean = std. dev. of 7 runs, 1,000,000 loops each)

Ici, chaque cellule sera exécutée un million de fois sur sept répétitions, soit sept millions de fois au total. Comme
nous |'avions expliqué dans le chapitre 5 Boucles et comparaisons, itérer une liste sur ses éléments est la méthode la plus
efficace (et la plus élégante).

18.7 Lancement d’'une commande Unix

Enfin, dans les environnements Linux ou Mac OS X, il est possible de lancer une commande Unix depuis un notebook

Jupyter. Il faut pour cela faire précéder la commande du symbole « ! ». Par exemple, la commande 1s affiche le contenu
du répertoire courant :
I1s

jupyter-exemple.ipynb markdown.ipynb test.ipynb
jupyter-logo.png matplotlib.ipynb

Pour aller plus loin

Le lancement d'une commande Unix depuis un notebook Jupyter (en précédant cette commande de !) est trés utile
pour réaliser de grosses analyses de données. Pour vous en rendre compte, explorez ce notebook* qui reproduit une analyse
compléte de données de séquencage haut débit. Ces résultats ont donné lieu a la publication de I'article scientifique «
An open RNA-Seq data analysis pipeline tutorial with an example of reprocessing data from a recent Zika virus study®
» (F1000 Research, 2016).

Conseil
Les notebooks Jupyter sont particulierement adaptés a I'analyse de données en combinaison avec les modules mat-
plotlib et pandas, qui seront abordés dans les prochains chapitres.

4. https://github.com/MaayanLab/Zika-RNAseq-Pipeline/blob/master/Zika.ipynb
5. https://f1000research.com/articles/5-1574/

Cours de Python / Université Paris Cité / UFR Sciences du Vivant 191

https://github.com/MaayanLab/Zika-RNAseq-Pipeline/blob/master/Zika.ipynb
https://f1000research.com/articles/5-1574/

Chapitre 18. Jupyter et ses notebooks 18.7. Lancement d'une commande Unix

" markdoewn.ipynb X |+ A
B+ X 0O 0 » = C » Markdown v # Python 3 (ipykernel) O
w # un premier titre o] S F 0

Du texte normal, ou en *italique*, ou bien encore en **gras**.
Un titre de deuxiéme niveau

Voici le logo de Jupyter : ![logo de Jupyter](jupyter-logo.png)

Un titre de troiséme niveau

Du code informatique :

def ma fonction(x, x):

return x + y

Une liste :

- premier élément
- second élement

" markdown.ipynb X |+ &
B+ X OB » m C » Markdown v & Python 3 (ipykerne

B)

.) (o] s F B
* un premier titre

Du texte normal, ou en jtalique, ou bien encore en gras.

Un lien hypertexte vers le cours

Un titre de deuxiéme niveau

o &
—_—
Jupyter
Voici le logo de Jupyter: ®
Un titre de troiséme niveau

Du code informatique :

def ma_fonction(x, x):
return x + y

Une liste :

« premier élément
* second élement

FIGURE 18.8 — Notebook avec : (A) une cellule au format Markdown et (B) le rendu aprés exécution.

192 Cours de Python / Université Paris Cité / UFR Sciences du Vivant

18.7. Lancement d'une commande Unix Chapitre 18. Jupyter et ses notebooks

= matplotlib.ipynb X |+

B+ X DO O » = C » code v # python 3 (ipykernel) O
import matplotlib.pyplot as plt
%matplotlib inline

[2]: temps = [1, 2, 3, 4, 6, 7, 9] o
concentration = [5.5, 7.2, 11.8, 13.6, 19.1, 21.7, 29.4]

I+
+0
[1}

fig, ax = plt.subplots()

ax.scatter(temps, concentration, marker="o0", color="blue")
ax.set_xlabel("Temps (h)")

ax.set_ylabel("Concentration (mg/L)")
ax.set_title("Concentration de produit en fonction du temps");

Concentration de produit en fonction du temps

25

20 A

15 A

Concentration (mg/L)

10 +

1 2 3 4 3 6 7 8 9
Temps (h)

FIGURE 18.9 — Incorporation d'un graphique dans un notebook Jupyter.

Cours de Python / Université Paris Cité / UFR Sciences du Vivant 193

cHAPITRE 19

Module Biopython

Nous allons aborder dans ce chapitre un module incontournable en bioinformatique. En effet, le module Biopython'®
permet de manipuler des données biologiques, comme des séquences (nucléiques et protéiques) ou des structures (fichiers
PDB), et d'interroger des bases de données comme PubMed. Le tutoriel ? est particulierement bien fait, n’hésitez pas a
le consulter.

19.1 Installation et convention

Contrairement aux autres modules vus précédemment, Biopython n'est pas fourni avec la distribution Python de base.
Avec la distribution Miniconda que nous vous conseillons d'utiliser (consultez pour cela la documentation en ligne?),
vous pouvez rapidement l'installer avec la commande :

$ conda install -c conda-forge biopython

Dans ce chapitre, nous vous montrerons quelques exemples d'utilisation du module Biopython pour vous convaincre
de sa pertinence. Ces exemples seront exécutés dans un notebook Jupyter.

Les cellules de code apparaitront de cette maniére
dans un notebook Jupyter, avec des numéros de lignes a gauche.

Les résultats seront affichés de cette maniére,
éventuellement sur plusieurs lignes.

19.2 Chargement du module

On charge le module Biopython avec la commande :

import Bio

Attention
Le nom du module Biopython n'est pas biopython, mais Bio (avec un B majuscule).

1. http://biopython.org/
2. http://biopython.org/DIST/docs/tutorial/Tutorial.html
3. https://python.sdv.u-paris.fr/livre-dunod

194

http://biopython.org/
http://biopython.org/DIST/docs/tutorial/Tutorial.html
https://python.sdv.u-paris.fr/livre-dunod

19.3. Manipulation de séquences Chapitre 19. Module Biopython

19.3 Manipulation de séquences

Voici quelques exemples de manipulation de séquences avec Biopython.
19.3.1 Définition d’une séquence

import Bio

from Bio.Seq import Seq

ADN = Seq("ATATCGGCTATAGCATGC")
ADN

Seq('ATATCGGCTATAGCATGC')
e Ligne 1. Le module Biopython s'appelle Bio.

e Ligne 2. On charge la classe Seq du sous-module Bio.Seq.
e Ligne 3. La variable ADN est de type Seq, comme affiché dans le résultat.

19.3.2 Obtention de la séquence complémentaire et de la séquence complémentaire inverse

ADN. complement ()
Seq('TATAGCCGATATCGTACG')
ADN.reverse_complement()

Seq('GCATGCTATAGCCGATAT')

19.3.3 Traduction en séquence protéique

ADN. translate()

Seq('ISAIAC'")

Conseil
Dans I'annexe A Quelques formats de données en biologie, vous trouverez de nombreux exemples d'utilisation de
Biopython pour manipuler des données aux formats FASTA, GenBank et PDB.

19.4 Interrogation de la base de données PubMed

Le sous-module Entrez de Biopython permet d'utiliser les ressources du NCBI et notamment d'interroger la base
de données PubMed*. Nous allons par exemple utiliser PubMed pour chercher des articles scientifiques relatifs a Ia
transferrine (transferrin en anglais) :

from Bio import Entrez
Entrez.email = "votremail@provider.fr"

req_esearch = Entrez.esearch(db="pubmed", term="transferrin")
res_esearch = Entrez.read(req_esearch)

e Ligne 1. On charge directement le sous-module Entrez.

e Ligne 2. Lors d'une requéte sur le site du NCBI, il est important de définir correctement la variable Entrez.email,
qui sera transmise au NCBI lors de la requéte et qui pourra étre utilisée pour vous contacter en cas de difficulté
avec le serveur.

4. https://www.ncbi.nlm.nih.gov/pubmed/

Cours de Python / Université Paris Cité / UFR Sciences du Vivant 195

https://www.ncbi.nlm.nih.gov/pubmed/

Chapitre 19. Module Biopython 19.4. Interrogation de la base de données PubMed

e Ligne 3. On lance la requéte (transferrin) sur le moteur de recherche pubmed. La requéte est stockée dans la
variable req_esearch.

e Ligne 4. Le résultat est lu et stocké dans la variable res_esearch.

Sans étre un vrai dictionnaire, la variable res_esearch en a cependant plusieurs propriétés. Voici ses clés :

res_esearch.keys()

dict_keys(['Count', 'RetMax', 'RetStart', 'IdList', 'TranslationSet',
'TranslationStack', 'QueryTranslation'])

La valeur associée a la clé IdList est une liste qui contient les identifiants (PMID) des articles scientifiques associés
a la requéte (ici transferrin) :

res_esearch["IdList"]

['30411489', '30409795', '30405884', '30405827', '30402883', '30401570',
'30399508', '30397276', '30395963', '30394734', '30394728', '30394123',
'30393423', '30392910', '30392664', '30391706', '30391651', '30391537',
'30391296', '30390672']

len(res_esearch["IdList"])

20

Cette liste ne contient les identifiants que de 20 publications, alors que, si nous faisons cette méme requéte directement
sur le site de PubMed depuis un navigateur web, nous obtenons plus de 45 700 résultats.
En réalité, le nombre exact de publications (en janvier 2024) est connu :

res_esearch["Count"]

'45717"

Pour ne pas saturer les serveurs du NCBI, seulement 20 PMID sont renvoyés par défaut. Mais vous pouvez augmenter
cette limite en utilisant le parameétre retmax dans la fonction Entrez.esearch().

Nous pouvons maintenant récupérer des informations sur une publication précise en connaissant son PMID, par
exemple, I'article avec le PMID 22294463°, dont un apercu est sur la figure 19.1.

Biometals. 2012 Aug:25(4):677-86. doi: 10.1007/s10534-012-9520-3.

Known and potential roles of transferrin in iron biology.
Bartnikas TB".

Author information

Abstract

Transferrin is an abundant serum metal-binding protein best known for its role in iron delivery. The human disease congenital atransferrinemia
and animal models of this disease highlight the essential role of transferrin in erythropoiesis and iron metabolism. Patients and mice deficient
in transferrin exhibit anemia and a paradoxical iron overload attributed to deficiency in hepcidin, a peptide hormone synthesized largely by the
liver that inhibits dietary iron absorption and macrophage iron efflux. Studies of inherited human disease and model organisms indicate that
transferrin is an essential regulator of hepcidin expression. In this paper, we review current literature on transferrin deficiency and present our
recent findings, including potential overlaps between transferrin, iron and manganese in the regulation of hepcidin expression.

PMID: 22294463 PMCID: PMC3595092 DOI: 10.1007/510534-012-9520-3

FIGURE 19.1 — Apercu de la publication Known and potential roles of transferrin in iron biology depuis le site PubMed.

Nous allons pour cela utiliser la fonction Entrez.esummary ()

5. https://www.ncbi.nlm.nih.gov/pubmed/22294463

196 Cours de Python / Université Paris Cité / UFR Sciences du Vivant

https://www.ncbi.nlm.nih.gov/pubmed/22294463

19.4. Interrogation de la base de données PubMed Chapitre 19. Module Biopython

req_esummary Entrez.esummary (db="pubmed", -id="22294463")
res_esummary = Entrez.read(req_esummary)

La variable res_esummary n'est pas réellement une liste (son type exacte est Bio.Entrez.Parser.ListElement),
mais elle est indexable (voir chapitre 14 Conteneurs). Cette pseudo-liste n'a qu'un seul élément, qui est lui-méme un

dictionnaire dont voici les clés :

res_esummary[0] .keys ()

dict_keys(['Item', 'Id', 'PubDate', 'EPubDate', 'Source', 'AuthorList',
'LastAuthor', 'Title', 'Volume', 'Issue', 'Pages', 'LanglList',
'"NlmUniqueID', 'ISSN', 'ESSN', 'PubTypelList', 'RecordStatus', 'PubStatus',
'ArticleIds', 'DOI', 'History', 'References', 'HasAbstract', 'PmcRefCount',
'FullJournalName', 'ELocationID', 'S0'])

Nous pouvons alors facilement obtenir le titre, le DOI et la date de publication (PubDate) de cet article, ainsi que le

journal (Source) dans lequel il a été publié :

res_esummary[0] ["Title"]
'Known and potential roles of transferrin in diron biology.'
res_esummary[0] ["DOI"]
'10.1007/s10534-012-9520-3"'
res_esummary[0] ["PubDate"]
'2012 Aug'
res_esummary[0] ["Source"]

'Biometals’

Enfin, pour récupérer le résumé de la publication précédente, nous allons utiliser la fonction Entrez.efetch() :

req_efetch = Entrez.efetch(
db="pubmed", id="22294463",
rettype="abstract", retmode="text")
req_efetch.read()

'1l. Biometals. 2012 Aug;25(4):677-86. doi: 10.1007/s10534-012-9520-3.
\n\nKnown and potential roles of transferrin in iron biology.\n\nBart
nikas TB(1).\n\nAuthor information:\n(1l)Department of Pathology, Chil’
drens Hospital, Enders 1110, 300 Longwood \nAvenue, Boston, MA 02115

, USA. mas.Bartnikas@childrens.harvard.edu\n\nTransferrin is an abund
ant serum metal-binding protein best known for dits role \nin iron del

[...]

Le résultat n'est pas trés lisible, car il apparait comme un seul bloc. Le caractére \n désigne un retour a la ligne.

L'instruction print() affichera le résultat de maniére plus lisible :

req_efetch = Entrez.efetch(
db="pubmed", id="22294463",
rettype="abstract", retmode="text")

print(req_efetch.read())

Cours de Python / Université Paris Cité / UFR Sciences du Vivant

197

Chapitre 19. Module Biopython 19.5. Exercices

1. Biometals. 2012 Aug;25(4):677-86. doi: 10.1007/s10534-012-9520-3.
Known and potential roles of transferrin in iron biology.
Bartnikas TB(1).

Author information:
(1)Department of Pathology, ’Childrens Hospital, Enders 1110, 300 Longwood
Avenue, Boston, MA 02115, USA. mas.Bartnikas@childrens.harvard.edu

Transferrin is an abundant serum metal-binding protein best known for its role
in dron delivery. The human disease congenital atransferrinemia and animal
models of this disease highlight the essential role of transferrin in
erythropoiesis and iron metabolism. Patients and mice deficient in transferrin
exhibit anemia and a paradoxical iron overload attributed to deficiency in
hepcidin, a peptide hormone synthesized largely by the liver that inhibits
dietary iron absorption and macrophage qiron efflux. Studies of inherited human
disease and model organisms indicate that transferrin is an essential regulator
of hepcidin expression. In this paper, we review current literature on
transferrin deficiency and present our recent findings, including potential
overlaps between transferrin, +dron and manganese in the regulation of hepcidin
expression.

DOI: 10.1007/s10534-012-9520-3

PMCID: PMC3595092
PMID: 22294463 [Indexed for MEDLINE]

Le résultat contient bien le résumé de la figure 19.1, mais aussi d’autres informations comme le titre, le DOI, la date
de publication...

19.5 Exercices

Conseil
Pour ces exercices, utilisez des notebooks Jupyter.

19.5.1 Pourcentage de GC de genes de Plasmodium falciparum

Plasmodium falciparum (P. falciparum) est un des parasites responsables du paludisme chez les étres humains. Le
fichier p_falciparum_500.fasta® contient 500 génes du génome de P. falciparum.
Ecrivez un code Python qui calcule le pourcentage de GC de chaque géne. Les valeurs seront stockées dans un
dictionnaire, avec comme clés les identifiants des génes et comme valeurs le pourcentage de GC.
On rappelle que le pourcentage de GC d'une séquence est calculé avec la formule suivante :
nombre de bases G 4+ nombre de bases C

pourcentage GC = . x 100
longueur de la séquence

Affichez ensuite :

e Le nombre total de génes.

e L'identifiant de la séquence qui a le pourcentage de GC le plus élevé, avec la valeur du pourcentage affichée avec
deux chiffres apres la virgule.

e 'identifiant de la séquence qui a le pourcentage de GC le plus faible, avec la valeur du pourcentage affichée avec
deux chiffres apres la virgule.

Conseil
Pour cet exercice, n'hésitez pas a consulter :
e Le chapitre 14 Conteneurs pour trier un dictionnaire.
e L'annexe A Quelques formats de données en biologie pour lire un fichier FASTA avec Biopython.

6. https://python.sdv.u-paris.fr/data-files/p_falciparum_500.fasta

198 Cours de Python / Université Paris Cité / UFR Sciences du Vivant

https://python.sdv.u-paris.fr/data-files/p_falciparum_500.fasta

19.5. Exercices Chapitre 19. Module Biopython

19.5.2 Années de publication des articles relatifs a la barstar

L'objectif de cet exercice est d'interroger automatiquement la base de données bibliographique PubMed pour déter-
miner le nombre d’articles relatifs a la protéine barstar publiés chaque année.

Vous utiliserez le module Biopython et le module matplotlib, qui sera vu un peu plus loin (les principales instructions
vous seront fournies).

19.5.2.1 Requéte avec un mot-clé

Sur le site de PubMed 7, cherchez combien d'articles scientifiques sont relatifs a la barstar.

Effectuez la méme chose avec Python et la méthode Entrez.esearch() de Biopython.

Choisissez un des PMID renvoyé et vérifiez dans PubMed que I'article associé est bien a propos de la barstar. Pour
cela, indiquez le PMID choisi dans la barre de recherche de PubMed et cliquez sur Search. Attention, I'association n'est
pas toujours évidente. Cherchez éventuellement dans le résumé de I'article si besoin.

Est-ce que le nombre total d'articles trouvés est cohérent avec celui obtenu sur le site de PubMed ?

19.5.2.2 Récupération des informations d’une publication

Récupérez les informations de la publication dont le PMID est 297019458, Vous utiliserez la méthode Entrez.
esummary ().

Affichez le titre, le DOI, le nom du journal (Source) et la date de publication (PubDate) de cet article. Vérifiez que
cela correspond bien a ce que vous avez lu sur PubMed.

19.5.2.3 Récupération du résumé d’une publication

Récupérez le résumé de la publication dont le PMID est 29701945. Vous utiliserez la méthode Entrez.efetch().
Affichez ce résumé.

19.5.2.4 Distribution des années de publication des articles relatifs a la barstar

En utilisant la méthode Entrez.esearch(), récupérez tous les PMID relatifs a la barstar. Pour cela, pensez a
augmenter le parameétre retmax. Vos PMID seront stockés dans la liste pmids sous forme de chaines de caractéres.
Vérifiez sur PubMed que vous avez récupéré le bon nombre d'articles.

En utilisant maintenant la méthode Entrez.esummary () dans une boucle, récupérez la date de publication de
chaque article. Stockez I'année sous forme d’un nombre entier dans la liste years. Cette étape peut prendre une dizaine
de minutes, soyez patient. Vous pouvez afficher dans votre boucle un message qui indique ou vous en étes dans la
récupération des articles.

Vérifiez que votre liste years contient bien autant d’éléments que la liste pmids.

Calculez maintenant le nombre de publications par année. Vous créerez pour cela un dictionnaire freq qui aura pour
clé les années (oui, une clé de dictionnaire peut aussi étre un entier) et pour valeur le nombre de publications associées
3 une année donnée.

Créez une liste x qui contient les clés du dictionnaire freq. Ordonnez les valeurs dans x avec la méthode .sort().
Créez maintenant une seconde liste y qui contient, dans |I'ordre, le nombre de publications associées a chaque année. Bien
évidemment, les listes x et y doivent avoir la méme taille. Au fait, en quelle année la barstar apparait pour la premiere
fois dans une publication scientifique ?

Ensuite, avec le module matplotlib (que nous aborderons prochainement), vous allez pouvoir afficher la distribution
des publications en fonction des années :

7. https://www.ncbi.nlm.nih.gov/pubmed/
8. https://www.ncbi.nlm.nih.gov/pubmed/29701945

Cours de Python / Université Paris Cité / UFR Sciences du Vivant 199

https://www.ncbi.nlm.nih.gov/pubmed/
https://www.ncbi.nlm.nih.gov/pubmed/29701945

Chapitre 19. Module Biopython 19.5. Exercices

import matplotlib.pyplot as plt

fig, ax = plt.subplots()
ax.bar(x, vy)

Vous pouvez également ajouter un peu de cosmétique et enregistrer le graphique sur votre disque dur :
import matplotlib.pyplot as plt

fig, ax = plt.subplots()
ax.bar(x, vy)

Etiquetage des axes.
ax.set_xlabel("Années")
ax.set_ylabel("Nombre de publications")

Ajout du titre du graphique.
ax.set_title("Distribution des publications qui mentionnent la barstar")

Enregistrement sur le disque.
fig.savefig("distribution_barstar_annee.png")

200 Cours de Python / Université Paris Cité / UFR Sciences du Vivant

cHAPITRE 20

Module NumPy

Le module NumPy' est incontournable en bioinformatique. Il permet d'effectuer des calculs sur des vecteurs ou des
matrices, élément par élément, via un nouveau type d'objet appelé array.

20.1 Installation et convention

Contrairement aux modules vus précédemment, NumPy n'est pas fourni avec la distribution Python de base. Avec la
distribution Miniconda que nous vous conseillons d'utiliser (consultez pour cela la documentation en ligne ?), vous pouvez
rapidement l'installer avec la commande :

$ conda install -c conda-forge numpy

Dans ce chapitre, nous vous montrerons quelques exemples d'utilisation du module NumPy pour vous convaincre de
sa pertinence. Ces exemples seront exécutés dans un notebook Jupyter.

Les cellules de code apparaitront de cette maniére
dans un notebook Jupyter, avec des numéros de lignes a gauche.

Les résultats seront affichés de cette maniére,
éventuellement sur plusieurs lignes.

20.2 Chargement du module
On charge le module NumPy avec la commande :

import numpy

Par convention, on utilise np comme nom raccourci pour NumPy :

import numpy as np

20.3 Objets de type array

Les objets de type array correspondent a des tableaux a une ou plusieurs dimensions et permettent d’effectuer du
calcul vectoriel. La fonction array () convertit un conteneur (comme une liste ou un tuple) en un objet de type array.

1. http://numpy.scipy.org/
2. https://python.sdv.u-paris.fr/livre-dunod

201

http://numpy.scipy.org/
https://python.sdv.u-paris.fr/livre-dunod

Chapitre 20. Module NumPy 20.3. Objets de type array

Voici un exemple de conversion d'une liste a une dimension en objet array :

import numpy as np
a = [1, 2, 3]
np.array(a)

array([1, 2, 3])

b = np.array(a)
b

array([1, 2, 3])

type(b)

numpy.ndarray

Nous avons converti la liste [1, 2, 3] en array. La fonction np.array() accepte aussi comme argument un tuple,
ou un objet de type range.

Par ailleurs, lorsqu'on demande a Python d'afficher le contenu d'un objet array, le mot array et les symboles ([et
1) sont utilisés pour le distinguer d'une liste (délimitée par les caracteres [et]) ou d'un tuple (délimité par les caractéres

(et)).

Remarque

Un objet array ne contient que des données homogenes, c'est-a-dire d'un type identique. Il est possible de créer un
objet array a partir d’'une liste contenant des entiers et des chaines de caracteres, mais, dans ce cas, toutes les valeurs
seront comprises par NumPy comme des chaines de caractéres :

a = np.array([1, 2, "tigre"])
a

array(['1l', '2', 'tigre'], dtype='<U21')

Dans cet exemple, toutes les valeurs du array sont entre guillemets, indiquant qu'il s'agit de chaines de caractéres.
De méme, il est possible de créer un objet array a partir d'une liste constituée d'entiers et de floats, mais toutes les
valeurs seront alors comprises par NumPy comme des floats :

b = np.array([1, 2, 3.5])
b

array([1. , 2. , 3.5])

Ici, la notation 1. indique qu'il s'agit du float 1.0000. .. et pas de I'entier 1.

Sur un modeéle similaire a la fonction range (), la fonction arange () permet de construire un array a une dimension :

np.arange(10)

array([®, 1, 2, 3, 4, 5, 6, 7, 8, 9])

Comme avec range (), on peut spécifier en argument une borne de début, une borne de fin et un pas :

np.arange(10, 0, -1)

array([16, 9, 8, 7, 6, 5, 4, 3, 2, 1])

202 Cours de Python / Université Paris Cité / UFR Sciences du Vivant

20.3. Objets de type array Chapitre 20. Module NumPy

Un autre avantage de la fonction arange() est qu'elle génére des objets array qui contiennent des entiers ou des
floats (ce qui n'est pas possible avec range()) selon I'argument qu'on lui passe. D'abord un entier :

np.arange(10)

array([®, 1, 2, 3, 4, 5, 6, 7, 8, 9])

Puis un float :
np.arange(10.0)

array([0., 1., 2., 3., 4., 5., 6., 7., 8., 9.])

La différence fondamentale entre un objet array a une dimension et une liste (ou un tuple) est que celui-ci est
considéré comme un vecteur. Par conséquent, on peut effectuer des opérations vectorielles élément par élément sur
ce type d'objet, ce qui est bien commode lorsqu'on analyse de grandes quantités de données. Regardez ces exemples :

vV = np.arange(4)
v

array ([0, 1, 2, 3])

On ajoute 1 a chacun des éléments de I'array v :

v + 1

array([1, 2, 3, 4])

On multiplie par 2 chacun des éléments de 'array v :

v % 2

array ([0, 2, 4, 6])

Avec les listes, ces opérations n'auraient été possibles qu'en utilisant des boucles. Nous vous encourageons donc a
utiliser dorénavant les objets array lorsque vous aurez besoin de faire des opérations élément par élément.

Il est aussi possible de multiplier deux arrays entre eux. Le résultat correspond alors a la multiplication élément par
élément des deux arrays initiaux :

vV *x Vv
array ([0, 1, 4, 9])

20.3.1 Array et dimensions

Il est aussi possible de construire des objets arrays a deux dimensions, il suffit de passer en argument une liste de
listes a la fonction array() :
= np.array([[1, 21, [3, 4], [5, 6]1)

w
w

array([[1, 2],
[3, 41,
[5, 611)

On peut aussi créer des tableaux a trois dimensions en passant comme argument a la fonction array () une liste de
listes de listes :

x = np.array([[[1, 2], [2, 311, [[4, 5], [5, 6]11)
X

Cours de Python / Université Paris Cité / UFR Sciences du Vivant 203

Chapitre 20. Module NumPy 20.3. Objets de type array

array([[[1, 2],

(2, 311,
(4, 51,
(5, 6111)

La fonction array() peut créer des tableaux a n'importe quel nombre de dimensions. Toutefois, cela devient vite
compliqué lorsqu’on dépasse trois dimensions. Retenez qu'un objet array a une dimension peut étre assimilé a un vecteur,
un array a deux dimensions a une matrice. On peut généraliser ces objets mathématiques avec un nombre arbitraires de
dimensions, on parle alors de tenseur, qui sont représentés avec NumPy en array a n dimensions. Nous nous focaliserons
dans la suite sur des arrays a une dimension (1D) ou deux dimensions (2D).

Avant de continuer, il est important de définir comment sont organisés ces arrays 2D qui représentent des matrices.
Il s'agit de tableaux de nombres qui sont organisés en lignes et en colonnes comme le montre la figure 20.1. Les indices
indiqués dans cette figure seront définis un peu plus loin dans la rubrique Indices.

1¢re colonne, indice 0

2¢éme colonne, indice 1

array ([;—— 1¢ligne, indice 0

— 2¢me ligne, indice 1

]-ﬁ— 3¢me |igne, indice 2

U ol [
~
oY | > N |e—

FI1GURE 20.1 — Définition des lignes et colonnes dans un array 2D.

Voici quelques attributs intéressants pour décrire un objet array :
vV = np.arange(4)
\"

array ([0, 1, 2, 3])

w = np.array([[1, 2], [3, 4], [5, 6]1)
w

array([[1, 2],
[3) 4],
[5, 611)

L'attribut .ndim renvoie le nombre de dimensions de I'array. Par exemple, 1 pour un vecteur et 2 pour une matrice :

v.ndim

w.ndim

204 Cours de Python / Université Paris Cité / UFR Sciences du Vivant

20.3. Objets de type array Chapitre 20. Module NumPy

L'attribut . shape renvoie les dimensions sous forme d'un tuple. Dans le cas d'une matrice (array a deux dimensions),
la premiére valeur du tuple correspond au nombre de lignes et la seconde au nombre de colonnes.

v.shape
(4,)
w.shape

(3, 2)

Enfin, I'attribut .size renvoie le nombre total d'éléments contenus dans I'array :

v.size

w.size

20.3.2 Redimensionnement d’array

La méthode .reshape() renvoie un nouvel array avec les dimensions spécifiées en argument :

a = np.arange(0, 6)

a

array([0, 1, 2, 3, 4, 5])
a.shape

(6,)

b = a.reshape((2, 3))
b

array([[0, 1, 2],
[3, 4, 511)

b.shape

(2, 3)

array([0, 1, 2, 3, 4, 5])

Notez bien que |'array initial a n’a pas été modifié et que a.reshape((2, 3)) n'est pas la méme chose que
a.reshape((3, 2)):

Cours de Python / Université Paris Cité / UFR Sciences du Vivant 205

Chapitre 20. Module NumPy 20.3. Objets de type array

= a.reshape((3, 2))

00

array([[o0, 1],

[2, 31,
[4, 511)
c.shape

(3, 2)

La méthode .reshape() attend que les nouvelles dimensions soient compatibles avec la dimension initiale de
I'objet array, c'est-a-dire que le nombre d’éléments contenus dans les différents arrays soit le méme. Dans nos exemples
précédents, 6 =2 x3 =3 x 2.

Si les nouvelles dimensions ne sont pas compatibles avec les dimensions initiales, la méthode . reshape () géneére une
erreur.

a = np.arange(0, 6)
a

array([0, 1, 2, 3, 4, 5])
a.shape
(6,)

d = a.reshape((3, 4))

ValueError Traceback (most recent call last)
Cell In[36], line 1

--—=> 1 d = a.reshape((3, 4))

ValueError: cannot reshape array of size 6 1into shape (3,4)

La méthode .resize(), par contre, ne déclenche pas d’erreur dans une telle situation et ajoute des 0 jusqu'a ce que
le nouvel array soit rempli, ou bien coupe la liste initiale :

a = np.arange(0, 6)
a.shape

(6,)

a.resize((3, 3), refcheck=False)
a.shape

(3, 3)

array([[0, 1, 2],
[3’ 4’ 5]’
[6, 0, 0]])

206 Cours de Python / Université Paris Cité / UFR Sciences du Vivant

20.3. Objets de type array Chapitre 20. Module NumPy

b = np.arange(0, 10)
b.shape

(10,)

b.resize((2, 3), refcheck=False)
b.shape

(2, 3)

array([[0, 1, 2],
[3, 4, 511)

Attention
e Cette modification de la forme de |'array par la méthode .resize() est faite « sur place » (in place), c’est-a-dire
que la méthode ne renvoie rien, mais |'array initial est bel et bien modifié (comme des méthodes sur les listes telles
que la méthode .reverse(), voir le chapitre 13 Plus sur les listes).
e Si l'option refcheck=False n'est pas présente, Python peut parfois renvoyer une erreur s'il existe des références
vers |'array qu’on souhaite modifier.

Enfin, il existe la fonction np.resize() qui, dans le cas d'un nouvel array plus grand que |'array initial, va répéter
I'array initial afin de remplir les cases manquantes :

a = np.arange(0, 6)

a.shape
(6,)
c = np.resize(a, (3, 5))
c.shape
(3, 5)
c
array([[o, 1, 2, 3, 4],
[5’ 0’ l’ 2’ 3]’
[4, 5, 0, 1, 2]11)

array([0, 1, 2, 3, 4, 5])

Notez que la fonction np.resize() renvoie un nouvel array mais ne modifie pas I'array initial, contrairement a la
méthode .resize(), décrite ci-dessus.

Remarque
Depuis le début de ce chapitre, nous avons toujours montré I'affichage d'un array tel quel dans un notebook Jupyter :

Cours de Python / Université Paris Cité / UFR Sciences du Vivant 207

Chapitre 20. Module NumPy 20.3. Objets de type array

a = np.array(range(10))
a

array([®, 1, 2, 3, 4, 5, 6, 7, 8, 9])

a2 = np.ones((3, 3))
a2

array([[1., 1., 1.7,
[1., 1., 1.1,
[1., 1., 1.]1])

Nous avons déja indiqué que Python affiche systématiquement le mot array ainsi que les parentheéses, crochets et
virgules pour séparer les éléments. Toutefois, si vous utilisez la fonction print(), I'affichage sera différent. Le mot array,
les parentheéses et les virgules disparaissent :

print(a)

[012345678 9]

print(a2)
[[1. 1. 1.]
[1. 1. 1.]
[1. 1. 1.]]

Ceci peut amener des confusions, en particulier entre un array 1D :

[61234567809]

et une liste contenant les mémes éléments :

[07 l! 2, 3’ 47 5! 67 77 87 9]

Dans ce cas, seule la présence ou I'absence de virgules permet de savoir s'il s'agit d'un array ou d'une liste.

20.3.3 Méthodes de calcul sur les arrays et I'argument axis

Chaque array NumPy posséde une multitude de méthodes. Nombre d’entre elles permettent de faire des calculs de
base comme .mean() pour la moyenne, .sum() pour la somme, .std() pour I'écart-type, .max () pour extraire le
maximum, .min() pour extraire le minimum, etc. La liste exhaustive est disponible en Iigne3. Par défaut, chacune de
ces méthodes effectuera I'opération sur I'array entier, quelle que soit sa dimensionnalité. Par exemple :

import random
ma_liste = list(range(8))

random.shuffle(ma_liste)
ma_Tliste

[27 77 6, 4’ 07 3! 17 5]

a = np.resize(ma_Lliste, (4, 2))
a

3. https://numpy.org/doc/stable/reference/arrays.ndarray.html#calculation

208 Cours de Python / Université Paris Cité / UFR Sciences du Vivant

https://numpy.org/doc/stable/reference/arrays.ndarray.html#calculation

20.3. Objets de type array Chapitre 20. Module NumPy

array([[2, 7],

[6, 41,

[e, 31,

[1, 511)
a.max ()

La méthode .max () a bien renvoyé la valeur maximale 7. Un argument trés utile existant dans toutes ces méthodes
est axis. Pour un array 2D, axis=0 signifie qu'on fera I'opération le long de I'axe 0, a savoir les lignes. C'est-a-dire que
I'opération se fait en variant les lignes. On récupére ainsi une valeur par colonne :

a.max (axis=0)

array([6, 71)

Dans I'array 1D récupéré, le premier élément vaut 6 (maximum de la 1ére colonne) et le second vaut 7 (maximum
de la seconde colonne).

Avec axis=1, on fait une opération similaire, mais en faisant varier les colonnes. On récupére ainsi une valeur par
ligne :

a.max (axis=1)

array([7, 6, 3, 5])
L'array 1D récupéré a quatre éléments correspondant au maximum de chaque ligne.

On comprend la puissance de I'argument axis. A nouveau, il est possible, en une ligne, de faire des calculs qui
pourraient étre fastidieux avec les listes traditionnelles.

20.3.4 Indices

Pour récupérer un ou plusieurs élément(s) d'un objet array, vous pouvez utiliser les indices, de la méme maniére
, .
qu’'avec les listes :

a = np.arange(10)
a

array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])

al1]

L'utilisation des tranches est aussi possible :

al[5:]

array([5, 6, 7, 8, 9])

Ainsi que les pas :

al::2]

array ([0, 2, 4, 6, 8])

Cours de Python / Université Paris Cité / UFR Sciences du Vivant 209

Chapitre 20. Module NumPy 20.3. Objets de type array

210

Dans le cas d'un objet array a deux dimensions, vous pouvez récupérer une ligne compléte (d'indice i), une colonne
compleéte (d'indice j) ou bien un seul élément. La figure 20.1 montre comment sont organisés les indices des lignes et
des colonnes :

a = np.array([[1, 2], [3, 4]])
a

array([[1, 2],
[3, 411

al:,0]
array([1, 31)
alo,:]

array([1, 21)

La syntaxe a[1i,:] renvoie la ligne d'indice i, et a[:,j] renvoie la colonne d'indice j. Les tranches sont aussi
utilisables sur un array a deux dimensions.

all, 1]

La syntaxe a[i, j] renvoie I'élément a la ligne d'indice i et a la colonne d'indice j. Notez que NumPy suit la
convention mathématiques des matrices*, a savoir, qu'on définit toujours un élément par sa ligne puis par sa
colonne. En mathématiques, I'élément a;; d'une matrice A se trouve a la i ligne et a la j™ colonne :

Remarque

Pour un array 2D, si un seul indice est donné, par exemple a[i], on récupere la ligne d'indice i sous forme d'array
1D :

a = np.array([[1, 2], [3, 4]])
a

array([[1, 2],
[3, 411)
alo]
array([1, 21)

all]

array([3, 41)

Pour cette raison, la syntaxe a[i][j] est également valide pour récupérer un élément :

all, 1]

4. https://fr.wikipedia.org/wiki/Matrice_(math%C3%A9matiques)#D%C3%A9finitions

Cours de Python / Université Paris Cité / UFR Sciences du Vivant

https://fr.wikipedia.org/wiki/Matrice_(math%C3%A9matiques)#D%C3%A9finitions

20.3. Objets de type array Chapitre 20. Module NumPy

al1][1]

Nous vous recommandons la syntaxe a[i, j], qui est plus proche de la définition mathématique d'un élément de
matrice °.

20.3.5 Copie d’arrays

Comme pour les listes, nous attirons votre attention sur la copie d'arrays :

a = np.arange(5)
a

array ([0, 1, 2, 3, 4])

array([o, 1, -300, 3, 47)

array ([0, 1, -300, 3, 41)

Attention
Par défaut la copie d'arrays se fait par référence, comme pour tous les conteneurs en Python (listes, tuples, diction-
naires, etc.).

Afin d'éviter le probléme, vous pouvez soit utiliser la fonction np.array (), qui crée une nouvelle copie distincte de
I'array initial, soit la fonction copy.deepcopy (), comme pour les listes (voir chapitre 12 Plus sur les listes) :

a = np.full((2, 2), 0)
a

array([[0, 0],
(o, o11)

b = np.array(a)

b[1, 1] = -300
import copy

c = copy.deepcopy(a)
c[1, 1] = -500

a

array([[0, 0],
[0, 011)

5. https://fr.wikipedia.org/wiki/Matrice_(math%C3%A9matiques)#D%C3%A9finitions

Cours de Python / Université Paris Cité / UFR Sciences du Vivant 211

https://fr.wikipedia.org/wiki/Matrice_(math%C3%A9matiques)#D%C3%A9finitions

Chapitre 20. Module NumPy 20.4. Construction automatique de matrices

212

array([[0, o],
[0, -300]11)

array([[0, o],
[0, -500]])

La fonction np.full() est expliquée dans la rubrique suivante.

Remarque
L'instruction b = np.array(a) réalise bien une copie distincte de I'array a, quelle que soit sa dimensionnalité. Ceci
n'était pas le cas avec la fonction 1ist() pour les copies de listes a partir de la dimension deux (liste de listes) :

liste_1 = [[0, 0], [1, 1]]
Tliste_2 = list(liste_1)

import copy

liste_3 = copy.deepcopy(liste_1)
liste_1[1][1] = -365

liste_2

[[O; O]: [l) _365]]

liste_3

(fo, o], [1, 1]]

20.4 Construction automatique de matrices

Il est parfois pénible de construire une matrice (array a deux dimensions) a I'aide d'une liste de listes. Le module
NumPy possede quelques fonctions pratiques pour initialiser des matrices. Par exemple, Les fonctions zeros () et ones
() construisent des objets array contenant des 0 ou des 1. Il suffit de leur passer en argument un tuple indiquant les
dimensions voulues :

np.zeros((2, 3))

array([[0., 0., 0.7,
[6., 0., 0.11)

np.ones((3, 3))

array([[1., 1., 1.
[1., 1.,
[1., 1.,

>

]
1.1,
1.11)

Par défaut, les fonctions zeros () et ones () géneérent des floats, mais vous pouvez demander des entiers en passant
le type (par exemple int, float, etc.) en second argument :

np.zeros((2,3), int)

array([[0, 0, 0],
[6, 0, 0]])

Cours de Python / Université Paris Cité / UFR Sciences du Vivant

20.5. Chargement d'un array depuis un fichier Chapitre 20. Module NumPy

Enfin, si vous voulez construire une matrice avec autre chose que des 0 ou des 1, vous avez a votre disposition la
fonction full() :
np.full((2, 3), 7, 1int)

array(L[7, 7, 7],
7, 7, 711

np.full((2, 3), 7, float)

array([[7., 7., 7.1,
[7., 7., 7.11)
Nous construisons ainsi une matrice constituée de 2 lignes et 3 colonnes. Celle-ci ne contient que le chiffre 7 sous
formes d'entiers (int) dans le premier cas et de floats dans le second.

20.5 Chargement d’un array depuis un fichier

Le module NumPy contient aussi des fonctions pour lire des données a partir de fichiers et créer des arrays automa-
tiquement. C'est trés pratique, car la plupart du temps les données que I'on analyse proviennent de fichiers. La fonction
la plus simple a prendre en main est np.loadtxt(). Celle-ci lit un fichier organisé en lignes et colonnes. Par exemple,
imaginons que nous ayons un fichier donnees.dat contenant :

1 7 310
15 -4 35
78 95 79

La fonction prend en argument le nom du fichier et renvoie un array 2D directement :

np.loadtxt("donnees.dat")

array([[1., 7., 310.],
[15., -4., 35.],
[78., 95., 79.11)

Pratique, non 7 Attention toutefois aux points suivants :

e Chaque ligne doit avoir le méme nombre de colonnes, la fonction ne gére pas les données manquantes.

e Chaque donnée est convertie en float, donc si une chaine de caractéres est rencontrée la fonction renvoie une erreur.

e Par défaut, les données doivent &tre séparées par n'importe quelle combinaison d'espace(s) et/ou de tabulations.

Nous vous conseillons de consulter la documentation compléte © de cette fonction. En effet, np.loadtxt () contient
de nombreux arguments permettant de récupérer telles ou telles lignes ou colonnes, d'ignorer des lignes de commentaire,
de changer le séparateur par défaut (par exemple la virgule , pour les fichiers .csv).. qui peuvent se révéler utiles.

L'opération inverse qui consiste a sauver un array dans un fichier se fait avec la fonction np.savetxt() :

a = np.reshape(range(1, 10), (3, 3))
a

array([[1, 2, 3],
[47 5, 6]7
[7, 8, 911)

np.savetxt("out.dat", a)

Ceci générera le fichier out.dat contenant les lignes suivantes :

1.000000000000000000e+00 2.000000000000000000e+00 3.000000000000000000e+00
4.000000000000000000e+00 5.000000000000000000e+00 6.000000000000000000e+00
7.000000000000000000e+00 8.000000000000000000e+00 9.000000000000000000e+00

6. https://numpy.org/doc/stable/reference/generated/numpy.loadtxt.html

Cours de Python / Université Paris Cité / UFR Sciences du Vivant

213

https://numpy.org/doc/stable/reference/generated/numpy.loadtxt.html

Chapitre 20. Module NumPy 20.6. Concaténation d'arrays

214

La fonction np.savetxt() écrit par défaut les données comme des floats en notation scientifique. Il existe de
nombreuses options possibles ’ permettant de changer le format, les séparateurs, etc.

Pour aller plus loin

Il existe d’autres fonctions plus avancées telles que np.genfromttxt()®, gérant les données manquantes, ou encore
np.load() ? et np.fromfile() 1, permettant de lire des données au format binaire. De mé&me, il existe des fonctions ou mé-
thodes permettant d’écrire au format binaire : np.save() '* ou .tofile() *2. Le format binaire posséde en général I'extension
.npy ou .npz lorsque les données sont compressées. L'avantage d'écrire au format binaire est que cela prend moins de
place pour de gros tableaux de données.

20.6 Concaténation d’arrays

Il peut étre tres utile de concaténer un ou plusieurs arrays. |l existe pour cela plusieurs fonctions dans NumPy, nous
développerons celle qui nous parait la plus intuitive et directe : np.concatenate().
Pour les arrays 1D, np.concatenate() prend en argument un tuple contenant les arrays a concaténer :

al = np.array((0, 1))
a2 = np.array((3, 4))
al

array ([0, 1])
a2

array([3, 4])
np.concatenate((al, a2))

array ([0, 1, 3, 4])

L'ordre de la concaténation est important :

np.concatenate((a2, al))
array([3, 4, 0, 1])
np.concatenate((al, a2, al, a2))

array([®, 1, 3, 4, 0, 1, 3, 4])

Pour les arrays 2D, ca se complique un peu, car on peut concaténer des lignes ou des colonnes! Ainsi, np.
concatenate() prend un argument optionnel, a savoir axis. Comme nous |'avions expliqué plus haut, celui-ci va
indiquer a NumPy si on veut concaténer le long de I'axe 0 (les lignes) ou le long de I'axe 1 (les colonnes). Voyons un
exemple :

al = np.reshape(np.array(range(6)), (3, 2))
a2 = al x5
al

7. https://numpy.org/doc/stable/reference/generated/numpy.savetxt.html

8. https://numpy.org/doc/stable/reference/generated/numpy.genfromtxt.html

9. https://numpy.org/doc/stable/reference/generated/numpy.load.html

10. https://numpy.org/doc/stable/reference/generated/numpy.fromfile.html

11. https://numpy.org/doc/stable/reference/generated/numpy.save.html

12. https://numpy.org/doc/stable/reference/generated/numpy.ndarray.tofile.html#numpy.ndarray.tofile

Cours de Python / Université Paris Cité / UFR Sciences du Vivant

https://numpy.org/doc/stable/reference/generated/numpy.savetxt.html
https://numpy.org/doc/stable/reference/generated/numpy.genfromtxt.html
https://numpy.org/doc/stable/reference/generated/numpy.load.html
https://numpy.org/doc/stable/reference/generated/numpy.fromfile.html
https://numpy.org/doc/stable/reference/generated/numpy.save.html
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.tofile.html#numpy.ndarray.tofile

20.7. Un peu d'algébre linéaire Chapitre 20. Module NumPy

array([[0, 1],
(2, 31,
[4, 511)

a2

array([[0, 5],
[10, 15],
[20, 25]])

On concaténe d'abord par ligne (axis=0), c'est-a-dire qu'on ajoute les lignes du second array a2 a celles de I'array

al:

np.concatenate((al, a2), axis=0)

array([[0, 1],
) 3]’
» 51,
» 51,
, 151,
, 2511)

Ensuite, on concat

éne par colonne (axis=1). Attention, il vaut bien veiller a ce que la concaténation soit possible en

terme de dimensionalité. Par exemple, lors de la concaténation par colonne, il faut que les deux arrays al et a2 aient le
méme nombre de lignes :

np.concatenate((al, a2), axis=1)

array([[0, 1, O,
[2, 3, 10,
[4, 5, 20,

Ces opérations de

51,
157,

2517)

concaténation sont trés importantes. On les utilise par exemple si on a des données dans plusieurs

fichiers différents et qu'on veut les agréger dans un array unique. On verra qu’on peut faire le méme genre de chose avec
les fameux Dataframes du module pandas. Lisez bien également les recommandations dans la derniére rubrique 17.1.10

Quelques conseils sur

20.7 Un peu

quand utiliser la concaténation d'arrays avec NumPy.

d’algebre linéaire

Aprés avoir manipulé les objets array comme des vecteurs et des matrices, voici quelques fonctions pour faire de

I'algebre linéaire.
La fonction trans

a
a
array([[1, 2, 3],

[47 57 6]7
[7, 8, 911)

np.transpose(a)

array([[1, 4, 71,
[2, 5, 8],
[3, 6, 911)

pose() renvoie la transposée 13 d'un array. Par exemple, pour une matrice :

= np.resize(np.arange(l, 10), (3, 3))

13. https://fr.wiki

pedia.org/wiki/Matrice_transpos%C3%A9e

Cours de Python / Université Paris Cité / UFR Sciences du Vivant 215

https://fr.wikipedia.org/wiki/Matrice_transpos%C3%A9e

Chapitre 20. Module NumPy 20.7. Un peu d'algébre linéaire

Tout objet array possede un attribut . T qui contient la transposée, il est ainsi possible d'utiliser cette notation objet
plus compacte :

a.T

array([[1, 4, 7],
[2, 5, 8],
[3, 6, 911)

La fonction dot() permet de multiplier deux matrices '# :

a = np.resize(np.arange(4), (2, 2))
a

array([[0, 1],
[2, 31D

np.dot(a, a)

array([[2, 3],
[6, 1111)

array([[0, 1],
[4, 911)

Notez bien que dot(a, a) renvoie le produit matriciel entre deux matrices, alors que I'opération a x a renvoie le
produit élément par élément.

Remarque

Dans le module NumPy, il existe également des objets de type matrix pour lesquels les multiplications de matrices
sont différents, mais nous ne les aborderons pas ici.

Pour toutes les opérations suivantes, nous utiliserons des fonctions du sous-module linalg de NumPy.
La fonction diag() permet de générer une matrice diagonale :

a = np.diag((1, 2, 3))
a

array([[1, 0, @],
[0’ 2’ @]’
(e, o, 311)

La fonction inv () renvoie I'inverse d'une matrice carrée1® :

np.linalg.inv(a)

array([[1. , 0. , 0.],
[o. , 0.5 , 0. 1,
[o. , 0. , 0.33333333]])

La fonction det () renvoie le déterminant 1 d’une matrice carrée :

14. https://fr.wikipedia.org/wiki/Produit_matriciel#Produit_matriciel_ordinaire
15. https://fr.wikipedia.org/wiki/Matrice_inversible
16. https://fr.wikipedia.org/wiki/Calcul_du_d%C3%A9terminant_d%27une_matrice

216 Cours de Python / Université Paris Cité / UFR Sciences du Vivant

https://fr.wikipedia.org/wiki/Produit_matriciel#Produit_matriciel_ordinaire
https://fr.wikipedia.org/wiki/Matrice_inversible
https://fr.wikipedia.org/wiki/Calcul_du_d%C3%A9terminant_d%27une_matrice

20.8. Parcours de matrice et affectation de lignes et colonnes Chapitre 20. Module NumPy

np.linalg.det(a)

Enfin, la fonction eig() renvoie les vecteurs et valeurs propres :

np.linalg.eig(a)

EigResult(eigenvalues=array([1l., 2., 3.]), eigenvectors=array([[1l., 0., 0.],
[e., 1., 0.7,
0., 0., 1.11))

La fonction eig() renvoie un objet EigResult, qui contient les valeurs propres (eigenvalues) et les vecteurs
propres (eigenvectors), qu'on peut ensuite récupérer par affectation multiple :

eigvals, eigvecs = np.linalg.eig(a)
eigvals

array([1., 2., 3.1)

eigvals est un array 1D contenant les trois valeurs propres.

eigvecs

array([[1., 0., 0.],
[6., 1., 0.],
(6., 0., 1.11)

eigvecs est un array 2D contenant les trois vecteurs propres (un par Iigne).

20.8 Parcours de matrice et affectation de lignes et colonnes

Lorsqu'on a une matrice, on est souvent amené a la parcourir par ligne ou par colonne. NumPy permet d'itérer
directement sur les lignes d'une array :

a = np.reshape(np.arange(1, 10), (3, 3))
a

array([[1, 2, 3],
[4’ 5’ 6]’
[7, 8, 911)

for row in a:
print(row, type(row))

[1 2 3] <class 'numpy.ndarray'>
[4 5 6] <class 'numpy.ndarray'>
[7 8 9] <class 'numpy.ndarray'>

A chaque itération, la variable row est un array 1D correspondant a chaque ligne de la matrice a. Cela est du au fait
que 'utilisation d'un indicage unique a[i] pour un array 2D correspond a sa ligne d'indice i (voir la rubrique Indices
ci-dessus).

Pour itérer sur les colonnes, on peut utiliser I'astuce d’itérer sur la transposée de I'array a, c'est-a-dire a.T :

for col in a.T:
print(col, type(col))

Cours de Python / Université Paris Cité / UFR Sciences du Vivant 217

Chapitre 20. Module NumPy 20.9. Masques booléens

[1 4 7] <class 'numpy.ndarray'>
[2 5 8] <class 'numpy.ndarray'>
[3 6 9] <class 'numpy.ndarray'>

A chaque itération, la variable col est un array 1D correspondant a chaque colonne de a.

On se souvient de |'affectation multiple x, y = 1, 2 qui permettait d'affecter des valeurs a plusieurs variables a la
fois. Il est possible d'utiliser cette fonctionnalité aussi avec les arrays NumPy :

a

array([[1, 2, 3],
[4’ 5’ 6]’
[7, 8, 911)

al, a2, a3 = a
al

array([1, 2, 3])
a2

array([4, 5, 6])
a3

array([7, 8, 9])

Par défaut, I'affectation multiple se fait sur les lignes de I'array 2D. Cette fonctionnalité s’explique a nouveau par le
fait que pour NumPy, a[i] correspond a la ligne d'indice i d'un array 2D.
Pour utiliser I'affectation multiple sur les colonnes, il suffit d'utiliser la transposée a.T :

cl, c2, c3 = a.T
cl

array([1, 4, 71)
c2

array([2, 5, 81)
c3

array([3, 6, 9])

20.9 Masques booléens

Une fonctionnalité puissante des arrays NumPy est |'utilisation des masques booléens. Avant de les définir, il est
important d’introduire le concept d'arrays de booléens. Jusqu'a maintenant nous avions définis uniquement des arrays
avec des types numériques int ou float. Il est tout a fait possible de définir des arrays de booléens. La fonction np. full()
vue précédemment nous permet d’en construire facilement :

np.full((2, 2), True)

218 Cours de Python / Université Paris Cité / UFR Sciences du Vivant

20.9. Masques booléens

Chapitre 20. Module NumPy

array([[True, True],
[True, Truell)

np.full((2, 2), False)

array([[False, False],
[False, False]])

Au premier abord, nous n'en voyons pas forcément |'utilité
comparaison avec un array ? Et bien cela renvoie un array de booléens!

a = np.reshape(np.arange(1l, 10), (3, 3))
a

array([[1, 2, 3],

[47 5’ 6]7
[7, 8, 911)
a>>5

array([[False, False, False],
[False, False, True],
[True, True, Truell)

array([[False, True, False],
[False, False, False],
[False, False, False]ll)

.. Mais qu'en est-il lorsqu’on utilise les opérateurs de

Tous les éléments de I'array satisfaisant la condition seront a True, les autres a False. Il est méme possible de

combiner plusieurs conditions avec les opérateurs logiques & et | (respectivement ET et OU) :

a = np.reshape(np.arange(1l, 10), (3, 3))
a

array([[1, 2, 3],
[4, 5, 6],
[7, 8, 911)

(a>3) & (a %2 ==0)

array([[False, False, False],
[True, False, True],
[False, True, False]])

(a>3) | (a%2==0)

array([[False, True, False],
[True, True, True],
[True, True, Truell)

e Les opérateurs logiques & et | s'appliquent sur les arrays et sont différents des opérateurs logiques and et or, qui

eux s'appliquent sur les booléens (True ou False).
e |l est conseillé de mettre entre parenthéses chaque condition afin d’éviter les ambiguités.

Cours de Python / Université Paris Cité / UFR Sciences du Vivant

219

Chapitre 20. Module NumPy 20.9. Masques booléens

Maintenant que les arrays de booléens ont été introduits, nous pouvons définir les masques booléens :

Définition

Les masques booléens sont des arrays de booléens qui sont utilisés en tant qu'« indice » d'un array initial. Cela permet
de récupérer ou de modifier une partie de I'array initial.

Concrétement, il suffira d'utiliser un array et un opérateur de comparaison entre les crochets qui étaient dédiés a
I'indicage :

a = np.reshape(np.arange(1l, 10), (3, 3))
a

array([[1, 2, 3],
[4’ 5’ 6] b
[7, 8, 911)

Pour isoler tous les éléments de I'array a qui sont supérieurs a 5 :

ala > 5]

array([6, 7, 8, 9])

Pour isoler tous les éléments de |'array a qui sont égaux a 2 :

ala == 2]

array([2])

Pour isoler tous les éléments de I'array a qui sont non nuls :

ala != 0]

array([1, 2, 3, 4, 5, 6, 7, 8, 9])

A chaque fois, on ne récupére que les éléments de I'array a qui satisfont la sélection. Toutefois, il est important de
remarquer que |'array renvoyé perd la dimensionnalité de I'array a initial, il s'agit systématiquement d'un array 1D.

La grande puissance de ce mécanisme est que I'on peut utiliser les masques booléens pour modifier les éléments que
I'on sélectionne :

a = np.reshape(np.arange(1l, 10), (3, 3))
a

array([[1, 2, 3],
[4’ 57 6]’
[7, 8, 911)

On sélectionne les éléments de I'array a supérieurs a 5 :

ala > 5]

array([6, 7, 8, 9])
On affecte la valeur -1 aux éléments de |'array a supérieurs a 5 :

ala > 5] = -1
a

220 Cours de Python / Université Paris Cité / UFR Sciences du Vivant

20.10. Quelques conseils Chapitre 20. Module NumPy

array([[1, 2, 3],
[4, 5, _l]’
[-1, -1, -111)

On peut bien slir combiner plusieurs conditions avec les opérateurs logiques :

a = np.reshape(np.arange(l, 10), (3, 3))
a

array([[1, 2, 3],
[47 5! 6]7
[7, 8, 911)

al(a>3) | (a%2==0)] =0
a

array([[1, 0, 3],
[0’ 0’ @],
fe, o, o]1)

Ce mécanisme de sélection avec des masques booléens se révele trés puissant pour manipuler de grandes quantités
de données. On verra qu'il peut étre également utilisé avec les Dataframes du module pandas.

Remarque

Les masques booléens ne doivent pas &tre confondus avec les masked arrays'’, qui sont des arrays dans lesquels on
peut trouver des valeurs manquantes ou invalides.

Enfin, une application possible des masques est de « binariser » une matrice de nombre :

import random

import numpy as np

a = np.resize([random.random() for i in range(16)], (4, 4))
a

array([[0.58704728,
[0.93102132,
[0.48198211,
[0.92913469,

50212977, 0.70652863, 0.24158108],
.41864373, 0.45807961, 0.98288744],
.16877376, 0.14431518, 0.74784176],
.08383269, 0.10670144, 0.14554345]])

[oNoNoNo]

seuil = 0.3

ala < seuil] = 0
ala > seuil] =1
a

array([[1.
[1.
[1.
[1.

(ol O RN i
(oo N
. e oo
(ol ol O]
[S)
Liw w
~

On obtient ce résultat avec deux lignes de code en utilisant des arrays, alors qu'il aurait fallu faire des boucles avec
des listes classiques.

20.10 Quelques conseils

Nous vous avons présenté une petite partie du module NumPy, mais vous avez pu en constater son extraordinaire
puissance. On pourrait au premier abord étre tenté d’abandonner les listes, toutefois elles gardent toute leur importance.

17. https://numpy.org/doc/1.18/reference/maskedarray.html

Cours de Python / Université Paris Cité / UFR Sciences du Vivant 221

https://numpy.org/doc/1.18/reference/maskedarray.html

Chapitre 20. Module NumPy 20.11. Exercices

222

Alors,

quand utiliser les listes ou quand utiliser les arrays NumPy ? Voici une liste non exhaustive d'éléments qui peuvent

guider votre choix :

Utilisez NumPy pour :

les opérations vectorielles (éléments par éléments);

lorsque vous souhaitez manipuler des objets mathématiques (vecteurs, matrices, etc.) et les outils associés (algébre
linéaire) ;

tout ce qui est numérique de maniére générale.

Utilisez les listes :

Lorsque vous avez besoin d'un conteneur pour accumuler des valeurs (fussent-elles des sous-listes), surtout lors-
qu'elles ne sont pas homogénes (c’est-a-dire du méme type).

Lorsque vous souhaitez accumuler des valeurs au fur et a mesure des itérations d'une boucle. Pour cela, la méthode
.append () des listes est bien plus efficace que de faire grandir un array ligne par ligne (c’est-a-dire en ajoutant
une ligne avec np.concatenate() a chaque itération).

Lorsqu'on ne peut pas utiliser les fonctions de lecture de fichier de NumPy pour quelque raison que ce soit, il est
tout a fait classique de faire grandir une liste au fur et a mesure de la lecture du fichier puis de la convertir a la fin
en array. De maniére générale, utilisez np.concatenate() seulement pour concaténer des gros arrays, pas pour
ajouter une seule ligne.

Enfin, comme nous vous le conseillons depuis le début, soignez votre documentation (docstrings) et vos commentaires
lorsque vous utilisez des arrays. NumPy permet de réaliser des opérations vectorielles de maniére tres compacte. Il est
donc essentiel de se mettre a la place du lecteur de votre script (y compris vous dans quelques semaines ou mois) et de
documenter ce que contient chaque array ainsi que sa dimensionnalité (1D, 2D, etc.).

Le module NumPy est la brique de base du calcul numérique en Python. Associé aux modules SciPy'® et matplotlib,
ainsi qu'aux notebooks Jupyter (voir le chapitre précédent), il permet de faire du calcul scientifique de maniére tres
efficace. On verra dans le chapitre 22 Module Pandas que la puissance de NumPy est également utilisée par le module
pandas pour faire de I'analyse de données.

Pour

aller plus loin

Le livre de Nicolas Rougier From Python to Numpy'® est une excellente ressource pour explorer plus en détails les
possibilités de NumPly.

Les tutoriels ° proposés par les développeurs de NumPy sont également un bon moyen de poursuivre votre explo-
ration de cette bibliotheque incontournable en sciences.

20.11 Exercices

Conseil

Pour ces exercices, utilisez des notebooks Jupyter.

20.11.1 Nombres pairs et impairs

Soit impairs un array NumPy qui contient les nombres :

1, 3,

5, 7, 9, 11, 13, 15, 17, 19, 21

En une seule instruction, construisez |I'array pairs dans lequel tous les éléments de impairs sont incrémentés de 1.
Comparez ce que vous venez de faire avec |'exercice « Nombres pairs et impairs » du chapitre 5 Boucles et comparaisons.

18. https://scipy.org/
19. https://www.labri.fr/perso/nrougier/from-python-to-numpy/
20. https://numpy.org/numpy-tutorials/index.html

Cours de Python / Université Paris Cité / UFR Sciences du Vivant

https://scipy.org/
https://www.labri.fr/perso/nrougier/from-python-to-numpy/
https://numpy.org/numpy-tutorials/index.html

20.11. Exercices Chapitre 20. Module NumPy

20.11.2 Distance entre deux atomes carbones alpha consécutifs de la barstar

La barstar est un inhibiteur de ribonucléase. C'est une protéine relativement simple qui contient 89 acides aminés. Sa
structure tridimensionnelle, obtenue par résonance magnétique nucléaire (RMN), se trouve dans la Protein Data Bank
(PDB) sous le code 1BTA.

L'objectif de cet exercice est de calculer la distance entre carbones alpha consécutifs le long de la chaine peptidique
avec module NumPy et de découvrir une anomalie.

Le morceau de code suivant vous sera utile pour extraire les coordonnées atomiques des carbones alpha de la barstar
depuis un fichier PDB :

with open("1lbta.pdb", "r") as f_pdb, open("lbta_CA.txt", "w") as f_CA:
for ligne in f_pdb:
if ligne.startswith("ATOM") and ligne[12:16].strip() == "CA":
x = ligne[30:38]
y ligne[38:46]
z ligne[46:54]
f_CA.write(f"{x} {y} {z} ")

e Ligne 1. On ouvre deux fichiers simultanément. Ici, le fichier 1bta.pdb est ouvert en lecture (r) et le fichier
lbta_CA.txt est ouvert en écriture (w).

e Pour chaque ligne du fichier PDB (ligne 2), si la ligne débute par ATOM et le nom de I'atome est CA (ligne 3),
alors on extrait les coordonnées atomiques (lignes 4 a 6) et on les écrit dans le fichier 1bta_CA.txt (ligne 7).
Les coordonnées sont toutes enregistrées sur une seule ligne, les unes aprés les autres.

Voici les étapes a suivre :

1. Extraction des coordonnées atomiques

e Téléchargez le fichier 1bta.pdb qui correspond 2 la structure de la barstar?! sur le site de la PDB (lien direct
vers le fichier 2?).

e Utilisez le code précédent pour extraire les coordonnées atomiques des carbones alpha de la barstar.

2. Lecture des coordonnées

e Ouvrez le fichier 1bta_CA.txt avec Python et créez une liste contenant toutes les coordonnées sous forme
de floats avec les fonctions split() et float().

o Affichez a I'écran le nombre total de coordonnées.

3. Construction de la matrice de coordonnées

e En ouvrant dans un éditeur de texte le fichier 1bta.pdb, trouvez le nombre d'acides aminés qui constituent
la barstar.

e Avec la fonction array () du module NumPy, convertissez la liste de coordonnées en array. Avec la fonction
reshape () de NumPy, construisez ensuite une matrice a deux dimensions contenant les coordonnées des
carbones alpha de la barstar. Affichez les dimensions de cette matrice.

4. Calcul de la distance

e Créez maintenant une matrice qui contient les coordonnées des n— 1 premiers carbones alpha et une autre
qui contient les coordonnées des n — 1 derniers carbones alpha. Affichez les dimensions des matrices pour
vérification.

e En utilisant les opérateurs mathématiques habituels (-, +, x*2) et les fonctions sqrt () et sum() du module
NumPy, calculez la distance entre les atomes n et n+ 1.

e Pour chaque atome, affichez le numéro de I'atome et la distance entre carbones alpha consécutifs avec un
chiffre apres la virgule. Repérez la valeur surprenante.

20.11.3 Jour le plus chaud

Le fichier temperature.dat?® contient un relevé de quatre températures pour chaque jour de la semaine :

Lun 12 11 14 12
Mar 12 10 14 11
Mer 11 11 14 13
[...]

21. http://www.rcsb.org/pdb/explore.do?structureld=1BTA
22. https://files.rcsb.org/download/1BTA.pdb
23. https://python.sdv.u-paris.fr/data-files/temperatures.dat

Cours de Python / Université Paris Cité / UFR Sciences du Vivant

223

http://www.rcsb.org/pdb/explore.do?structureId=1BTA
https://files.rcsb.org/download/1BTA.pdb
https://python.sdv.u-paris.fr/data-files/temperatures.dat

Chapitre 20. Module NumPy 20.11. Exercices

A I'aide du module NumPy, on souhaite déterminer quel est le jour de la semaine le plus chaud. Pour cela nous vous
proposons les étapes suivantes :

1. Récupérez le nom des jours de la semaine depuis le fichier et stockez-les dans une liste days.

2. Récupérez les valeurs de températures depuis le fichier et stockez-les dans un array 2D. La fonction np.loadtxt
O 24 ot son argument usecols vous seront utiles.

3. Parcourez chaque ligne de la matrice, calculez la température moyenne de chaque jour puis stockez-la dans une
liste mean_temps.

4. A I'aide des deux listes days et mean_temps, déterminez et affichez le jour le plus chaud.

20.11.4 Calcul du centre de masse d’'une membrane

L'image de gauche de la figure 20.2 montre le cliché d’'une membrane de POPC (cyan) entourée d'eau (bleu)
(coordonnées trouvées ici2). Les atomes de phosphore des groupes phosphates sont représentés en boule de van der
Waals brune. Dans cet exercice, on cherche a calculer le centre de masse de la membrane, ainsi que le centre de masse
(COM) de chaque monocouche de phosphores. Ces COM sont représentés sous forme de croix dans le graphique de droite
de la figure 20.2.

Graphe 3D des phosphores

Z axis (A)

FI1GURE 20.2 — Cliché d'une membrane de POPC.
Les coordonnées cartésiennes (x,y,z) de chaque atome de phosphore (en A) sont stockées dans le fichier coors_P.dat ?°,
a raison d'un atome par ligne.
Nous vous proposons les étapes suivantes pour résoudre cet exercice a I'aide du module NumPy :
1. Récupérez les coordonnées des atomes de phosphore depuis le fichier coors_P.dat et stockez-les dans un array
2D (matrice) coors_P. La dimensionnalité de cette matrice est n x 3, avec n le nombre de phosphores.
2. Calculez le z moyen de tous les phosphores (nombre réel) et stockez-le dans la variable mean_z. La méthode
.mean () vous sera utile.
3. Avec des masques de booléens, récupérez les coordonnées des phosphores de la monocouche du haut dans un array
2D upper. Faites de méme avec la monocouche du bas dans un array 2D lower.
4. Calculez le centre de masse COM de la membrane, ainsi que de la monocouche du haut COM_upper et du bas
COM_Tower. Pensez aux méthodes de calcul sur les arrays et I'argument axis.
5. Une fois tout cela effectué, créez un graphique 3D pour représenter les différents centres de masse. Utilisez la
fonction scatter () du module matplotlib pour I'affichage en 3D ?’. Voici un squelette de programme pour vous

24. https://numpy.org/doc/stable/reference/generated/numpy.loadtxt.html
25. https://zenodo.org/record/153944

26. https://python.sdv.u-paris.fr/data-files/coors_P.dat

27. https://matplotlib.org/3.2.1/gallery/mplot3d/scatter3d.html

224 Cours de Python / Université Paris Cité / UFR Sciences du Vivant

https://numpy.org/doc/stable/reference/generated/numpy.loadtxt.html
https://zenodo.org/record/153944
https://python.sdv.u-paris.fr/data-files/coors_P.dat
https://matplotlib.org/3.2.1/gallery/mplot3d/scatter3d.html

20.11. Exercices Chapitre 20. Module NumPy

aider :

Initialisation du graphique.

from mpl_toolkits.mplot3d import Axes3D

import matplotlib.pyplot as plt

fig = plt.figure()

ax = fig.add_subplot(111l, projection="3d")

[oool

X, Y et Z sont des arrays 1D de n éléments.

Par exemple X représente tous les x des P de la monocouche upper.
Loool

Affichage de la couche upper.

ax.scatter(X, Y, Z, c="salmon", marker="o")

Affichage du COM de la couche upper.
ax.scatter(x, y, z, c="red", marker="x")

Loool

Affichage des étiquettes des axes et du titre.
ax.set_xlabel("x (A)")

ax.set_ylabel("y (A)")

ax.set_zlabel("z (A)")

ax.set_title("Graphe 3D des phosphores")
plt.show()

Cours de Python / Université Paris Cité / UFR Sciences du Vivant 225

CHAPITRE 21

Module Matplotlib

Le module matplotlib® permet de générer des graphiques depuis Python. Il est I'outil complémentaire des modules
NumPy, scipy ou pandas (que |'on verra juste aprés) lorsqu'on veut faire de I'analyse de données.

21.1 Installation et convention
Le module matplotlib n'est pas fourni avec la distribution Python de base. Avec la distribution Miniconda que nous
vous conseillons d'utiliser (consultez pour cela la documentation en ligne?), vous pouvez 'installer avec la commande :

$ conda install -c conda-forge matplotlib

Dans ce chapitre, nous vous montrerons quelques exemples d'utilisation du module matplotlib pour vous convaincre
de sa pertinence. Ces exemples seront exécutés dans un notebook Jupyter.

Les cellules de code apparaitront de cette maniére
dans un notebook Jupyter, avec des numéros de lignes a gauche.

21.2 Chargement du module

On importe le module matplotlib avec la commande :

import matplotlib.pyplot as plt

Remarque
On n'importe pas le module matplotlib directement, mais plutdt son sous-module pyplot. Par convention, et pour
I'utiliser plus rapidement, ce sous-module prendre I'alias plt.

21.3 Représentation en nuage de points

Dans cet exemple, nous considérons |'évolution de la concentration d'un produit dans le sang (exprimé en mg/L) en
fonction du temps (exprimé en heures). Cet exemple est purement fictif.

1. https://matplotlib.org/
2. https://python.sdv.u-paris.fr/livre-dunod

226

https://matplotlib.org/
https://python.sdv.u-paris.fr/livre-dunod

21.3. Représentation en nuage de points Chapitre 21. Module Matplotlib

Voici les valeurs mesurées :

Temps (h) Concentration (mg/L)

1 35
5.8
9.1
11.8
17.5
21.3
26.8

O ~NOoO B~ WwWwN

Nous allons maintenant représenter |'évolution de la concentration en fonction du temps :

import matplotlib.pyplot as plt

temps = [1, 2, 3, 4, 6, 7, 9]
concentration = [5.5, 7.2, 11.8, 13.6, 19.1, 21.7, 29.4]

fig, ax = plt.subplots()

ax.scatter (temps, concentration, marker="o", color="blue")
ax.set_xlabel("Temps (h)")

ax.set_ylabel("Concentration (mg/L)")
ax.set_title("Concentration de produit en fonction du temps")
plt.show()

Dans un notebook Jupyter, vous devriez obtenir un graphique ressemblant a celui de la figure 21.1.

Concentration de produit en fonction du temps

30 A

25 A

20 A

15 A

Concentration (mg/L)

10 A

Temps (h)

FIGURE 21.1 — Graphique produit par matplotlib.

Revenons maintenant sur le code :

Cours de Python / Université Paris Cité / UFR Sciences du Vivant 227

Chapitre 21.

Module Matplotlib 21.4. Représentation sous forme de courbe

228

Ligne 1. Tout d'abord, on importe le sous-module pyplot du module matplotlib et on lui donne I'alias plt pour
I'utiliser plus rapidement ensuite. Cet alias est standard, utilisez-le systématiquement.

Lignes 3 et 4. On définit les variables temps et concentration comme des listes. Les deux listes doivent avoir
la méme longueur (sept éléments dans le cas présent).

Ligne 6. On crée une figure avec la fonction subplots() qui renvoie deux objets : une figure (fig) et un axe
(ax). L'axe est I'objet qui contient le graphique a proprement dit. On peut avoir plusieurs axes dans une méme
figure.

Ligne 7. La méthode .scatter () permet de représenter des points sous forme de nuage de points. Les deux
premiers arguments correspondent aux valeurs en abscisse et en ordonnée des points, fournis sous forme de listes.
Des arguments facultatifs sont ensuite précisés comme le symbole (marker) et la couleur (color).

Lignes 8 et 9. Les méthodes .set_xlabel() et .set_ylabel() donnent une légende aux axes des abscisses et
des ordonnées.

e Ligne 10. La méthode .set_title() définit le titre du graphique.

Ligne 11. L'instruction plt.show() affiche le graphique. Elle n’est pas nécessaire dans un notebook Jupyter, car
le graphique est affiché automatiquement, mais elle est indispensable dans un script Python.

21.4 Représentation sous forme de courbe

On sait par ailleurs que I'évolution de la concentration du produit en fonction du temps peut-étre modélisée par la
fonction f(x) =243 xx.

Remarque

Le modéle présenté ici est purement fictif. Vous découvrirez dans le chapitre 22 Module Pandas comment réaliser une
régression linéaire pour modéliser des données expérimentales.

Représentons ce modeéle avec les points expérimentaux et sauvegardons le graphique obtenu sous forme d'une image :

import numpy as np
import matplotlib.pyplot as plt

temps = [1, 2, 3, 4, 6, 7, 9]
concentration = [5.5, 7.2, 11.8, 13.6, 19.1, 21.7, 29.4]

fig, ax = plt.subplots()

ax.scatter (temps, concentration, marker="o", color = "blue")
ax.set_xlabel("Temps (h)")

ax.set_ylabel("Concentration (mg/L)")
ax.set_title("Concentration de produit en fonction du temps")

np.linspace(min(temps), max(temps), 50)
2 + 3 % X

X
y

ax.plot(x, y, color="green", 1ls="--")
ax.grid()
fig.savefig("concentration_vs_temps_1.png", bbox_inches="tight", dpi=200)

Le résultat est représenté sur la figure 21.2.
Les étapes supplémentaires par rapport au graphique précédent (figure 21.1) sont :

Ligne 1. On charge le module numpy sous le nom np.

Ligne 13. On crée la variable x avec la fonction linspace() du module NumPy, qui renvoie une liste de valeurs
réguliérement espacées entre deux bornes, ici entre le minimum (min(temps)) et le maximum (max (temps)) de
la variable temps. Dans notre exemple, nous générons une liste de 50 valeurs. La variable x ainsi créée est du type
array.

Ligne 14. On construit ensuite la variable y a partir de la formule modélisant I'évolution de la concentration
du produit en fonction du temps. Cette manipulation n'est possible que parce que x est du type array. Cela ne
fonctionnerait pas avec une liste classique.

Ligne 16. La méthode .plot() construit une courbe 3 partir des coordonnées en abscisse et en ordonnées des

Cours de Python / Université Paris Cité / UFR Sciences du Vivant

21.4. Représentation sous forme de courbe

Chapitre 21.

Module Matplotlib

Concentration de produit en fonction du temps

30
)
R
//
,/
25
= 0
E 20 <
1 4l
- ,/’ ()
= R
€ 151 7
(V] ,/
c D
o JRe
,/
10 -
r
,/
70
’
5187
1 2 3 4 5 6 7 9
Temps (h)

FIGURE 21.2 — Concentration du produit en fonction du temps.

points a représenter. On indique ensuite des arguments facultatifs comme le style de la ligne (s pour line style)

et sa couleur (color).
e Ligne 17. La méthode .grid() affiche une grille.

e Ligne 18. Enfin, l'instruction fig.savefig() enregistre le graphique produit sous la forme d'une image au format
png. Des arguments par mot-clé définissent la maniére de générer les marges autour du graphique (bbox_inches)

et la résolution de I'image (dp1).

Pour terminer, on peut améliorer un peu plus le graphique en ajoutant une légende et en modifiant I'étendue des axes

des abscisses et des ordonnées :

Cours de Python / Université Paris Cité / UFR Sciences du Vivant

229

Chapitre 21. Module Matplotlib

21.4. Représentation sous forme de courbe

230

import numpy as np
import matplotlib.pyplot as plt

temps = [1, 2, 3, 4, 6, 7, 9]
concentration = [5.5, 7.2, 11.8, 13.6, 19.1, 21.7, 29.4]

fig, ax = plt.subplots()

ax.scatter (temps, concentration, marker="o", color="blue", label="mesures")
ax.set_xlabel("Temps (h)")

ax.set_ylabel("Concentration (mg/L)")

ax.set_title("Concentration de produit en fonction du temps")

X
y

np.linspace(min(temps), max(temps), 50)
2 + 3 % X

ax.plot(x, y, color="green", 1ls="--", label="modéle")
ax.grid()

ax.set_xlim(0, 10)

ax.set_ylim(0, 35)

ax.legend(loc="upper left")
fig.savefig("concentration_vs_temps_2.png", bbox_inches="tight", dpi=200)

On obtient alors le graphique représenté dans la figure 21.3.

Concentration de produit en fonction du temps

35
® mesures
—-—- modeéle
30 »
,/
’/
’/
257 v
Fe) -7
< /z’ o
~ 20 A -
5 g
) ' d
5 15 ot
_ ”
S 4
C ”
S >
10 >
PR
70
5 - e~
0 T T T T
0 2 4 6 8
Temps (h)

FI1GURE 21.3 — Concentration du produit en fonction du temps, version améliorée.

Les différences notables par rapport au code précédent sont :

e Lignes 8 et 16. On ajoute le paramétre label pour donner un nom au nuage de points (.scatter()) ou a la

courbe (.plot()).

e Lignes 19 et 20. On définit I'étendue de I'axe des abscisses avec la méthode .set_x1im() et de I'axe des

Cours de Python / Université Paris Cité / UFR Sciences du Vivant

10

21.5. Représentation en diagramme en b&tons Chapitre 21. Module Matplotlib

ordonnées avec la méthode .set_ylim().
e Lignes 22. On affiche la Iégende avec la méthode .legend (). L'argument loc permet de préciser la position de
la légende dans le graphique. Dans notre exemple, la légende est placée en haut a gauche ("upper left").

21.5 Représentation en diagramme en batons

On souhaite maintenant représenter graphiquement la distribution des différentes bases dans une séquence d’ADN.

import numpy as np
import matplotlib.pyplot as plt

sequence = "ACGATCATAGCGAGCTACGTAGAA"

bases = ["All’ "Cll, IIGII’ llTll:l

distribution = []

for base in bases:
distribution.append(sequence.count(base))

X = np.arange(len(bases))

fig, ax = plt.subplots()

ax.bar(x, distribution)

ax.set_xticks(x, bases)

ax.set_xlabel("Bases")

ax.set_ylabel("Nombre'")

ax.set_title(f"Distribution des bases\n dans la séquence {sequencel}'")
fig.savefig("distribution_bases.png", bbox_inches="tight", dpi=200)

On obtient alors le graphique de la figure 21.4.

Distribution des bases
dans la séquence ACGATCATAGCGAGCTACGTAGAA

Bases

FIGURE 21.4 — Distribution des bases.

Cours de Python / Université Paris Cité / UFR Sciences du Vivant 231

Chapitre 21. Module Matplotlib 21.5. Représentation en diagramme en batons

232

Prenons le temps d’examiner les différentes étapes du script précédent :

Lignes 4 a 6. On définit les variables sequence, bases et distribution.

Lignes 7 et 8. On calcule la distribution des différentes bases dans la séquence. On utilise pour cela la méthode
count (), qui renvoie le nombre de fois qu’une chaine de caracteres (les différentes bases) se trouve dans une autre
(la séquence).

Ligne 10. On définit la position en abscisse des barres. Dans cet exemple, la variable x vaut array ([0, 1, 2,

3]).

e Ligne 12. On crée le graphique.

Ligne 13. La méthode .bar () construit le diagramme en batons. Elle prend en argument la position des barres
(x) et leurs hauteurs (distribution).

e Ligne 14. La méthode .set_xtics() redéfinit les étiquettes (c'est-a-dire le nom des bases) sur |'axe des abscisses.

Lignes 15 a 17. On définit les légendes des axes et le titre du graphique. On insére un retour a la ligne \n dans
le titre pour qu'il soit réparti sur deux lignes.
Ligne 18. Enfin, on enregistre le graphique généré au format png.

On espeére que ces courts exemples vous auront convaincu de I'utilité du module matplotlib. Sachez qu'il peut faire
bien plus, par exemple générer des histogrammes ou toutes sortes de graphiques utiles en analyse de données. Il est existe
par ailleurs d'autres bibliotheéques pour produire des graphiques avec Python, comme Seaborn?, Bokeh* ou Plotly®. Ces

deux

derniéres permettent de générer des graphiques interactifs, c'est-a-dire des graphiques dans lesquels on peut zoomer,

se déplacer, etc. Nous vous invitons a les découvrir par vous-méme.

Pour aller plus loin

Le site de matplotlib fournit de nombreux exemples détaillés®, n'hésitez pas a le consulter.

Le site Python Graph Gallery ” propose aussi des exemples de code pour différents types de graphiques, réalisés
avec matplotlib ou d'autres bibliothéques.

Enfin, des cheat sheets® de matplotlib sont extrémement utiles et trés bien faites.

O NG Rw

https://seaborn.pydata.org/

http://bokeh.org/

https://plotly.com/
https://matplotlib.org/gallery/index.html
https://www.python-graph-gallery.com/matplotlib/
https://matplotlib.org/cheatsheets/

Cours de Python / Université Paris Cité / UFR Sciences du Vivant

https://seaborn.pydata.org/
http://bokeh.org/
https://plotly.com/
https://matplotlib.org/gallery/index.html
https://www.python-graph-gallery.com/matplotlib/
https://matplotlib.org/cheatsheets/

CHAPITRE 22

Module Pandas

Le module pandas® a été concu pour I'analyse de données. Il est particulierement puissant pour manipuler des données
structurées sous forme de tableau.

22.1 Installation et convention

Le module pandas n'est pas fourni avec la distribution Python de base. Avec la distribution Miniconda que nous
vous conseillons d'utiliser (consultez pour cela la documentation en ligne?), vous pouvez rapidement I'installer avec la
commande :

$ conda install -c conda-forge pandas

Vous aurez également besoin des modules matplotlib pour créer des graphiques et scipy pour réaliser une régression
linaire, que vous pouvez installer ainsi :

$ conda 1install -c conda-forge matplotlib scipy

Dans ce chapitre, nous vous montrerons quelques exemples d'utilisation du module pandas pour vous convaincre de
sa pertinence. Ces exemples seront exécutés dans un notebook Jupyter.

Les cellules de code apparaitront de cette maniére
dans un notebook Jupyter, avec des numéros de lignes a gauche.

Les résultats seront affichés de cette maniére,
éventuellement sur plusieurs lignes.

22.2 Chargement du module
Pour charger pandas dans la mémoire de Python, on utilise la commande import habituelle :

import pandas

Par convention, on utilise pd comme nom raccourci pour pandas :

import pandas as pd

1. https://pandas.pydata.org/
2. https://python.sdv.u-paris.fr/livre-dunod

233

https://pandas.pydata.org/
https://python.sdv.u-paris.fr/livre-dunod

Chapitre 22. Module Pandas 22.3. Series

234

22.3 Series

Le premier type de données apporté par pandas est la Series, qui correspond a un vecteur a une dimension.

s = pd.Series([10, 20, 30, 40], index = ['a', 'b', 'c', 'd'])
s

a 10

b 20

C 30

d 40

dtype: int64

22.3.1 Sélections par étiquette ou indice

Avec pandas, chaque élément de la série de données posséde une étiquette qui permet d'appeler les éléments qui la
composent. Ainsi, pour appeler le premier élément de la série, on peut utiliser son étiquette (ici, "a") :

S[Ilall]
10
Pour accéder au premier élément par son indice (ici 0), comme on le ferait avec une liste, on utilise la méthode

.iloc:

s.iloc[0]

10

Bien siir, on peut extraire plusieurs éléments, par leurs indices ou leurs étiquettes :

s[["b", "d"]]
b 20
d 40

dtype: inte4

et
s.iloc[[1, 3]]

b 20
d 40
dtype: int64

22.3.2 Modifications de Series

Les étiquettes permettent de modifier et d'ajouter des éléments :

s["c"]
s["z"]
S

300
50

a 10
b 20
C 300
d 40
z 50
dtype: inte4

Cours de Python / Université Paris Cité / UFR Sciences du Vivant

22.4. Dataframes Chapitre 22. Module Pandas

22.3.3 Filtres

Enfin, on peut filtrer une partie de la Series :

s[s>30]
C 300
d 40
z 50

dtype: int64

Remarque
Cette écriture rappelle celle des masques booléens dans le chapitre 20 Module NumPly.

Enfin, on peut aussi combiner plusieurs critéres de sélection avec les opérateurs logiques & (pour ET) et | (pour
ou) :
s[(s>20) & (s<100)]

d 40
z 50
dtype: inte4

s[(s<15) | (s>150)]

a 10
@ 300
dtype: int64

22.4 Dataframes

Un autre type d’'objet particulierement intéressant introduit par pandas sont les Dataframes. Ceux-ci correspondent
a des tableaux a deux dimensions avec des étiquettes pour nommer les lignes et les colonnes.

Remarque
Si vous étes familier avec le langage de programmation et d’analyse statistique R, les Dataframes de pandas se
rapprochent de ceux trouvés dans R.

22.4.1 Création

Voici comment créer un Dataframe avec pandas a partir de données fournies comme liste de lignes :

import numpy as np
df = pd.DataFrame(columns=["a", "b", "c", "d"],
index=["chat", "singe", "souris"],
data=[np.arange(10, 14),
np.arange (20, 24),
np.arange (30, 34)])
df

a b c d
chat 10 11 12 13
singe 20 21 22 23
souris 30 31 32 33

Voici quelques commentaires sur le code précédent :

Cours de Python / Université Paris Cité / UFR Sciences du Vivant 235

Chapitre 22. Module Pandas 22.4. Dataframes

e Ligne 1. On charge le module NumPy utilisé ensuite.

e Ligne 2. Le Dataframe est créé avec la fonction DataFrame () alaquelle on fournit plusieurs arguments. L'argument
columns indique le nom des colonnes, sous forme d'une liste.

e Ligne 3. L'argument index définit le nom des lignes, sous forme de liste également.

e Lignes 4 a 6. L'argument data fournit le contenu du Dataframe, sous la forme d’une liste de valeurs correspon-
dantes a des lignes. Ainsi, np.arange (10, 14) qui est équivalenta [10, 11, 12, 13] correspond a la premiére
ligne du Dataframe.

Le méme Dataframe peut aussi étre créé a partir des valeurs fournies en colonnes sous la forme d'un dictionnaire :

data = {"a": np.arange(10, 40, 10),
"b": np.arange(1ll, 40, 10),
"c¢": np.arange(12, 40, 10),
"d": np.arange(13, 40, 10)}

df = pd.DataFrame(data)

df.index = ["chat", "singe", "souris"]

df

a b [d
chat 10 11 12 13
singe 20 21 22 23
souris 30 31 32 33

e Lignes 1 a 4. Le dictionnaire data contient les données en colonnes. La clé associée a chaque colonne est le nom
de la colonne.

e Ligne 5. Le dataframe est créé avec la fonction pd.DataFrame() a laquelle on passe data en argument.
e Ligne 6. On peut définir les étiquettes des lignes de n'importe quel dataframe avec I'attribut df.index.

22.4.2 Quelques propriétés

Les dimensions d'un dataframe sont données par |'attribut .shape :

df.shape

(3, 4

Ici, le dataframe df posséde trois lignes et quatre colonnes.
L'attribut .columns renvoie le nom des colonnes et permet aussi de renommer les colonnes d'un dataframe :
df.columns

Index(['a', 'b', 'c', 'd'], dtype='object')

df.columns = ["Paris", "Lyon", "Nantes", "Pau"]
df

Paris Lyon Nantes Pau

chat 10 11 12 13
singe 20 21 22 23
souris 30 31 32 33

La méthode .head(n) renvoie les n premiéres lignes du Dataframe (par défaut, n vaut 5) :

df.head(2)

Paris Lyon Nantes Pau
chat 10 11 12 13
singe 20 21 22 23

236 Cours de Python / Université Paris Cité / UFR Sciences du Vivant

22.4. Dataframes Chapitre 22. Module Pandas

Remarque

Les Dataframes utilisés ici comme exemples sont volontairement petits. Si vous étes confrontés a des Dataframes
de grande taille, ceux-ci seront affichés partiellement dans un notebook Jupyter. Des ascenseurs en bas et a droite du
Dataframe permettront de naviguer dans les données.

22.4.3 Sélections

Les mécanismes de sélection fournis avec pandas sont tres puissants. En voici un rapide apercu :

22.4.3.1 Sélection de colonnes

On peut sélectionner une colonne par son étiquette :

df["Lyon"]
chat 11
singe 21
souris 31

La notation df["Lyon"] sélectionne une colonne et renvoie un objet Series :

type(df["Lyon"])

pandas.core.series.Series

Attention

On trouve parfois I'écriture df.Lyon pour sélectionner une colonne. C'est une trés mauvaise pratique, car cette
écriture peut étre confondue avec un attribut de I'objet df (par exemple .shape). Par ailleurs, elle ne fonctionne pas
pour des noms de colonnes qui contiennent des espaces ou des caractéres spéciaux (ce qui n'est pas non plus une bonne
pratique).

Nous vous conseillons de toujours utiliser la notation df["nom_de_colonne"].

Pour sélectionner plusieurs colonnes, il faut fournir une liste de noms de colonnes :

df[["Lyon", "Pau"]]

Lyon Pau
chat 11 13
singe 21 23
souris 31 33

On obtient cette fois un Dataframe avec les colonnes sélectionnées :
type(df[["Lyon", "Pau"]])

pandas.core.frame.DataFrame

Remarque

La sélection de plusieurs colonnes nécessite une liste entre les crochets, par exemple df[["Lyon", "Pau"]]. Si on
utilise un tuple du type df[("Lyon", "Pau")], Python renvoie une erreur KeyError: ('Lyon', 'Pau').

Cours de Python / Université Paris Cité / UFR Sciences du Vivant 237

Chapitre 22. Module Pandas

22.4. Dataframes

238

22.4.3.2 Sélection de lignes

Pour sélectionner une ligne, il faut utiliser I'instruction . loc et I'étiquette de la ligne :

df.loc["singe"]

Paris 20
Lyon 21
Nantes 22
Pau 23

Name: singe, dtype: int64

Ici aussi, on peut sélectionner plusieurs lignes :

df.loc[["singe", "chat"]]

Paris Lyon Nantes Pau
singe 20 21 22 23
chat 10 11 12 13

Enfin, on peut aussi sélectionner des lignes avec l'instruction .7iloc et I'indice de la ligne (la premiére ligne ayant

I'indice 0) :
df.iloc[1]

Paris 20
Lyon 21
Nantes 22
Pau 23
Name: singe, dtype: 1int64

df.iloc[[1, 0]]

Paris Lyon Nantes Pau
singe 20 21 22 23
chat 10 11 12 13

On peut également utiliser les tranches (comme pour les listes) :

df.iloc[0:2]

Paris Lyon Nantes Pau
chat 10 11 12 13
singe 20 21 22 23

22.4.3.3 Sélection sur les lignes et les colonnes

On peut bien slir combiner les deux types de sélection (en ligne et en colonne) :

df.loc["souris", "Pau"]
33
df.loc[["singe", "souris"],
Nantes Lyon
singe 22 21
souris 32 31

["Nantes", "Lyon"]]

Cours de Python / Université Paris Cité / UFR Sciences du Vivant

22.4. Dataframes Chapitre 22. Module Pandas

Notez qu'a partir du moment ot on souhaite effectuer une sélection sur des lignes, il faut utiliser . loc (ou .7iloc si
on utilise les indices).

22.4.3.4 Sélection par condition

Remémorons-nous d'abord le contenu du dataframe df :
df

Paris Lyon Nantes Pau

chat 10 11 12 13
singe 20 21 22 23
souris 30 31 32 33

Sélectionnons maintenant toutes les lignes pour lesquelles les effectifs a3 Pau sont supérieurs a 15 :
df[df["Pau"]>15]

Paris Lyon Nantes Pau
singe 20 21 22 23
souris 30 31 32 33

De cette sélection, on ne souhaite garder que les valeurs pour Lyon :
df[df["Pau"]1>15]["Lyon"]

singe 21
souris 31
Name: Lyon, dtype: int64

On peut aussi combiner plusieurs conditions avec & pour |'opérateur et :
df[(df["Pau"]>15) & (df["Lyon"]>25)]

Paris Lyon Nantes Pau
souris 30 31 32 33

et | pour |'opérateur ou :

df[(df["Pau"]>15) | (df["Lyon"]>25)]

Paris Lyon Nantes Pau
singe 20 21 22 23
souris 30 31 32 33

22.4.4 Combinaison de dataframes

En biologie, on a souvent besoin de combiner deux tableaux a partir d'une colonne commune. Par exemple, si on
consideére les deux dataframes suivants :
datal = {"Lyon": [10, 23, 17], "Paris": [3, 15, 20]}
dfl = pd.DataFrame.from_dict(datal)
dfl.index = ["chat", "singe", "souris"]
dfl

Lyon Paris

chat 10 3

singe 23 15

souris 17 20
et

Cours de Python / Université Paris Cité / UFR Sciences du Vivant 239

Chapitre 22. Module Pandas 22.4. Dataframes

240

data2 = {"Nantes": [3, 9, 14], "Strasbourg": [5, 10, 8]}
df2 = pd.DataFrame.from_dict(data2)
df2.index = ["chat", "souris", "lapin"]

df2
Nantes Strasbourg
chat 3 5
souris 9 10
lapin 14 8

On souhaite combiner ces deux dataframes, c'est-a-dire connaitre pour les quatre villes (Lyon, Paris, Nantes et
Strasbourg) le nombre d'animaux. On remarque d’ores et déja qu'il y a des singes a Lyon et Paris, mais pas de lapin et
qu’il y a des lapins a Nantes et Strasbourg, mais pas de singe. Nous allons voir comment gérer cette situation.

Pandas propose pour cela la fonction concat () 3, qui prend comme argument une liste de dataframes :

pd.concat([dfl, df2])

Lyon Nantes Paris Strasbourg

chat 10.0 NaN 3.0 NaN
singe 23.0 NaN 15.0 NaN
souris 17.0 NaN 20.0 NaN
chat NaN 3.0 NaN 5.0
souris NaN 9.0 NaN 10.0
lapin NaN 14.0 NaN 8.0

Ici, NaN indique des valeurs manquantes, cela signifie littéralement Not a Number. Mais le résultat obtenu n'est pas
celui que nous attendions, puisque les lignes de deux dataframes ont été recopiées.

L'argument supplémentaire axis=1 produit le résultat attendu :

pd.concat([dfl, df2], axis=1)

Lyon Paris Nantes Strasbourg

chat 10.0 3.0 3.0 5.0
lapin NaN NaN 14.0 8.0
singe 23.0 15.0 NaN NaN
souris 17.0 20.0 9.0 10.0

Par défaut, pandas va conserver le plus de lignes possible. Si on ne souhaite conserver que les lignes communes aux
deux dataframes, il faut ajouter I'argument join="+dnner" :

pd.concat([dfl, df2], axis=1, join="dinner")

Lyon Paris Nantes Strasbourg
chat 10 3 3 5
souris 17 20 9 10

Un autre comportement par défaut de concat() est que cette fonction va combiner les dataframes en se basant sur
leurs index. Il est néanmoins possible de préciser, pour chaque dataframe, le nom de la colonne qui sera utilisée comme
référence avec I'argument join_axes.

22.4.5 CQOpérations vectorielles

Pour cette rubrique, créons un Dataframe composé de nombres aléatoires compris entre 100 et 200, répartis en trois
colonnes (a, b et c) et 1 000 lignes :

3. https://pandas.pydata.org/pandas-docs/stable/merging.html

Cours de Python / Université Paris Cité / UFR Sciences du Vivant

https://pandas.pydata.org/pandas-docs/stable/merging.html

22.4. Dataframes Chapitre 22. Module Pandas

import numpy as np
import pandas as pd

nb_rows = 1000
df = pd.DataFrame(

{
"a": np.random.randint (100, 200, nb_rows),
"b": np.random.randint(100, 200, nb_rows),
"c": np.random.randint (100, 200, nb_rows),
}

Vérifions que ce Dataframe a bien les propriétés attendues :

df.shape

(1000, 3)

df.head()

a b [
105 156 122
116 135 138
125 190 113
196 175 179
129 184 153

A WNREO

On souhaite maintenant créer une nouvelle colonne (d) qui sera le résultat de la multiplication des colonnes a et b,
a laquelle on ajoute ensuite la colonne c.

Une premiére maniere de faire est de procéder ligne par ligne. La méthode .iterrows() permet de parcourir les
lignes d'un Dataframe et renvoie un tuple contenant I'indice de la ligne (sous la forme d'un entier) et la ligne elle-méme
(sous la forme d'une Series) :

for didx, row in df.iterrows():
df.at[idx, "d"] = (row["a"] * row["b"]) + row["c"]

Ici, I'instruction . at ajoute une cellule a la ligne d'indice idx et de colonne d. Cette instruction est plus efficace que
.loc pour ajouter une cellule a un Dataframe.

L'approche précédente produit le résultat attendu, mais elle n'est pas optimale, car trés lente. Pour évaluer le temps
moyen pour réaliser ces opérations, on utilise la commande magique %%timeit abordée dans le chapitre 18 Jupyter et
ses notebooks :

%%timeit
for didx, row in df.iterrows():
df.at[idx, "d"] = (row["a"] * row["b"]) + row["c"]
qui renvoie :

52.4 ms + 3.6 ms per loop (mean + std. dev. of 7 runs, 10 loops each)

Cette cellule de code s'exécute en moyenne en 52,4 ms.
Une autre approche, plus efficace, consiste a réaliser les opérations directement sur les colonnes (et non plus ligne
par ligne) :

%%timeit
df[lldll] = (df[llall:l * df[llbll]) + df[llcll:l

qui renvoie :

250 ps t 36.1 ps per loop (mean = std. dev. of 7 runs, 1,000 loops each)

Ici, la cellule de code s'exécute en moyenne en 250 ps, soit environ 200 fois (52400/250) plus rapidement qu'avec

Cours de Python / Université Paris Cité / UFR Sciences du Vivant 241

Chapitre 22. Module Pandas 22.5. Un exemple plus concret avec les kinases

242

.iterrows (). Tout comme avec les arrays du chapitre 20 Numpy, les opérations vectorielles avec les Dataframes sont
rapides et efficaces. Privilégiez toujours ce type d’approche avec les arrays de NumPy ou les Series et Dataframes de
pandas.

Remarque

Dans I'exemple précédent, I'utilisation de la commande magique %%timeit calcule le temps d'exécution moyen d'une
cellule. Python détermine automatiquement le nombre d'itérations a réaliser pour que le calcul se fasse dans un temps
raisonnable. Ainsi, pour la méthode .iterrows(), le calcul est réalisé 10 fois sur sept répétitions alors que pour les
opérations vectorielles, le calcul est effectué 1000 fois sur sept répétitions.

22.5 Un exemple plus concret avec les kinases

Pour illustrer les possibilités de pandas, voici un exemple plus concret sur un jeu de données de kinases“. Les kinases
sont des protéines responsables de la phosphorylation d'autres protéines.

Le fichier kinases.csv que vous pouvez télécharger en ligne® contient des informations tirées de la base de données
de séquences UniProt pour quelques kinases.

Si vous n'étes pas familier avec le format de fichier .csv, nous vous conseillons de consulter I'annexe A Quelques
formats de données en biologie.

Remarque
Avant de nous lancer dans |'analyse de ce fichier, nous vous proposons cette petite devinette :

Qu’est-ce qu’une protéine dans une piscine 7

La réponse sera donnée a la fin de ce chapitre.

22.5.1 Prise de contact avec le jeu de données

Une fonctionnalité trés intéressante de pandas est d'ouvrir trés facilement un fichier au format .csv :

df = pd.read_csv("kinases.csv")

Le contenu est chargé sous la forme d'un Dataframe dans la variable df.
Le fichier contient 1 442 lignes de données plus une ligne d'en-téte. Cette derniére est automatiquement utilisée par
pandas pour nommer les différentes colonnes. Voici un apercu des premieres lignes :

df.head()

Entry Organism Length Creation date Mass PDB

0 AOQAGB4J2F2 Human 783 2018-06-20 84930 NaN
1 A4L9P5 Rat 1211 2007-07-24 130801 NaN
2 AOA1DG6EOSS8 Maize 856 2023-05-03 93153 NaN
3 AOA8IS5ZNK2 Rat 528 2023-09-13 58360 NaN
4 A1Z7TO Fruit fly 1190 2012-01-25 131791 NaN

Nous avons six colonnes de données :

I'identifiant de la protéine (Entry);

I'organisme d’ol provient cette protéine (Organism);

le nombre d'acides aminés qui constituent la protéine (Length);

la date a laquelle cette protéine a été déréférencée dans UniProt (Creation date);
la masse de la protéine (Mass), exprimée en Dalton;

les éventuelles structures 3D de la protéine (PDB).

4. https://fr.wikipedia.org/wiki/Kinase
5. https://python.sdv.u-paris.fr/data-files/kinases.csv

Cours de Python / Université Paris Cité / UFR Sciences du Vivant

https://fr.wikipedia.org/wiki/Kinase
https://python.sdv.u-paris.fr/data-files/kinases.csv

22.5. Un exemple plus concret avec les kinases Chapitre 22. Module Pandas

La colonne d’entiers tout a gauche est un index automatiquement créé par pandas.

Nous pouvons demander a pandas d'utiliser une colonne particuliere comme index. On utilise pour cela le paramétre
index_col de la fonction read_csv (). Ici, la colonne Entry s'y préte trés bien, car cette colonne ne contient que des
identifiants uniques :

df = pd.read_csv("kinases.csv", index_col="Entry")
df.head()

Organism Length Creation date Mass PDB

Entry

ABAGB4J2F2 Human 783 2018-06-20 84930 NaN
A4L9P5 Rat 1211 2007-07-24 130801 NaN
AOA1D6EOSS Maize 856 2023-05-03 93153 NaN
ABASI5ZNK2 Rat 528 2023-09-13 58360 NaN
A1Z7TO Fruit fly 1190 2012-01-25 131791 NaN
Remarque

La fonction .read_csv () permet également d’ouvrir un fichier au format TSV (voir I'annexe A Quelques formats de
données en biologie). |l faut pour cela préciser que le séparateur des colonnes de données est une tabulation (\t), avec
I'argument sep="\t".

Avant d'analyser un jeu de données, il est intéressant de |'explorer un peu. Par exemple, connaitre ses dimensions :

df.shape

(1442, 5)

Notre jeu de données contient donc 1 442 lignes et 5 colonnes. En effet, la colonne Entry est maintenant utilisée
comme index et n'est donc plus prise en compte.
Il est aussi intéressant de savoir de quel type de données est constituée chaque colonne :

df.dtypes
Organism object
Length int64
Creation date object
Mass int64
PDB object

dtype: object

Les colonnes Length et Mass contiennent des valeurs numériques, en l'occurrence des entiers (int64). Le type
object est un type par défaut.

La méthode .1info() permet d'aller un peu plus loin dans I'exploration du jeu de données en combinant les informa-
tions produites par les propriétés .shape et .dtypes :

df.info()

<class 'pandas.core.frame.DataFrame'>
Index: 1442 entries, AOAOB4J2F2 to Q5F361
Data columns (total 5 columns):

Column Non-Null Count Dtype
0 Organism 1442 non-null object
1 Length 1442 non-null int64
2 Creation date 1442 non-null object
3 Mass 1442 non-null int64
4 PDB 488 non-null object

dtypes: int64(2), object(3)
memory usage: 67.6+ KB

Cours de Python / Université Paris Cité / UFR Sciences du Vivant

243

Chapitre 22. Module Pandas 22.5. Un exemple plus concret avec les kinases

244

Avec I'argument memory_usage="deep", la méthode .1info() permet de connaitre avec précision la quantité de
mémoire vive occupée par le Dataframe :

df.info(memory_usage="deep")

<class 'pandas.core.frame.DataFrame'>
Index: 1442 entries, AOAOB4J2F2 to Q5F361
Data columns (total 5 columns):

Column Non-Null Count Dtype
0 Organism 1442 non-null object
1 Length 1442 non-null int64
2 Creation date 1442 non-null object
3 Mass 1442 non-null int64
4 PDB 488 non-null object

dtypes: int64(2), object(3)
memory usage: 351.0 KB

Ici, le Dataframe occupe 351 kilo-octets (ko) en mémoire.

22.5.2 Recherche de valeurs manquantes

Il est aussi utile de savoir si des valeurs manquantes sont présentes dans le jeu de données. Ces valeurs manquantes
correspondent a des champs pour lesquels aucune valeur n’ont été fournies. Elles sont souvent représentées par NaN (pour
Not a Number).

La méthode .isna() renvoie un Dataframe de la méme dimension que le Dataframe initial, mais avec des valeurs
booléennes (True si la valeur est manquante (NaN) ou False sinon). En le combinant avec la méthode . sum(), on peut
compter le nombre de valeurs manquantes pour chaque colonne :

df.isna().sum()

Organism

Length

Creation date

Mass

PDB 95
dtype: int64

OO OO

Ici, la seule colonne qui contient des valeurs manquantes est la colonne PDB, qui contient 954 valeurs manquantes.
Cela signifie que pour 954 protéines, aucune structure 3D n’est disponible. Nous reviendrons plus tard sur cette colonne
PDB.

22.5.3 Conversion en date

Le type object correspond la plupart du temps a des chaines de caractéres. C'est tout a fait Iégitime pour la colonne
Organism. Mais on sait par contre que la colonne Creation date est une date sous la forme année-mois-jour.

Si le format de date utilisé est homogene sur tout le jeu de données et non ambigu, on peut demander a pandas
de considérer la colonne Creation Date comme une date. pandas détectera alors automatiquement le format de date
utilisé :

df["Creation date"] = pd.to_datetime(df["Creation date"])

L'affichage des données n'est pas modifié :
df.head()

Organism Length Creation date Mass PDB

Entry

AOAOB4J2F2 Human 783 2018-06-20 84930 NaN
A4L9P5 Rat 1211 2007-07-24 130801 NaN
AOA1DGEOSS8 Maize 856 2023-05-03 93153 NaN
AOA8IS5ZNK2 Rat 528 2023-09-13 58360 NaN
A1Z7TO Fruit fly 1190 2012-01-25 131791 NaN

Cours de Python / Université Paris Cité / UFR Sciences du Vivant

22.5. Un exemple plus concret avec les kinases Chapitre 22. Module Pandas

Mais le type de données de la colonne Creation date est maintenant une date (datetime64[ns]) :

df.dtypes
Organism object
Length int64
Creation date datetime64[ns]
Mass int64
PDB object

dtype: object

22.5.4 Statistiques descriptives et table de comptage

Pour les colonnes qui contiennent des données numériques, on peut obtenir rapidement quelques statistiques descrip-
tives avec la méthode .describe() :

df.describe()

Length Creation date Mass
count 1442.000000 1442 1442.000000
mean 756.139390 2001-01-25 16:10:39.112344064 84710.753814
min 81.000000 1986-07-21 00:00:00 9405.000000
25% 476.250000 1996-10-01 00:00:00 54059.000000
50% 632.000000 2002-03-10 00:00:00 71613.000000
75% 949.250000 2005-11-22 00:00:00 105485.250000
max 2986.000000 2023-09-13 00:00:00 340261.000000
std 404.195273 NaN 44764.273097

On apprend ainsi que la taille de la protéine (colonne Length) a une valeur moyenne de 756,14 acides aminés et que
la plus petite protéine est composée de 81 acides aminés et la plus grande de 2 986. Pratique!

Des statistiques sont également proposées pour la colonne Creation date. La protéine la plus récente a ainsi été
référencée le 13 septembre 2023.

La colonne Organ-ism contient des chaines de caractéres, on peut rapidement déterminer le nombre de protéines pour
chaque organisme :

df["Organism"].value_counts()

Organism

Human 489
Mouse 489
Rat 253
Fruit fly 103
Chicken 75
Rabbit 25
Maize 8

Name: count, dtype: 1inté64

On apprend ainsi que 489 protéines sont d'origine humaine (Human) et 8 proviennent du mais (Maize).

22.5.5 Statistiques par groupe

On peut aussi déterminer, pour chaque organisme, la taille et la masse moyenne des kinases :

df.groupby(["Organism"]) [["Length", "Mass"]].mean()

Length Mass
Organism
Chicken 720.160000 81120.880000
Fruit fly 784.844660 88154.669903

Human 771.004090 86281.190184
Maize 666.875000 73635.000000
Mouse 768.092025 85942.274029
Rabbit 591.480000 66754.200000
Rat 722.379447 81081.822134

Cours de Python / Université Paris Cité / UFR Sciences du Vivant 245

Chapitre 22. Module Pandas 22.5. Un exemple plus concret avec les kinases

La méthode . groupby () rassemble d'abord les données suivant la colonne Organism. Puis on sélectionne les colonnes
Length et Mass. Enfin, la méthode .mean () calcule la moyenne pour chaque groupe.
Si on souhaite obtenir deux statistiques (par exemple les valeurs minimale et maximale) en une seule fois, il convient
alors d'utiliser la méthode .pivot_table(), méthode plus complexe, mais aussi beaucoup plus puissante :
df.pivot_table(
index="Organism",

values=["Length", "Mass"],
aggfunc=["min", "max"]

min max

Length Mass Length Mass
Organism
Chicken 303 34688 2311 260961
Fruit fly 294 33180 2554 287025
Human 253 28160 2986 340261
Maize 294 33834 996 105988
Mouse 244 27394 2964 337000
Rabbit 81 9405 1382 158347
Rat 274 31162 2959 336587

e L'argument index précise la colonne dont on veut agréger les données.

e | 'argument values indique sur quelles colonnes les statistiques sont calculées.

e Enfin, aggfunc liste les statistiques calculées, ici les valeurs minimale et maximale.

Notez que les valeurs renvoyées sont d'abord les valeurs minimales pour Length et Mass puis les valeurs maximales
pour Length et Mass.

22.5.6 Analyse de données numériques

On peut, sans trop de risque, émettre I'hypothése que plus il y a d'acides aminés dans la protéine, plus sa masse va
étre élevée.
Pour vérifier cela graphiquement, on représente la masse de la protéine en fonction de sa taille (c'est-a-dire du nombre
d’'acides aminés) :
import matplotlib.pyplot as plt

fig, ax = plt.subplots()
ax.scatter(df["Length"], df["Mass"])
ax.set_xlabel("Taille (nombre d'acides aminés)")
ax.set_ylabel("Masse (Dalton)")
fig.savefig("kinasesl.png")

On obtient un graphique similaire a celui de la figure 22.1.

Avec pandas, on peut aussi appeler une méthode . plot () sur un Dataframe pour obtenir une représentation graphique
identique a la figure 22.1 :

import matplotlib.pyplot as plt

df.plot(
kind="scatter",
x="Length",
y:”Mass",
xlabel="Taille (nombre d'acides aminés)",
ylabel="Masse (Dalton)"

plt.savefig("kinasesl.png")
e Ligne 4. On spécifie le type de graphique. Ici, un nuage de points.

e Lignes 5 et 6. On précise les colonnes a utiliser pour les abscisses et les ordonnées.

Le graphique de la figure 22.1 met en évidence une relation linéaire entre le nombre de résidus d'une protéine et sa
masse.

246 Cours de Python / Université Paris Cité / UFR Sciences du Vivant

22.5. Un exemple plus concret avec les kinases Chapitre 22. Module Pandas

350000 A
300000 4
250000 4 ®
200000 4 oo

150000 ~

Masse (ualton)

100000 ~

50000 ~

T T T T T T
o] 500 1000 1500 2000 2500 3000
Taille (nombre d'acides aminés)

FIGURE 22.1 — Masse en fonction de la taille.

En réalisant une régression linéaire, on peut déterminer les paramétres de la droite qui passent le plus proche possible
des points du graphique. On utilise pour cela la fonction linregress() ® du module scipy.stats :

from scipy.stats import linregress
model = linregress(df["Length"], df["Mass"])
model

LinregressResult(slope=110.63478918698122, 1intercept=1055.431834679228,
rvalue=0.9989676084416755, pvalue=0.0, stderr=0.13258187632073232,
intercept_stderr=113.66584551734655)

Ce modele linéaire nous indique qu’un résidu a une masse d’environ 111 Dalton, ce qui est cohérent. On peut également
comparer ce modéle aux différentes protéines :

fig, ax = plt.subplots()
ax.scatter (df["Length"], df["Mass"], label="données")
ax.plot(
df["Length"],
df["Length"]*model.slope + model.intercept,
-LS:"Z",
label="modeéle"
)
ax.set_xlabel("Taille (nombre d'acides aminés)")
ax.set_ylabel("Masse (Dalton)")
ax.legend()
fig.savefig("kinases2.png")

On obtient ainsi le graphique de la figure 22.2.

22.5.7 Analyse de données temporelles

Il peut étre intéressant de savoir, pour chaque organisme, quand les premiéres et les dernieres séquences de kinases
ont été référencées dans UniProt.

6. https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.linregress.html

Cours de Python / Université Paris Cité / UFR Sciences du Vivant 247

https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.linregress.html

Chapitre 22. Module Pandas

22.5. Un exemple plus concret avec les kinases

350000 4 -
® données

----- modeéle
300000 A

250000 4

200000 4

150000 ~

Masse (ualton)

100000 ~

50000 ~

T
0 500

T
1000

T
1500

T
2000

2
“_-"
.-"“-
‘r"

(]
.

T T

2500 3000

Taille (nombre d'acides aminés)

FIGURE 22.2 — Masse en fonction de la taille des protéines.

La méthode .pivot_table() apporte des éléments de réponse :

df.pivot_table(
index="Organism",
values=["Creation date"],
aggfunc=["min", "max"]

)

min max
Creation date Creation date

Organism
Chicken 1986-07-21 2021-02-10
Fruit fly 1986-07-21 2023-09-13
Human 1986-07-21 2018-06-20
Maize 1990-08-01 2023-05-03
Mouse 1986-07-21 2017-03-15
Rabbit 1986-07-21 2010-03-02
Rat 1986-07-21 2023-09-13

Chez le poulet (Chicken), la premiére séquence a été référencée le 21 juillet 1986 et la derniére le 10 février 2021.

Une autre question est de savoir combien de kinases ont été référencées en fonction du temps.

La méthode .value_counts() peut étre utilisée, mais elle ne renvoie que le nombre de protéines référencées dans
UniProt pour un jour donné. Par exemple, 40 structures ont été référencées le 28 novembre 2006 :

df["Creation date"].value_counts() .head()

Creation date

1997-11-01 72
1996-10-01 58
2000-12-01 43
2000-05-30 41
2006-11-28 40

Name: count, dtype: int

248

64

Cours de Python / Université Paris Cité / UFR Sciences du Vivant

22.5. Un exemple plus concret avec les kinases Chapitre 22. Module Pandas

Si on souhaite une réponse plus globale, par exemple a I'échelle de I'année, la méthode .resample() calcule le
nombre de protéines référencées par an (en fournissant I'argument YE). En utilisant le method chaining présenté dans le
chapitre 11 Plus sur les chaines de caractéres, nous pouvons écrire toutes ces transformations en une seule instruction,
répartie sur plusieurs lignes pour plus de lisibilité (en utilisant des parenthéses) :

(df["Creation date"]
.value_counts()
.resample("YE")
.sum()

.head()

Creation date

1986-12-31 11

1987-12-31 12

1988-12-31 32

1989-12-31 29

1990-12-31 40

Freq: YE-DEC, Name: count, dtype: inté64

Les dates apparaissent maintenant comme le dernier jour de I'année (31 décembre), mais désignent bien I'année
compléte. Dans cet exemple, 11 kinases ont été référencées dans UniProt entre le ler janvier et le 31 décembre 1986.

Pour connaitre en quelle année le plus de kinases ont été référencées dans UniProt, il faut trier les valeurs obtenues
du plus grand au plus petit avec la méthode .sort_values(). Comme on ne veut connaitre que les premieres dates
(celles our il y a eu le plus de protéines référencées), on utilisera également la méthode .head() :

(df["Creation date"]
.value_counts()
.resample("YE")

.sum()
.sort_values(ascending=False)
.head ()

Creation date

2006-12-31 167
2005-12-31 136
2004-12-31 118
2003-12-31 104
2007-12-31 88

Name: count, dtype: int64

En 2006, 167 kinases ont été référencées dans UniProt. La deuxiéme « meilleure » année est 2005 avec 136 protéines.
Toutes ces méthodes, enchainées les unes a la suite des autres, peuvent vous sembler complexes, mais chacune d’elles
correspond a une étape du traitement des données. Bien siir, on aurait pu créer des variables intermédiaires pour chaque
étape, mais cela aurait été plus lourd :
datel = df["Creation date"].value_counts()
date2 = datel.resample("YE")
date3 = date2.sum()

date4 = date3.sort_values(ascending=False)
date4.head()

On aurait obtenu exactement le méme résultat.

Remarque
Le method chaining” est une maniére efficace et élégante de traiter des données avec pandas.

Enfin, pour obtenir un graphique de I'évolution du nombre de kinases référencées dans UniProt en fonction du temps,

7. https://www.youtube.com/watch?v=39MEeDLxGGg

Cours de Python / Université Paris Cité / UFR Sciences du Vivant

249

https://www.youtube.com/watch?v=39MEeDLxGGg

Chapitre 22. Module Pandas 22.5. Un exemple plus concret avec les kinases

on peut encore utiliser le method chaining :

import matplotlib.pyplot as plt
(df["Creation date"]
.value_counts()
.resample("YE")
.sum()
.plot()

plt.savefig("kinases3.png")

On obtient ainsi le graphique de la figure 22.3.

175

150

125 A

100 +

75 4

50

25 1

T T T T T T T
1990 1995 2000 2005 2010 2015 2020
Creation date

FIGURE 22.3 — Evolution temporelle du nombre de kinases référencées dans UniProt.

On observe un pic du nombre de kinases référencées dans UniProt sur la période 2003-2007.

22.5.8 Transformation d’une colonne

Nous avons vu précédemment que la colonne PDB contenait de nombreuses valeurs manquantes (NaN). Toutefois, il
est intéressant de savoir ce que peut contenir cette colonne quand elle n'est pas vide :

(df
.loc[~ df["PDB"].isna() 1]
.head(3)
)
Organism Length Creation date Mass PDB
Entry
A2CG49 Mouse 2964 2007-10-23 337000 1WFW;7UR2;
D3ZMK9 Rat 1368 2018-07-18 147716 6EWX;
000141 Human 431 1998-12-15 48942 2R5T;3HDM;3HDN; 7PUE;

e Ligne 2. La méthode isna() sélectionne les lignes qui contiennent des valeurs manquantes dans la colonne PDB,
puis I'opérateur ~ inverse cette sélection.
e Ligne 3. On limite I'affichage aux trois premiéres lignes.

250 Cours de Python / Université Paris Cité / UFR Sciences du Vivant

22.5. Un exemple plus concret avec les kinases Chapitre 22. Module Pandas

On découvre que la colonne PDB contient des identifiants de structures 3D de protéines. Ces identifiants sont séparés
par des points-virgules, y compris pour la derniére valeur.
Nous souhaitons compter le nombre de structures 3D pour chaque protéine. Pour cela, nous allons d’abord créer une
fonction qui compte le nombre de points-virgules dans une chaine de caracteéres :
def count_structures(row):
if pd.isna(row["PDB"]):
return 0

else:
return row["PDB"].count(";")

Dans la ligne 2, la méthode .isna() teste si la valeur est manquante et si ce n'est pas le cas, la fonction renvoie le
nombre de points-virgules dans la chaine de caractéres de la colonne PDB (ligne 5).

On applique ensuite la fonction count_structures() au Dataframe avec la méthode .apply (). On crée la nouvelle
colonne nb_structures en méme temps :

df["nb_structures"] = df.apply(count_structures, axis=1)

df.head()

Organism Length Creation date Mass PDB nb_structures
Entry
AOGAOB4J2F2 Human 783 2018-06-20 84930 NaN 0]
A4L9P5 Rat 1211 2007-07-24 130801 NaN 0]
AOA1D6EOSS8 Maize 856 2023-05-03 93153 NaN 0
AOA8I5ZNK2 Rat 528 2023-09-13 58360 NaN [C]
A1Z7TO Fruit fly 1190 2012-01-25 131791 NaN 0]

Les premiéres lignes ne sont pas trés intéressantes, car elles ne contiennent pas de structures 3D. Mais on peut
chercher les kinases qui ont le plus de structures 3D :

(df
.sort_values(by="nb_structures", ascending=False)
.filter(["Organism", "nb_structures"])
.head()

)

e Ligne 2. On trie les données par ordre décroissant de la colonne nb_structures.
e Ligne 3. On ne conserve que les colonnes Organ-ism et nb_structures a afficher.
e Ligne 4. On limite I'affichage aux cinq premiéres lignes.

Organism nb_structures

Entry

P24941 Human 453
POO533 Human 284
Q16539 Human 245
P68400 Human 238
P11309 Human 176

La kinase P24941 posséde 453 structures 3D référencées dans UniProt. Les cing kinases qui ont le plus de structures
3D sont toutes d’origine humaine.

Pour aller plus loin
Les ouvrages Python for Data Analysis (2022) de Wes McKinney et Effective Pandas (2021) de Matt Harrison sont
d'excellentes références pour pandas.

Remarque
La réponse a la devinette précédente est :

Une protéine kinase

Cours de Python / Université Paris Cité / UFR Sciences du Vivant 251

Chapitre 22. Module Pandas 22.6. Exercices

(Une protéine qui nage... dans une piscine.. Vous |'avez 7)

22.6 Exercices

Conseil
Pour ces exercices, utilisez des notebooks Jupyter.

22.6.1 Analyse d’'un jeu de données

Le jeu de données people.tsv contient les caractéristiques de quelques individus : prénom, sexe, taille (en cm) et
age (en années). Par exemple :

name sex size age

simon male 175 33
clara female 167 45
serge male 181 44
claire female 174 31

L'objectif de cet exercice est de manipuler ce jeu de données avec pandas, de sélectionner des données et d'en calculer
quelques statistiques.

Conseil

Si vous n'étes pas familier avec le format de fichier .tsv, nous vous conseillons de consulter I'annexe A Quelques
formats de données en biologie.

1. Chargement du jeu de données

e Téléchargez le fichier people.tsv®.

e Ouvrez ce fichier avec pandas et la fonction .read_csv (). N'oubliez pas de préciser le séparateur par défaut
avec |'argument sep="\t". Utilisez également |'argument index_col pour utiliser la colonne name comme
index.

o Affichez les six premiéres lignes du jeu de données.

e Combien de lignes contient le jeu de données ?

2. Sélections
e Déterminez la taille de Claire.
e Déterminez |I'dge de Baptiste.
e Affichez, en une seule commande, 1'age de Paul et Bob.
. Statistiques descriptives et table de comptage
e Déterminez la moyenne et la valeur minimale de la taille et I'dge des individus.
e Comptez ensuite le nombre de personnes de chaque sexe.
. Statistiques par groupe
e Déterminez la taille et I'dge moyen chez les hommes et les femmes. Utilisez pour cela la méthode . groupby ().
5. Sélections par filtre
e Déterminez combien de d'individus mesurent plus de 1,80 m.
e Quelle femme a moins de 35 ans?
6. Sélections et statistiques
e Déterminez I'dge moyen des individus qui mesurent plus de 1,80 m.

w

N

8. https://python.sdv.u-paris.fr/data-files/people.tsv

252 Cours de Python / Université Paris Cité / UFR Sciences du Vivant

https://python.sdv.u-paris.fr/data-files/people.tsv

22.6. Exercices Chapitre 22. Module Pandas

e Déterminez la taille maximale des femmes qui ont plus de 35 ans.

Cours de Python / Université Paris Cité / UFR Sciences du Vivant 253

CHAPITRE 23

Avoir la classe avec les objets

La programmation orientée objet (POO) est un concept de programmation trés puissant qui permet de structurer ses
programmes d'une maniére nouvelle. En POO, on définit un « objet » qui peut contenir des « attributs » ainsi que des «
méthodes » qui agissent sur lui-méme. Par exemple, on définit un objet « citron » qui contient les attributs « saveur » et
« couleur », ainsi qu'une méthode « presser » permettant d'en extraire le jus. En Python, on utilise une « classe » pour
construire un objet. Dans notre exemple, la classe correspondrait au « moule » utilisé pour construire autant d'objets
citrons que nécessaire.

Définition

Une classe définit des objets, qui sont des instances (des représentants) de cette classe. Dans ce chapitre, on utilisera
les mots objet ou instance pour désigner la méme chose. Les objets peuvent posséder des attributs (variables associées
aux objets) et des méthodes (qui sont des fonctions associées aux objets et qui peuvent agir sur ces derniers, ou encore
les utiliser).

Dans les chapitres précédents, nous avons déja mentionné qu'en Python tout est objet. Une variable de type int est
en fait un objet de type int, donc construit a partir de la classe int. Méme chose pour les float et string, mais aussi pour
les list, tuple, dict, etc. Voila pourquoi nous avons rencontré de nombreuses notations et mots de vocabulaire associés a
la POO depuis le début de ce cours.

La POO permet de produire du code plus compact et plus facilement réutilisable. L'utilisation de classes évite
I'utilisation de variables globales en créant ce qu'on appelle un espace de noms, propre a chaque objet et permettant
d'y encapsuler des attributs et des méthodes. De plus, la POO ameéne de nouveaux concepts tels que le polymorphisme
(capacité a redéfinir le comportement des opérateurs), ou bien encore |’ héritage (capacité a définir une classe a partir
d'une classe pré-existante et d'y ajouter de nouvelles fonctionnalités). Tous ces concepts seront définis dans ce chapitre.

Malgré tous ces avantages, la POO peut paraitre difficile a aborder pour le débutant, spécialement dans la conception
des programmes. Elle nécessite donc la lecture de nombreux exemples, mais surtout beaucoup de pratique. Bien structurer
ses programmes en POO est un véritable art. |l existe méme des langages qui formalisent la construction de programmes
orientés objets, par exemple le langage UML ®.

Dans ce chapitre, nous vous donnerons tous les éléments pour démarrer la construction de vos premiéres classes.
Le chapitre 24 Avoir plus la classe avec les objets (en ligne) abordera des aspects plus poussés de la POO, comme le
polymorphisme, la composition, I'héritage, certains pieges a éviter, ainsi que des bonnes pratiques.

1. https://fr.wikipedia.org/wiki/UML_(informatique)

254

https://fr.wikipedia.org/wiki/UML_(informatique)

23.1. Construction d’une classe Chapitre 23. Avoir la classe avec les objets

Aprés la lecture de ces deux chapitres sur la POO avec Python, vous verrez d'un autre ceil de nombreux exemples
évoqués dans les chapitres précédents, et vous comprendrez sans doute de nombreuses subtilités qui avaient pu vous
paraitre absconses.

Enfin, il est vivement recommandé de lire ces deux chapitres sur la POO avant d’aborder le chapitre 25 Fenétres
graphiques et Tkinter (en ligne).

23.1 Construction d’une classe

Nous allons voir dans cette rubrique comment définir une classe en reprenant notre exemple sur le citron, que nous
allons faire évoluer et complexifier. Attention, certains exemples sont destinés a vous montrer comment les classes
fonctionnent, mais leur utilisation n'aurait pas de sens dans un vrai programme. Ainsi, nous vous donnerons plus loin
dans ce chapitre les pratiques recommandées.

23.1.1 La classe minimale

En Python, le mot-clé class permet de créer sa propre classe, suivi du nom de cette classe. On se souvient, un
nom de classe commence toujours par une majuscule (voir le chapitre 16 Bonnes pratiques en programmation Python).
Comme d’habitude, cette ligne attend un bloc d'instructions indenté définissant le corps de la classe. Voyons un exemple
simple dans l'interpréteur :

>>> class Citron:
pass

>>> Citron

<class '__main__.Citron'>

>>> type(Citron)

<class 'type'>

>>> citronl = Citron()

>>> citronl

<__main__.Citron object at Ox7ff2193a20f0>

>>>

Ligne 1. La classe Citron est définie. Pas besoin de parenthéses comme avec les fonctions dans un cas simple comme
celui-1a (nous verrons d’'autres exemples plus loin ol elles seront nécessaires).

Ligne 2. La classe ne contient rien, mais il faut mettre au moins une ligne, on met donc ici le mot-clé Python pass
qui ne fait rien (comme dans une fonction qui ne fait rien).

Lignes 4 et 5. Quand on tape le nom de notre classe Citron, Python nous indique que cette classe est connue.

Lignes 6 et 7. Lorsqu’on regarde le type de notre classe Citron, Python nous indique qu'il s’agit d'un type au méme
titre que type(int). Nous avons donc créé un nouveau type!

Ligne 8. On crée une instance de la classe Citron, c'est-a-dire qu'on fabrique un représentant ou objet de la classe
Citron, que nous nommons citronl.

Lignes 9 et 10. Lorsqu’'on tape le nom de l'instance citronl, 'interpréteur nous rappelle qu'il s’agit d'un objet de
type Citron, ainsi que son adresse en mémoire.

Il est également possible de vérifier qu'une instance est bien issue d'une classe donnée avec la fonction isinstance() :

>>> dsinstance(citronl, Citron)
True

23.1.2 Ajout d’un attribut d’instance

Reprenons notre classe Citron et |'instance citronl créée précédemment. Regardons les attributs et méthodes que
cet objet posséde, puis tentons de lui ajouter un attribut :

>>> dir(citronl)

['__class__', '__delattr__', '__dict__', [...], '__weakref__"']

>>> citronl.couleur = "jaune"

>>> dir(citronl)

['__class__', '__delattr__', '__dict__', [...], '__weakref__"', 'couleur']
>>> citronl.couleur

'jaune'

Cours de Python / Université Paris Cité / UFR Sciences du Vivant 255

Chapitre 23. Avoir la classe avec les objets 23.1. Construction d'une classe

Lignes 1 et 2. L'objet possede de nombreuses méthodes ou attributs, qui commencent et qui se terminent par deux
caractéres underscores. On se souvient que les underscores indiquent qu'il s'agit de méthodes ou attributs destinés au
fonctionnement interne de I'objet. Nous reviendrons sur certains d'entre-eux dans la suite.

Ligne 3. Ici on ajoute un attribut .couleur a l'instance citronl. Notez bien la syntaxe instance.attribut et
le point qui lie les deux.

Lignes 4 a 5. La fonction dir () nous montre que I'attribut .couleur a bien été ajouté a I'objet.

Lignes 6. La notation instance.attribut donne accés a I'attribut de I'objet.

L'attribut nommé . __dict__ est particulierement intéressant. Il s'agit d'un dictionnaire qui listera les attributs créés
dynamiquement dans |'instance en cours :

>>> citronl = Citron()
>>> citronl.__dict__

{}

>>> citronl.couleur = "jaune"
>>> citronl.__dict__
{'couleur': 'jaune'}

L'ajout d'un attribut depuis |'extérieur de la classe (on parle aussi du c6té « client ») avec une syntaxe instance.
nouvel_attribut = valeur, créera ce nouvel attribut uniquement pour cette instance :

citronl = Citron()

citronl.couleur = "jaune"
>>> citronl.__dict__
{'couleur': 'jaune'}

>>> citron2 = Citron()
>>> citron2.__dict__

{3

Si on crée une nouvelle instance de Citron, ici citron2, elle n"aura pas I'attribut
couleur a sa création.

Définition

Une variable ou attribut d’instance est une variable accrochée a une instance et qui lui est spécifique. Cet attribut
n'existe donc pas forcément pour toutes les instances d'une classe donnée et, d'une instance a l'autre, il ne prendra
pas forcément la méme valeur. On peut retrouver tous les attributs d’'instance d'une instance donnée avec une syntaxe
instance.__dict__.

L'instruction del fonctionne bien siir pour détruire un objet (par exemple : del citronl), mais permet également
de détruire un attribut d'instance. Si on reprend notre exemple citronl ci-dessus :
>>> citronl.__dict__
{'couleur': 'jaune'}
>>> del citronl.couleur
>>> citronl.__dict__

{}

Dans la suite, on montrera du code a tester dans un script : n'hésitez pas, comme d'habitude, a le tester par
vous-méme.

23.1.3 Les attributs de classe

Si on ajoute une variable dans une classe comme on créait une variable locale dans une fonction, on crée ce qu'on
appelle un attribut de classe :

class Citron:
couleur = "jaune"

Définition

256 Cours de Python / Université Paris Cité / UFR Sciences du Vivant

23.1. Construction d’une classe Chapitre 23. Avoir la classe avec les objets

Une variable de classe ou attribut de classe est un attribut qui sera identique pour chaque instance. On verra plus
bas que de tels attributs suivent des régles différentes par rapport aux attributs d'instance.

A I'extérieur ou a l'intérieur d'une classe, un attribut de classe peut se retrouver avec une syntaxe NomClasse.
attribut :

print(Citron.couleur)

Ce code affiche jaune. L'attribut de classe est aussi visible depuis n'importe quelle instance :

class Citron:
couleur = "jaune"

if __name__
citronl = Citron()
print(citronl.couleur)
citron2 = Citron()
print(citron2.couleur)

== "__main__":

L'exécution de ce code affichera :

jaune
jaune

Attention
Méme si on peut retrouver un attribut de classe avec la syntaxe instance.attribut, un tel attribut ne peut pas
étre modifié avec une instruction de cette forme :

instance.attribut = nouvelle_valeur

(voir la rubrique Différence entre les attributs de classe et d'instance).

23.1.4 Les méthodes

Dans notre classe, on pourra aussi ajouter des fonctions.

Définition

Une fonction définie au sein d'une classe est appelée méthode. Pour exécuter une méthode a I'extérieur de la classe,
la syntaxe générale est instance.méthode(). En général, on distingue attributs et méthodes (comme nous le ferons
systématiquement dans ce chapitre). Toutefois, il faut garder a 'esprit qu'une méthode est finalement un objet de type
fonction. Ainsi, elle peut étre vue comme un attribut également, concept que vous croiserez peut-étre en consultant de
la documentation externe.

Voici un exemple d'ajout d'une fonction, ou plus exactement d'une méthode, au sein d'une classe (attention a
I'indentation!) :
class Citron:

def coucou(self):
print("Coucou, je suis la mth .coucou() dans la classe Citron !")

if __name__ == "__main__":
citronl = Citron()
citronl.coucou()

Lignes 2 et 3. On définit une méthode nommée .coucou(), qui va afficher un petit message. Attention, cette
méthode prend obligatoirement un argument que nous avons nommé ici self. Nous verrons dans les deux prochaines

Cours de Python / Université Paris Cité / UFR Sciences du Vivant

257

Chapitre 23. Avoir la classe avec les objets 23.1. Construction d'une classe

258

rubriques la signification de ce self. Si on a plusieurs méthodes dans une classe, on saute toujours une ligne entre elles
afin de faciliter la lecture (comme pour les fonctions).
Ligne 7 et 8. On crée l'instance citronl de la classe Citron, puis on exécute la méthode .coucou() avec une

syntaxe instance.méthode().

Une méthode étant une fonction, elle peut bien siir retourner une valeur :

class Citron:
def recup_saveur(self):
return "acide"

if __name__ == "__main__":
citronl = Citron()
saveur_citronl = citronl.recup_saveur()
print(saveur_citronl)

Vous l'aurez deviné, ce code affichera acide a I'écran. Comme pour les fonctions, une valeur retournée par une
méthode est récupérable dans une variable, ici saveur_citronl.

23.1.5 Le constructeur

Lors de l'instanciation d'un objet a partir d'une classe, il peut étre intéressant de lancer des instructions, comme,
d'initialiser certaines variables. Pour cela, on ajoute une méthode spéciale nommée . __init__() : cette méthode s'appelle
le « constructeur » de la classe. Il s'agit d'une méthode spéciale dont le nom est entouré de doubles underscores : en
effet, elle sert au fonctionnement interne de notre classe et, sauf cas extrémement rare, elle n'est pas supposée étre lancée
comme une fonction classique par I'utilisateur de la classe. Ce constructeur est exécuté a chaque instanciation de notre

classe, et ne renvoie pas de valeur, il ne posséde donc pas de return.

Remarque

Pour les débutants, vous pouvez sauter cette remarque. Certains auteurs préférent nommer .__init__() « instantia-
teur » ou « initialisateur », pour signifier qu'il existe une autre méthode appelée .__new__ (), qui participe a la création
d'une instance. Vous n'avez bien siir pas a retenir ces détails pour continuer la lecture de ce chapitre, retenez simplement
que nous avons décidé de nommer la méthode .__init__() « constructeur » dans cet ouvrage.

Pour bien comprendre comment cela fonctionne, nous allons suivre un exemple simple avec le site Python Tutor?
(déja utilisé dans les chapitres 10 et 13 sur les fonctions). N'hésitez pas a copier/coller ce code dans Python Tutor pour
le tester vous-méme :

class Citron:
def __init__(self):
self.couleur = "jaune"

if __name == "__main__":

citronl = Citron()
print(citronl.couleur)

Etape 1

Figure 23.1. Au départ, Python Tutor nous montre que la classe Citron a été mise en mémoire, elle contient pour
I'instant la méthode .__init__().

Etape 2

Figure 23.2. Nous créons ensuite l'instance citronl a partir de la classe Citron. Notre classe Citron contenant
une méthode .__init__() (le constructeur), celle-ci est immédiatement exécutée au moment de l'instanciation. Cette
méthode prend un argument nommé self : cet argument est obligatoire. Il s'agit en fait d'une référence vers |'instance

2. http://www.pythontutor.com

Cours de Python / Université Paris Cité / UFR Sciences du Vivant

http://www.pythontutor.com

23.1. Construction d'une classe

Chapitre 23. Avoir la classe avec les objets

Python 3.6

Print output (drag lower right corner to resize)

class Citron:
def _ init_ (self):

self.couleur = "jaune" Frames Objects
Global frame Citron class
hide attributes
i — ™
- if name == "' main_ ': liren . function
T i —nit_| init (self)
citronl = Citron|() — f—

print (citronl.couleur)

Edit this code

line that has just executed
== next line to execute

Click a line of code to set a breakpoint; use the Back and Forward buttons to jump there.
0

<< First

Step 2 of 7 Forward > | | Last >>

FIGURE 23.1 — Fonctionnement d'un constructeur (étape 1).

en cours (instance que nous appellerons citronl dans le programme principal, mais cela serait vrai pour n'importe quel
autre nom d'instance). Python Tutor nous indique cela par une fléche pointant vers un espace nommé Citron instance.
La signification du self est expliquée en détail dans la rubrique suivante.

Python 3.6 Print output (drag lower right corner to resize)

class Citron:

L d def _ init_ (self):
self.couleur = "jaune" Frames Objects
Global frame Citron class
hide attributes
if name == ' main ': Citron . function

. T - —INit_| " 5hit (self)

citronl = Citron() — f—
__init

print (citronl.couleur)
./\)Citron instance
self
Edit this code

line that has just executed
= next line to execute

Click a line of code to set a breakpoint; use the Back and Forward buttons to jump there.
U
Step 4 of 7

<< First < Back Last >>

FIGURE 23.2 — Fonctionnement d’un constructeur (étape 2).

Etape 3

Figure 23.3. Un nouvel attribut est créé s'appelant self.couleur. La chaine de caractéres couleur est ainsi «
accrochée » (grice au caractére point) a l'instance en cours référencée par le self. Python Tutor nous montre cela par
une fleche qui pointe depuis le self vers la variable couleur (qui se trouve elle-méme dans I'espace nommé Citron

instance). Si d'autres attributs étaient créés, ils seraient tous répertoriés dans cet espace Citron instance. Vous
I'aurez compris, I'attribut couleur est donc une variable d'instance (voir rubrique Ajout d'un attribut d'instance ci-
dessus). La méthode .__init__() étant intrinséquement une fonction, Python Tutor nous rappelle qu'elle ne renvoie
rien (d'ou le None dans la case Return value), une fois son exécution terminée. Et comme avec les fonctions classiques,
|'espace mémoire contenant les variables locales a cette méthode va étre détruit une fois son exécution terminée.

Cours de Python / Université Paris Cité / UFR Sciences du Vivant

259

Chapitre 23. Avoir la classe avec les objets 23.1. Construction d'une classe

Python 3.6 Print output (drag lower right corner to resize)

class Citron:
def init_ (self):

- self.couleur = "jaune" Frames Objects
Global frame Citron class
hide attributes
. . Citron)
if name == ' main_ ': init function
. " A - — " —1 init_ (self)
citronl = Citron()
. . init
print (citronl.couleur)
self Citron instance
— .
Edit this code couleur | "jaune"
Edit this code Return |
None —_—
line that has just executed value

== next line to execute

Click a line of code to set a breakpoint; use the Back and Forward buttons to jump there.
0
<< First < Back = Step 6 of 7 Forward > Last >>

FIGURE 23.3 — Fonctionnement d'un constructeur (étape 3).

Etape 4

Figure 23.4. De retour dans le programme principal, Python Tutor nous indique que citronl est une instance de
la classe Citron par une fleche pointant vers I'espace Citron instance. Cette instance contient un attribut nommé
couleur auquel on accéde avec la syntaxe citronl.couleur dans le print(). Notez que si l'instance s'était appelée
enorme_citron, on aurait utilisé enorme_citron.couleur pour accéder a |'attribut couleur.

Python 3.6 Print output (drag lower right corner to resize)

jaune
class Citron:

def _ init_ (self):

self.couleur = "jaune" Frames Objects
Global frame Citron class
hide attributes
i —
if name == "' main ': Siton init function
citro; = Ci;on() citronl — —| _init_ (self)

print (citronl.couleur)
Citron instance

Edit this code couleur | "jaune"

line that has just executed
= next line to execute

Click a line of code to set a breakpoint; use the Back and Forward buttons to jump there.

<< First < Back | Program terminated = Forward > Last >>

FIGURE 23.4 — Fonctionnement d'un constructeur (étape 4).

Conseil

Dans la mesure du possible, nous vous conseillons de créer tous les attributs d'instance dont vous aurez besoin dans
le constructeur .__init__() plutdét que dans toute autre méthode. Ainsi, ils seront visibles dans toute la classe dées
I'instanciation.

23.1.6 Passage d’argument(s) a I'instanciation

Lors de I'instanciation, il est possible de passer des arguments au constructeur. Comme pour les fonctions, on peut
passer des arguments positionnels ou par mot-clé, et en créer autant que I'on veut (voir chapitre 10 Fonctions). Voici un
exemple :

260 Cours de Python / Université Paris Cité / UFR Sciences du Vivant

23.1. Construction d’une classe Chapitre 23. Avoir la classe avec les objets

class Citron:
def __init__(self, masse, couleur="jaune"):
self.masse = masse
self.couleur = couleur

if __name__ == "__main__":
citronl = Citron(100)
print("citronl:", citronl.__dict__)
citron2 = Citron(150, couleur="blanc")
print("citron2:", citron2.__dict__)

On a ici un argument positionnel (masse) et un autre par mot-clé (couleur). Le code donnera la sortie suivante :

citronl: {'masse': 100, 'couleur': 'jaune'}
citron2: {'masse': 150, 'couleur': 'blanc'}

23.1.7 Mieux comprendre le role du self

Cette rubrique va nous aider a mieux comprendre le réle du self a travers quelques exemples simples. Regardons le
code suivant dans lequel nous créons une nouvelle méthode .affiche_attributs() :
class Citron:
def __init__(self, couleur="jaune"):

self.couleur = couleur
var = 2

def affiche_attributs(self):
print(self)
print(self.couleur)
print(var)

if __name__ == "__main__":
citronl = Citron()
citronl.affiche_attributs()

Ligne 3. On crée I'attribut couleur que I'on accroche a I'instance avec se'lf.

Ligne 4. Nous créons cette fois-ci une variable var sans |'accrocher a self.

Ligne 6. Nous créons une nouvelle méthode dans la classe Citron qui se nomme
.affiche_attributs(). Comme pour le constructeur, cette méthode prend comme premier argument une variable
obligatoire, que nous avons a nouveau nommée self. Il s’agit encore une fois d'une référence vers I'objet ou instance
créé(e).

Attention
On peut appeler cette référence comme on veut, toutefois nous vous conseillons vivement de I'appeler self, car c'est
une convention en Python. Ainsi, quelqu’un qui lira votre code comprendra immédiatement de quoi il s'agit.

Ligne 7. Cette ligne va afficher le contenu de la variable self.

Lignes 8 et 9. On souhaite que notre méthode .affiche_attributs() affiche ensuite I'attribut de classe . couleur
ainsi que la variable var créée dans le constructeur .__init__().

L'exécution de ce code donnera :

$ python classe_exemplel.py
<__main__.Citron object at 0x7f4e5fb71438>
jaune
Traceback (most recent call last):
File "classe_exemplel.py", line 14, in <module>
citronl.affiche_attributs()
File "classe_exemplel.py", line 9, 1in affiche_attributs
print(var)
AANA

NameError: name 'var' is not defined. Did you mean: 'vars'?

Cours de Python / Université Paris Cité / UFR Sciences du Vivant 261

Chapitre 23. Avoir la classe avec les objets 23.1. Construction d'une classe

262

Ligne 2. La méthode .affiche_attributs() montre que le self est bien une référence vers I'instance (ou objet)
citronl (ou vers n'importe quelle autre instance : par exemple, si on crée citron2 = Citron(), le self sera une
référence vers citron2).

Ligne 3. La méthode .affiche_attributs() affiche I'attribut .couleur, qui avait été créé précédemment dans
le constructeur. Vous voyez ici I'intérét principal de I'argument self passé en premier a chaque méthode d'une classe :
il « accroche » n'importe quel attribut qui sera visible partout dans la classe, y compris dans une méthode ou il n'a pas
été défini.

Lignes 4 a 9. La création de la variable var dans la méthode .__1init__() sans l'accrocher a 'objet self fait
qu’elle n'est plus accessible en dehors de .__init__(). C'est exactement comme pour les fonctions classiques, var
est finalement une variable locale au sein de la méthode .__init__() et n'est plus visible lorsque I'exécution de cette

derniére est terminée (voir les chapitres 10 et 13 sur les fonctions). Ainsi, Python renvoie une erreur, car var n'existe
pas lorsque .affiche_attributs() est en exécution.

En résumé, le self est nécessaire lorsqu'on a besoin d'accéder a différents attributs dans les différentes méthodes
d'une classe. Le self est également nécessaire pour appeler une méthode de la classe depuis une autre méthode :

class Citron:
def __init__(self, couleur="jaune"):
self.couleur = couleur
self.affiche_message()

def affiche_message(self):
print("Le citron c'est trop bon !")

if name == "__main__":

citronl = Citron("jaune pale")

Ligne 4. Nous appelons ici la méthode .affiche_message() depuis le constructeur. Pour appeler cette méthode
interne a la classe Citron, on doit utiliser une syntaxe self.méthode (). Le self sert donc pour accéder aux attributs,
mais aussi aux méthodes, ou plus généralement a tout ce qui est accroché a la classe.

Lignes 6 et 7. La méthode .affiche_message() est exécutée. On peut se poser la question « Pourquoi passer
I'argument self a cette méthode alors qu'on ne s’en sert pas dans celle-ci ? »

Attention

Méme si on ne se sert d’aucun attribut dans une méthode, I'argument self (ou quel que soit son nom) est stricte-
ment obligatoire. En fait, la notation citronl.affiche_message() est équivalente a Citron.affiche_message
(citronl). Testez les deux pour voir! Dans cette derniére instruction, on appelle la méthode accrochée a la classe
Citron et on lui passe explicitement |'instance citronl en tant qu'argument. La notation citronl.affiche_message
() contient donc en filigrane un argument, a savoir la référence vers I'instance citronl que I'on appelle self au sein
de la méthode.

Conseil

C'est la premiére notation citronl.affiche_attributs() (ou plus généralement instance.méthode()), plus
compacte, qui sera toujours utilisée.

Ligne 11. On crée l'instance citronl en lui passant I'argument "jaune péle". La variable d'instance couleur
prendra ainsi cette valeur au lieu de celle par défaut ("jaune"). A noter, I'instanciation affichera le message Le citron
c'est trop bon ! puisque la méthode .affiche_attributs() est appelée dans le constructeur .__init__().

Afin de bien comprendre les différentes étapes des codes de cette rubrique, nous vous conseillons de les retester de
votre c6té dans Python Tutor.

Cours de Python / Université Paris Cité / UFR Sciences du Vivant

23.2. Exercices Chapitre 23. Avoir la classe avec les objets

23.1.8 Remarque finale

Dans ce chapitre, nous avons vu les bases pour construire une classe. Toutefois, nous avons encore de nombreuses
notions a vous montrer afin de pouvoir utiliser la POO a plein régime. Dans le chapitre 24 Avoir plus la classe avec les
objets (en ligne), nous verrons les concepts de polymorphisme, composition et héritage qui donnent toute la puissance
a la POO. D’autres notions comme les décorateurs property seront abordées permettant le controle des attributs par
un utilisateur de la classe. Nous donnerons également des conseils généraux quand vous utilisez la POO. Le chapitre 25
Fenétres graphiques et Tkinter (en ligne) illustrera I'utilisation de la POO pour concevoir des fenétres graphiques avec
le module Tkinter.

23.2 Exercices

Conseil
Pour ces exercices, créez des scripts puis exécutez-les dans un shell.

23.2.1 Classe Rectangle

Téléchargez le script rectangle.py? qui implémente la classe Rectangle.

Complétez le programme principal pour que le script :

crée une instance rectangle de la classe Rectangle;

affiche les attributs d'instance largeur, longueur et couleur;

calcule et affiche la surface de rectangle;

affiche une ligne vide;

change le rectangle en carré de 30 m de coté;

calcule et affiche la surface de ce carré;

crée une autre instance rectangle2, aux dimensions et a la couleur que vous souhaitez (soyez créatif!) et qui
affiche les attributs et la surface de ce nouveau rectangle.

23.2.2 Classe Rectangle améliorée

Entrainez-vous avec la classe Rectangle. Créez la méthode calcule_perimetre() qui calcule le périmétre d'un
objet rectangle. Testez sur un exemple simple (largeur = 10 m, longueur = 20 m).

23.2.3 Classe Atome

Créez une nouvelle classe Atome avec les attributs x, y, z, qui contiennent les coordonnées atomiques, et la méthode
calcul_distance(), qui calcule la distance entre deux atomes. Testez cette classe sur plusieurs exemples.

23.2.4 Classe Atome améliorée

Améliorez la classe Atome en lui ajoutant un nouvel attribut masse, qui correspond a la masse atomique, ainsi qu'une
nouvelle méthode .calcule_centre_masse(). Que se passe-t-il quand vous utilisez I'instruction print() avec une
instance d'un objet Atome ? Dans votre classe, ajoutez la méthode suivante :

def __str__(self):

return f"coords({self.x}, {self.y}, {self.z}) ; mass = {self.masse}"

Utilisez a nouveau l'instruction print() avec un objet de la classe Atome. Que constatez-vous par rapport au
précédent print() ?

3. https://python.sdv.u-paris.fr/data-files/rectangle.py

Cours de Python / Université Paris Cité / UFR Sciences du Vivant 263

https://python.sdv.u-paris.fr/data-files/rectangle.py

CHAPITRE 24

Avoir plus la classe avec les objets

Dans le chapitre précédent, nous avons vu les bases sur comment créer une classe, les notions d'attributs d'instance
et de classe, le fonctionnent d'un constructeur et comment passer des arguments lors de I'instanciation. Nous avons vu
qu’une classe pouvait &tre vue comme un constructeur de conteneur (chaque conteneur construit est une instance), qu’'on
pouvait y mettre tout un tas de variables ou objets (les attributs d'instance), mais également nous pouvions définir des
méthodes réalisant des actions pour modifier ce que contient I'objet.

Dans le présent chapitre, nous abordons de nouvelles notions qui augmentent la puissance des classes, a savoir le
polymorphisme, I'héritage et la composition. Nous verrons également les décorateurs property permettant le contrdle de
I'accés aux attributs. A la fin du chapitre, nous vous donnerons des bonnes pratiques pour construire vos classes. Mais
avant d’aborder ces sujets, nous revenons sur un concept important en Python, a savoir les espaces de noms.

24.1 Espace de noms

La notion d'espace de noms est importante lorsqu’'on étudie les classes. Nous avons déja croisé ce concept a plusieurs
reprises. D'abord dans le chapitre 13 Plus sur les fonctions, puis dans le chapitre 15 Création de modules, et maintenant
dans ce chapitre. De quoi s'agit-il 7

Définition

Dans la documentation officielle!, un espace de noms est défini comme suit : « a namespace is a mapping from
names to objects ». Un espace de noms, c’est finalement une correspondance entre des noms et des objets. Un espace
de noms peut étre vu aussi comme une capsule dans laquelle on trouve des noms d'objets. Par exemple, le programme
principal ou une fonction représentent chacun un espace de noms, un module aussi, et bien siir une classe ou l'instance
d'une classe également.

Différents espaces de noms peuvent contenir des objets de méme nom sans que cela ne pose de probleme. Parce qu'ils
sont chacun dans un espace différent, ils peuvent cohabiter sans risque d'écrasement de |'un par I'autre. Par exemple, a
chaque fois que I'on appelle une fonction, un espace de noms est créé pour cette fonction. Python Tutor nous montre
cet espace sous la forme d'une zone dédiée (voir les chapitres 10 et 13 sur les fonctions). Si cette fonction appelle une
autre fonction, un nouvel espace est créé, bien distinct de la fonction appelante (ce nouvel espace peut donc contenir

1. https://docs.python.org/fr/3/tutorial/classes.html#python-scopes-and-namespaces

264

https://docs.python.org/fr/3/tutorial/classes.html#python-scopes-and-namespaces

24.1. Espace de noms Chapitre 24. Avoir plus la classe avec les objets

un objet de méme nom). En définitive, ce qui va compter, c’est de savoir quelles régles Python va utiliser pour chercher
dans les différents espaces de noms pour finalement accéder a un objet.

Nous allons dans cette rubrique refaire le point sur ce que I'on a appris dans cet ouvrage sur les espaces de noms en
Python, puis se pencher sur les spécificités de ce concept dans les classes.

24.1.1 Rappel sur la régle LGI

Comme vu dans le chapitre 10 Fonctions, la régle LGl peut étre résumée ainsi : Local > Global > Interne. Lorsque
Python rencontre un objet, il utilise cette régle de priorité pour accéder a la valeur de celui-ci. Si on est dans une fonction
(ou une méthode), Python va d'abord chercher I'espace de noms local a cette fonction. S'il ne trouve pas de nom il va
ensuite chercher |'espace de noms du programme principal (ou celui du module), donc des variables globales s'y trouvant.
S'il ne trouve pas de nom, il va chercher dans les commandes internes 3 Python (on parle des Built-in Functions? et des
Built-in Constants®). Si aucun objet n'est trouvé, Python renvoie une erreur.

24.1.2 Gestion des noms dans les modules

Les modules représentent aussi un espace de noms en soi. Afin d'illustrer cela, jetons un coup d'ceil a ce programme
test_var_module.py :

import mod

i = 1000000
j=2
print("Dans prog principal 1i:", 1)

print("Dans prog principal j:", j)

mod. fct ()
mod. fct2 ()

print("Dans prog principal i:", 1)
print("Dans prog principal j:", j)

Le module mod.py contient les instructions suivantes :

def fct():
i = -27478524
print("Dans module, i local:", 1)

def fct2():
print("Dans module, j global:", j)

i=3.14
j = -76

L'exécution de test_var_module.py donnera :

$ python ./test_var_module.py
Dans prog principal i: 1000000
Dans prog principal j: 2

Dans module, i local: -27478524
Dans module, j global: -76

Dans prog principal i: 1000000
Dans prog principal j: 2

Lignes 3 et 4. On a bien les valeurs de i et j définies dans le programme principal de test.py.

Lignes 9 et 10. Lorsqu'on exécute mod.fct(), la valeur de i sera celle définie localement dans cette fonction.
Lorsqu’on exécute mod. fct2(), la valeur de j sera celle définie de maniére globale dans le module.

Lignes 12 et 13. De retour dans notre programme principal, les variables i et j existent toujours et n'ont pas été
modifiées par |'exécution de fonctions du module mod. py.

2. https://docs.python.org/fr/3/library/functions.html%20comme%20par%20exemple%20%60print ()%60
3. https://docs.python.org/fr/3/library/constants.html

Cours de Python / Université Paris Cité / UFR Sciences du Vivant 265

https://docs.python.org/fr/3/library/functions.html%20comme%20par%20exemple%20%60print()%60
https://docs.python.org/fr/3/library/constants.html

Chapitre 24. Avoir plus la classe avec les objets 24.1. Espace de noms

266

En résumé, lorsqu'on lance une méthode d'un module, c'est I'espace de noms de celui-ci qui est utilisé. Bien siir,
toutes les variables du programme principal / fonction / méthode appelant ce module sont conservées telles quelles, et
on les retrouve intactes lorsque I'exécution de la fonction du module est terminée. Un module a donc son propre espace
de noms qui est bien distinct de tout programme principal / fonction / méthode appelant un composant de ce module.
Enfin, les variables globales créées dans notre programme principal ne sont pas accessibles dans le module lorsque celui-ci
est en exécution.

24.1.3 Gestion des noms avec les classes

On vient de voir qu'un module avait son propre espace de noms, mais qu’en est-il des classes ? En utilisant les exemples
vus depuis le début de ce chapitre, vous avez certainement la réponse. Une classe posséde par définition son propre espace
de noms qui ne peut étre en aucun cas confondu avec celui d'une fonction ou d'un programme principal. Reprenons un
exemple simple :

class Citron:
def __init__(self, saveur="acide", couleur="jaune"):
self.saveur = saveur
self.couleur = couleur
print("Dans __init__(), vous venez de créer un citron:",
self.affiche_attributs())

def affiche_attributs(self):
return f"{self.saveur}, {self.couleur}"

if __name__ == "__main__":
saveur = "sucrée"
couleur = "orange"

print(f"Dans le programme principal: {saveur}, {couleur}")

citronl = Citron("trés acide", "jaune foncé")

print("Dans citronl.affiche_attributs():", citronl.affiche_attributs())
print(f"Dans le programme principal: {saveur}, {couleur}")

Lorsqu’on exécutera ce code, on obtiendra :

Dans le programme principal: sucrée, orange

Dans __init__(), vous venez de créer un citron: trés acide, jaune foncé
Dans citronl.affiche_attributs(): trés acide, jaune foncé

Dans le programme principal: sucrée, orange

Les deux variables globales saveur et couleur du programme principal ne peuvent pas étre confondues avec les
variables d'instance portant le méme nom. Au sein de la classe, on utilisera pour récupérer ces dernieres self.saveur
et self.couleur. A I'extérieur, on utilisera instance.saveur et instance.couleur. I n'y a donc aucun risque de
confusion possible avec les variables globales saveur et couleur, on accéde a chaque variable de la classe avec un nom
distinct (qu’on soit a l'intérieur ou a I'extérieur de la classe).

Ceci est également vrai pour les méthodes. Si par exemple, on a une méthode avec un certain nom, et une fonction
du module principal avec le méme nom, regardons ce qui se passe :

Cours de Python / Université Paris Cité / UFR Sciences du Vivant

24.1. Espace de noms Chapitre 24. Avoir plus la classe avec les objets

class Citron:
def __init__(self):
self.couleur = "jaune"
self.affiche_coucou()
affiche_coucou()

def affiche_coucou(self):
print("Coucou interne !")

def affiche_coucou():
print("Coucou externe'")

if __name__ "__main__":

citronl Citron()
citronl.affiche_coucou()
affiche_coucou()

Lorsqu'on va exécuter le code, on obtiendra :

Coucou finterne !
Coucou externe
Coucou 1interne !
Coucou externe

A nouveau, il n'y a pas de conflit possible pour I'utilisation d'une méthode ou d'une fonction avec le méme nom. A
I'intérieur de la classe on utilise self.affiche_coucou() pour la méthode et affiche_coucou() pour la fonction.
A l'extérieur de la classe, on utilise instance.affiche_coucou() pour la méthode et affiche_coucou() pour la
fonction.

Dans cette rubrique, nous venons de voir une propriété des classes extrémement puissante : une classe crée au-
tomatiquement son propre espace de noms. Cela permet d'encapsuler a l'intérieur tous les attributs et méthodes
dont on a besoin, sans avoir aucun risque de conflit de nom avec |'extérieur (variables locales, globales ou provenant de
modules). L'utilisation de classes évitera ainsi I'utilisation de variables globales qui, on I'a vu aux chapitres 10 et 13 sur
les fonctions, sont a proscrire absolument. Tout cela concourt a rendre le code plus lisible.

Dans le chapitre 25 Fenétres graphiques et Tkinter (en ligne), vous verrez une démonstration de I'utilité de tout
encapsuler dans une classe afin d'éviter les variables globales.

24.1.4 Gestion des noms entre les attributs de classe et d’instance

Si vous lisez cette rubrique sur |'espace de noms sans avoir lu ce chapitre depuis le début, nous vous conseillons
vivement de lire attentivement la rubrique Différence entre les attributs de classe et d'instance. La chose importante
a retenir sur cette question est la suivante : si un attribut de classe et un attribut d'instance ont le méme nom, c'est
I'attribut d'instance qui est prioritaire.

Pour aller plus loin

Il existe d'autres regles concernant les espace de noms. L'une d'elle, que vous pourriez rencontrer, concerne la gestion
des noms avec des fonctions imbriquées. Et oui, Python autorise cela! Par exemple :

def fonctionl():
[...]

def fct_dans_fonctionl():
[...]

La encore, il existe certaines régles de priorités d'acceés aux objets spécifiques a ce genre de cas, avec |I'apparition d’un
nouveau mot-clé nommé nonlocal. Toutefois ces aspects vont au-dela du présent ouvrage. Pour plus d'informations sur
les fonctions imbriquées et la directive nonlocal, vous pouvez consulter la documentation officielle *.

D’autres subtilités concerneront la gestion des noms en cas de définition d'une nouvelle classe héritant d'une classe

4. https://docs.python.org/3/tutorial/classes.html#python-scopes-and-namespaces

Cours de Python / Université Paris Cité / UFR Sciences du Vivant 267

https://docs.python.org/3/tutorial/classes.html#python-scopes-and-namespaces

Chapitre 24. Avoir plus la classe avec les objets 24.2. Polymorphisme

268

meére. Ces aspects sont présentés dans la rubrique Héritage de ce chapitre.

24.2 Polymorphisme

Nous allons voir maintenant des propriétés trés importantes des classes en Python, le polymorphisme dans cette
rubrique et I'héritage dans la suivante. Ces deux concepts donnent un surplus de puissance a la POO par rapport a la
programmation classique.

24.2.1 Principe

Commencons par le polymorphisme. Dans la vie, celui-ci évoque la capacité a prendre plusieurs apparences, qu’en
est-il en programmation ?

Définition

En programmation, le polymorphisme est la capacité d'une fonction (ou méthode) a se comporter différemment en
fonction de I'objet qui lui est passé. Une fonction donnée peut donc avoir plusieurs définitions.

Prenons un exemple concret de polymorphisme : la fonction Python sorted() va trier par ordre ASCII si I'argument
est une chaine de caractéres, et elle va trier par ordre croissant lorsque |'argument est une liste d'entiers :
>>> sorted("citron")
['Cl, lil’ lnl’ lol, lrl’ ltl]
>>> sorted([1, -67, 42, 0, 81])
[-67, 0, 1, 42, 81]

Le polymorphisme est intimement lié au concept de redéfinition des opérateurs que nous avons déja croisé a plusieurs
reprises dans ce livre.

Définition
La redéfinition des opérateurs est la capacité a redéfinir le comportement d'un opérateur en fonction des opérandes
utilisées (on rappelle dans I'expression 1 + 1, + est I'opérateur d'addition et les deux 1 sont les opérandes).

Un exemple classique de redéfinition des opérateurs concerne |'opérateur +. Si les opérandes sont de type numérique,
il fait une addition, si elles sont des chaines de caractére il fait une concaténation :

>>> 2 + 2

4

>>> Hti" + Hti”
it

Nous verrons dans la rubrique suivante sur ['héritage qu'il est également possible de redéfinir des méthodes d'une
classe, c'est-a-dire leur donner une nouvelle définition.

24.2.2 Meéthodes dunder ou magiques

Comment Python permet-il ces prouesses que sont le polymorphisme et la redéfinition des opérateurs? Et bien, il
utilise des méthodes dites dunder ou magiques.

Définition
Une méthode dunder (dunder method) est une méthode spéciale dont le nom est entouré de double underscores.
Par exemple, la méthode .__init__() est une méthode dunder. Ces méthodes sont, la plupart du temps, destinées

au fonctionnement interne de la classe. Nombre d'entre elles sont destinées a changer le comportement de fonctions ou
opérateurs internes a Python avec les instances d'une classe que I'on a créée. Le mot dunder signifie littéralement double
underscore. On parle aussi parfois de méthodes magiques.

Cours de Python / Université Paris Cité / UFR Sciences du Vivant

24.2. Polymorphisme Chapitre 24. Avoir plus la classe avec les objets

Nous allons prendre un exemple concret. Imaginons que suite a la création d'une classe, nous souhaitions que Python
affiche un message personnalisé lors de I'utilisation de la fonction print() avec une instance de cette classe. La méthode
dunder qui permettra cela est nommée .__str__() : elle redéfinit le comportement d'une instance avec la fonction
print().

class CitronBasique:
def __init__(self, couleur="jaune", taille="standard"):

self.couleur = "jaune"
self.taille = "standard"

class CitronCool:
def __init__(self, couleur="jaune", taille="standard"):
self.couleur = couleur
self.taille = taille

def __str__(self):
return (f"Votre citron est de couleur {self.couleur} "
f'et de taille {self.taille}")

if __name__ == "__main__":
citronl = CitronBasique()
print(citronl)
citron2 = CitronCool("jaune foncée", "minuscule")
print(citron2)

Lignes 1 a 4. Création d'une classe CitronBasique dans laquelle il n'y a qu'un constructeur.
Lignes 7 a 14. Création d'une classe CitronCool ou nous avons ajouté la nouvelle méthode .__str__(). Cette
derniére renvoie une chaine de caractéres contenant la description de I'instance.
Lignes 18 a 21. On crée une instance de chaque classe, et on utilise la fonction print() pour voir leur contenu.
L'exécution de ce code affichera la sortie suivante :
<__main__.CitronBasique object at 0x7ffe23e717b8>

Votre citron est de couleur jaune foncée et de taille minuscule 8-)

L'utilisation de la fonction print() sur l'instance citronl construite a partir de la classe CitronBasique affiche
le message abscons que nous avons déja croisé. Par contre, pour |'instance citron2 de la classe CitronCool, le texte
correspond a celui retourné par la méthode dunder . __str__(). Nous avons donc redéfini comment la fonction print()
se comportait avec une instance de la classe CitronCool. Notez que str(citron2) donnerait le méme message que
print(citron2).

Ce mécanisme pourra étre reproduit avec de trés nombreux opérateurs et fonctions de bases de Python. En effet, il
existe une multitude de méthodes dunder, en voici quelques unes :

e .__repr__() : redéfinit le message obtenu lorsqu'on tape le nom de |'instance dans I'interpréteur;
e .__add__() : redéfinit le comportement de I'opérateur +;

e .__mul__() : redéfinit le comportement de I'opérateur x;

e .__del__() : redéfinit le comportement de la fonction del.

Si on concoit une classe produisant des objets séquentiels (comme des listes ou des tuples), il existe des méthodes
dunder telles que :
e .__Tlen__() : redéfinit le comportement de la fonction len() ;
e .__getitem__() : redéfinit le comportement pour récupérer un élément ou des tranches sur un objet séquentiel.
Pour les tranches vous aurez également besoin de la fonction builtin slice () que nous ne développerons pas plus
en avant dans le cadre de ce cours.

Conseil
Nous vous conseillons la page de Trey Hunner® qui est bien compléte sur comment mettre en place une méthode
.__getitem__() avec la fonction slice().

5. https://www.pythonmorsels.com/implementing-slicing/

Cours de Python / Université Paris Cité / UFR Sciences du Vivant

269

https://www.pythonmorsels.com/implementing-slicing/

Chapitre 24. Avoir plus la classe avec les objets 24.3. Héritage

Certaines méthodes dunder font des choses assez impressionnantes. Par exemple, la méthode . __call__() crée des
instances que I'on peut appeler comme des fonctions! Dans cet exemple, nous allons vous montrer que I'on peut ainsi
créer un moyen inattendu pour mettre a jour des attributs d'instance :

class Citronnier:
def __init__(self, nb_citrons, age):
self.nb_citrons, self.age = nb_citrons, age

def call__(self, nb_citrons, age):

self.nb_citrons, self.age = nb_citrons, age

def __str__(self):
return (f"Ce citronnier a {self.age} ans "
f'et {self.nb_citrons} citrons")

if __name__ == "__main__":
citronnierl = Citronnier (10, 3)
print(citronnierl)
citronnierl (30, 4)

print(citronnierl)

A la ligne 16, on utilise une notation instance(argl, arg2), ce quiva automatiquement appeler la méthode dunder
__call__() qui mettra a jour les deux attributs d’instance nbcitrons et age (lignes 5 et 6). Ce code affichera la
sortie suivante :

Ce citronnier a 3 ans et 10 citrons
Ce citronnier a 4 ans et 30 citrons

Pour aller plus loin

e Nous vous avons montré |'idée qu'il y avait derriere le polymorphisme, et avec cela vous avez assez pour vous jeter a
|'eau et commencer a construire vos propres classes. L'apprentissage de toutes les méthodes dunder va bien siir au-
dela du présent ouvrage. Toutefois, si vous souhaitez aller plus loin, nous vous conseillons la page de Trey Hunner°
qui est particulierement compléte et trés bien faite. Une autre page qui a un peu vieilli mais reste intéressante
est celle de Rafe Kettler?. Enfin, nous développons les méthodes dunder .__iter__() et .__next__() dans la
rubrique sur les itérateurs du chapitre 26 Remarques complémentaires.

24.3 Héritage

24.3.1 Prise en main

L'héritage peut évoquer la capacité qu'ont nos parents a nous transmettre certains traits physiques ou de caractére
(ne dit-on pas, j'ai hérité ceci ou cela de ma mére ou de mon pére?). Qu'en est-il en programmation ?

Définition

En programmation, I'héritage est la capacité d'une classe d'hériter des propriétés d'une classe pré-existante. On parle
de classe mere et de classe fille. En Python, |'héritage peut étre multiple lorsqu'une classe fille hérite de plusieurs classes
meéres.

En Python, lorsque I'on veut créer une classe héritant d'une autre classe, on ajoutera aprés le nom de la classe fille
le nom de la ou des classe(s) mére(s) entre parenthéses :

6. https://www.pythonmorsels.com/every-dunder-method/
7. https://rszalski.github.io/magicmethods

270 Cours de Python / Université Paris Cité / UFR Sciences du Vivant

https://www.pythonmorsels.com/every-dunder-method/
https://rszalski.github.io/magicmethods

24.3. Héritage Chapitre 24. Avoir plus la classe avec les objets

class Merel:
contenu de la classe mere 1

class Mere2:
contenu de la classe mére 2

class Fillel(Merel):
contenu de la classe fille 1

class Fille2(Merel, Mere2):
contenu de la classe fille 2

Dans cet exemple, la classe Fillel hérite de la classe Merel et la classe Fille2 hérite des deux classes Merel et
Mere2. Dans le cas de la classe Fille2, on parle d'héritage multiple. Voyons maintenant un exemple concret :

class Mere:
def bonjour(self):
return "Vous avez le bonjour de la classe mere !"

class Fille(Mere):
def salut(self):
return "Un salut de la classe fille !"

. == "__main__":
fille = Fille()
print(fille.salut())
print(fille.bonjour())

if name_

Lignes 1 a 3. On définit une classe Mere avec une méthode .bonjour ().

Lignes 6 a 8. On définit une classe Fille qui hérite de la classe Mere. Cette classe fille contient une nouvelle méthode
.salut().

Lignes 12 a 14. Apreés instanciation de la classe Fille, on utilise la méthode .salut (), puis la méthode .bonjour ()
héritée de la classe mére.

Ce code affiche la sortie suivante :

Un salut de la classe fille !
Vous avez le bonjour de la classe mere !

Nous commencons a entrevoir la puissance de |'héritage. Si on possede une classe avec de nombreuses méthodes et
que I'on souhaite en ajouter de nouvelles, il suffit de créer une classe fille héritant d’une classe mere.

En revenant a notre exemple, une instance de la classe Fille sera automatiquement une instance de la classe Mere.
Regardons dans I'interpréteur :

>>> fille = Fille()

>>> dsinstance(fille, Fille)
True

>>> dsinstance(fille, Mere)
True

Si une méthode de la classe fille posséde le méme nom que celle de la classe mére, c’est la premiére qui prend la
priorité. Dans ce cas, on dit que la méthode est redéfinie (en anglais on parle de method overriding), tout comme on
parlait de redéfinition des opérateurs un peu plus haut. C'est le méme mécanisme, car la redéfinition des opérateurs
revient finalement a redéfinir une méthode dunder (comme par exemple la méthode .__add__() pour I'opérateur +).

Voyons un exemple :

Cours de Python / Université Paris Cité / UFR Sciences du Vivant

271

Chapitre 24. Avoir plus la classe avec les objets 24.3. Héritage

272

class Mere:
def bonjour(self):
return "Vous avez le bonjour de la classe meére !"

class Fille2(Mere):
def bonjour(self):
return "Vous avez le bonjour de la classe fille !"

if __name__ == "__main__":
fille = Fille2()
print(fille.bonjour())

Ce code va afficher Vous avez le bonjour de la classe fille !.La méthode .bonjour () de la classe fille
a donc pris la priorité sur celle de la classe mére. Ce comportement provient de la gestion des espaces de noms par
Python, il est traité en détail dans la rubrique suivante.

Remarque

A ce point, nous pouvons faire une note de sémantique importante. Python utilise le mécanisme de redéfinition de
méthode (method overriding), c'est-a-dire qu'on redéfinit une méthode héritée d'une classe mere. Il ne faut pas confondre
cela avec la surcharge de fonction (function overloading) qui désigne le fait d'avoir plusieurs définitions d'une fonction
selon le nombres d'arguments et/ou leur type (la surcharge n'est pas supportée par Python contrairement a d'autres
langages orientés objet).

24.3.2 Ordre de résolution des noms

Vous |'avez compris, il y aura un ordre pour la résolution des noms d’attributs ou de méthodes en fonction du ou
des héritage(s) de notre classe (3 nouveau, cela provient de la maniére dont Python gére les espaces de noms). Prenons
I'’exemple d’une classe déclarée comme suit class Fille(Merel, Mere2):. Sion invoque un attribut ou une méthode
sur une instance de cette classe, Python cherchera d'abord dans la classe Fille. S'il ne trouve pas, il cherchera ensuite
dans la premiére classe mére (Merel dans notre exemple). S'il ne trouve pas, il cherchera dans les ancétres de cette
premiére mere (si elle en a), et ce en remontant la filiation (d'abord la grand-mére, puis I'arriére grand-mére, etc). S'il n'a
toujours pas trouvé, il cherchera dans la deuxiéme classe mére (Mere2 dans notre exemple) puis dans tous ses ancétres.
Et ainsi de suite, s'il y a plus de deux classes méres. Bien siir, si aucun attribut ou méthode n'est trouvé, Python renverra
une erreur.

Il est en général possible d'avoir des informations sur I'ordre de résolution des méthodes d'une classe en évoquant la
commande help() sur celle-ci ou une de ses instances. Par exemple, nous verrons dans le chapitre suivant le module
Tkinter, imaginons que nous créions une instance de la classe principale du module Tkinter nommée Tk :

>>> dmport tkinter as tk
>>> racine = tk.Tk()

En invoquant la commande help(racine), l'interpréteur nous montre :

Help on class Tk in module tkinter:

class Tk(Misc, Wm)
| Toplevel widget of Tk which represents mostly the main window
of an application. It has an associated Tcl interpreter.

|

|

| Method resolution order:
| Tk

| Misc

| Wm

| builtins.object
[...]

On voit tout de suite que la classe Tk hérite de deux autres classes Misc et Wm. Ensuite, le help indique I'ordre de
résolution des méthodes : d'abord la classe Tk elle-mé&me, ensuite ses deux meéres Misc puis Wm, et enfin une derniére

Cours de Python / Université Paris Cité / UFR Sciences du Vivant

24.3. Héritage Chapitre 24. Avoir plus la classe avec les objets

classe nommée builtins.object dont nous allons voir la signification maintenant.

Remarque

En Python, il existe une classe interne nommée object qui est en quelque sorte la classe ancétre de tous les objets.
Toutes les classes héritent de object.

Pour vous en convaincre, nous pouvons recréer une classe vide :

>>> class Citron:
pass

Puis ensuite regarder I'aide sur I'une de ses instances :

Help on class Citron in module __main__:

class Citron(builtins.object)
| Data descriptors defined here:

|
| __dict__
| dictionary for tdinstance variables (if defined)

L...]

L'aide nous montre que Citron a hérité de builtins.object bien que nous ne I'ayons pas déclaré explicitement.
Cela se fait donc de maniére implicite.

Remarque

Le module builtins posséde toutes les fonctions internes a Python. Il est donc pratique pour avoir une liste de toutes ces
fonctions internes en un coup d’ceil. Regardons cela avec les deux instructions import builtins puis dir(builtins) :

>>> dmport builtins
>>> dir(builtins)

["ArithmeticError', 'AssertionError', 'AttributeError', [...]

'ascii', 'bin', 'bool', 'bytearray', 'bytes', 'callable', 'chr', [...]
'list', 'locals', 'map', 'max', 'memoryview', 'min', 'next', 'object', [...]
'str', 'sum', 'super', 'tuple', 'type', 'vars', 'zip']

Au début, on y trouve les exceptions commencant par une lettre majuscule (voir le chapitre 26 Remarques complé-
mentaires (en ligne) pour la définition d'une exception), puis les fonctions Python de base tout en minuscule. On retrouve
par exemple list ou str, mais il y a aussi object. Toutefois ces fonctions étant chargées de base dans |'interpréteur,
I'importation de builtins n'est pas obligatoire : par exemple 1ist revient au méme que builtins.list, ou object
revient au méme que builtins.object.

En résumé, la syntaxe class Citron: sera équivalente a
class Citron(builtins.object):
ou a class Citron(object):.

Ainsi, méme si on crée une classe Citron vide (contenant seulement une commande pass), elle posséde déja tout
une panoplie de méthodes héritées de la classe object. Regardez I'exemple suivant :

Cours de Python / Université Paris Cité / UFR Sciences du Vivant 273

Chapitre 24. Avoir plus la classe avec les objets 24.3. Héritage

>>> class Citron:
pass

>>> ¢ = Citron()
>>> dir(c)

['__class__', '__delattr__', '__dict__', '__dir__', '__doc__', '__eq__"',
'__format__', '__ge__', '__getattribute__', '__gt__', '__hash__"',

' dndt_ ', '__le__ ', '__1t__', '__module__', '__ne__', '__new__"',

' __reduce__', '__reduce_ex__', '__repr__', '__setattr__', '__sizeof__"',
'__str__"', '__subclasshook__', '__weakref__']

>>> o = object()

>>> dir(o)

['__class__', '__delattr__', '__dir__', '__doc__', '__eq__"', '__format__',
' __ge__', '__getattribute__', '__gt__', '__hash__', '__dinit__', '__le__"',
ottty '__ne__', '"__new__', '__reduce__"', '__reduce_ex__"', '__repr__",
' __setattr__', '__sizeof__', '__str__', '__subclasshook__"']

La quasi-totalité des attributs / méthodes de base de la classe Citron sont donc hérités de la classe object. Par
exemple, lorsqu'on instancie un objet Citron ¢ = Citron(), Python utilisera la méthode .__init__() héritée de la
classe object (puisque nous ne I'avons pas définie dans la classe Citron).

24.3.3 Un exemple concret d’héritage

Nous allons maintenant prendre un exemple un peu plus conséquent pour illustrer la puissance de I|'héritage en
programmation. D'abord quelques mots a propos de la conception. Imaginons que nous souhaitions créer plusieurs classes
correspondant a nos fruits favoris, par exemple le citron (comme par hasard!), I'orange, le kaki, etc. Chaque fruit a ses
propres particularités, mais il y a aussi de nombreux points communs. Nous pourrions donc concevoir une classe Fruit
permettant, par exemple, d’instancier un fruit et ajouter des méthodes d'affichage commune a n'importe quel fruit, et
ajouter (ou toute autre méthode) pouvant étre utilisée pour n'importe quel fruit. Nous pourrions alors créer des classes
comme Citron, Orange, etc., héritant de la classe Fruit et ainsi nous économiser des lignes de code identiques a
ajouter pour chaque fruit. Regardons I'exemple suivant que nous avons garni de print() pour bien comprendre ce qui
se passe :

274 Cours de Python / Université Paris Cité / UFR Sciences du Vivant

24.3. Héritage Chapitre 24. Avoir plus la classe avec les objets

class Fruit:
def __init__(self, taille=None, masse=None, saveur=None, forme=None):
print("(2) Je suis dans le constructeur de la classe Fruit")
self.taille = taille
self.masse = masse
self.saveur = saveur
self.forme = forme
print("Je viens de créer self.taille, self.masse, self.saveur "
"et self.forme")

def affiche_conseil(self, type_fruit, conseil):
print("(2) Je suis dans la méthode .affiche_conseil() de la "
"classe Fruit\n")
return (f"Instance {type_fruit}\n"
f'"taille: {self.taille}, masse: {self.masse}\n"
f"saveur: {self.saveur}, forme: {self.forme}\n"
f'"conseil: {conseil}\n")

class Citron(Fruit):
def __init__(self, taille=None, masse=None, saveur=None, forme=None):

print(" (1) Je rentre dans le constructeur de Citron, et je vais "
"appeler\n"
"le constructeur de la classe mére Fruit !")

Fruit.__init__(self, taille, masse, saveur, forme)

print("(3) J'ai fini dans le constructeur de Citron, "
"les attributs sont :\n"
f'self.taille: {self.taille}, self.masse: {self.masse}\n"
f'"self.saveur: {self.saveur}, self.forme: {self.forme}\n")

def __str__(self):
print("(1) Je rentre dans la méthode .__str__() de la classe "
"Citron")
print("Je vais lancer la méthode .affiche_conseil() héritée "
"de la classe Fruit")
return self.affiche_conseil("Citron", "Bon en tarte :-p !")

if name == "__main__":

On crée un citron.

citronl = Citron(taille="petite", saveur="acide",
forme="ellipsoide", masse=50)

print(citronl)

Lignes 1 3 9. On crée la classe Fruit avec son constructeur qui initialisera tous les attributs d'instance décrivant le
fruit.

Lignes 11 a 17. Création d'une méthode .affiche_conseil() qui retourne une chaine contenant le type de fruit,
les attributs d'instance du fruit, et un conseil de consommation.

Lignes 20 a 29. Création de la classe Citron qui hérite de la classe Fruit. Le constructeur de Citron prend les
mémes arguments que ceux du constructeur de Fruit. La ligne 24 est une étape importante que nous n'avons encore
jamais vue : I'instruction Fruit.__init__() est un appel au constructeur de la classe meére (cf. explications plus bas).
Notez bien que le premier argument passé au constructeur de la classe mére sera systématiquement I'instance en cours
self. Le print() en lignes 26-29 illustre qu'aprés I'appel du constructeur de la classe mére tous les attributs d'instance
(self.taille, self.poids, etc.) ont bel et bien été créés.

Lignes 31 a 36. On définit la méthode .__str__() qui va modifier le comportement de notre classe avec print().
Celle-ci fait également appel a une méthode hértitée de la classe mére nommée .affiche_conseil(). Comme on ala
héritée, elle est directement accessible avec un self.méthode() (et de |'extérieur ce serait instance.méthode()).

Lignes 39 a 43. Dans le programme principal, on instancie un objet Citron, puis on utilise print() sur l'instance.

L'exécution de ce code affichera la sortie suivante :

Cours de Python / Université Paris Cité / UFR Sciences du Vivant 275

Chapitre 24. Avoir plus la classe avec les objets 24.3. Héritage

276

(1) Je rentre dans le constructeur de Citron, et je vais appeler

le constructeur de la classe mére Fruit !

(2) Je suis dans le constructeur de la classe Fruit

Je viens de créer self.taille, self.masse, self.saveur et self.forme
(3) J'ai fini dans le constructeur de Citron, les attributs sont:
self.taille: petite, self.masse: 50

self.saveur: acide, self.forme: ellipsoide

(1) Je rentre dans la méthode .__str__() de la classe Citron
Je vais lancer la méthode .affiche_conseil() héritée de la classe Fruit
(2) Je suis dans la méthode .affiche_conseil() de la classe Fruit

Instance Citron

taille: petite, masse: 50
saveur: acide, forme: ellipsoide
conseil: Bon en tarte :-p !

Prenez bien le temps de suivre ce code pas a pas pour bien en comprendre toutes les étapes.

Vous pourrez vous poser la question « Pourquoi utilise-t-on en ligne 24 la syntaxe Fruit.__init__() ? ». Cette
syntaxe est souvent utilisée lorsqu'une classe hérite d'une autre classe pour faire appel au constructeur de la classe mere.
La raison est que nous souhaitons appeler une méthode de la classe mére qui a le méme nom qu'une méthode de la
classe fille. Dans ce cas, si on utilisait self.__init__(), cela correspondrait a la fonction de notre classe fille Citron.
En mettant systématiquement une syntaxe
ClasseMere.__init__() on indique sans ambiguité qu'on appelle le constructeur de la classe mére, en mettant explici-
tement son nom. Ce mécanisme est assez souvent utilisé dans le module Tkinter (voir le chapitre 25 Fenétres graphiques
et Tkinter (en ligne)) pour la construction d'interfaces graphiques, nous en verrons de nombreux exemples.

Remarque

Si vous utilisez des ressources externes, il se peut que vous rencontriez une syntaxe super().__init__(). La
fonction Python interne super () appelle automatiquement la classe mére sans que vous ayez a donner son nom. Méme
si cela peut paraitre pratique, nous vous conseillons d'utiliser dans un premier temps la syntaxe
ClasseMere.__init__() qui est selon nous plus lisible (on voit explicitement le nom de la classe employée, méme s'il
y a plusieurs classes méres).

Ce mécanisme n'est pas obligatoirement utilisé, mais il est trés utile lorsqu'une classe fille a besoin d'initialiser des
attributs définis dans la classe mére. On le croise donc souvent car :

e Cela donne la garantie que toutes les variables de la classe mére sont bien initialisées. On réduit ainsi les risques
de dysfonctionnement des méthodes héritées de la classe mére.

e Finalement, autant ré-utiliser les « moulinettes » de la classe meére, c’est justement a ca que sert I'héritage! Au
final, on écrit moins de lignes de code.

Conseil

Pour les deux raisons citées ci-dessus, nous vous conseillons de systématiquement utiliser le constructeur de la classe
mere lors de l'instanciation.

Vous avez a présent bien compris le fonctionnement du mécanisme de I'héritage. Dans notre exemple, nous pourrions
créer de nouveaux fruits avec un minimum d’effort. Ceux-ci pourraient hériter de la classe mére Fruit a nouveau, et
nous n'aurions pas a réécrire les mémes méthodes pour chaque fruit, simplement a les appeler. Par exemple :

Cours de Python / Université Paris Cité / UFR Sciences du Vivant

24.4. Composition Chapitre 24. Avoir plus la classe avec les objets

class Kaki(Fruit):
def __init__(self, taille=None, masse=None, saveur=None, forme=None):
Fruit.__init__(self, taille, masse, saveur, forme)

def str__(self):

return Fruit.affiche_conseil(self, "Kaki'",
"Bon a manger cru, miam !")

class Orange(Fruit):
def __init__(self, taille=None, masse=None, saveur=None, forme=None):
Fruit.__init__(self, taille, masse, saveur, forme)

def __str__(self):
return Fruit.affiche_conseil(self, "Orange", "Trop bon en jus !")

Cet exemple illuste la puissance de I'héritage et du polymorphisme et la facilité avec laquelle on les utilise en Python.
Pour chaque fruit, on utilise la méthode .affiche_conseil() définie dans la classe mére sans avoir a la réécrire. Bien
slir cet exemple reste simpliste et n'est qu'une « mise en bouche ». Vous verrez des exemples concrets de la puissance de
I'héritage dans le chapitre 25 Fenétres graphiques et Tkinter (en ligne) ainsi que dans les exercices du présent chapitre.
Avec le module Tkinter, chaque objet graphique (bouton, zone de texte, etc.) est en fait une classe. On peut ainsi créer
de nouvelles classes héritant des classes Tkinter afin de personnaliser chaque objet graphique.

24.4 Composition

Un autre concept puissant rencontré en POO est la composition.

Définition

La composition désigne le fait qu'une classe peut contenir des instances provenant d'autres classes. On parle parfois
de classe Composite contenant des instances d'une classe Component (qu'on pourrait traduire par élément).

Pour vous illustrer cela, nous allons prendre un exemple sur notre fruit préféré, le citron. Un citron (classe Composite)
contient de la pulpe (classe Component). Voila comment nous pourrions I'implémenter :

Cours de Python / Université Paris Cité / UFR Sciences du Vivant 277

Chapitre 24. Avoir plus la classe avec les objets 24.4. Composition

278

class Pulpe:
def __init__(self, quantite_jus):
self.quantite_jus = quantite_jus # En cL.

def __str__(self):
return f"Cette pulpe contient {self.quantite_jus} cL de jus"

class Citron:
def __init__(self, pulpe=None):
self.pulpe = pulpe

def presse_citron(self):
if self.pulpe:
print(f"Le pressage de la pulpe délivre "
f'"{self.pulpe.quantite_jus} cL de jus")
self.pulpe = None
ellse:
print("Il n'y a plus rien a presser dans votre citron !")

def __str__(self):
if self.pulpe:
return f"Votre citron contient {self.pulpe.quantite_jus} cL de jus"
else:
return "Ce citron ne contient pas de pulpe"

if __name__ == "__main__":

pulpe = Pulpe(10)
print(pulpe)

citronl = Citron()
print(citronl)

print()

citron2 = Citron(pulpe)
print(citron2.pulpe)
print(citron2)

print()
citron2.presse_citron()
citron2.presse_citron()
print(citron2)

Lignes 1 a 6. On crée une classe Pulpe qui prend en argument a l'instanciation une quantité de jus (en cL) qu'elle
peut délivrer si on la presse.

Lignes 9 a 25. On crée une classe Citron qui prend un objet Pulpe a I'instanciation. Si aucun objet est passé, on
affecte None. Cette classe contient une méthode .presse_citron() qui pressera la pulpe pour délivrer le jus de citron.
Une fois le pressage effectué, il n'y aura plus de jus a délivrer.

La sortie sera la suivante :

Cette pulpe contient 10 cL de jus
Ce citron ne contient pas de pulpe

Cette pulpe contient 10 cL de jus
Votre citron contient 10 cL de jus

Le pressage de la pulpe délivre 10 cL de jus
IT n'y a plus rien a presser dans votre citron !
Ce citron ne contient pas de pulpe

Dans cet exemple, la classe Citron a utilisé une instance de la classe Pulpe pour fonctionner. Un avantage de la
composition est qu'on pourrait réutiliser cette classe Pulpe dans une classe Orange ou Pamplemousse. Par ailleurs, si
on change des détails dans la classe Pulpe, cela affectera peu la classe Citron a partir du moment ol on garde |'attribut
.quantite_jus.

De maniére générale, la composition est considérée comme plus flexible que |'héritage car les classes Composite et
Component sont peu couplées. Le changement de I'une d’entre elle aura peu d'effet sur |'autre. Au contraire, pour
I'héritage le changement d'une classe meére peut avoir des répercussions importantes pour les classes filles. Toutefois,

Cours de Python / Université Paris Cité / UFR Sciences du Vivant

24.5. Différence entre les attributs de classe et d'instance Chapitre 24. Avoir plus la classe avec les objets

dans certains cas |'héritage peut s'avérer plus naturel. Nous vous parlions en introduction du chapitre 23 Avoir la classe
avec les objets de |'art pour concevoir des classes interagissant harmonieusement entre elles. Et bien nous y sommes!

Si on a deux classes A et B, la relation entre elles dans I'héritage sera de type B is a A (avec B qui hérite de A). Dans
la composition, ce sera plutét A has a B. Cela peut vous servir de piste dans la conception des relations entre vos classes.
A-t-il plus de sens d'y avoir une relation is a ou bien has a? Dans le premier cas vous irez plutét vers I'héritage, alors
que dans le deuxieme plutot vers la composition. C'est ici que le langage UML 8 peut étre pratique pour avoir une vision
d'ensemble sur comment les classes interagissent entre elles.

Bien siir, il faudra vous entrainer sur des cas concrets pour acquérir I'expérience qui vous meénera aux bons choix.
A la fin de ce chapitre, nous vous présentons un exercice pour vous entrainer dans un premier temps a la composition.
Dans le chapitre 25 Fenétres graphiques et Tkinter (en ligne), vous aurez des illustrations et des exercices sur |'héritage
qui est tres utilisé en Tkinter.

Pour aller plus loin

Nous vous conseillons ce trés bon article sur le site RealPython qui explique de maniére approfondie la problématique
entre la composition et |'héritage .

Pour aller plus loin

Le polymorphisme, I'héritage et la composition donnent toute la puissance a la POO. Toutefois, concevoir ses classes
sur un projet, surtout au début de celui-ci, n'est pas chose aisée. Nous vous conseillons de lire d'autres ressources et de
vous entrainer sur un maximum d'exemples. Si vous souhaitez allez plus loin sur la POO, nous vous conseillons de lire des
ressources supplémentaires. En langue francaise, vous trouverez les livres de Gérard Swinnen '°, Bob Cordeau et Laurent
Pointal 11, Vincent Legoff12 et Xavier Olive !3.

24.5 Différence entre les attributs de classe et d’instance

Dans cette rubrique, nous souhaitons éclairer le rble des attributs de classe et des attributs d'instance, et comment
ils sont gérés par Python.

On a vu dans le chapitre précédent comment créer un attribut de classe, il suffit de créer une variable au sein de la
classe (en dehors de toute méthode). En général, les attributs de classe contiennent des propriétés générales a la classe
puisqu'ils vont prendre la méme valeur quelle que soit I'instance.

Au contraire, les attributs d’instance sont spécifiques a chaque instance. Pour en créer, on a vu qu'il suffisait de les
initialiser dans la méthode .__init__() en utilisant une syntaxe self.nouvel_attribut = valeur. On a vu aussi

dans la rubrique Ajout d’un attribut d’instance que |'on pouvait ajouter un attribut d'instance de I'extérieur avec une
syntaxe instance.nouvel_attribut = valeur .

Bien que les deux types d’attributs soient fondamentalement différents au niveau de leur finalité, il existe des similitudes
lorsqu’on veut accéder a leur valeur. Le code suivant illustre cela :

8. https://fr.wikipedia.org/wiki/UML_(informatique)

9. https://realpython.com/inheritance-composition-python/

10. https://inforef.be/swi/python.htm

11. https://perso.limsi.fr/pointal/python:courspython3

12. https://openclassrooms.com/fr/courses/235344-apprenez-a-programmer-en-python
13. https://www.xoolive.org/python/

Cours de Python / Université Paris Cité / UFR Sciences du Vivant 279

https://fr.wikipedia.org/wiki/UML_(informatique)
https://realpython.com/inheritance-composition-python/
https://inforef.be/swi/python.htm
https://perso.limsi.fr/pointal/python:courspython3
https://openclassrooms.com/fr/courses/235344-apprenez-a-programmer-en-python
https://www.xoolive.org/python/

Chapitre 24. Avoir plus la classe avec les objets 24.5. Différence entre les attributs de classe et d'instance

class Citron:
forme = "ellipsoide" # attribut de classe
saveur = "acide" # attribut de classe

def __init__(self, couleur="jaune", taille="standard", masse=0):
self.couleur = couleur # attribut d'instance
self.taille = taille # attribut d'instance
self.masse = masse # attribut d'instance (masse en gramme)

def augmente_masse(self, valeur):
self.masse += valeur

if __name__ == "__main__":
citronl = Citron()
print("Attributs de classe :", citronl.forme, citronl.saveur)
print("Attributs d'instance :", citronl.taille, citronl.couleur,
citronl.masse)
citronl.augmente_masse(100)

print("Attributs d'instance :", citronl.taille, citronl.couleur,
citronl.masse)

Lignes 2 et 3. Nous créons deux variables de classe qui seront communes a toutes les instances (disons qu'un citron
sera toujours ellipsoide et acide!).

Lignes 6 a 8. Nous créons trois variables d'instance qui seront spécifiques a chaque instance (disons que la taille, la
couleur et la masse d'un citron peuvent varier!), avec des valeurs par défaut.

Lignes 10 et 11. On crée une nouvelle méthode .augmente_masse() qui augmente I'attribut d'instance .masse.

Ligne 14 a 21. Dans le programme principal, on instancie la classe Citron sans passer d’argument (les valeurs par
défaut "jaune", "standard" et O seront donc prises), puis on imprime les attributs.

La figure 24.1 montre I'état des variables aprés avoir exécuté ce code grace au site Python Tutor'*.

python 3.11 Print output (drag lower right corner to resize)

known limitations Attributs de classe @ ellipsoide acide

~ Attributs d'instance : standard jaune @

class Citron: Attributs d'instance : standard jaune 188

forme = "ellipsoide” # attribut de classe
saveur = "acide" # attribut de classe)
Frames Objects
def _ init_ (self, couleur="jaune", taille="stand:
self.couleur = couleur # attribut d'instance Global frame Citron class
self.taille = taille # attribut d"instance Citron .\ function
self.masse = masse # attribut d'instance (mas: e (il @y, (hil, e
citronl \ default arguments:
\ - couleur | "jaune"
def augmente_masse(self, wvaleur): \ ‘\ _init__ 2
self.masse += valeur \ \ taille | "standard”
\-\ masse |0
- _— : BT
i _name —ren— \ TLLTETLE[Mee auun m:acr:‘ta masse(self, valeur)
citronl = Citron() g = ’
print("Attributs de classe :", citronl.forme, citr \,‘ forme | "ellipsoide”
print("Attributs d'instance :", citronl.taille, ci \\ | " acide”
citronl.masse) \

citronl.augmente_masse(160)

Citron instance
print({"Attributs d'instance :". citronl.taille. g couleur | "jaune"

Edit this code masse | 100
line that just executed

=} next line to execute taille | "standard

[<<First| [<Prev]| |Next > |[Last>>

Done running {19 steps)
FIGURE 24.1 — lllustration de la signification des attributs de classe et d'instance avec Python Tutor.

Python Tutor montre bien la différence entre les variables de classe forme et saveur qui apparaissent directement
dans les attributs de la classe Citron lors de sa définition et les trois variables d'instance couleur, taille et masse

14. http://www.pythontutor.com

280 Cours de Python / Université Paris Cité / UFR Sciences du Vivant

http://www.pythontutor.com

24.5. Différence entre les attributs de classe et d'instance Chapitre 24. Avoir plus la classe avec les objets

qui sont liées a l'instance citronl. Pour autant, on voit dans la derniére instruction print() qu'on peut accéder de la
méme maniére aux variables de classe ou d'instance, lorsqu’on est a I'extérieur, avec une syntaxe instance.attribut.

Au sein des méthodes, on accéde également de la méme maniére aux attributs de classe ou d'instance, avec une
syntaxe self.attribut :

class Citron:
saveur = "acide" # attribut de classe

def __init__(self, couleur="jaune"):
self.couleur = couleur # attribut d'dinstance

def affiche_attributs(self):
print(f"attribut de classe: {self.saveur}")
print(f"attribut d'instance: {self.couleur}")

if __name == "__main__":

citronl = Citron()
citronl.affiche_attributs()

Ce code va afficher la phrase :

attribut de classe: acide
attribut d'instance: jaune

En résumé, qu'on ait des attributs de classe ou d'instance, on peut accéder a eux de I'extérieur par instance.
attribut et de l'intérieur par self.attribut.

Qu’en est-il de la maniére de modifier ces deux types d’attributs ? Les attributs d’instance peuvent se modifier sans
probléme de I'extérieur avec une syntaxe instance.attribut_d_instance = nouvelle_valeur et de l'intérieur
avec une syntaxe self.attribut_d_instance = nouvelle_valeur. Ce n'est pas du tout le cas avec les attributs
de classe.

Attention
Les attributs de classe ne peuvent pas &étre modifiés ni a I'extérieur d'une classe via une syntaxe instance.
attribut_de_classe = nouvelle_valeur, nia l'intérieur d'une classe via une syntaxe self.attribut_de_classe
= nouvelle_valeur. Puisqu'ils sont destinés a étre identiques pour toutes les instances, cela est logique de ne pas
pouvoir les modifier via une instance. Les attributs de classe Python ressemblent en quelque sorte aux attributs statiques
du C++.

Regardons I'exemple suivant illustrant cela :

class Citron:
saveur = "acide"

if __name__ == "__main__":
citronl = Citron()
print(citronl.saveur)
citronl.saveur = "sucrée"
print(citronl.saveur) # on regarde ici avec Python Tutor
del citronl.saveur
print(citronl.saveur) # on regarde ici avec Python Tutor
del citronl.saveur

Alaligne 7, on pourrait penser qu’on modifie I'attribut de classe saveur avec une syntaxe instance.attribut_de_classe

= nouvelle_valeur. Que se passe-t-il exactement? La figure 24.3 nous montre |'état des variables grace au site
Python Tutor. Celui-ci indique que la ligne 7 a en fait créé un nouvel attribut d'instance citronl.saveur (contenant la
valeur sucrée) qui est bien distinct de I'attribut de classe auquel on accédait avant par le méme nom! Tout ceci est dii
a la maniére dont Python gére les espaces de noms (voir rubrique Espaces de noms). Dans ce cas, I'attribut d'instance

est prioritaire sur I'attribut de classe.
A la ligne 9, on détruit finalement I'attribut d'instance citronl.saveur qui contenait la valeur sucrée. Python

Cours de Python / Université Paris Cité / UFR Sciences du Vivant

281

Chapitre 24. Avoir plus la classe avec les objets 24.5. Différence entre les attributs de classe et d'instance

Python 3.11 Print output (drag lower right corner to resize)
known limitations acide
sucrée
class Citron:
saveur = "acide"
4
Frames Objects
if __name__ == "__main__":
citronl = citron() Global frame Citron class
. . . . "acide"
print(citronl.saveur) T .//—_) saveur
citronl.saveur = "sucrée”

citronl .
print(citronl.saveur) # on regarde ici avec Python ‘_\Gtmn instance

Ld del citronil.saveur saveur | "sucrée”

print(citronl.saveur) # on regarde ici avec Python
del citronl.saveur

Edit this code

line that just executed
== next line to execute

| << First| | < Prev| | Next > | | Last >> |
Step 7 of 9

FIGURE 24.2 — lllustration avec Python Tutor de la non destruction d'un attribut de classe (étape 1).

Tutor nous montre que citronl.saveur n'existe pas dans I'espace Citron instance qui est vide; ainsi, Python
utilisera I'attribut de classe .saveur qui contient toujours la valeur acide (cf. figure 24.3).

python 3.11 Print output (drag lower right corner to resize)
known limitations acide
sucrée
class Citron: acide
saveur = "acide”
#
Frames Objects
if __name__ == "__main__":
citronl = Citron() Global frame Citron class
s s P
print(citronl.saveur) Citron |
citronl.saveur = "sucrée” .
i i P . citronl | & T, _
print(citronl.saveur) # on regarde ici avec Python Citron instance

del citronl.saveur
print(citronl.saveur) # on regarde ici avec Python ~
- del citronl.saveur

Edit this code

line that just executed
= next line to execute

[<<First| [< Prev] [Next>| [Last >> |
Step 9 of 9

FIGURE 24.3 — lllustration avec Python Tutor de la non destruction d'un attribut de classe (étape 2).

La ligne 11 va tenter de détruire I'attribut de classe .saveur. Toutefois, Python interdit cela, ainsi I'erreur suivante
sera générée :

282 Cours de Python / Université Paris Cité / UFR Sciences du Vivant

24.6. Acceés et modifications des attributs depuis I'extérieur Chapitre 24. Avoir plus la classe avec les objets

Traceback (most recent call last):
File "test.py", line 11, in <module>

del citronl.saveur
AANAANANANANANANANANANAN

AttributeError: 'Citron' object has no attribute 'saveur'

En fait, la seule maniére de modifier un attribut de classe est d'utiliser une syntaxe
NomClasse.attribut_de_classe = nouvelle_valeur,
dans I'exemple ci-dessus cela aurait été Citron.saveur = "sucrée". De méme, pour sa destruction, il faudra utiliser
la méme syntaxe : del Citron.saveur.

Conseil

Méme si on peut modifier un attribut de classe, nous vous déconseillons de le faire. Une utilité des attributs de classe
est par exemple de définir des constantes (mathématique ou autre), donc cela n'a pas de sens de vouloir les modifier! |l
est également déconseillé de créer des attributs de classe avec des objets modifiables comme des listes et des dictionnaires,
cela peut avoir des effets désastreux non désirés. Nous verrons plus bas un exemple concret d'attribut de classe qui est
trés utile, a savoir le concept d'objet de type property.

Si vous souhaitez avoir des attributs modifiables dans votre classe, créez plutdt des attributs d'instance dans le
__init__().

24.6 Acces et modifications des attributs depuis I'extérieur

24.6.1 Le probleme

On a vu jusqu'a maintenant que Python était trés permissif concernant le changement de valeur de n'importe quel
attribut depuis I'extérieur. On a vu aussi qu'il était méme possible de créer de nouveaux attributs depuis I'extérieur ! Dans
d'autres langages orientés objet ceci n'est pas considéré comme une bonne pratique. Il est plutdt recommandé de définir
une interface, c'est-a-dire tout un jeu de méthodes accédant ou modifiant les attributs. Ainsi, le concepteur de la classe
a la garantie que celle-ci est utilisée correctement du « coté client ».

Remarque

Cette stratégie d'utiliser uniquement I'interface de la classe pour accéder aux attributs provient des langages orientés
objet comme Java et C++. Les méthodes accédant ou modifiant les attributs s'appellent aussi des getters et setters (en
francais on dit accesseurs et mutateurs). Un des avantages est qu'il est ainsi possible de vérifier 'intégrité des données
grace a ces méthodes : si par exemple on souhaitait avoir un entier seulement, ou bien une valeur bornée, on peut
facilement ajouter des tests dans le setter et renvoyer une erreur a I'utilisateur de la classe s'il n’a pas envoyé le bon type
(ou la bonne valeur dans l'intervalle imposé).

Regardons a quoi pourrait ressembler une telle stratégie en Python :

Cours de Python / Université Paris Cité / UFR Sciences du Vivant

283

Chapitre 24. Avoir plus la classe avec les objets 24.6. Acceés et modifications des attributs depuis I'extérieur

284

class Citron:
def __init__(self, couleur="jaune", masse=0):
self.couleur = couleur
self.masse = masse # masse en g

def get_couleur(self):
return self.couleur

def set_couleur(self, value):
self.couleur = value

def get_masse(self):
return self.masse

def set_masse(self, value):
if value < 0:
raise ValueError("Z'avez déja vu une masse négative ?")
self.masse = value

if __name__ == "__main__":
définition de citronl
citronl = Citron()
print(citronl.get_couleur(), citronl.get_masse())
on change les attributs de citronl avec les setters
citronl.set_couleur("jaune foncé")
citronl.set_masse(100)
print(citronl.get_couleur(), citronl.get_masse())

Lignes 6 a 10. On définit deux méthodes getters pour accéder a chaque attribut.

Lignes 12 a 18. On définit deux méthodes setters pour modifier chaque attribut. Notez qu’en ligne 16 nous testons
si la masse est négative, si tel est le cas nous générons une erreur avec le mot-clé raise (voir le chapitre 26 Remarques
complémentaires (en ligne)). Ceci représente un des avantages des setters : contrdler la validité des attributs (on pourrait
aussi vérifier qu'il s’agit d'un entier, etc.).

Lignes 22 a 28. Apres instanciation, on affiche la valeur des attributs avec les deux fonctions getters, puis on les
modifie avec les setters et on les affiche a nouveau.

L'exécution de ce code donnera la sortie suivante :

jaune 0
jaune foncé 100

Si on avait mis citronl.set_masse(-100) en ligne 26, la sortie aurait été la suivante :

jaune 0
Traceback (most recent call last):
File "getter_setter.py", line 27, in <module>
citronl.set_masse(-100)
File "getter_setter.py", line 17, in set_masse
raise ValueError("Z'avez déja vu une masse négative ?22")
ValueError: Z'avez déja vu une masse négative 2?27

La fonction interne raise nous a permis de générer une erreur, car |'utilisateur de la classe (c'est-a-dire nous dans le
programme principal) n'a pas rentré une valeur correcte.

On comprend bien I'utilité d'une stratégie avec des getters et setters dans cet exemple. Toutefois, en Python, on
peut tres bien accéder et modifier les attributs méme si on a des getters et des setters dans la classe. Imaginons la méme
classe Citron que ci-dessus, mais on utilise le programme principal suivant (notez que nous avons simplement ajouté les
lignes 9 a 12 ci-dessous) :

Cours de Python / Université Paris Cité / UFR Sciences du Vivant

24.6. Acceés et modifications des attributs depuis I'extérieur Chapitre 24. Avoir plus la classe avec les objets

if __name == "__main__":

définition de citronl

citronl = Citron()

print(citronl.get_couleur(), citronl.get_masse())
on change les attributs de citronl avec les setters
citronl.set_couleur("jaune foncé")
citronl.set_masse(100)
print(citronl.get_couleur(), citronl.get_masse())
on les rechange sans les setters
citronl.couleur = "pourpre profond"

citronl.masse = -15

print(citronl.get_couleur(), citronl.get_masse())

Cela donnera la sortie suivante :

jaune 0
jaune foncé 100
pourpre profond -15

Malgré la présence des getters et des setters, nous avons réussi a accéder et a modifier la valeur des attributs. De
plus, nous avons pu mettre une valeur aberrante (masse négative) sans que cela ne génére une erreur!

Vous vous posez sans doute la question : mais dans ce cas, quel est I'intérét de mettre des getters et des setters en
Python ? La réponse est trés simple : cette stratégie n'est pas une maniére « pythonique » d’opérer (voir le chapitre 16
Bonnes pratiques en programmation Python pour la définition de « pythonique »). En Python, la lisibilité est la priorité.
Souvenez-vous du Zen de Python « Readability counts » (voir le chapitre 16).

De maniére générale, une syntaxe avec des getters et setters du coté client surcharge la lecture. Imaginons que I'on
ait une instance nommée obj et que I'on souhaite faire la somme de ses trois attributs x, y et z :

pythonique
obj.x + obj.y + obj.z

non pythonique
obj.get_x() + obj.get_y() + obj.get_z()

La méthode pythonique est plus « douce » a lire, on parle aussi de syntactic sugar ou littéralement en francais « sucre
syntaxique ». De plus, a I'intérieur de la classe, il faut définir un getter et un setter pour chaque attribut, ce qui multiple
les lignes de code.

Tres bien. Donc en Python, on n’utilise pas comme dans les autres langages orientés objet les getters et les setters?
Mais, tout de méme, cela avait I'air une bonne idée de pouvoir contréler comment un utilisateur de la classe interagit
avec certains attributs (par exemple, rentre-t-il une bonne valeur 7). N'existe-t-il pas un moyen de faire ca en Python ? La
réponse est : bien siir il existe un moyen pythonique, la classe property. Nous allons voir cette nouvelle classe dans la
prochaine rubrique et nous vous dirons comment opérer systématiquement pour accéder, modifier, voire détruire, chaque
attribut d'instance de votre classe.

24.6.2 La solution : la classe property

Dans la rubrique précédente, on vient de voir que les getters et setters traditionnels rencontrés dans d'autres langages
orientés objet ne représentent pas une pratique pythonique. En Python, pour des raisons de lisibilité, il faudra dans la
mesure du possible conserver une syntaxe instance.attribut pour I'accés aux attributs d'instance, et une syntaxe
instance.attribut = nouvelle_valeur pour les modifier.

Toutefois, si on souhaite contrdler I'acces, la modification (voire la destruction) de certains attributs stratégiques,
Python met en place une classe nommée property. Celle-ci permet de combiner le maintien de la syntaxe lisible
instance.attribut, tout en utilisant en filigrane des fonctions pour accéder, modifier, voire détruire I'attribut (a
I'image des getters et setters évoqués ci-dessus, ainsi que des deleters ou encore destructeurs en francais). Pour faire
cela, on utilise la fonction Python interne property () qui crée un objet (ou instance) property :

attribut = property(fget=accesseur, fset=mutateur, fdel=destructeur)

Les arguments passés a property () sont systématiquement des méthodes dites callback, c'est-a-dire des noms de
méthodes que I'on a définies précédemment dans notre classe, mais on ne précise ni argument, ni parenthése, ni self

Cours de Python / Université Paris Cité / UFR Sciences du Vivant

285

Chapitre 24. Avoir plus la classe avec les objets 24.6. Acceés et modifications des attributs depuis I'extérieur

286

(voir le chapitre 25 Fenétres graphiques et Tkinter (en ligne)). Avec cette ligne de code, attribut est un objet de type
property qui fonctionne de la maniére suivante a I'extérieur de la classe :

e L'instruction instance.attribut appellera la méthode .accesseur ().

e |'instruction instance.attribut = valeur appellera la méthode

.mutateur ().
e L'instruction del instance.attribut appellera la méthode
.destructeur ().

L'objet attribut est de type property, et la vraie valeur de |'attribut est stockée par Python dans une variable
d'instance qui s'appellera par exemple _attribut (méme nom, mais commencant par un underscore unique, envoyant
un message a |'utilisateur qu'il s’agit d'une variable associée au comportement interne de la classe).

Comment cela fonctionne-t-il concrétement dans un code ? Regardons cet exemple (nous avons mis des print() un
peu partout pour bien comprendre ce qui se passe) :

class Citron:
def __init__(self, masse=0):

print("(2) J'arrive dans le .__init__()")
self.masse = masse

def get_masse(self):
print("Coucou je suis dans le get")
return self._masse

def set_masse(self, valeur):
print("Coucou je suis dans le set")
if valeur < 0:
raise ValueError("Un citron ne peut pas avoir"
" de masse négative !")
self._masse = valeur

masse = property(fget=get_masse, fset=set_masse)

if __name == "_main__":

print(" (1) Je suis dans le programme principal, "

"je vais dinstancier un Citron")
citron = Citron(masse=100)
print("(3) Je reviens dans le programme principal')
print(f'"La masse de notre citron est {citron.masse} g")
On mange le citron.
citron.masse = 25
print(f'"La masse de notre citron est {citron.masse} g")
print(citron.__dict__)

Pour une fois, nous allons commenter les lignes dans le désordre :

Ligne 17. Il s’agit de la commande clé pour mettre en place le systéme : masse devient ici un objet de type property
(si on regarde son contenu avec une syntaxe NomClasse.attribut_property, donc ici Citron.masse, Python nous
renverra quelque chose de ce style : <property object at 0x7fd3615aeef8>). Qu'est-ce que cela signifie ? Et bien la
prochaine fois qu'on voudra accéder au contenu de cet attribut .masse, Python appellera la méthode .get_masse(), et
quand on voudra le modifier, Python appellera la méthode .set_masse () (ceci sera valable de I'intérieur ou de I'extérieur
de la classe). Comme il n'y a pas de méthode destructeur (passée avec I'argument fdel), on ne pourra pas détruire cet
attribut : un del c.masse conduirait a une erreur de ce type : AttributeError: can't delete attribute.

Ligne 4. Si vous avez bien suivi, cette commande self.masse = masse dans le constructeur va appeler automa-
tiquement la méthode .set_masse(). Attention, dans cette commande, la variable masse a droite du signe = est une
variable locale passée en argument. Par contre, self.masse sera |'objet de type property. Si vous avez bien lu la rubrique
Différence entre les attributs de classe et d’instance, I'objet masse créé en ligne 16 est un attribut de classe, on peut
donc y accéder avec une syntaxe self.masse au sein d'une méthode.

Conseil

Notez bien I'utilisation de self.masse dans le constructeur (en ligne 4) plutét que self._masse. Comme self.
masse appelle la méthode .set_masse(), cela permet de contrdler si la valeur est correcte dés l'instanciation. C'est

Cours de Python / Université Paris Cité / UFR Sciences du Vivant

24.6. Acceés et modifications des attributs depuis I'extérieur Chapitre 24. Avoir plus la classe avec les objets

donc une pratique que nous vous recommandons. Si on avait utilisé self._masse, il n'y aurait pas eu d'appel a la
fonction mutateur et on aurait pu mettre n'importe quoi, y compris une valeur aberrante, lors de I'instanciation.

Lignes 6 a 15. Dans les méthodes accesseur et mutateur, on utilise la variable
self._masse qui contiendra la vraie valeur de la masse du citron (cela serait vrai pour tout autre objet de type property).

Attention

Dans les méthodes accesseur et mutateur, il ne faut surtout pas utiliser self.masse a la place de self._masse.
Pourquoi ? Par exemple, dans I'accesseur, si on met self.masse cela signifie que I'on souhaite accéder a la valeur
de I'attribut (comme dans le constructeur!). Ainsi, Python rappellera |'accesseur et retombera sur self.masse, ce qui
rappellera I'accesseur et ainsi de suite : vous |'aurez compris, cela partira dans une récursion infinie et ménera a une erreur
du type RecursionError: maximum recursion depth exceeded. Cela serait vrai aussi si vous aviez une fonction
destructeur, il faudrait utiliser self._masse.

L'exécution de ce code donnera :

(1) Dans le programme principal, je vais instancier un Citron
(2) J'arrive dans le .__init__()

Coucou je suis dans le set

(3) Je reviens dans le programme principal

Coucou je suis dans le get

La masse de notre citron est 100 g

Coucou je suis dans le set

Coucou je suis dans le get

La masse de notre citron est 25 g

{'_masse': 25}

Cette exécution montre qu'a chaque appel de self.masse ou citron.masse on va utiliser les méthodes accesseur
ou mutateur. La derniére commande qui affiche le contenu de citron.__dict__ montre que la vraie valeur de I'attribut
est stockée dans la variable d'instance ._masse (instance._masse de |'extérieur et self._masse de l'intérieur).

24.6.3 Une meilleure solution : les décorateurs @property, @attribut.setter et @at-
tribut.deleter

Nous venons de voir les objets property pour contrdler I'acces, la mutation et la supression d'attributs. Toutefois la
syntaxe est relativement lourde. Afin de la simplifier, une maniére plus pythonique (sucre syntaxique) est d’utiliser un
décorateur. La syntaxe pour décorer une fonction est la suivante :

@decorateur
def fonction():
[...]

La ligne 1 précise que fonction() va étre modifiée par une autre fonction nommée decorateur (). Le symbole @
en ligne 1 attend un nom de fonction qui sera la fonction décoratrice. Pour plus de détails sur comment les décorateurs
fonctionnent, vous pouvez consulter le chapitre 26 Remarques complémentaires ou une rubrique leur est consacrée. Ici,
nous avons juste a savoir qu'un décorateur est une fonction qui modifie le comportement d'une autre fonction.

En reprenant I'exemple vu dans la rubrique précédente, voici comment on peut |'écrire avec des décorateurs :

Cours de Python / Université Paris Cité / UFR Sciences du Vivant 287

Chapitre 24. Avoir plus la classe avec les objets 24.6. Acceés et modifications des attributs depuis I'extérieur

class Citron:
def __init__(self, masse=0):
print(f"(2) J'arrive dans le .__init__(), je vais mettre la masse = {masse}")
self.masse = masse

@property

def masse(self):
print("Coucou je suis dans le getter")
return self._masse

@masse.setter
def masse(self, valeur):
print("Coucou je suis dans le setter")
if valeur < 0:
raise ValueError("Un citron ne peut pas avoir"
" de masse négative !")
self._masse = valeur

@masse.deleter

def masse(self):
print("Coucou, je suis dans le deleter")
del self._masse

On voit que la syntaxe est plus lisible que celle de la rubrique précédente. Examinons les différences. La premiere
chose est que les méthodes getter (ligne 7), setter (ligne 11) et deleter (ligne 19) s'appellent toutes .masse(), masse
étant le nom de notre objet property. Comme dans la syntaxe de la rubrique précédente, la masse réelle se trouve dans
un attribut nommée ._masse pour ne pas confondre avec notre objet property. Afin de comprendre ce qu'il se passe,
nous vous avons concocté le programme principal suivant avec des print() un peu partout :

if __name__

print(" (1) Je suis dans le programme principal et "
"je vais instancier un Citron'")

print()

citron = Citron(masse=100)

print()

print("(3) Je reviens dans le programme principal, je vais afficher "
"la masse du citron")

print(f"La masse de notre citron est {citron.masse} g")

print()

On mange une partie du citron.

print("(4)Je suis dans le prog principal "
"et je vais changer la masse du citron")

citron.masse = 25

print()

print(f"(5) Je suis dans le prog principal, je vais afficher "
"la masse du citron")

print(f"La nouvelle masse de notre citron est {citron.masse} g")

print(f"L'attribut citron.__dict__ m'indique bien le nom réel "
f'"de 1'attribut contenant la masse :")

print(citron.__dict__)

print()

On mange la fin du citron.

print(f"(6) Je suis dans le prog principal, "
f'"je détruis 1'attribut .masse")

del citron.masse

print(f"Ainsi, citron.__dict__ est maintenant vide :")

print(citron.__dict__)

== "__main__":

L'exécution donnera la sortie suivante :

288 Cours de Python / Université Paris Cité / UFR Sciences du Vivant

24.6. Acceés et modifications des attributs depuis I'extérieur Chapitre 24. Avoir plus la classe avec les objets

(1) Je suis dans le programme principal et je vais instancier un Citron

(2) J'arrive dans le .__init__(), je vais mettre la masse = 100
Coucou je suis dans le setter

(3) Je reviens dans le programme principal, je vais afficher la masse du citron
Coucou je suis dans le getter
La masse de notre citron est 100 g

(4)Je suis dans le prog principal et je vais changer la masse du citron
Coucou je suis dans le setter

(5) Je suis dans le prog principal, je vais afficher la masse du citron

Coucou je suis dans le getter

La nouvelle masse de notre citron est 25 g

L'attribut citron.__dict__ m'indique bien le nom réel de 1'attribut contenant la masse :
{'_masse': 25}

(6) Je suis dans le prog principal, je détruis 1'attribut .masse
Coucou, je suis dans le deleter
Ainsi, citron.__dict__ est maintenant vide :

{}

Examinez bien les phrases Coucou je suis dans [...] et essayez de comprendre pourquoi elles apparaissent. Bien
que nos trois méthodes soient définies comme def masse(), vous pouvez constater qu'elles sont appelées lorsque on
invoque citron.masse, citron.masse = 25ou del citron.masse (al'intérieur de la classe, ce serait self.masse,
self.masse = 25 ou del self.masse). Autrement dit, on n'utilise jamais la syntaxe .masse (). Ceci est justement
dé au fait que .masse est un objet de type property.

Conseil

Lorsque vous souhaitez créer des objets property , nous vous conseillons la syntaxe pythonique @property,@nom_attribut
.setter et @nom_attribut.deleter plutét que celle de la rubrique précédente avec la ligne masse = property(
fget=get_masse, fset=set_masse, fdel=del_masse). Cette syntaxe améliore grandement la lisibilité.

24.6.4 Le décorateur @property seul

Une méthode décorée avec @property peut &tre utile seule sans avoir le setter et/ou le deleter correspondant(s).
On rencontre cela lorsqu’on souhaite créer un « d'attribut dynamique » plutdt qu’'avoir un appel de méthode explicite.
Regardons un exemple :

class ADN:
def __init__(self):
self.sequence = []

def __repr__(self):
return f"La séquence de mon brin d'ADN est {self.sequence}"

def ajoute_base(self, nom_base):
self.sequence.append(nom_base)

@property
def len(self):
return len(self.sequence)

Voici un dans l'interpréteur :

Cours de Python / Université Paris Cité / UFR Sciences du Vivant 289

Chapitre 24. Avoir plus la classe avec les objets 24.7. Bonnes pratiques pour construire et manipuler ses classes

290

>>> brin_adn = ADN()

>>> brin_adn.ajoute_base("A")

>>> brin_adn.ajoute_base("T")

>>> brin_adn

La séquence de mon brin d'ADN est ['A', 'T']
>>> brin_adn.len

2

>>> brin_adn.ajoute_atome("G")

>>> brin_adn

La séquence de mon brin d'ADN est ['A', 'T', 'G']
>>> brin_adn.len

3

Lorsqu’on utilise I'attribut brin_adn.len, ceci invoque finalement I'appel de |'objet property len qui, in fine, est
une méthode. Ainsi, la valeur renvoyée sera calculée a chaque fois, bien que dans la syntaxe on n'a pas une notation
.methode (), mais plutdt .attribut. Voila pourquoi nous avons parlé d'attribut dynamique. Cela permet d'alléger la
syntaxe quand il n'y a pas spécifiquement d’'arguments a passer a la méthode qui se trouve derriére cet attribut.

24.7 Bonnes pratiques pour construire et manipuler ses classes

Nous allons voir dans cette rubrique certaines pratiques que nous vous recommandons lorsque vous construisez vos
propres classes.

24.7.1 L’acceés aux attributs

On a vu dans la rubrique Acceés et modifications des attributs depuis I'extérieur que nous avions le moyen de contrdler
cet acces avec la classe property. Toutefois, cela peut parfois alourdir inutilement le code, ce qui va a I'encontre de
certains préceptes de la PEP 20 comme « Sparse is better than dense », « Readability counts », etc. (voir le chapitre 16
Bonnes pratiques en programmation Python).

Conseil

Si on souhaite contrdler ce que fait le client de la classe pour certains attributs « délicats » ou « stratégiques », on peut
utiliser la classe property. Toutefois, nous vous conseillons de ne I'utiliser que lorsque cela se révéle vraiment nécessaire,
donc avec parcimonie. Le but étant de ne pas surcharger le code inutilement. Cela va dans le sens des recommandations
des développeurs de Python (comme décrit dans la PEPS).

Les objets property ont deux avantages principaux :

e ils permettent de garder une lisibilité du coté client avec une syntaxe
instance.attribut;

e méme si un jour vous décidez de modifier votre classe et de mettre en place un contrdle d'acces a certains attributs
avec des objets property, cela ne changera rien du cété client. Ce dernier utilisera toujours instance.attribut
ou
instance.attribut = valeur. Tout cela contribuera a une meilleure maintenance du code client utilisant votre
classe.

Certains détracteurs disent qu'il est parfois difficile de déterminer qu'un attribut est contrdlé avec un objet property.

La réponse a cela est simple, dites-le clairement dans la documentation de votre classe via les docstrings (voir la rubrique
ci-dessous).

24.7.2 Note sur les attributs publics et non publics

Certains langages orientés objet mettent en place des attributs dits privés dont I'accés est impossible de I'extérieur de
la classe. Ceux-ci existent afin d’éviter qu’un client n'aille perturber ou casser quelque chose dans la classe. Les arguments
auxquels I'utilisateur a acces sont dits publics.

Attention

Cours de Python / Université Paris Cité / UFR Sciences du Vivant

24.7. Bonnes pratiques pour construire et manipuler ses classes Chapitre 24. Avoir plus la classe avec les objets

En Python, il n'existe pas d'attributs privés comme dans d'autres langages orientés objet. L utilisateur a accés a tous
les attributs quels qu'ils soient, méme s'ils contiennent un ou plusieurs caractere(s) underscore(s) (voir ci-dessous) !

Au lieu de ca, on parle en Python d'attributs publics et non publics.

Définition

En Python les attributs non publics sont des attributs dont le nom commence par un ou deux caractére(s) underscore.
Par exemple, _attribut, ou __attribut.

La présence des underscores dans les noms d'attributs est un signe clair que le client ne doit pas y toucher. Toutefois,
cela n'est qu'une convention, et comme dit ci-dessus le client peut tout de méme modifier ces attributs.

Par exemple, reprenons la classe Citron de la rubrique précédente dont I'attribut .masse est contrdlé avec un objet
property :

>>> citron = Citron()

Coucou je suis dans le set

>>> citron.masse

Coucou je suis dans le get

0

>>> citron.masse = -16

Coucou je suis dans le set

Traceback (most recent call last):
File "<stdin>", 1line 1, in <module>
File "<stdin>", 1line 11, in set_masse

ValueError: Un citron ne peut pas avoir de masse négative !

>>> citron.masse = 16

Coucou je suis dans le set

>>> citron.masse

Coucou je suis dans le get

16

>>> citron._masse

16

>>> citron._masse = -8364

>>> citron.masse

Coucou je suis dans le get
-8364

>>>

Malgré I'objet property, nous avons pu modifier I'attribut non public . _masse directement!

Il existe également des attributs dont le nom commence par deux caracteres underscores. Nous n'avons encore jamais
croisé ce genre d'attribut. Ces derniers mettent en place le name mangling.

Définition

Le name mangling®®, ou encore substantypage ou déformation de nom en francais, correspond & un mécanisme de
changement du nom d'un attribut selon si on est a l'intérieur ou a I'extérieur d'une classe.

Regardons un exemple :

15. https://en.wikipedia.org/wiki/Name_mangling

Cours de Python / Université Paris Cité / UFR Sciences du Vivant 291

https://en.wikipedia.org/wiki/Name_mangling

Chapitre 24. Avoir plus la classe avec les objets 24.7. Bonnes pratiques pour construire et manipuler ses classes

class Citron:
def __init__(self):
self.__mass = 100

def get_mass(self):
return self.__mass

if __name__ == "__main__":
citronl = Citron()
print(citronl.get_mass())
print(citronl.__mass)

Ce code va donner la sortie suivante :

100
Traceback (most recent call last):
File "mangling.py", line 12, 1in <module>
print(citronl.__mass)
ANAANANANANANAAANAAN

AttributeError: 'Citron' object has no attribute '__mass'

La ligne 12 du code a donc conduit a une erreur : Python prétend ne pas connaitre I'attribut .__mass. On pourrait

croire que cela constitue un mécanisme de protection des attributs. En fait il n'en est rien, car on va voir que |'attribut
est toujours accessible et modifiable. Si on modifiait le programme principal comme suit :

if __name__ == "__main__":
citronl = Citron()
print(citronl.__dict__)

On obtiendrait en sortie le dictionnaire {'_Citron__mass': 100}.

Le name mangling est donc un mécanisme qui transforme le nom self.__attribut a 'intérieur de la classe en

instance._NomClasse__attribut a I'extérieur de la classe. Ce mécanisme a été concu initialement pour pouvoir
retrouver des noms d'attributs identiques lors de I'héritage. Si par exemple une classe mére et une classe fille ont chacune
un attribut nommé __attribut, le name mangling permet d'éviter les conflits de nom. Par exemple :

class Fruit:
def __init__(self):
self.__mass = 100

class Citron(Fruit):
def __init__(self):
Fruit.__init__(self)
self.__mass = 200

def print_masse(self):
print(self._Fruit__mass)
print(self.__mass)

if __name__ == "__main__":

citronl = Citron()
citronl.print_masse()

Ce code affiche 100 puis 200. La ligne 12 a permis d'accéder a I'attribut .__mass de la classe mére Fruit, et la

ligne 13 a permis d'accéder a I'attribut .__mass de la classe Citron.

Le name mangling n'est donc pas un mécanisme de « protection » d'un attribut, il n'a pas été concu pour ca. Les
concepteurs de Python le disent clairement dans la PEP 8 : « Generally, double leading underscores should be used only
to avoid name conflicts with attributes in classes designed to be subclassed ».

Donc en Python, on peut tout détruire, méme les attributs délicats contenant des underscores. Pourquoi Python
permet-il un tel paradoxe? Selon le concepteur de Python, Guido van Rossum : « We're all consenting adults here »,
nous sommes ici entre adultes, autrement dit nous savons ce que nous faisons !

292 Cours de Python / Université Paris Cité / UFR Sciences du Vivant

24.7. Bonnes pratiques pour construire et manipuler ses classes

Chapitre 24. Avoir plus la classe avec les objets

Conseil

En résumé, n'essayez pas de mettre des barriéres inutiles vers vos attributs. Cela va a I'encontre de la philosophie
Python. Soignez plut6t la documentation et faites confiance aux utilisateurs de votre classe !

24.7.3 Classes et docstrings

Les classes peuvent bien siir contenir des docstrings comme les fonctions et les modules. C'est d'ailleurs une pratique
vivement recommandée. Voici un exemple sur notre désormais familiére classe Citron :

class Citron:
"""Voici la classe Citron.

Il s'agit d'une classe assez impressionnante qui crée des objets

citrons.

Par défaut une instance de Citron contient 1'attribut de classe
saveur.

nnn

saveur = "acide"

def __init__(self, couleur="jaune", taille="standard"):
"""Constructeur de la classe Citron.

Ce constructeur prend deux arguments par mot-clé
couleur et taille."""

self.couleur = couleur

self.taille = taille

def __str__(self):

"""Redéfinit le comportement avec print()."""
return f'"saveur: {saveur}, couleur: {couleur}, taille:

def affiche_coucou(self):
"iMéthode inutile qui affiche coucou."""
print("Coucou !")

Si on fait help(Citron) dans l'interpréteur, on obtient :

Cours de Python / Université Paris Cité / UFR Sciences du Vivant

{taille}"

293

Chapitre 24. Avoir plus la classe avec les objets 24.7. Bonnes pratiques pour construire et manipuler ses classes

Help on class Citron in module __main__

class Citron(builtins.object)
| Citron(couleur='jaune', taille='standard')

Voici la classe Citron.

Il s'agit d'une classe assez impressionnante qui crée des objets
citrons.
Par défaut une instance de Citron contient 1'attribut de classe
saveur.

Methods defined here:

__init__(self, couleur='jaune', taille='standard')
Constructeur de la classe Citron.

|

|

|

|

|

|

|

|

|

|

|

|

|

| Ce constructeur prend deux arguments par mot-clé
| couleur et taille.

|

| __str__(self)

| Redéfinit le comportement avec print().

|
|
|
[
|
|
|
|

affiche_coucou(self)
Méthode inutile qui affiche coucou.

o]
Data and other attributes defined here:

saveur = 'acide'

Python formate automatiquement I'aide comme il le fait avec les modules (voir chapitre 15 Création de modules).
Comme nous I'avons dit dans le chapitre 16 Bonnes pratiques en programmation Python, n'oubliez pas que les docstrings
sont destinées aux utilisateurs de votre classe. Elles doivent donc contenir tout ce dont un utilisateur a besoin pour
comprendre ce que fait la classe et comment |'utiliser.

Notez que si on instancie la classe citronl = Citron() et qu'on invoque |'aide sur I'instance help(citronl), on
obtient la méme page d’'aide. Comme pour les modules, si on invoque I'aide pour une méthode de la classe
help(citronl.affiche_coucou), on obtient I'aide pour cette méthode seulement.

Toutes les docstrings d'une classe sont en fait stockées dans un attribut spécial nommé instance.__doc__. Cet
attribut est une chaine de caractéres contenant la docstring générale de la classe. Ceci est également vrai pour les
modules, méthodes et fonctions. Si on reprend notre exemple ci-dessus :

>>> citronl = Citron()

>>> print(citronl.__doc__)
Voici la classe Citron.

I1 s'agit d'une classe assez impressionnante qui crée des objets
citrons.
Par défaut une +dinstance de Citron contient 1'attribut de classe
saveur.

>>> print(citronl.affiche_coucou.__doc__)
Méthode inutile qui affiche coucou.

L'attribut . __doc__ est automatiquement créé par Python au moment de la mise en mémoire de la classe (ou module,
méthode, fonction, etc.).

24.7.4 Autres bonnes pratiques

Voici quelques points en vrac auxquels nous vous conseillons de faire attention :

e Une classe ne se concoit pas sans méthode. Si on a besoin d'une structure de données séquentielles ou si on veut
donner des noms aux variables (plutét qu'un indice), utilisez plutét les dictionnaires. Une bonne alternative peut
&tre les namedtuples (voir la rubrique suivante).

294 Cours de Python / Université Paris Cité / UFR Sciences du Vivant

24.7. Bonnes pratiques pour construire et manipuler ses classes Chapitre 24. Avoir plus la classe avec les objets

e Nous vous déconseillons de mettre comme paramétre par défaut une liste vide (ou tout autre objet séquentiel
modifiable) :

def __init__(self, liste=[]):
self.liste = liste

Si vous créez des instances sans passer d'argument lors de I'instanciation, toutes ces instances pointeront vers la
méme liste. Cela peut avoir des effets désastreux.
e Ne mettez pas non plus une liste vide (ou tout autre objet séquentiel modifiable) comme attribut de classe.

class Citron:
liste = []

Ici chaque instance pourra modifier la liste, ce qui n’est pas souhaitable. Souvenez-vous, la modification des attributs
de classe doit se faire par une syntaxe Citron.attribut = valeur (et non pas via les instances).

e Comme abordé dans la rubrique Différence entre les attributs de classe et d’instance, nous vous conseillons de ne
jamais modifier les attributs de classe. Vous pouvez néanmoins les utiliser comme constantes.

e Si vous avez besoin d'attributs modifiables, utilisez des attributs d'instance et initialisez-les dans la méthode .
__init__() (et nulle part ailleurs). Par exemple, si vous avez besoin d'une liste comme attribut, créez la plutét
dans le constructeur :

class Citron:
def __init__(self):
self.liste = []

Ainsi, vous aurez des listes réellement indépendantes pour chaque instance.

24.7.5 Namedtuples

Imaginons que |'on souhaite stocker des éléments dans un conteneur, que I'on puisse retrouver ces éléments avec une
syntaxe conteneur.element et que ces éléments soient non modifiables. On a vu ci-dessus, les classes ne sont pas faites
pour cela, il n'est pas conseillé de les utiliser comme des conteneurs inertes, on les concoit en général afin d'y créer aussi
des méthodes. Dans ce cas, les namedtuples'® sont faits pour vous ! Ce type de conteneur est issu du module collections
que nous avions évoqué dans le chapitre 14 Conteneurs.

>>> dmport collections

>>> Citron = collections.namedtuple("Citron", "masse couleur saveur forme")
>>> Citron

<class '__main__.Citron'>

>>> citron = Citron(10, "jaune", "acide", "ellipsoide")

>>> citron

Citron(masse=10, couleur='jaune', saveur='acide', forme='ellipsoide')
>>> citron.masse

10

>>> citron.forme

'ellipsoide'

Lignes 2 a 4. La fonction namedtuple() renvoie une classe qui sert a créer de nouveaux objets citrons. Attention
cette classe est différente de celles que I'on a rencontrées jusqu’a maintenant, car elle hérite de la classe builtins.tuple
(on peut le voir en faisant help (Citron)). En ligne 2, on passe en argument le nom de la classe souhaitée (i.e. Citron),
puis une chaine de caractéres avec des mots séparés par des espaces qui correspondront aux attributs (on pourrait aussi
passer une liste ["masse", "couleur", "saveur", "forme"]).

Ligne 5. On instancie un nouvel objet citron.
Lignes 6 a 11. On peut retrouver les différents attributs avec une syntaxe instance.attribut.

Mais dans namedtuple, il y a tuple! Ainsi, I'instance citron hérite de tous les attributs des tuples :

16. https://docs.python.org/fr/3/library/collections.html#collections.namedtuple

Cours de Python / Université Paris Cité / UFR Sciences du Vivant 295

https://docs.python.org/fr/3/library/collections.html#collections.namedtuple

Chapitre 24. Avoir plus la classe avec les objets 24.8. Note finale de sémantique

296

>>> citron[0]

10

>>> citron[3]

'ellipsoide’

>>> citron.masse = 100

Traceback (most recent call last):
File "<stdin>", line 1, in <module>

AttributeError: can't set attribute

>>> for elt 1in citron:

print(elt)
10
jaune
acide
ellipsoide

Lignes 1 a 4. On peut retrouver les attributs également par indice.
Lignes 5 a 8. Les attributs / éléments sont non modifiables!
Lignes 9 a 15. Les namedtuples sont itérables.
Un namedtuple est non modifiable, mais on peut en générer un nouveau avec la méthode ._replace(), a l'image
de la méthode .replace() pour les chaines de caractéres :
>>> citron._replace(masse=30)
Citron(masse=30, couleur='jaune', saveur='acide', forme='ellipsoide')
>>> citron
Citron(masse=10, couleur='jaune', saveur='acide', forme='ellipsoide')
>>> citron = citron._replace(masse=30)

>>> citron
Citron(masse=30, couleur='jaune', saveur='acide', forme='ellipsoide')

Lignes 1 et 2. On crée un nouveau namedtuples avec la méthode ._replace(). Notez qu'il faut passer un (ou
plusieurs) argument(s) par mot-clé a cette méthode désignant les attributs & modifier.

Lignes 3 et 4. L'objet initial citron est intact puisqu'un namedtuples est non modifiable.

Lignes 5 a 7. En ré-affectant ce que renvoie la méthode ._replace() dans dans un objet de méme nom citron,
on peut faire évoluer son contenu comme on a pu le faire avec les chaines de caractéres.

Enfin, il est possible de convertir un namedtuple en dictionnaire (ordonné) avec la méthode . _asdict() :

>>> citron._asdict()
OrderedDict([('masse', 10), ('couleur', 'jaune'), ('saveur', 'acide'), ('forme', 'ellipsoide')])

Quand utiliser les namedtuples? Vous souvenez-vous de la différence entre les listes et les dictionnaires? lci, c'est
un peu la méme chose entre les tuples et les namedtuples. Les namedtuples permettent de créer un code plus lisible en
remplacant des numéros d'indice par des noms. Le fait qu'ils soient non modifiables peut aussi avoir un avantage par
rapport a l'intégrité des données. Si vous trouvez les namedtuples limités, sachez que vous pouvez créer votre propre
classe qui hérite d'un namedtuple afin de lui ajouter de nouvelles méthodes « maison ».

Pour aller plus loin
Pour aller plus loin, vous pouvez consulter le trés bon article 1’ de Dan Bader.

24.8 Note finale de sémantique

Jusqu'a présent, lorsque nous avons évoqué les outils pour créer ou convertir des objets Python tels que int(),
list(), range(), etc., nous avons toujours parlé de fonctions. Ceci parce-que nous avions une syntaxe fonction(),
c'est-a-dire fonction suivie de parenthéses (). Toutefois, vous vous étes peut-étre déja demandé pourquoi Python
indiquait class lorsqu’on tapait le nom de ces fonctions dans l'interpréteur (ou en invoquant help()) :

17. https://dbader.org/blog/writing-clean-python-with-namedtuples

Cours de Python / Université Paris Cité / UFR Sciences du Vivant

https://dbader.org/blog/writing-clean-python-with-namedtuples

24.9. Exercices Chapitre 24. Avoir plus la classe avec les objets

>>> [dnt

<class 'int'>

>>> Tlist

<class 'list'>

>>> range

<class 'range'>
>>> property
<class 'property'>

Et bien, c'est parce-que ce sont bel et bien des classes! Donc, lorsqu'on invoque par exemple listel = 1list(), on
crée finalement une instance de la classe list. Python ne met pas 1ist en CamelCase car ce sont des classes natives
(built-in classes). En effet, les auteurs de Python ont décidé que les classes et fonctions natives sont en minuscules, et
les exceptions en CamelCase (voir ce lien 18).

Finalement, la création d'une instance a partir d'une classe ou |'appel d'une fonction posséde la méme syntaxe
mot_clé() :

>>> class Citron:
pass

>>> Citron()

<__main__.Citron object at Ox7fb776308a10>
>>> def fct():

.. return "Coucou"

>>> fct()
'Coucou’

On peut le voir aussi quand on invoque |'aide sur un de ces outils, par exemple help(int) :

Help on class int in module builtins:

class int(object)
| dnt([x]) -> dinteger
| dint(x, base=10) -> qinteger

[...]

Il est bien précise que int est une classe.
Si on prend des fonctions natives (built-in functions) de Python comme len() ou sorted(), l'interpréteur nous
confirme bien qu'il s'agit de fonctions :
>>> len
<built-in function len>

>>> sorted
<built-in function sorted>

Par conséquent, d'un point de vue purement sémantique nous devrions parler de classe plutét que de fonction pour

les instructions comme list(), range(), etc. Toutefois, nous avons décidé de garder le nom fonction pour ne pas
compliquer les premiers chapitres de ce cours.

24.9 Exercices

Conseil
Pour ces exercices, créez des scripts puis exécutez-les dans un shell.

24.9.1 Classe molécule

Pour illustrer le mécanisme de la composition en POO, on se propose de créer un programme molecule.py qui
permettra de décrire une molécule en utilisant les classes. Nous allons créer une classe représentant une molécule (qui
sera notre classe Composite) et celle-ci contiendra des instances d'une classe décrivant un atome (classe Component).

18. https://peps.python.org/pep-0008/#class-names

Cours de Python / Université Paris Cité / UFR Sciences du Vivant

297

https://peps.python.org/pep-0008/#class-names

Chapitre 24. Avoir plus la classe avec les objets 24.9. Exercices

298

On se propose de tester cela sur la molécule simple de benzene. Vous aurons besoin du fichier benzene.pdb'® pour
réaliser cet exercice.

Apreés les import nécessaires, le programme contiendra une constante donnant les masses des atomes sous forme de
dictionnaire : ATOM_MASSES = {"C": 12.0, "O": 16.0, "H": 1.0}.

Créer une classe Atom en vous inspirant des exercices du chapitre 23 Avoir la classe avec les objets. Cette classe devra
instancier des objets contenant les attributs d'instance suivants :

e nom d’atome (par exemple C1)
type d'atome (une seule lettre, déduit du nom d’'atome, par exemple C)
coordonnée x
coordonnée y
coordonnée z

Le nom d'atome et coordonnées cartésiennes seront passés au constructeur.

Ajouter les méthodes calc_distance(), calc_com() (center of mass). Ajouter une méthode mute_atom(name
) qui change le nom de I'atome, ol name est un nouveau nom d'atome (par exemple 01). Cette méthode changera
également |'attribut d'instance décrivant le type d'atome.

Créer une classe Molecule qui construit les attributs d'instance : - Nom de la molécule - Une liste d'atomes (vide a
I'instanciation) : list_atoms - Une liste indiquant la connectivité (la liste des atomes connectés, vide a l'instanciation) :
list_connectivity

Le constructeur prendra en argument seulement le nom de la molécule.

Créer une méthode add_atom(atom) qui vérifie si I'argument passé est bien une instance de la classe Atom, et qui
ajoute atom dans la liste d'atomes.

Créer une autre méthode build_mlc_from_pdb(filename) qui prend en argument un nom de fichier pdb. La
méthode lit le fichier pdb, et pour chaque atome lu, crée une instance de la classe Atom, et ajouter celle-ci a list_atoms

Ajouter une méthode calc_mass() qui calcule et renvoie masse de la molécule.

Créer une méthode calc_com() qui cette fois-ci calcule et renvoie le centre de masse de la molécule entiére.

Ajouter la méthode calc_connectivity () quicalcule et renvoie une liste décrivant la connectivité entre les atomes.
Deux atomes sont considérés connectés s'il y a une liaison covalente entre eux, on peut pour cela calculer la distance
entre eux qui doit &tre inférieure 3 1.6 A. La liste de connectivité pourra étre construite dans ce style : [("C1", "H1")
, ("civ, "c2my, ...1.

Chaque paire d'atome doit apparaitre une seule fois (pas de [("C1", "H1"), [("H1", "C1"), ...].

Créer une méthode spéciale affichant les caractéristiques de la molécule lorsqu'on utilise print() avec une instance
de cette classe Molecule, par exemple print(benzene). Cette méthode pourra par exemple afficher avant d’avoir créé
la molécule :

Molecule benzene
No atom for the moment
No connectivity for the moment

Ou bien, lorsque la molécule est créée et la connectivité déterminée, elle s’affichera comme ceci :

Molecule benzene

atom C1, type C, mass
atom H1, type H, mass
[...]

Connectivity

C1l connected to H1

C1l connected to C2
[...]

12.0 amu, coor(-2.145, 0.973, -0.003)
1.0 amu, coor(-3.103, 0.460, -0.005)

Pour lancer le programme dans un premier temps, vous pourrez instancier une molécule benzene, puis y ajouter les
atomes :

if __name__ == "__main__":
benzene = Molecule("benzene")
print(benzene)
benzene.build_mlc_from_pdb("benzene.pdb")

print(benzene)

19. https://python.sdv.u-paris.fr/data-files/benzene.pdb

Cours de Python / Université Paris Cité / UFR Sciences du Vivant

https://python.sdv.u-paris.fr/data-files/benzene.pdb

24.9. Exercices Chapitre 24. Avoir plus la classe avec les objets

Dans un deuxieéme temps, le programme principal calculera la masse et le centre de masse de benzene et les affichera.
Muter ensuite I'atome H1 en 01 et recalculer la masse et le centre de masse et les afficher.

Pour aller plus loin, vous pouvez ajouter une méthode qui calcule et affiche un graphe de la molécule avec le module
networkx ??. La page de tutorial >! pourra vous étre utile.

Par exemple :

FIGURE 24.4 — Graphe représentant une molécule de benzene.

20. https://networkx.org/
21. https://networkx.org/documentation/latest/tutorial.html#drawing-graphs

Cours de Python / Université Paris Cité / UFR Sciences du Vivant 299

https://networkx.org/
https://networkx.org/documentation/latest/tutorial.html#drawing-graphs

CHAPITRE 25

Fenétres graphiques et Tkinter

Conseil

Dans ce chapitre, nous allons utiliser des classes, nous vous conseillons de bien relire les chapitres 23 Avoir la classe
avec les objets et 24 Avoir plus la classe avec les objets (en ligne). Par ailleurs, nous vous conseillons de relire également
la rubrique Arguments positionnels et arguments par mot-clé du chapitre 10 sur les fonctions.

25.1 Utilité d’une GUI

Dans votre carriere « pythonesque » il se peut que vous soyez amené a vouloir développer une application graphique,
on parle encore de graphical user interface ou GUI. Jusqu'a maintenant, vous avez fait en sorte qu'un utilisateur interagisse
avec votre code via la ligne de commande, par exemple :

$ python mon_script.py file.gbk blabla blublu

Les arguments passés a la ligne de commande sont tout a fait classiques dans le monde de la bioinformatique. Toutefois,
il se peut que vous développiez un programme pour une communauté plus large, qui n’a pas forcément |'habitude d'utiliser
un shell et la ligne de commande. Une GUI permettra un usage plus large de votre programme, il est donc intéressant
de regarder comment s'y prendre. Dans notre exemple ci-dessus on pourrait par exemple développer une interface ou
I'utilisateur choisirait le nom du fichier d'entrée par I'intermédiaire d'une boite de dialogue, et de contrdler les options en
cliquant sur des boutons, ou des « listes de choix ». Une telle GUI pourrait ressembler a la figure 25.1.

Au dela de I'aspect convivial pour |'utilisateur, vous pourrez, avec une GUI, construire des fenétres illustrant des
éléments que votre programme génere a la volée. Ainsi, vous « verrez » ce qui se passe de maniére explicite et en direct !
Par exemple, si on réalise une simulation de particules, on a envie de voir un « film » des particules en mouvement, c'est-
a-dire comment ces particules bougent au fur et 3 mesure que les pas de simulation avancent. Une GUI vous permettra
une telle prouesse! Enfin, sachez que certains logiciels scientifiques ont été développés avec la bibliotheque graphique Tk
(par exemple pymol, vmd, etc.). Qui sait, peut-étre serez-vous le prochain développeur d'un outil incontournable ?

Il existe beaucoup de modules pour construire des applications graphiques. Par exemple : Tkinter!, wxpython ?, PyQt 3,

1. https://wiki.python.org/moin/TkInter
2. http://www.wxpython.org/
3. https://pyqt.readthedocs.o

300

https://wiki.python.org/moin/TkInter
http://www.wxpython.org/
https://pyqt.readthedocs.io

25.2. Quelques concepts liés a la programmation graphique Chapitre 25. Fenétres graphiques et Tkinter

X Ma super GUI pour mon_script.py - [} X

Ici s'affichera la sortie Quvrir fichier

option 1

labla
hlahla2
blabla3

option 2
hlublu
blubluz
blublu3

Quitter

FIGURE 25.1 — Exemple de GUL.

PyGObject %, etc. Nous présentons dans ce chapitre le module Tkinter qui est présent de base dans les distributions Python
(pas besoin a priori de faire d'installation de module externe). Tkinter permet de piloter la bibliotheque graphique Tk
(Tool Kit), Tkinter signifiant tk interface. On pourra noter que cette bibliothéque Tk peut étre également pilotée par
d'autres langages (Tcl, perl, etc.).

25.2 Quelques concepts liés a la programmation graphique

Lorsque I'on développe une GUI, nous créons une fenétre graphique contenant notre application, ainsi que des widgets
inclus dans la fenétre.

Définition

Les widgets (window gadget) sont des objets graphiques permettant & I'utilisateur d'interagir avec votre programme
Python de maniére conviviale. Par exemple, dans la fenétre sur la figure 25.1, les boutons, les listes de choix, ou encore
la zone de texte sont des widgets.

L'utilisation d'une GUI va amener une nouvelle maniére d’aborder le déroulement d'un programme, il s'agit de la
programmation dite « événementielle ». Jusqu'a maintenant vous avez programmé « linéairement », c'est-a-dire que
les instructions du programme principal s'enchainaient les unes derriére les autres (avec bien siir de possibles appels a
des fonctions). Avec une GUI, I'exécution est décidée par I'utilisateur en fonction de ses interactions avec les différents
widgets. Comme c'est I'utilisateur qui décide quand et ou il clique dans l'interface, il va falloir mettre en place ce qu’on
appelle un « gestionnaire d'événements ».

Définition

Le gestionnaire d'événements est une sorte de « boucle infinie » qui est a I'afflit de la moindre action de la part de
I'utilisateur. C'est lui qui effectuera une action lors de I'interaction de I'utilisateur avec chaque widget de la GUI. Ainsi,
I'exécution du programme sera réellement guidée par les actions de |'utilisateur.

La bibliothéque Tk que nous piloterons avec le module Python Tkinter propose tous les éléments cités ci-dessus (fe-
nétre graphique, widgets, gestionnaire d'événements). Nous aurons cependant besoin d'une derniére notion : les fonctions
callback.

Définition

4. https://pygobject.readthedocs.io/en/latest/

Cours de Python / Université Paris Cité / UFR Sciences du Vivant 301

https://pygobject.readthedocs.io/en/latest/

Chapitre 25. Fenétres graphiques et Tkinter 25.3. Notion de fonction callback

302

Une fonction callback est une fonction passée en argument d’une autre fonction.

Un exemple de fonction callback est présenté dans la rubrique suivante.

25.3 Notion de fonction callback

Conseil
Si vous étes débutant, vous pouvez sauter cette rubrique.

Jusqu’a maintenant nous avons toujours appelé les fonctions ou les méthodes de cette maniére :

var = fct(argl, arg2)

obj.methode (arg)

ou les arguments étaient des objets « classiques » (par exemple une chafne de caractéres, un entier, un float, etc.).
Sachez qu'il est possible de passer en argument une fonction a une autre fonction! Par exemple :

def fct_callback(arg):
print(f"J'aime bien les {arg} !")

def une_fct(ma_callback):
print("Je suis au début de une_fct(), "
"et je vais exécuter la fonction callback :")
ma_callback("fraises")
print("une_fct() se termine.")

if __name__ == "__main__":
une_fct(fct_callback)

Si on exécute ce code, on obtient :

Je suis au début de une_fct() et je vais exécuter la fonction callback :
J'aime bien les fraises !
une_fct() se termine.

Vous voyez que dans le programme principal, lors de I'appel de une_fct (), on lui passe comme argument une autre
fonction mais sans aucune parenthéses ni argument, c'est-a-dire fct_callback tout court. En d'autres termes, cela
est différent de
une_fct(fct_callback("scoubidous")).

Dans une telle construction, fct_callback("scoubidous™") serait d’abord évaluée, puis ce serait la valeur ren-
voyée par cet appel qui serait passée a une_fct() (n'essayez pas sur notre exemple car cela ménerait a une erreur!).
Que se passe-t-il en filigrane lors de I'appel une_fct(fct_callback) ? Python passe une référence vers la fonction
fct_callback (en réalité il s'agit d’un pointeur, mais tout ceci est géré par Python et est transparent pour I'utilisateur).
Vous souvenez-vous ce qui se passait avec une liste passée en argument a une fonction (voir le chapitre 13 Plus sur les
fonctions) ? C'était la méme chose, une référence était envoyée plutdt qu'une copie. Python Tutor® nous confirme cela
(cf. figure 25.2).

Lorsqu'on est dans une_fct() on pourra utiliser bien siir des arguments lors de I'appel de notre fonction callback
si on le souhaite. Notez enfin que dans une_fct() la fonction callback recue en argument peut avoir un nom différent
(comme pour tout type de variable).

A quoi cela sert-il ? A premiére vue cette construction peut sembler ardue et inutile. Toutefois, vous verrez que dans
le module Tkinter les fonctions callback sont incontournables. En effet, on utilise cette construction pour lancer une
fonction lors de I'interaction de I'utilisateur avec un widget : par exemple, lorsque I'utilisateur clique sur un bouton et
qu’on souhaite lancer une fonction particuliére suite a ce clic. Notez enfin que nous les avons déja croisées avec :

5. http://pythontutor.com

Cours de Python / Université Paris Cité / UFR Sciences du Vivant

http://pythontutor.com

25.4. Prise en main du module Tkinter Chapitre 25. Fenétres graphiques et Tkinter

Python 3.6 Print output (drag lower right corner to resize)
Je suis au début de une_fct() et je vais exé
def fct_callback(arg):
print ("J'aime bien les {} !".format (arg))
< >
def une_fct (ma_callback) : 4
print ("Je suis au début de une fct() et je vais exéc Frames Objects
—) ma_callback("fraises")
e m . " Global frame function
print ("Aye, une_fct() se termine.") fet callback (arg)
fct_callback
prog principal une_fct function
une_fct (fct_callback) une_fet (ma_callback)
< > une_fct
Edit this code ma_callback

line that has just executed
== next line to execute

FIGURE 25.2 — Exemple de fonction callback dans Python Tutor.

e le tri de dictionnaire par valeur avec la syntaxe sorted(dico, key=dico.get) (voir le chapitre 8 Dictionnaires
et tuples) ;

e le tri par longueur de mots avec la syntaxe sorted(liste, key=len) (voir chapitre 12 Plus sur les listes) ;

e les objets property avec la syntaxe property (fget=get_masse, fset=set_masse) (voir le chapitre 24 Avoir
plus la classe avec les objets (en ligne)).

25.4 Prise en main du module Tkinter

Le module Tkinter est trés vaste. Notre but n'est pas de vous faire un cours exhaustif mais plutdét de vous montrer
quelques pistes. Pour apprendre a piloter ce module, nous pensons qu'il est intéressant de vous montrer des exemples. Nous
allons donc en présenter quelques-uns qui pourraient vous étre utiles, a vous ensuite de consulter de la documentation
supplémentaire si vous souhaitez aller plus loin (cf. la rubrique Bibliographie pour aller plus loin).

25.4.1 Un premier exemple dans 'interpréteur

Commencons par construire un script qui affichera une simple fenétre avec un message et un bouton. Regardons
d’abord comment faire dans I'interpréteur (nous vous conseillons de tester ligne par ligne ce code tout en lisant les
commentaires ci-dessous) :

>>> dmport tkinter as tk

>>> racine = tk.Tk()

>>> Tlabel = tk.Label(racine, text="J'adore Python !")

>>> bouton = tk.Button(racine, text="Quitter", fg="red",
ce command=racine.destroy)
>>> Tlabel.pack()
>>> bouton.pack()
>>>

Ligne 2. On crée la fenétre principale (vous la verrez apparaitre !). Pour cela, on crée une instance de la classe tk.Tk
dans la variable racine. Tous les widgets que |'on créera ensuite seront des fils de cette fenétre. On pourra d'ailleurs
noter que cette classe tk.Tk ne s’instancie en général qu'une seule fois par programme. Vous pouvez, par curiosité, lancer
une commande dir(racine) ou help(racine), vous verrez ainsi les trés nombreuses méthodes et attributs associés a
un tel objet Tk.

Ligne 3. On crée un label, c'est-a-dire une zone dans la fenétre principale ol on écrit un texte. Pour cela, on a créé
une variable labe'l qui est une instance de la classe tk.Label. Cette variable labe'l contient donc notre widget, nous la
réutiliserons plus tard (par exemple pour placer ce widget dans la fenétre). Notez le premier argument positionnelracine
passé a la classe tk.Label, celui-ci indique la fenétre parente ol doit étre dessinée le label. Cet argument doit toujours
étre passé en premier et il est vivement conseillé de le préciser. Nous avons passé un autre argument avec le nom
text pour indiquer, comme vous |'avez deviné, le texte que nous souhaitons voir dans ce label. La classe tk.Label
peut recevoir de nombreux autres arguments, en voici la liste exhaustive®. Dans les fonctions Tkinter qui construisent

6. http://infohost.nmt.edu/tcc/help/pubs/tkinter/web/label.html

Cours de Python / Université Paris Cité / UFR Sciences du Vivant 303

http://infohost.nmt.edu/tcc/help/pubs/tkinter/web/label.html

Chapitre 25. Fenétres graphiques et Tkinter 25.4. Prise en main du module Tkinter

304

un widget, les arguments possibles pour la mise en forme de celui-ci sont nombreux, si bien qu’ils sont toujours des
arguments par mot-clé. Si on ne précise pas un de ces arguments lors de la création du widget, |I'argument prendra
alors une valeur par défaut. Cette liste des arguments par mot-clé est tellement longue qu'en général on ne les précisera
pas tous. Heureusement, Python autorise I'utilisation des arguments par mot-clé dans un ordre quelconque. Comme nous
I'avons vu dans le chapitre 10 Fonctions, souvenez vous que leur utilisation dans le désordre implique qu'’il faudra toujours
préciser leur nom : par exemple vous écrirez text="blabla" et non pas "blabla" tout court.

Ligne 4. De méme, on crée un bouton « Quitter » qui provoquera la fermeture de la fenétre et donc I'arrét de
I'application si on clique dessus. A nouveau, on passe la fenétre parente en premier argument, le texte a écrire dans le
bouton, puis la couleur de ce texte. Le dernier argument command=racine.destroy va indiquer la fonction / méthode
a exécuter lorsque |'utilisateur clique sur le bouton. On pourra noter que l'instance de la fenétre mére tk.Tk (que nous
avons nommée racine) posséde une méthode .destroy () qui va détruire le widget sur lequel elle s'applique. Comme
on tue la fenétre principale (que I'on peut considérer comme un widget contenant d’autres widgets), tous les widgets
fils seront détruits et donc I'application s'arrétera. Vous voyez par ailleurs que cette méthode racine.destroy est
passée a |'argument command= sans parenthéses ni arguments : il s'agit donc d'une fonction callback comme expliqué
ci-dessus. Dans tous les widgets Tkinter, on doit passer a |'argument command=. .. une fonction / méthode callback.
La liste exhaustive des arguments possibles de la classe tk.Button se trouve ici’.

Lignes 6 et 7. Vous avez noté que lors de la création de ce /abel et de ce bouton, rien ne s’est passé dans la fenétre.
C'est normal, ces deux widgets existent bien, mais il faut maintenant les placer a I'intérieur de la fenétre. On appelle pour
ca la méthode . pack(), avec une notation objet widget.pack() : a ce moment précis, vous verrez votre label apparaitre
ainsi que la fenétre qui se redimensionne automatiquement en s'adaptant a la grandeur de votre label. L'invocation de la
méme méthode pour le bouton va faire apparaitre celui-ci juste en dessous du /abel et redimensionner la fenétre. Vous
I'aurez compris la méthode .pack() place les widgets les uns en dessous des autres et ajuste la taille de la fenétre. On
verra plus bas que I'on peut passer des arguments a cette méthode pour placer les widgets différemment (en haut, a
droite, a gauche).

Au final, vous devez obtenir une fenétre comme sur la figure 25.3.

25.4.2 Le méme exemple dans un script.

Tentons maintenant de faire la méme chose dans un script tk_exemple.py :

import tkinter as tk

racine = tk.Tk()

label = tk.Label(racine, text="J'adore Python !")

bouton = tk.Button(racine, text="Quitter", command=racine.quit)
bouton["fg"] = "red"

label.pack()

bouton.pack()

racine.mainloop()

print("C'est fini !")

puis lancons ce script depuis un shell :

$ python tk_exemple.py

Vous voyez maintenant la méme fenétre avec les mémes fonctionnalités par rapport a la version dans l'interpréteur
(voir la figure 25.3). Nous commentons ici les différences (dans le désordre) :

Ligne 6. Le bouton a été créé en ligne 5, mais on voit qu'il est possible de préciser une option de rendu du widget
aprés cette création (ici on met le texte en rouge avec 'option "fg"). La notation ressemble a celle d'un dictionnaire
avec une syntaxe générale widget["option"] = valeur.

Ligne 9. L'instruction racine.mainloop () va lancer le gestionnaire d'événements que nous avons évoqué ci-dessus.
C'est lui qui interceptera la moindre action de I'utilisateur, et qui lancera les portions de code associées a chacune de ses
actions. Bien slir, comme nous développerons dans ce qui va suivre toutes nos applications Tkinter dans des scripts (et
non pas dans I'interpréteur), cette ligne sera systématiquement présente. Elle sera souvent a la fin du script, puisque, a
I'image de ce script, on écrit d'abord le code construisant I'interface, et on lance le gestionnaire d'événements une fois
I'interface complétement décrite, ce qui lancera au final |'application.

7. http://infohost.nmt.edu/tcc/help/pubs/tkinter/web/button.html

Cours de Python / Université Paris Cité / UFR Sciences du Vivant

http://infohost.nmt.edu/tcc/help/pubs/tkinter/web/button.html

25.5. Construire une application Tkinter avec une classe Chapitre 25. Fenétres graphiques et Tkinter

Ligne 10. Cette ligne ne s'exécute qu'apres |'arrét de I'application (soit en cliquant sur le bouton « Quitter », soit en
cliquant sur la croix).

Ligne 5. Pour quitter I'application, on utilise ici la méthode .quit(). Celle-ci casse la .mainloop() et arréte ainsi
le gestionnaire d'événements. Cela meéne a I'arrét de I'application. Dans le premier exemple dans I'interpréteur, on avait
utilisé la méthode .destroy () sur la fenétre principale. Comme son nom l'indique, celle-ci détruit la fenétre principale
et méne aussi a l'arrét de I'application. Cette méthode aurait donc également fonctionné ici. Par contre, la méthode
.quit() n'aurait pas fonctionné dans l'interpréteur car, comme on |'a vu, la boucle .mainloop() n'y est pas présente.
Comme nous écrirons systématiquement nos applications Tkinter dans des scripts, et que la boucle .mainloop() y est
obligatoire, vous pourrez utiliser au choix .quit() ou .destroy() pour quitter |'application.

X

J)'adore Python !

Quitter

FIGURE 25.3 — Exemple basique de fenétre Tkinter.

25.5 Construire une application Tkinter avec une classe

De maniére générale, il est vivement conseillé de développer ses applications Tkinter en utilisant une classe. Cela
présente |'avantage d'encapsuler I'application de maniére efficace et d’'éviter ainsi |'utilisation de variables globales.
Souvenez-vous, elles sont & bannir définitivement! Une classe crée un espace de noms propre a votre application, et
toutes les variables nécessaires seront ainsi des attributs de cette classe. Reprenons notre petit exemple avec un label et
un bouton :

import tkinter as tk

class Application(tk.Tk):
def __init__(self):
tk.Tk.__init__(self)
self.creer_widgets()

def creer_widgets(self):
self.label = tk.Label(self, text="J'adore Python !")
self.bouton = tk.Button(self, text="Quitter", command=self.quit)
self.label.pack()
self.bouton.pack()

if __name__ == "__main__":
app = Application()
app.title("Ma Premiére App :-)")
app.mainloop()

Ligne 3. On crée notre application en tant que classe. Notez que cette classe porte un nom qui commence par
une majuscule (comme recommandé dans les bonnes pratiques de la PEP82, voir le chapitre 16 Bonnes pratiques en
programmation Python). L'argument passé dans les parenthéses indique que notre classe Application hérite de la
classe tk.Tk. Par ce mécanisme, nous héritons ainsi de toutes les méthodes et attributs de cette classe mére, mais nous
pouvons en outre en ajouter de nouvelles/nouveaux (on parle aussi de « redéfinition » de la classe tk.Tk)!

Ligne 4. On crée un constructeur, c'est-a-dire une méthode qui sera exécutée lors de I'instanciation de notre classe
(a la ligne 16).

Ligne 5. On appelle ici le constructeur de la classe mere tk.Tk.__1init__(). Pourquoi fait-on cela? On se souvient
dans la version linéaire de I'application, on avait utilisé une instanciation classique : racine = tk.Tk(). lci, 'effet de
I'appel du constructeur de la classe mére permet d'instancier la fenétre Tk dans la variable self directement. C'est-a-dire
que la prochaine fois que I'on aura besoin de cette instance (lors de la création des widgets par exemple, cf. lignes 9 et

8. https://www.python.org/dev/peps/pep-0008/

Cours de Python / Université Paris Cité / UFR Sciences du Vivant 305

https://www.python.org/dev/peps/pep-0008/

Chapitre 25. Fenétres graphiques et Tkinter 25.6. Le widget canvas

306

10), on utilisera directement self plutdt que racine ou tout autre nom donné a I'instance. Comme vu dans le chapitre
23 Avoir la classe avec les objets, appeler le constructeur de la classe mere est une pratique classique lorsqu’une classe
hérite d’une autre classe.

Ligne 6. On appelle la méthode self.creer_widgets() de notre classe Application. Pour rappel, le self avant
le .creer_widgets() indique qu'il s'agit d'une méthode de notre classe (et non pas d'une fonction classique).

Ligne 8. La méthode .creer_widgets () va créer des widgets dans I'application.

Ligne 9. On crée un label en instanciant la classe tk.Label(). Notez que le premier argument passé est maintenant
self (au lieu de racine précédemment) indiquant la fenétre dans laquelle sera construit ce widget.

Ligne 10. De méme on crée un widget bouton en instanciant la classe tk.Button(). La aussi, I'appel a la méthode
.quit() se fait par self.quit puisque la fenétre est instanciée dans la variable self. Par ailleurs, on ne met ni
parenthéses ni arguments a self.quit car il s'agit d’une fonction callback (comme dans la rubrique précédente).

Lignes 11 et 12. On place les deux widgets dans la fenétre avec la méthode .pack().

Ligne 15. Ici on autorise le lancement de notre application Tkinter en ligne de commande (python tk_application.
py), ou bien de réutiliser notre classe en important tk_application.py en tant que module (import tk_application
) (voir le chapitre 15 Création de modules).

Ligne 16. On instancie notre application.

Ligne 17. On donne un titre dans la fenétre de notre application. Comme on utilise de petits widgets avec la méthode
pack(), il se peut que le titre ne soit pas visible lors du lancement de |'application. Toutefois, si on « étire » la fenétre
a la souris, le titre le deviendra. On pourra noter que cette méthode .title() est héritée de la classe mere Tk.

Ligne 18. On lance le gestionnaire d'événements.

Au final, vous obtiendrez le méme rendu que précédemment (cf. figure 25.3). Alors vous pourrez-vous poser la
question, « pourquoi ai-je besoin de toute cette structure alors que le code précédent semblait plus direct ? ». La réponse
est simple, lorsqu’un projet de GUI grossit, le code devient trés vite illisible s'il n'est pas organisé en classe. De plus,
la non-utilisation de classe rend quasi-obligatoire I'utilisation de variables globales, ce qui on I'a vu, est a proscrire
définitivement ! Dans la suite du chapitre, nous verrons quelques exemples qui illustrent cela (cf. la rubrique suivante).

25.6 Le widget canvas

25.6.1 Un canvas simple et le systeme de coordonnées

Le widget canvas® de Tkinter est trés puissant. Il permet de dessiner des formes diverses (lignes, cercles, etc.), et
méme de les animer !

La classe tk.Canvas crée un widget canvas (ou encore canevas en francais). Cela va créer une zone (i.e. le canevas
en tant que tel) dans laquelle nous allons dessiner divers objets tels que des ellipses, lignes, polygones, etc., ou encore
insérer du texte ou des images. Regardons tout d’abord un code minimal qui construit un widget canvas, dans lequel on
y dessine un cercle et deux lignes :

import tkinter as tk

racine = tk.Tk()

canv = tk.Canvas(racine, bg="white", height=200, width=200)
canv.pack()

canv.create_oval(0, 0, 200, 200, outline="red", width=10)
canv.create_line(0, 0, 200, 200, fill="black", width=10)
canv.create_line(0, 200, 200, 0, fill="black", width=10)
racine.mainloop()

Ligne 4. On voit qu'il faut d’abord créer le widget canvas, comme d'habitude en lui passant I'instance de la fenétre
principale en tant qu'argument positionnel, puis les options. Notons que nous lui passons comme options la hauteur et la
largeur du canvas. Méme s'il s’agit d'arguments par mot-clé, donc optionnels, c’est une bonne pratique de les préciser.
En effet, les valeurs par défaut risqueraient de nous mener a dessiner hors de la zone visible (cela ne génére pas d’erreur
mais n'a guére d’intérét).

Ligne 6 a 8. Nous dessinons maintenant des objets graphiques a I'intérieur du canevas avec les méthodes . create_oval
() (dessine une ellipse) et .create_line() (dessine une ligne). Les arguments positionnels sont les coordonnées de

9. http://infohost.nmt.edu/tcc/help/pubs/tkinter/web/canvas.html

Cours de Python / Université Paris Cité / UFR Sciences du Vivant

http://infohost.nmt.edu/tcc/help/pubs/tkinter/web/canvas.html

25.6. Le widget canvas Chapitre 25. Fenétres graphiques et Tkinter

I'ellipse (les deux points englobant I'ellipse, cf. ce lien ' pour la définition exacte) ou de la ligne. Ensuite, on passe comme
d'habitude des arguments par mot-clé (vous commencez a avoir |'habitude !) pour mettre en forme ces objets graphiques.

Le rendu de I'image est montré dans la figure 25.4 ainsi que le systéme de coordonnées associé au canvas. Comme
dans la plupart des bibliothéques graphiques, I'origine du repére du canvas (i.e. la coordonnée (0,0)) est en haut a gauche.
Les x vont de gauche a droite, et les y vont de haut en bas.

0,200 200,200

FIGURE 25.4 — Exemple 1 de canvas avec le systéme de coordonnées. Le systéme de coordonnées est montré en vert et
n'apparait pas sur la vraie fenétre Tkinter.

Attention

L'axe des y est inversé par rapport a ce que I'on représente en mathématique. Si on souhaite représenter une fonction
mathématique (ou tout autre objet dans un repére régi par un repére mathématique), il faudra faire un changement de
repére.

25.6.2 Un canvas encapsulé dans une classe

Voici un exemple un peu plus conséquent d'utilisation du widget canvas qui est inclus dans une classe. Il s'agit d'une
application dans laquelle il y a une zone de dessin, un bouton dessinant des cercles, un autre des lignes et un dernier
bouton qui quitte I'application (figure 25.5).

Le code suivant crée une telle application :

10. http://infohost.nmt.edu/tcc/help/pubs/tkinter/web/create_oval.html

Cours de Python / Université Paris Cité / UFR Sciences du Vivant 307

http://infohost.nmt.edu/tcc/help/pubs/tkinter/web/create_oval.html

Chapitre 25. Fenétres graphiques et Tkinter 25.6. Le widget canvas

<>< Mon Canevas Psychédélique ! - O X
Cercle !
NS > f Lignes |

Quitter

FIGURE 25.5 — Exemple 2 de canvas.

import tkinter as tk
import random as rd

class AppliCanevas(tk.Tk):
def __init__(self):
tk.Tk.__init__(self)
self.size = 500
self.creer_widgets()

def creer_widgets(self):
création canevas
self.canv = tk.Canvas(self, bg="light gray", height=self.size,
width=self.size)

self.canv.pack(side=tk.LEFT)

boutons

self.bouton_cercles = tk.Button(self, text="Cercle !",

command=self.dessine_cercles)

self.bouton_cercles.pack(side=tk.TOP)

self.bouton_lignes = tk.Button(self, text="Lignes !",
command=self.dessine_lignes)

self.bouton_lignes.pack()

self.bouton_quitter = tk.Button(self, text="Quitter",
command=self.quit)

self.bouton_quitter.pack(side=tk.BOTTOM)

def rd_col(self):
return rd.choice(("black", "red", "green", "blue", "yellow", "magenta",
"cyan", "white", "purple"))

def dessine_cercles(self):
for i in range(20):
X, y = [rd.randint(1, self.size) for j in range(2)]
diameter = rd.randint(1l, 50)
self.canv.create_oval(x, y, x+diameter, y+diameter,
fill=self.rd_col())
308 Cours de Python / Université Paris Cité / UFR Sciences du Vivant
def dessine_lignes(self):
for i in range(20):
v v ¥2 v?2 = Ird randint(1 <celf <ci7e) for 4 n rance(4a)]

25.6. Le widget canvas Chapitre 25. Fenétres graphiques et Tkinter

Lignes 4 a 6. Comme montré dans la rubrique Construire une application Tkinter avec une classe, notre classe
AppliCanevas hérite de la classe générale tk.Tk et la fenétre Tk se retrouve dans la variable self.

Ligne 7. On crée un attribut de la classe self.size qui contiendra la taille (hauteur et largeur) du canvas. On
rappelle que cet attribut sera visible dans I'ensemble de la classe puisqu'il est « accroché » a celle-ci par le self.

Ligne 8. On lance la méthode .creer_widgets() (qui est elle aussi « accrochée » a la classe par le self).

Lignes 12 a 14. On crée un widget canvas en instanciant la classe tk.Canvas. On place ensuite le canvas dans la
fenétre avec la méthode .pack() en lui précisant ou le placer avec la variable Tkinter tk.LEFT.

Lignes 15 a 24. On crée des widgets boutons et on les place dans la fenétre. A noter que chacun de ces widgets appelle
une méthode différente, dont deux que nous avons créées dans la classe (.dessine_cercle() et .dessine_lignes()).

Ligne 26 a 28. Cette méthode renvoie une couleur au hasard sous forme de chaine de caracteres.

Lignes 30 a 40. On définit deux méthodes qui vont dessiner des paquets de 20 cercles (cas spécial d'une ellipse) ou 20
lignes aléatoires. Lors de la création de ces cercles et lignes, on ne les récupére pas dans une variable car on ne souhaite
ni les réutiliser ni changer leurs propriétés par la suite. Vous pourrez noter ici I'avantage de programmer avec une classe,
le canvas est directement accessible dans n'importe quelle méthode de la classe avec self.canv (pas besoin de le passer
en argument ou de créer une variable globale).

25.6.3 Un canvas animé dans une classe

Dans ce dernier exemple, nous allons illustrer la puissance du widget canvas en vous montrant que I'on peut animer
les objets se trouvant a l'intérieur. Nous allons également découvrir une technique intéressante, a savoir, comment «
intercepter » des clics de souris générés ou des touches pressées par |'utilisateur. L'application consiste en une « baballe
» qui se déplace dans la fenétre et dont on contrdle les propriétés a la souris (cf. figure 25.6). Vous pouvez télécharger

le script ici'!.

11. https://python.sdv.u-paris.fr/data-files/tk_baballe.py

Cours de Python / Université Paris Cité / UFR Sciences du Vivant

309

https://python.sdv.u-paris.fr/data-files/tk_baballe.py

Chapitre 25. Fenétres graphiques et Tkinter

25.6. Le widget canvas

310

"""Super appli baballe !!!

Usage: python tk_baballe.py

- clic gauche: faire grossir la baballe

- clic droit: faire rétrécir la baballe

- clic central: relance la baballe (depuis le point du clic)

dans une direction aléatoire

- touche Esc: quitte l'appli baballe

mon

import tkinter as tk
import random as rd

class AppliBaballe(tk.Tk):

def

def

def

def

def

__init__(self):

"""Constructeur de l'application."""

tk.Tk.__init__(self)

Coord baballe.

self.x, self.y = 200, 200

Rayon baballe.

self.size = 50

Pas de deplacement.

self.dx, self.dy = 20, 20

Création et packing du canvas.

self.canv = tk.Canvas(self, bg='light gray', height=400, width=400)

self.canv.pack()

Création de la baballe.

self.baballe = self.canv.create_oval(self.x, self.y,
self.x+self.size,
self.ytself.size,
width=2, fill="blue")

Binding des actions.

self.canv.bind("<Button-1>", self.1incr)

self.canv.bind("<Button-2>", self.boom)

self.canv.bind("<Button-3>", self.decr)

self.bind("<Escape>", self.stop)

Lancer la baballe.

self.move()

move (self):
""péplace la baballe (appelée itérativement avec la méthode after)."""
Incrémente coord baballe.
self.x += self.dx
self.y += self.dy
Vérifier que la baballe ne sort pas du canvas (choc élastique).
if self.x < 10:
self.dx = abs(self.dx)
if self.x > 400-self.size-10:
self.dx = -abs(self.dx)
if self.y < 10:
self.dy = abs(self.dy)
if self.y > 400-self.size-10:
self.dy = -abs(self.dy)
Mise a jour des coord.
self.canv.coords(self.baballe, self.x, self.y, self.xtself.size,
self.y+self.size)
Rappel de move toutes les 50ms.
self.after (50, self.move)

boom(self, mclick):

"""Relance la baballe dans une direction aléatoire au point du clic."""
self.x = mclick.x

self.y = mclick.y

self.canv.create_text(self.x, self.y, text="Boom !", fill="red")
self.dx = rd.choice([-30, -20, -10, 10, 20, 30])

self.dy = rd.choice([-30, -20, -10, 10, 20, 30])

incr(self, lclick):
"""Augmente la taille de la baballe."""
self.size += 10
if self.size > 200:
self.size = 200

decr(self, rclick): Cb
"""Diminue la taille de la baballe."”
self.size -= 10

if self.size < 10:

urs de Python / Université Paris Cité / UFR Sciences du Vivant

25.6. Le widget canvas Chapitre 25. Fenétres graphiques et Tkinter

Lignes 19 a 23. Les coordonnées de la baballe, ses pas de déplacement, et sa taille sont créés en tant qu’attributs de
notre classe. Ainsi ils seront visibles partout dans la classe.

Lignes 25 a 31. Le canvas est ensuite créé et placé dans la fenétre, puis on définit notre fameuse baballe. A noter,
les coordonnées self.x et self.y de la baballe représentent en fait son cété « nord-ouest » (en haut a gauche, voir le
point (xo, yo) dans la documentation officielle '?).

Lignes 33 a 35. Jusqu'a maintenant, nous avons utilisé des événements provenant de clics sur des boutons. Ici, on va
« intercepter » des événements générés par des clics de souris sur le canvas et les lier a une fonction / méthode (comme
nous |'avions fait pour les clics sur des boutons avec I'option command=...). La méthode pour faire cela est .bind(),
voila pourquoi on parle de event binding en anglais. Cette méthode prend en argument le type d’événement a capturer
en tant que chaine de caractéres avec un format spécial : par exemple "<Button-1>" correspond a un clic gauche de la
souris (de méme "<Button-2>" et "<Button-3>" correspondent aux clics central et droit respectivement). Le deuxiéme
argument de la méthode .bind() est une méthode / fonction callback a appeler lors de la survenue de I'événement
(comme pour les clics de bouton, vous vous souvenez? On I'appelle donc sans parenthéses ni arguments). On notera
que tous ces événements sont liés a des clics sur le canvas, mais il est possible de capturer des événements de souris sur
d'autres types de widgets.

Ligne 36. De méme, on peut « intercepter » un événement lié a I'appui sur une touche, ici la touche Esc.

Ligne 38. La méthode .move () est appelée, ainsi I'animation démarrera dés I'exécution du constructeur, donc peu
aprés |'instanciation de notre application (Ligne 86).

Lignes 40 a 58. On définit une méthode .move () qui va gérer le déplacement de la baballe avec des chocs élastiques
sur les parois (et faire en sorte qu'elle ne sorte pas du canvas).

Lignes 55 et 56. On utilise la méthode .coords() de la classe Canvas, qui « met a jour » les coordonnées de
n'importe quel objet dessiné dans le canvas (c'est-a-dire que cela déplace I'objet).

Ligne 58. Ici, on utilise une autre méthode spécifique des objets Tkinter. La méthode .after () rappelle une autre
méthode ou fonction (second argument) aprés un certain laps de temps (ici 50 ms, passé en premier argument). Ainsi la
méthode .move () se rappelle elle-méme, un peu comme une fonction récursive. Toutefois, ce n'est pas une vraie fonction
récursive comme celle vue dans le chapitre 13 (exemple du calcul de factorielle), car Python ne conserve pas |'état de la
fonction lors de I'appel de .after (). C'est comme si on avait un return, tout I'espace mémoire alloué a la méthode
.move () est détruit lorsque Python rencontre la méthode .after (). On obtiendrait un résultat similaire avec la boucle
suivante :

import time

while True:
move ()
time.sleep(0.05)

Le temps de 50 ms donne 20 images (ou clichés) par seconde. Si vous diminuez ce temps, vous aurez plus d'images
par secondes et donc un « film » plus fluide.

Ligne 60 a 66. On définit la méthode .boom() de notre classe qui on se souvient est appelée lors d'un événement clic
central sur le canvas. Vous noterez qu'outre le self, cette fonction prend un autre argument que nous avons nommé
ici mclick. Il s'agit d'un objet spécial géré par Tkinter qui va nous donner des informations sur I'événement généré par
I'utilisateur. Dans les lignes 62 et 63, cet objet mclick récupére les coordonnées ol le clic a eu lieu grace aux attributs
mclick.x et mclick.y. Ces coordonnées sont réaffectées a la baballe pour la faire repartir de I'endroit du clic. Nous
créons ensuite un petit texte dans le canevas et affectons des valeurs aléatoires aux variables de déplacement pour faire
repartir la baballe dans une direction aléatoire.

Lignes 68 a 78. On a ici deux méthodes .1incr () et .decr () appelées lors d'un clic gauche ou droit. Deux choses
sont a noter : i) I'attribut self.size est modifié dans les deux fonctions, mais le changement de diamétre de la boule ne
sera effectif dans le canvas que lors de la prochaine exécution de I'instruction self.canv.coords() (dans la méthode
.move()); ii) de méme que pour la méthode .boom(), ces deux méthodes prennent un argument aprés le self (lclick
ou rclick) récupérant ainsi des informations sur I'événement de I'utilisateur. M&me si on ne s’en sert pas, cet argument
apres le self est obligatoire car il est imposé par la méthode .bind ().

Lignes 80 a 82. Cette méthode quitte I'application lorsque I'utilisateur fait un clic sur la touche Esc.

12. http://infohost.nmt.edu/tcc/help/pubs/tkinter/web/create_oval.html

Cours de Python / Université Paris Cité / UFR Sciences du Vivant

311

http://infohost.nmt.edu/tcc/help/pubs/tkinter/web/create_oval.html

Chapitre 25.

Fenétres graphiques et Tkinter 25.7. Pour aller plus loin

X XBabaIIeI - [m} X

Boom ! Boom !
Boom ! Boom !

Boom ! Boom !

FIGURE 25.6 — Exemple de canvas animé a deux instants de I'exécution (panneau de gauche : au moment ol on effectue
un clic central; panneau de droite : aprés avoir effectué plusieurs clics gauches).

trouverez une liste compléte ici

existe de nombreux autres événements que I'on peut capturer et lier a des méthodes / fonctions callback. Vous
13

25.7 Pour aller plus loin

25.7.1 D’autres widgets

Jusqu’a maintenant nous avons vu les widgets Button, Canvas, Label, mais il en existe bien d’autres. En voici la liste
avec une breve explication pour chacun :

Checkbutton : affiche des cases a cocher.

Entry : demande a |'utilisateur de saisir une valeur / une phrase.

Listbox : affiche une liste d'options a choisir (comme dans la figure 25.1).

Radiobutton : implémente des « boutons radio ».

Menubutton et Menu : affiche des menus déroulants.

Message : affiche un message sur plusieurs lignes (extensions du widget Label).

Scale : affiche une régle graduée pour que I'utilisateur choisisse parmi une échelle de valeurs.
Scrollbar : affiche des ascenseurs (horizontaux et verticaux).

Text : crée une zone de texte dans lequel I'utilisateur peut saisir un texte sur plusieurs lignes (comme dans la figure
25.1).

Spinbox : sélectionne une valeur parmi une liste de valeurs.

e tkMessageBox : affiche une boite avec un message.

existe par ailleurs des widgets qui peuvent contenir d'autres widgets et qui organisent le placement de ces derniers :
Frame : widget conteneur pouvant contenir d'autres widgets classiques, particulierement utile lorsqu’on réalise une
GUI complexe avec de nombreuses zones.

e LabelFrame : comme Frame mais affiche aussi un /abel sur le bord.
e Toplevel : pour créer des fenétres indépendantes.
e PanedWindow : conteneur pour d'autres widgets, mais ici I'utilisateur peut réajuster les zones affectées a chaque

widget fils.

Vous trouverez la documentation exhaustive pour tous ces widgets (ainsi que ceux que nous avons décrits dans les
rubriques précédentes) sur le site de I'Institut des mines et de technologie du Nouveau Mexique * (MNT). Par ailleurs, la

13. http://effbot.org/tkinterbook/tkinter-events-and-bindings.htm
14. http://infohost.nmt.edu/tcc/help/pubs/tkinter/web/index.html

312

Cours de Python / Université Paris Cité / UFR Sciences du Vivant

http://effbot.org/tkinterbook/tkinter-events-and-bindings.htm
http://infohost.nmt.edu/tcc/help/pubs/tkinter/web/index.html

25.7. Pour aller plus loin Chapitre 25. Fenétres graphiques et Tkinter

page Universal widget methods'® vous donnera une vue d'ensemble des différentes méthodes associées a chaque widget.

Il existe également une extension de Tkinter nommée ttk, réimplémentant la plupart des widgets de base de Tkinter
et qui en propose de nouveaux (Combobox, Notebook, Progressbar, Separator, Sizegrip et Treeview). Typiquement, si
vous utilisez ttk, nous vous conseillons d'utiliser les widgets ttk en priorité, et pour ceux qui n'existent pas dans ttk, ceux
de Tkinter (comme Canvas qui n'existe que dans Tkinter). Vous pouvez importer le sous-module ttk de cette maniére :
import tkinter.ttk as ttk.

Vous pourrez alors utiliser les classes de widget de ttk (par exemple ttk.Button, etc.). Si vous souhaitez importer
ttk et Tkinter, il suffit d’utiliser ces deux lignes :

import tkinter as tk
import tkinter.ttk as ttk

Ainsi vous pourrez utiliser des widgets de Tkinter et de ttk en méme temps.

Pour plus d'informations, vous pouvez consulter la documentation officielle de Python '©, ainsi que la documentation
trés compléte du site du MNT 7.
25.7.2 Autres pistes a approfondir

Si vous souhaitez aller un peu plus loin en Tkinter, voici quelques notions / remarques qui pourraient vous étre utiles.

Conseil
Si vous étes débutant, vous pouvez sauter cette rubrique.

25.7.2.1 Les variables de contrdle

Lorsque vous souhaitez mettre un jour un widget avec une certaine valeur (par exemple le texte d'un label), vous ne
pouvez pas utiliser une variable Python ordinaire, il faudra utiliser une variable Tkinter dite de contrdle. Par exemple,
si on souhaitait afficher les coordonnées de notre baballe (cf. rubrique précédente) dans un /abel, et que cet affichage
se mette a jour au fur et 2 mesure des mouvements de la baballe, il faudrait utiliser des variables de contréle. On peut
créer de telles variables avec les classes tk.StringVar pour les chaines de caractéres, tk.DoubleVar pour les floats, et
tk.IntVar pour les entiers. Une fois créée, par exemple avec l'instruction var = tk.StringVar(), on peut modifier
la valeur d'une variable de controle avec la méthode var.set(nouvelle_valeur) : ceci mettra a jour tous les widgets
utilisant cette variable var. Il existe aussi la méthode var.get() qui récupére la valeur actuelle contenue dans var.
Enfin, il faudra lors de la création du label utiliser I'option textvariable= avec votre variable de contréle (par exemple
tk.Label(..., textvariable=var, ...)) pour que cela soit fonctionnel.

A nouveau, vous trouverez une documentation précise sur le site du MNT 18,

25.7.2.2 Autres méthodes de placement des widgets dans la fenétre Tk

Dans les exemples montrés dans ce chapitre, nous avons systématiquement utiliser la méthode .pack() pour placer
les widgets. Cette méthode trés simple et directe « empaquette » les widgets les uns contre les autres et redimensionne
la fenétre automatiquement. Avec |'option side= et les variables tk.BOTTOM, tk.LEFT, tk.TOP et tk.RIGHT on place
facilement les widgets les uns par rapport aux autres. Toutefois, la méthode .pack() peut parfois présenter des limites,
il existe alors deux autres alternatives.

La méthode .grid () permet, grace a I'utilisation d'une grille, un placement mieux contrdlé des différents widgets. La
méthode .place() place enfin les widgets en utilisant les coordonnées de la fenétre principale. Nous ne développerons
pas plus ces méthodes, mais voici de la documentation supplémentaire en acces libre :

e .pack() 19.

15. https://infohost.nmt.edu/tcc/help/pubs/tkinter/web/universal.html

16. https://docs.python.org/3/library/tkinter.ttk.html

17. http://infohost.nmt.edu/tcc/help/pubs/tkinter/web/ttk.html

18. https://infohost.nmt.edu/tcc/help/pubs/tkinter/web/control-variables.html
19. http://effbot.org/tkinterbook/pack.htm

Cours de Python / Université Paris Cité / UFR Sciences du Vivant 313

https://infohost.nmt.edu/tcc/help/pubs/tkinter/web/universal.html
https://docs.python.org/3/library/tkinter.ttk.html
http://infohost.nmt.edu/tcc/help/pubs/tkinter/web/ttk.html
https://infohost.nmt.edu/tcc/help/pubs/tkinter/web/control-variables.html
http://effbot.org/tkinterbook/pack.htm

Chapitre 25. Fenétres graphiques et Tkinter 25.7. Pour aller plus loin

314

)20v21;
)22.

e .grid(
e .place(

25.7.2.3 Heériter de la classe Frame pour vos applications ?

Comme illustré dans nos exemples, nous vous recommandons pour vos classes applications Tkinter d'hériter de la classe
mere tk.Tk et d'utiliser le constructeur de la classe mére tk.Tk.__init__(). Toutefois, il se peut qu'en consultant
d'autres ressources certains auteurs utilisent la technique d'héritage de la classe mére tk.Frame :

import tkinter as tk

class Application(tk.Frame):
def __init__(self, racine=None):
tk.Frame.__init__(self, racine)
self.racine = racine
self.create_widgets()

def create_widgets(self):
self.label = tk.Label(self.racine, text="J'adore Python !")
self.bouton = tk.Button(self.racine, text="Quitter",
fg="green", command=self.quit)
self.label.pack()
self.bouton.pack()

if __name__ == "__main__":
racine = tk.Tk()
racine.title("Ma Premiere App :-)")
app = Application(racine)
racine.mainloop()

Lignes 17 a 21. Commentons d'abord le programme principal : ici on crée la fenétre principale dans l'instance racine
puis on instancie notre classe en passant racine en argument.

Lignes 4 et 5. Ici réside la principale différence par rapport a ce que nous vous avons montré dans ce chapitre : en
ligne 4 on passe I'argument racine a notre constructeur, puis en ligne 5 on passe ce méme argument racine lors de
I'appel du constructeur de la classe tk.Frame (ce qui était inutile lorsqu’on héritait de la classe Tk).

Ligne 6. L'argument racine passé a la méthode .__init__() est finalement une variable locale. Comme il s’agit
de I'instance de notre fenétre principale a passer a tous nos widgets, il faut qu'elle soit visible dans toute la classe. La
variable self.racine est ainsi créée afin d'étre réutilisée dans d'autres méthodes.

Vous pourrez vous posez la question : « Pourquoi en ligne 4 I'argument par mot-clé racine=None prend la valeur
None par défaut? ». Et bien, c’'est parce que notre classe Application peut s'appeler sans passer d'instance de fenétre
Tk. Voici un exemple avec les lignes qui changent seulement (tout le reste est identique au code précédent) :

[...]
class Application(tk.Frame):
def __init__(self, racine=None):

tk.Frame.__1init__(self)
self.racine = racine
[...]
[...]
if __name__ == "__main__":
app = Application()
app.mainloop()

Dans un tel cas, I'argument racine prend la valeur par défaut None lorsque la méthode .__init__() de notre
classe est exécutée. L'appel au constructeur de la classe Frame en ligne 4 instancie automatiquement une fenétre Tk (car
cela est strictement obligatoire). Dans la suite du programme, cette instance de la fenétre principale sera self.racine
et il n'y aura pas de changement par rapport a la version précédente. Cette méthode reste toutefois peu intuitive car
cette instance de la fenétre principale self.racine vaut finalement None!

20. http://effbot.org/tkinterbook/grid.htm
21. https://infohost.nmt.edu/tcc/help/pubs/tkinter/web/grid.html
22. http://effbot.org/tkinterbook/place.htm

Cours de Python / Université Paris Cité / UFR Sciences du Vivant

http://effbot.org/tkinterbook/grid.htm
https://infohost.nmt.edu/tcc/help/pubs/tkinter/web/grid.html
http://effbot.org/tkinterbook/place.htm

25.7. Pour aller plus loin Chapitre 25. Fenétres graphiques et Tkinter

Hériter de la classe Frame ou de la classe Tk sont deux maniéres tout a fait valides pour créer des applications
Tkinter. Le choix de I'une ou de |'autre reléve plus de préférences que I'on acquiert en pratiquant, voire de convictions
philosophiques sur la maniére de programmer. Toutefois, nous pensons qu'hériter de la classe tk.Tk est une maniére
plus générale et plus compacte : tout ce qui concerne le fenétrage Tkinter se situera dans votre classe Application, et le
programme principal n'aura qu'a instancier |'application et a lancer le gestionnaire d'événements (les choses seront ainsi
mieux « partitionnées »). C'est donc la méthode que nous vous recommandons.

25.7.2.4 Passage d’arguments avec *args et *xkwargs

Si vous allez chercher de la documentation supplémentaire sur Tkinter, il se peut que vous tombiez sur ce style de
syntaxe lorsque vous créez votre classe contenant |'application graphique :

class MonApplication(tk.Tk):
def __init__(self, xargs, xxkwargs):
tk.Tk.__init__(self, *args, **xkwargs)
dci débute la construction de votre appli

[...]

programme principal

if __name__ == "__main__":
[...]
app = MonApplication()
[...]

Les arguments xargs et xxkwargs récupérent facilement tous les arguments « positionnels » et « par mot-clé ». Pour
plus de détails sur comment *args et *xkwargs fonctionnent, reportez-vous au chapitre 26 Remarques complémentaires
(en ligne).

Dans I'exemple ci-dessus, *args et xxkwargs sont inutiles car lors de I'instanciation de notre application, on ne passe
aucun argument : app = MonApplication(). Toutefois, on pourrait étre intéressé a récupérer des arguments passés
au constructeur, par exemple :

app = MonApplication(argl, arg2, optionl=vall, option2=val2)

Ainsi certains auteurs laissent toujours ces xargs et *xkwargs au cas ou on en ait besoin dans le futur. Cela est
bien utile lorsqu’on distribue notre classe a la communauté et que I'on souhaite que les futurs utilisateurs puissent passer
des arguments Tkinter au constructeur de notre classe.

Toutefois, méme si cela « ne colite rien », nous vous recommandons de ne pas mettre ces xargs et xxkwargs si vous
n'en avez pas besoin, comme nous vous |'avons montré dans les exemples de ce chapitre. Rappelons nous de la PEP 20
(voir le chapitre 16 Bonnes Pratiques en programmation Python), les assertions « Simple is better than complex » ou «
Sparse is better than dense » nous suggerent qu'il est inutile d’ajouter des choses dont on ne se sert pas.

25.7.2.5 Toujours préciser l'instance de la fenétre principale

Tkinter est parfois surprenant. Dans le code suivant, on pourrait penser que celui-ci n'est pas fonctionnel :

>>> dmport tkinter as tk
>>> bouton = tk.Button(text="Quitter")
>>> bouton.pack()

Pour autant, cela fonctionne et on voit un bouton apparaitre! En fait, Tkinter va automatiquement instancier la
fenétre principale, si bien qu'il n'est pas obligatoire de passer cette instance en argument d'un widget. A ce moment, on
peut se demander ol est passé cette instance. Heureusement, Tkinter garde toujours une filiation des widgets avec les
attributs .master et .children :

>>> racine = bouton.master

>>> racine

<tkinter.Tk object .>

>>> racine.children

{'!button': <tkinter.Button object .!button>}
>>> bouton["command"] = racine.destroy

Cours de Python / Université Paris Cité / UFR Sciences du Vivant

315

Chapitre 25. Fenétres graphiques et Tkinter 25.7. Pour aller plus loin

316

Ligne 1. On « récupére » l'instance de la fenétre principale dans la variable racine.

Les lignes 4 et 5 montrent que le bouton est un « enfant » de cette derniere.

Enfin, ligne 6, on réassigne la destruction de la fenétre lorsqu’'on clique sur le bouton.

Ces attributs .master et .children existent pour tous widgets et sont bien pratiques lorsqu’on crée de grosses
applications graphiques (ou on utilise souvent des widgets parents contenant d’autres widgets enfants). Une autre source
d'information sur les widgets se trouvent dans les méthodes dont le nom commence par winfo. Par exemple, la méthode
.winfo_toplevel() renvoie la méme information que I'attribut .master (une référence vers le widget parent).

Conseil
Méme si cela est possible, nous vous conseillons de systématiquement préciser |'instance de la fenétre principale lors
de la création de vos widgets.

25.7.2.6 Passage d’arguments a vos fonctions callback

Comme vu dans nos exemples ci-dessus, les fonctions callback ne prennent pas d'arguments ce qui peut se révéler
parfois limitant. Il existe toutefois une astuce qui utilise les fonctions lambda; nous expliquons brievement les fonctions
lambda dans le chapitre 26 Remarques complémentaires (en ligne). Toutefois, nous ne développons pas leur utilisation
avec Tkinter et les fonctions callback car cela dépasse le cadre de cet ouvrage. Pour de plus amples explications sur cette
question, vous pouvez consulter le site pythonprogramming >3 et le livre de Gérard Swinnen %4

25.7.2.7 Application Tkinter avec plusieurs pages

Dans ce chapitre d'introduction, nous vous avons montré des GUI simples avec une seule page. Toutefois, si votre
projet se complexifie, il se peut que vous ayez besoin de créer plusieurs fenétre différentes. Le livre de Gérard Swinnen 2°
et le site pythonprogramming ?® sont des bonnes sources pour commencer et voir concrétement comment faire cela.

25.7.3 Bibliographie pour aller plus loin

Voici quelques ressources que vous pouvez utiliser pour continuer votre apprentissage de Tkinter :

1. En anglais :

La Documentation officielle?” de Python.

Le manuel %8 de référence sur le site du MNT.

Le site? de Fredrik Lundh est également trés complet.

Pour avoir un exemple 3° rapide de code pour chaque widget.

Le livre3! de David Love Learn Tkinter By Example qui montre des exemples concrets d'applications Tkinter de

plus en plus complexes (pdf en libre téléchargement).

e Lesite 32 tres bien fait de Harisson (avec vidéos!) vous guidera dans la construction d'une GUI compléte et complexe
avec de nombreuses fonctions avancées (comme par exemple mettre des graphes matplotlib qui se mettent a jour
dans la GUI!).

2. En francais :

e Le site33 bien complet d'Etienne Florent.

e Le livre 3* de Gérard Swinnen qui montre de nombreux exemples d’applications tkinter (pdf en libre téléchargement).

23. https://pythonprogramming.net/passing-functions-parameters-tkinter-using-lambda/
24. https://inforef.be/swi/python.htm

25. https://inforef.be/swi/python.htm

26. https://pythonprogramming.net/change-show-new-frame-tkinter/

27. https://wiki.python.org/moin/TkInter

28. https://infohost.nmt.edu/tcc/help/pubs/tkinter/web/index.html

29. http://effbot.org/tkinterbook/

30. https://www. tutorialspoint.com/python/python_gui_programming.htm

31. https://github.com/Dvlv/Tkinter-By-Example

32. https://pythonprogramming.net/tkinter-depth-tutorial-making-actual-program/
33. http://tkinter.fdex.eu/index.html

34. https://inforef.be/swi/python.htm

Cours de Python / Université Paris Cité / UFR Sciences du Vivant

https://pythonprogramming.net/passing-functions-parameters-tkinter-using-lambda/
https://inforef.be/swi/python.htm
https://inforef.be/swi/python.htm
https://pythonprogramming.net/change-show-new-frame-tkinter/
https://wiki.python.org/moin/TkInter
https://infohost.nmt.edu/tcc/help/pubs/tkinter/web/index.html
http://effbot.org/tkinterbook/
https://www.tutorialspoint.com/python/python_gui_programming.htm
https://github.com/Dvlv/Tkinter-By-Example
https://pythonprogramming.net/tkinter-depth-tutorial-making-actual-program/
http://tkinter.fdex.eu/index.html
https://inforef.be/swi/python.htm

25.8. Exercices Chapitre 25. Fenétres graphiques et Tkinter

25.8 Exercices

Conseil

Pour ces exercices, créez des scripts puis exécutez-les dans un shell. Nous vous recommandons de concevoir une classe
pour chaque exercice.

25.8.1 Application de base

Concevez une application qui affiche I'heure dans un /abel (par exemple 09:10:55) et qui posséde un boutton quitter.
L'heure affichée sera celle au moment du lancement de |'application. Pour « attraper » I'heure, vous pourrez utiliser la
fonction strftime() du module time.

25.8.2 Horloge

Sur la base de I'application précédente, faites une application qui affiche I'heure dans un /label en se mettant a jour
sur I'heure de I'ordinateur une fois par seconde. Vous concevrez une méthode .mise_a_jour_heure() qui met a jour
I'heure dans le label et qui se rappelle elle-méme toutes les secondes (n'oubliez pas la méthode .after (), cf. rubrique
Un canvas animé dans une classe ci-dessus). Pour cette mise a jour, vous pourrez utiliser la méthode .configure(), par
exemple : self.label.configure(text=heure) ol heure est une chaine de caractéres représentant |'heure actuelle.

25.8.3 Compte a rebours

Créer une application affichant un compte a rebours dans un label. L'utilisateur choisira entre 1 et 240 minutes
en passant un argument au lancement du script, par exemple : python tk_compte_a_rebours.py 34 signifiera un
compte a rebours de 34’ (le programme vérifiera qu'il s'agit d’un entier entre 1 et 240 inclus). Il y aura un bouton «
Lancer » pour démarrer le compte a rebours et un boutton « Quitter » au cas ol on veuille quitter avant la fin. A la fin
du rebours, le programme affichera 10 fois la phrase « C'est fini!ll » dans le shell et quittera automatiquement le script.
Une image du résultat attendu est montrée dans la figure 25.7.

£3 Compte a rebours

00:01:49

Cuitter

Lancer

FIGURE 25.7 — Compte a rebours.

25.8.4 Triangle de Sierpinski

Le triangle de Sierpinski>° est une fractale classique. On se propose ici de la dessiner avec un algorithme tiré du jeu
du chaos3°. Celui-ci se décompose en pseudo-code de la facon suivante :

35. https://fr.wikipedia.org/wiki/Triangle_de_Sierpi%C5%84skii
36. https://fr.wikipedia.org/wiki/Jeu_du_chaos

Cours de Python / Université Paris Cité / UFR Sciences du Vivant

317

https://fr.wikipedia.org/wiki/Triangle_de_Sierpi%C5%84ski
https://fr.wikipedia.org/wiki/Jeu_du_chaos

Chapitre 25. Fenétres graphiques et Tkinter 25.8. Exercices

définir les 3 sommets d'un triangle isocele ou équilatéral

point <- coordonnées (x, y) du centre du trianle

dessiner(point) # un pixel de large

pour i de 0 a 25000:
sommet_tmp <- choisir un sommet du triangle au hasard
point <- calculer(coordonnées(x, y) du centre entre point et sommet_tmp)
dessiner (point)

Le rendu final attendu est montré dans la figure 25.8. On utilisera un canevas de 400x400 pixels. Il y a aura un
bouton « Quitter » et un bouton « Launch! » qui calculera et affichera 10000 points supplémentaires dans le triangle de
Sierpinski.

XSierpinski - O X
Cliguez sur Launch pour afficher 10000 points supplémentaires |

Quitter

Launch!

S 4

ﬂv'!'v, J!.vv. ﬂv.Yv,v‘va. ﬂvyy'v.

F1GURE 25.8 — Triangle de Sierpinski.

25.8.5 Polygone de Sierpinski (exercice +++)

Améliorer I'application précédente en proposant une liste de choix supplémentaire demandant a I'utilisateur de choisir
le nombre de sommets (de 3 a 10). Le programme calculera automatiquement la position des sommets. Pour prendre en
main le widget Listbox, voici un code minimal qui pourra vous aider. Celui-ci contient une Listbox et permet d'afficher
dans le terminal I'élément sélectionné. Nous vous conseillons de bien étudier le code ci-dessous et d'avoir résolu |'exercice
précédent avant de vous lancer!

318 Cours de Python / Université Paris Cité / UFR Sciences du Vivant

25.8. Exercices

Chapitre 25. Fenétres graphiques et Tkinter

import tkinter as tk

class MalListBox(tk.Tk):

if

def

def

app

app.
app.

__init__(self):

Instanciation fenétre Tk.

tk.Tk.__init__(self)

self.listbox = tk.Listbox(self, height=10, width=4)

self.listbox.pack()

Ajout des items a la listbox (entiers).

for i in range(l, 10+1):
Utilisation de ma méthode .insert(index, element)
Ajout de l'entier i (tk.END signifie en dernier).
self.listbox.insert(tk.END, 1)

Selection du premier élément de listbox.

self.listbhox.select_set(0)

Liaison d'une méthode quand clic sur listbox.

self.listbox.bind("<<ListboxSelect>>", self.clic_listbox)

clic_listbox(self, event):
Récupération du widget a partir de 1'objet event.
widget = event.widget

Récupération du choix sélectionné dans la listbox (tuple).

Par exemple renvoie " (5,) si on a cliqué sur '5°

selection = widget.curselection()

Récupération du nombre sélectionné (déja un entier).

choix_select = widget.get(selection[0])

Affichage.

print(f"Le choix sélectionné est {choix_select}, "
f'"son type est {type(choix_select)}")

name == "_main__":

= MaListBox()
title("MaListBox")
mainloop()

25.8.6 Projet simulation d’un pendule

Vous souhaitez aller plus loin aprés ces exercices de « mise en jambe » ? Nous vous conseillons d'aller directement au
chapitre 27 Mini projets (en ligne). Nous vous proposons de réaliser une application Tkinter qui simule le mouvement d'un
pendule. En réalisant une application compléte de ce genre, un peu plus conséquente, vous serez capable de construire
vos propres applications.

Cours de Python / Université Paris Cité / UFR Sciences du Vivant

319

CHAPITRE 26

Remarques complémentaires

Dans ce chapitre, nous présentons un certain nombre de points en vrac qui ne rentraient pas forcément dans les
autres chapitres ou qui étaient trop avancés au moment ol les chapitres étaient abordés. Outre quelques points mineurs,
nous abordons les grandes différences entre Python 2 et Python 3, les anciennes méthodes de formatage des chaines
de caracteéres, les fonctions lambda, les itérateurs, la gestion des exceptions, les passage d'arguments avancés dans les
fonctions et les décorateurs. Certains de ces points sont réellement avancés et nécessiteront d'avoir assimilé d’autres
notions avant de les aborder.

26.1 Différences Python 2 et Python 3

Python 3 est la version de Python qu'il faut utiliser.
Néanmoins, Python 2 a été employé pendant de nombreuses années par la communauté scientifique et vous serez
certainement confrontés a un programme écrit en Python 2. Voici quelques éléments pour vous en sortir :

26.1.1 Le mot-clé print / la fonction print()

En Python 2 print est un mot-clé du langage (en anglais statement) au méme titre que for, if, def, etc. Il s'utilise
ainsi sans parenthése. Par exemple :
>>> print 12
12
>>> print "girafe"
girafe

Par contre, en Python 3, print() est une fonction. Ainsi, si vous n'utilisez pas de parenthése, Python vous renverra
une erreur :

>>> print 12
File "<stdin>", 1line 1

print 12

A

SyntaxError: Missing parentheses 1in call to 'print'

26.1.2 Division d’entiers

En Python 3, la division de deux entiers, se fait naturellement, c’est-a-dire que |'opérateur / renvoie systématiquement
un float. Par exemple :

320

26.1. Différences Python 2 et Python 3 Chapitre 26. Remarques complémentaires

>>> 3 / 4
0.75

Il est également possible de réaliser une division entiere avec I'opérateur // :

>>> 3 // 4
0]

La division entiére renvoie finalement la partie entiére du nombre 0.75, c'est-a-dire 0.
Attention ! En Python 2, la division de deux entiers avec I'opérateur / correspond a la division entiére, c'est-a-dire le
résultat arrondi a I'entier inférieur. Par exemple :

>>> 3 /5
0
>>> 4 / 3
1

Faites trés attention a cet aspect si vous programmez encore en Python 2, c’est une source d'erreur récurrente.

26.1.3 La fonction range()

En Python 3, la fonction range() renvoie un objet de type range (voir les chapitres 5 Boucles et comparaisons et
14 Conteneurs) :
>>> range(3)

range (0, 3)

Comme on a vu au chapitre 5 Boucles et comparaisons, ces objets sont itérables produisant successivement les nombres
0, puis 1 puis 2 sur notre exemple :

>>> for i in range(3):
print(i)

=

En Python 2, la fonction range () renvoie une liste. Par exemple :

>>> range(3)
(e, 1, 2]

>>> range(2, 6)
[2, 3, 4, 5]

La création de liste avec range() était pratique, mais treés peu efficace en mémoire lorsque I'argument donné a
range() était un grand nombre.
D'ailleurs la fonction xrange () est disponible en Python 2 pour faire la méme chose que la fonction range() en
Python 3. Attention, ne vous mélangez pas les pinceaux !
>>> range(3)
[0, 1, 2]

>>> xrange(3)
xrange(3)

Remarque

Pour générer une liste d'entiers avec la fonction range () en Python 3, vous avez vu dans le chapitre 4 Listes qu'il
suffisait de |'associer avec la fonction 1ist(). Par exemple :

>>> list(range(10))
[O’ 17 2, 37 4’ 5) 6) 7, 8’ 9]

Cours de Python / Université Paris Cité / UFR Sciences du Vivant 321

Chapitre 26. Remarques complémentaires 26.2. Anciennes méthodes de formatage des chaines de caractéres

322

Conseil
Pour une comparaison exhaustive entre xrange () en Python 2 et range() en Python 3, vous pouvez lire ce trés
bon article! tiré du blog de Trey Hunner.

26.1.4 Fonction zip()

En Python 2, la fonction zip () renvoie une liste de tuples, alors qu'en Python 3 elle renvoie un itérateur :

>>>
>>> zip(range(4), range(10, 14))
[(o, 10), (1, 11), (2, 12), (3, 13)]

>>>
>>> zip(range(4), range(10, 14))
<zip object at 0x7f11423ffd86>

Vous pouvez lire la rubrique [térables, itérateurs, générateurs et module itertools un peu plus bas dans ce chapitre
pour en savoir plus sur les itérateurs.

26.1.5 Encodage et utf-8

En Python 3, vous pouvez utiliser des caracteres accentués dans les commentaires ou dans les chaines de caractéres.
Ce n’est pas le cas en Python 2. Si un caractére accentué est présent dans votre code, cela occasionnera une erreur
de ce type lors de |'exécution de votre script :

SyntaxError: Non-ASCII character '\xc2' in file xxx on line yyy, but no encoding
declared; see http://python.org/dev/peps/pep-0263/ for details

Pour éviter ce genre de désagrément, ajoutez la ligne suivante en tout début de votre script :

Si vous utilisez un shebang (voir rubrique précédente), il faudra mettre la ligne sur la deuxiéme
ligne (la position est importante?) de votre script :

Remarque
L'encodage utf-8 peut aussi étre déclaré de cette maniére :

mais c'est un peu plus long a écrire.

26.2 Anciennes méthodes de formatage des chaines de caractéres

Dans les premieres versions de Python jusqu'a la 2.6, il fallait utiliser I'opérateur %, puis de la version 2.7 jusqu'a la 3.5
il était plutdt conseillé d'utiliser la méthode . format (). Méme si les f-strings sont devenues la maniére conseillée pour
mettre en place |'écriture formatée, ces deux anciennes maniéres, sont encore pleinement compatibles avec les versions
modernes de Python.

Méme si elle fonctionne encore, la premiére maniére avec |'opérateur % est maintenant clairement déconseillée pour un
certain nombre de raisons 3. Néanmoins, nous rappelons ci-dessous son fonctionnement, car il se peut que vous tombiez
dessus dans d'anciens livres ou si vous lisez de vieux programmes Python.

1. https://treyhunner.com/2018/02/python-3-s-range-better-than-python-2-s-xrange/
2. http://www.python.org/dev/peps/pep-0263/
3. https://docs.python.org/fr/3/library/stdtypes.html?highlight=sprintf#printf-style-string-formatting

Cours de Python / Université Paris Cité / UFR Sciences du Vivant

https://treyhunner.com/2018/02/python-3-s-range-better-than-python-2-s-xrange/
http://www.python.org/dev/peps/pep-0263/
https://docs.python.org/fr/3/library/stdtypes.html?highlight=sprintf#printf-style-string-formatting

26.2. Anciennes méthodes de formatage des chaines de caractéres Chapitre 26. Remarques complémentaires

La deuxiéme maniére avec la méthode .format() est encore utilisée et reste tout a fait valide. Elle est clairement
plus puissante et évite un certain nombre de désagréments par rapport a |'opérateur %. Vous la croiserez sans doute
de temps en temps dans des programmes et ouvrages plus ou moins récents. Heureusement elle a un fonctionnement
relativement proche des f-strings, donc vous ne serez pas totalement perdus!

Enfin, nous indiquons a la fin de cette rubrique nos conseils sur quelle méthode utiliser.

26.2.1 L’opérateur %

On a vu avec les entiers que I'opérateur % ou modulo renvoyait le reste d'une division entiere. Cet opérateur existe

aussi pour les chaines de caractéres mais il met en place I'écriture formatée. En voici un exemple :

>>> x = 32

>>> nom = "John"

>>> print("%s a %d ans" % (nom, x))

John a 32 ans

>>> nb_G = 4500

>>> nb_C = 2575

>>> prop_GC = (nb_G + nb_C) /14800

>>> print("On a %d G et %d C -> prop GC = %.2f" % (nb_G, nb_C, prop_GC))

On a 4500 G et 2575 C -> prop GC = 0.48

La syntaxe est légerement différente. Le symbole % est d'abord appelé dans la chaine de caractéres (dans I'exemple
ci-dessus %d, %d et %.2f) pour :

e Désigner I'endroit ou sera placée la variable dans la chaine de caractéres.

e Préciser le type de variable a formater, d pour un entier (i fonctionne également) ou f pour un float.

e Eventuellement pour indiquer le format voulu. Ici .2 signifie une précision de deux décimales.

Le signe % est rappelé une seconde fois (% (nb_G, nb_C, prop_GC)) pour indiquer les variables a formater.

26.2.2 La méthode .format()

Depuis la version 2.7 de Python, la méthode .format() a apporté une nette amélioration pour mettre en place
I"écriture formatée. Celle-ci fonctionne de la maniére suivante :

>>> x = 32

>>> nom = "John"

>>> print("{} a {} ans".format(nom, x))

John a 32 ans

>>> nb_G = 4500

>>> nb_C = 2575

>>> prop_GC = (nb_G + nb_C) /14800

>>> print("On a {} G et {} C -> prop GC = {:.2f}".format(nb_G, nb_C, prop_GC))
On a 4500 G et 2575 C -> prop GC = 0.48

Dans la chaine de caracteres, les accolades vides {} précisent |'endroit ou le contenu de la variable doit &tre inséré.
Juste apres la chaine de caractéres, l'instruction . format(nom, x) fournit la liste des variables a insérer, d’abord
la variable nom puis la variable x.

e On peut éventuellement préciser le formatage en mettant un caractére deux-points : puis par exemple ici .2f qui

signifie deux chiffres apres la virgule.
e La méthode . format() agit sur la chalne de caractéres a laquelle elle est attachée par le point.
Tout ce que nous avons vu avec les f-strings sur la maniére de formater |'affichage d'une variable (aprés les :
au sein des accolades) est identique avec la méthode .format(). Par exemple {:.2f}, {:0>6d}, {:.6e}, etc,

fonctionneront de la méme maniere. La différence notable est qu'on ne met pas directement le nom de la variable au
sein des accolades. Comme pour I'opérateur %, c'est I'emplacement dans les arguments passés a la méthode . format()
qui dicte quelle variable doit étre remplacée. Par exemple, dans "{} {} {}".format(bidule, machin, truc), les
premiéres accolades remplaceront la variable bidule, les deuxiémes la variable mach-in, les troisiémes la variable truc.

Le formatage avec la méthode .format() se rapproche de la syntaxe des f-strings (accolades, deux-points), mais
présente |'inconvénient — comme avec 'opérateur % — de devoir mettre la liste des variables tout a la fin, alourdissant
ainsi la syntaxe. En effet, dans I'exemple avec la proportion de GC, la ligne équivalente avec une f-string apparait tout
de méme plus simple a lire :

>>> print(f"On a {nb_G} G et {nb_C} C -> prop GC = {prop_GC:.2f1}")
On a 4500 G et 2575 C —-> prop GC = 0.48

Cours de Python / Université Paris Cité / UFR Sciences du Vivant

323

Chapitre 26. Remarques complémentaires 26.3. Fonctions lambda

Conseil

Pour conclure, ces deux anciennes facons de formater une chaine de caracteres avec I'opérateur % ou la méthode
.format() vous sont présentées a titre d'information. La premiére avec |I'opérateur % est clairement déconseillée. La
deuxiéme avec la méthode .format() est encore tout a fait valable. Si vous débutez Python, nous vous conseillons
fortement d'apprendre et d'utiliser les f-strings. C'est ce que vous rencontrerez dans la suite de ce cours. Si vous connaissez
déja Python et que vous utilisez la méthode . format (), nous vous conseillons de passer aux f-strings. Depuis que nous
les avons découvertes, aucun retour n'est envisageable pour nous tant elles sont puissantes et plus claires a utiliser !

Pour aller plus loin

Enfin, si vous souhaitez aller plus loin, voici deux articles (en anglais) trés bien faits sur le site RealPython : sur
I'écriture formatée* et sur les f-strings®

26.3 Fonctions lambda
26.3.1 Définition

Définition

Une fonction lambda est une fonction qui s'écrit sur une ligne. En Python, il s'agit du moyen d'implémenter une
fonction anonyme® (en anglais anonymous function), c'est-a-dire, une fonction qui est la plupart du temps non reliée
a un nom (d'ou le terme anonyme). Une fonction lambda s'utilise en général a la volée. On parle aussi d'expressions
lambda utilisées pour fabriquer des fonctions lambda.

Voici un premier exemple :

>>> Tlambda x: x**2

<function <lambda> at 0x7fcbd9c58b80>
>>> (lambda x: xx%2)(4)

16

>>> (lambda x: x*%2)(10)

100

e Ligne 1. On a ici une expression lambda typique définissant une fonction lambda. La syntaxe est (dans |'ordre) :
le mot-clé (statement) lambda, zero ou un ou plusieurs argument(s), deux-points, une expression utilisant ou pas
les arguments.

e Ligne 2. Python confirme qu'il s'agit d'une fonction.

e Lignes 3 a 6. Pour utiliser la fonction lambda, pour l'instant, on la met entre parenthéses et on utilise un autre
jeu de parenthéses pour |'appeler et éventuellement passer des arguments.

Attention

Une fonction lambda ne s'écrit que sur une ligne. Si vous essayez de I'écrire sur plusieurs lignes, Python lévera une
exception SyntaxError: invalid syntax.

Comme pour les fonctions classiques, le nombre d'arguments est variable et doit étre cohérent avec |'appel :

4. https://realpython.com/python-string-formatting
5. https://realpython.com/python-f-strings/
6. https://en.m.wikipedia.org/wiki/Anonymous_function

324 Cours de Python / Université Paris Cité / UFR Sciences du Vivant

https://realpython.com/python-string-formatting
https://realpython.com/python-f-strings/
https://en.m.wikipedia.org/wiki/Anonymous_function

26.3. Fonctions lambda Chapitre 26. Remarques complémentaires

>>> (lambda: 1/2)()

0.5

>>> (lambda x, y: x + y) (1, 2)
3

>>> (lambda x, y: x + y)(4, 5)
9

>>> (lambda: 1/2) (5)
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
TypeError: <lambda>() takes 0 positional arguments but 1 was given
>>> (lambda x, y: x + y)(4)
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
TypeError: <lambda>() missing 1 required positional argument: 'y'

e Ligne 1. Fonction lambda a zéro argument.

e Lignes 3 et 5. Fonction lambda a deux arguments.

e Lignes 7 a 10. Le nombre d'argument(s) est incorrect et génére une erreur. Dans cet exemple, on passe un
argument alors que la fonction lambda créée ici n’en prend pas.

e Lignes 11 a 14. Le nombre d'argument(s) est incorrect et génére une erreur. Dans cet exemple, on passe un
argument alors que la fonction lambda créée ici en prend deux.

26.3.2 Assignation d’une fonction lambda a un nom?
Bien que cela soit déconseillé, il est possible d'assigner une fonction lambda a un nom de variable :

>>> carre = lambda x: xx*2
>>> carre(3)
9

L'équivalent avec une fonction classique serait :

>>> def carre(x):
return x**x2

>>> carre(9)
81

Dans les deux cas I'appel est identique, mais la fonction lambda requiére une syntaxe a une ligne lors de sa définition.

Méme si on peut le faire, les dévelopeurs déconseillent toutefois d'assigner une fonction lambda a un nom dans
la PEP87. Une des raisons est que si une erreur est générée, |'interpréteur ne renvoie pas le numéro de ligne dans la
Traceback :

>>> dnverse = lambda: 1/0

>>> dnverse()

Traceback (most recent call last):
File "<stdin>", 1line 1, in <module>
File "<stdin>", line 1, in <lambda>

ZeroDivisionError: division by zero

Ligne 5. L'indication de la ligne pour I'erreur dans la fonction lambda (/ine 1) correspond a celle de I'appel et non
pas de la définition.
Alors qu'avec une fonction classique :

>>> def dnverse():
return 1/0

>>> dnverse()

Traceback (most recent call last):
File "<stdin>", 1line 1, in <module>
File "<stdin>", 1line 2, in dinverse

ZeroDivisionError: division by zero

Ligne 5. Cette fois-ci, la Traceback indique bien la bonne ligne (line 2) dans la fonction.

7. https://peps.python.org/pep-0008/

Cours de Python / Université Paris Cité / UFR Sciences du Vivant

325

https://peps.python.org/pep-0008/

Chapitre 26. Remarques complémentaires 26.3. Fonctions lambda

Conseil

Pour cette raison, n'assignez pas une fonction lambda a un nom, mais utilisez la seulement a la volée (voir ci-dessous).
Une autre raison est que cela peut nuire a la lisibilité. Si une fonction lambda s'écrit en une ligne, c'est bien pour qu’on
puisse la lire quand elle est utilisée.

26.3.3 Utilité des fonctions lambda

Jusqu’a maintenant nous avons défini les fonctions lambda et montré ce qu'il ne fallait pas faire. Vous vous posez
sans doute la question, mais a quoi servent-elles vraiment ? Nous vous montrons ici deux utilisations principales.
La premiére est qu’elles sont utiles pour implémenter des concepts de programmation fonctionnelle®. Dans ce para-

N

digme de programmation, on cherchera a « emboiter » les fonctions les unes dans les autres. Nous avions déja croisé
cette idée avec la fonction map () dans le chapitre 11 Plus sur les chaines de caractéres. Celle-ci permet d’appliquer une
fonction a tous les éléments d'un objet itérable. Par exemple, convertir en entier les différents éléments d'une chaine de
caracteres :

>>> Tligne = "3 5 -10"

>>> list(map(int, ligne.split()))
[37 5, _lo]

Ligne 2. On a converti I'objet map en liste pour voir ce qu'il contenait.

L'utilisation impliquant une fonction lambda permet par exemple d'appliquer une opération a tous les éléments d'une
liste :

>>> listel = [3, 5, -10]

>>> Tlist(map(lambda x: x**2, listel))
[9, 25, 100]

>>> list(map(lambda x: 1/x, Llistel))
[6.3333333333333333, 0.2, -0.1]

Lignes 2 et 4. La fonction lambda permet de lire clairement quelle opération on réalise plutét que de se référer a
une fonction classique se trouvant a un autre endroit. Ainsi, cela améliore la lisibilité.

Cela vous rappelle peut-étre ce qu'on a rencontré avec les objets NumPy et les opérations vectorielles :

>>> dmport numpy as np

>>> arrayl = np.arange(10)

>>> arrayl

array([o, 1, 2, 3, 4, 5,6, 7, 8, 91)
>>> arrayl % 2

array([6, 2, 4, 6, 8, 10, 12, 14, 16, 18])
>>>

>>> Tlistel = list(range(10))

>>> Tlistel

[07 1, 2: 3; 4, 5, 6: 7, 8: 9]

>>> Tist(map(lambda x: x*2, listel))
[e, 2, 4, 6, 8, 10, 12, 14, 16, 18]

Ligne 5. Nativement, I'opération arrayl x 2 se fait vectoriellement (élément par élément) avec un array NumPly.
Ligne 11. La fonction map () applique I'opération * 2 de la lambda sur tous les éléments de la liste. Ainsi, on obtient
le méme effet que sur I'array NumPy.
Bien que cela s’avere pratique, nous verrons dans la rubrique suivante sur les itérateurs qu'il existe une syntaxe plus
Pythonique avec les listes de compréhensions et les expressions génératrices.
La deuxieme grande utilité des fonctions lambda concerne leur utilisation pour faire des tris puissants. Dans le chapitre
14 Conteneurs, nous avions vu les tris de dictionnaires par valeurs :
>>> dico = {"a": 15, "b": 5, "c":20}
>>> sorted(dico, key=dico.get)
U7, fad, Uel)

8. https://fr.wikipedia.org/wiki/Programmation_fonctionnelle

326 Cours de Python / Université Paris Cité / UFR Sciences du Vivant

https://fr.wikipedia.org/wiki/Programmation_fonctionnelle

26.3. Fonctions lambda Chapitre 26. Remarques complémentaires

Ligne 2. On passe a |'argument par mot-clé key la callback dico. get (cette méthode renvoie initialement les valeurs
d'un dictionnaire). Cela permet finalement de trier par ce que renvoie cette méthode, a savoir les valeurs.

Cet argument par mot-clé peut prendre d'autres callback, par exemple len. Dans I'exemple suivant, on prend 10 mots
au hasard dans le dictionnaire et on les trie par leur longueur :

>>> mots = ['étudier', 'pie-griéche', 'figurerait', 'retraitait', 'allégerais',
'distribuent', 'affilierait', 'ramassa', 'galettes', 'connu']

>>> sorted(mots, key=len)

['connu', 'étudier', 'ramassa', 'galettes', 'figurerait', 'retraitait',

'allégerais', 'pie-griéche', 'distribuent', 'affilierait']

Bien siir, on peut utiliser aussi une fonction lambda. Celle-ci va nous permettre de passer une fonction de tri a la
volée au moment de I'appel de la fonction sorted(). Par exemple, si on reprend le méme exemple que le dictionnaire
mais sous forme d'une liste de tuples :

listel = [('a', 15), ('b', 5), ('c', 20)]

Comment trier en fonction du deuxiéme élément de chaque tuple? Réponse, avec une fonction lambda bien sir!
Regardez :

>>> sorted(listel, key=lambda x: x[1])
[('b', 5), ('a', 15), ('c', 20)]

Autre exemple, on souhaite trier une liste d'entiers aléatoires non pas par leur valeur, mais par le résultat de la fonction
X**x2 .

>>> listel = [-5, 2, 5, 8, 6, 3, -9, 4, -10, 2]
>>> sorted(listel, key=lambda x: x**x2)
[2’ 2, 3, 4, -5, 5, 6, 8, -9, -10]

Pour comprendre comment le tri est opéré en ligne 3, voici la liste initiale et une autre liste avec les carrés :
>>> listel
[-5, 2, 5, 8, 6, 3, -9, 4, -10, 2]
>>> [x*x*x2 for x 1in listel]
[25, 4, 25, 64, 36, 9, 81, 16, 100, 4]

Le tri de listel ci-dessus est bien effectué en fonction des valeurs montrées en ligne 4.
L'agument par mot-clé key existe dans d'autres fonctions ou méthodes. Bien siir il existe dans la méthode .sort()
qui trie les listes sur place. Mais aussi, dans les fonctions natives min() et max (). Enfin, on le croise dans la fonction

groupby () du module itertools (voir rubrique suivante). Dans tous ces cas, on peut utiliser une fonction lambda pour
I'argument key.

Par exemple, dans le code suivant :

>>> liste = ['baccalauréat', 'abaissera', 'barricadé', 'zouave', 'tabac',
'typographie', 'dactylographes', 'éclipse']

>>> min(liste)

'abaissera’

>>> max(liste)

'éclipse’

>>> min(liste, key=lambda x: x.count("a"))
'éclipse’

>>> max(liste, key=lambda x: x.count("a"))
'baccalauréat’

e Ligne 1. On prend une liste de mots du dictionnaire.

e Lignes 2 et 4. Les fonctions min() et max () considérent I'ordre ASCII par défaut. Elles renvoient le premier et
dernier élément de la liste apres un tel tri.

e Lignes 6 et 8. Comprenez-vous la régle que nous avons utilisée avec la lambda?
Regardons comment se passe le tri :

>>> Tliste.sort(key=lambda x: x.count("a"))

>>> Tliste
['éclipse', 'zouave', 'typographie', 'barricadé', 'tabac', 'dactylographes',
'abaissera', 'baccalauréat']

Cours de Python / Université Paris Cité / UFR Sciences du Vivant 327

Chapitre 26. Remarques complémentaires 26.4. Itérables, itérateurs, générateurs et module itertools

328

Vous I'aurez sans doute compris, avec notre fonction lambda, nous avons trié en fonction du nombre de lettres a dans
chaque mot!

26.3.4 Conclusion

Nous avons vu que les fonctions lambda permettaient des définitions de fonction rapidement sur une ligne. Il faut
absolument éviter de les assigner a un nom. Elles ont toute leur utilité lorsqu’'on les utilise avec map () pour appliquer
une opération a tous les éléments d'un conteneur, ou pour des tris puissants avec sorted().

Pour aller plus loin

Pour aller plus loin, vous pouvez consulter ces quelques articles : Dataquest °, Trey Hunner 1%, RealPython ! et Dan
Bader 1.

26.4 Itérables, itérateurs, générateurs et module itertools

26.4.1 Itérables et itérateurs

Dans le chapitre 14 Conteneurs, nous avons défini le mot itérable lorsque nous avions un objet de type conteneur sur
lequel on pouvait itérer (comme les listes, tuples, dictionnaires, etc.). En général, nous le faisions avec une boucle for.
Voyons ce qu'est maintenant un itérateur.

Définition

Un itérateur est un objet Python qui permet d’itérer sur une suite de valeurs avec la fonction next () jusqu'a temps
qu’elles soient épuisées. Si on itére sur une partie des valeurs seulement, I'itérateur garde en mémoire la ou il s'est arrété.
Si on le resollicite avec un next() il repartira de I'élément suivant. Une régle est toutefois importante : les valeurs ne
peuvent étre parcourues qu'une seule fois.

On peut générer un itérateur avec la fonction iter () a partir de n'importe quel conteneur :

>>> animaux = ["chien", "chat", "souris"]
>>> qterateur = dter(animaux)

>>> dqterateur

<list_iterator object at 0x7f917e907a30>

Une fois I'itérateur généré, on peut accéder a I'élément suivant avec la fonction next() :

>>> next(iterateur)

'chien’

>>> next(iterateur)

'chat'

>>> next(iterateur)

'souris'

>>> next(iterateur)

Traceback (most recent call last):
File "<stdin>", line 1, in <module>

StopIteration

Quand il n'y a plus de valeurs sur lesquelles itérer, la fonction next () léve une exception StopIteration. En général,
on n'utilisera pas les itérateurs de cette maniére, mais plutét avec une boucle for ce qui évitera cette levée d'exception :

9. https://www.dataquest.io/blog/tutorial-Tlambda-functions-in-python/
10. https://www.pythonmorsels.com/lambda-expressions/

11. https://realpython.com/python-Tlambda/

12. https://dbader.org/blog/python-lambda-functions

Cours de Python / Université Paris Cité / UFR Sciences du Vivant

https://www.dataquest.io/blog/tutorial-lambda-functions-in-python/
https://www.pythonmorsels.com/lambda-expressions/
https://realpython.com/python-lambda/
https://dbader.org/blog/python-lambda-functions

26.4. Itérables, itérateurs, générateurs et module itertools Chapitre 26. Remarques complémentaires

>>> dterateur = dter(animaux)
>>> for elt in iterateur:
print(elt)

chien
chat
souris

On peut transformer un objet de type itérateur en un objet de type séquentiel, par exemple en tuple :

>>> dterateur = dter(animaux)
>>> tuple(iterateur)
('chien', 'chat', 'souris')

Le point important est qu'une fois toutes les valeurs parcourues, I'itérateur est épuisé et ne renvoie plus rien :

>>> dterateur = iter(animaux)
>>> tuple(iterateur)
('chien', 'chat', 'souris')
>>> tuple(iterateur)

O

Ainsi, on ne pourra parcourir I'ensemble des valeurs d'un itérateur qu'une fois.

A ce stade, on pourrait se dire que la construction d'un itérateur a partir d’une liste ci-dessus est inutile puisqu’on
peut itérer directement sur la liste avec une boucle for. Toutefois, lorsqu’on réalise une telle boucle, il y a un itérateur
qui est généré implicitement méme si on ne s’en rend pas compte. Pour prouver cela, essayons la fonction next () avec
une liste :

>>> next(animaux)
Traceback (most recent call last):

File "<stdin>", 1line 1, in <module>
TypeError: 'list' object is not an diterator

Ceci n'est pas possible car une liste n'est pas un itérateur. Alors pourquoi peut-on itérer dessus avec une boucle for ?
Et bien, c’est parce que I'objet de type liste posséde une méthode dunder spéciale nommée .__iter__(). Celle-ci géneére
un itérateur a partir d’elle-méme permettant d'itérer sur ses éléments. L'objet itérateur ainsi généré possédera une autre
méthode dunder spéciale .__next__() permettant de passer a |I'élément suivant lorsqu’on itére dessus.

Remarque

Pour rappel, les méthodes dunder des classes ont été définies dans la rubrique 24.2.2 Méthodes magiques ou dunder
methods du chapitre 24 Avoir plus la classe avec les objets.

Lorsque vous construirez votre propre objet itérable, il faudra écrire une classe contenant ces deux méthodes dunder
et I'objet sera de facto un itérateur et itérable. Pour vous donnez une premiére idée, voici une classe minimale créant un
objet itérateur sur les lettres de I'alphabet :

class Alphabet:
def __init__(self):
self.current = 97 # ASCII code for a.

def __diter__(self):
return self

def __next__(self):
if self.current > 122: # ASCII code for z.
raise StopIteration
letter = chr(self.current)
self.current += 1
return letter

e Ligne 3. Dans le constructeur, on crée un attribut d’instance self.current qui gardera I'état de I'itérateur. On
I'initialise a 97 correspondant au code ASCII de la lettre a.

Cours de Python / Université Paris Cité / UFR Sciences du Vivant 329

Chapitre 26. Remarques complémentaires

26.4. Itérables, itérateurs, générateurs et module itertools

e Lignes 5 et 6. La méthode dunder .

__iter__() est trés simple a écrire. Elle renvoie self correspondant a

I'itérateur lui-méme. Si cette méthode n'est pas présente, |I'objet n'est pas itérable.

e Lignes 8 a 13. La méthode dunder .

__next__() s'occupe de passer a |'élément suivant et de garder une mémoire

de 13 ol I'itérateur est arrivé. Cela se passe en quatre étapes : i) levée d'une exception StopIteration si on est
arrivé au bout, ii) détermination de la lettre actuelle, iii) incrémenter le self.current de 1 pour l'itération suivante

et iv) retourner la lettre actuelle.

Si on sauve cette classe dans un fichier iterator.py, voici comment on pourrait |'utiliser :

>>> qmport iterator

>>> dter_alphabet = iterator.Alphabet()

>>> qdter_alphabet

<iterator.Alphabet object at 0x7f308edc70b0>

>>> for lettre in diter_alphabet:
print(lettre)

Koo -
i

z
>>> Tlist(iter_alphabet)
[]

A nouveau, une fois I'itérateur épuisé, il ne renvoie plus rien. Bien siir, cela représente un exemple trés simple et la
plupart du temps on créera ses propres classes itérateurs en implémentant de nombreuses fonctionnalités et méthodes sup-
plémentaires. Pour créer un itérateur basique comme celui-ci sur I'alphabet, il est plus commode d'utiliser les générateurs

(voir rubrique Générateurs ci-dessous).

Pour aller plus loin

Pour aller plus loin sur comment fonctionne les itérateurs, vous pouvez lire ces articles de Dan Bader '3, Trey Hunner

14

et du site RealPython'. Concernant la sémantique, cet article'® de Trey Hunner explique pourquoi les objets range ne

sont pas des itérateurs.

26.4.2 Autres fonctions builtins renvoyant des itérateurs

Dans les chapitres précédents, nous avons déja croisé des itérateurs sans le savoir, car nous ne vous l'avons pas
toujours précisé explicitement ! Dans le chapitre 5 Boucles avec la fonction enumerate(), dans le chapitre 11 Plus sur
les chaines de caractéres avec la fonction map () et dans le chapitre 12 Plus sur les listes avec la fonction zip (). Ces
trois fonctions renvoient des itérateurs qui sont épuisés une fois utilisés :

>>> animaux = ["chien", "chat",
>>> obj_enum = enumerate(animaux)
>>> obj_enum

"souris"]

<enumerate object at Ox7f917ebf93a0>

>>> tuple(obj_enum)
((0, 'chien'), (1,
>>> tuple(obj_enum)

@)

'chat'), (2,

'souris'))

13.
14.
15.
16.

330

https://dbader.org/blog/python-iterators
https://treyhunner.com/2018/06/how-to-make-an-iterator-in-python/
https://realpython.com/python-iterators-iterables/
https://treyhunner.com/2018/02/python-range-is-not-an-iterator/

Cours de Python / Université Paris Cité / UFR Sciences du Vivant

https://dbader.org/blog/python-iterators
https://treyhunner.com/2018/06/how-to-make-an-iterator-in-python/
https://realpython.com/python-iterators-iterables/
https://treyhunner.com/2018/02/python-range-is-not-an-iterator/

26.4. Itérables, itérateurs, générateurs et module itertools

Chapitre 26. Remarques complémentaires

>>> line = "9 11 25 92 49 98 62 72 63 74"
>>> obj_map = map(int, line.split())

>>> obj_map

<map object at 0x7f029e47b9a0>

>>> min(obj_map)

9

>>> Tlist(obj_map)

[]

>>> obj_zip = zip(range(5), range(5, 10))
>>> list(obj_zip)

[, 5), (1, 6), (2, 7), (3, 8), (4, 9)]
>>> list(obj_zip)

[]

Lorsque ces fonctions avaient été évoquées, nous n'avions pas vu ce probléme d'épuisement car elles étaient utilisées

directement dans une boucle. Par exemple :

>>> for i, j in zip(range(5), range(5, 10)):

print(i, j)

A WNHO:
O oo~ WU,

s 7

Ainsi, I'itérateur était généré a chaque fois qu’on lancait la boucle et n'était utilisé qu'une seule fois.

Une derniere fonction renvoyant un itérateur qui existe nativement dans les fonctions builtins de Python est reversed
(). Celle-ci prend en argument un objet de type séquence (liste, tuple, chaine de caractére ou range) et renvoie un itérateur

parcourant la séquence en sens inverse :

>>> reversed(range(5))
<range_iterator object at 0x7f8b34227780>
>>> rev_iterateur = reversed(range(5))
>>> for i in rev_iterateur:

print(i)

HNW>D-

(o)

>>> list(rev_iterateur)

(]

Pour finir, examinons les propriétés des itérateurs que nous avions vues pour les conteneurs. Un objet itérateur est
bien siir iterable et ordonné, par contre il n'est pas indexable. Il ne supporte pas la fonction len(), supporte I'opérateur

in et il est hachable.

>>> animaux = ["chien", "chat", "souris"]
>>> dterateur = dter(animaux)
>>> len(iterateur)
Traceback (most recent call last):
File "<stdin>", line 1, in <module>

TypeError: object of type 'list_iterator' has no len()

>>> dterateur[1]
Traceback (most recent call last):
File "<stdin>", 1line 1, in <module>

TypeError: 'list_iterator' object is not subscriptable

>>> "chien" 1in dterateur
True

>>> hash(iterateur)
8741535406492

Cours de Python / Université Paris Cité / UFR Sciences du Vivant

331

Chapitre 26. Remarques complémentaires 26.4. Itérables, itérateurs, générateurs et module itertools

Attention

L'utilisation de I'opérateur in pour un test d'appartenance sur un itérateur épuise ce dernier (au méme titre que
I'utilisation de I'itérateur dans une boucle ol avec la fonction 1ist()) :

>>> line = "9 11 25 92 49 98 62 72 63 74"
>>> obj_map = map(int, line.split())

>>> 9 1in obj_map

True

>>> 9 1in obj_map

False

Ligne 3, on fait un premier test qui parcourt I'itérateur et renvoie True. Méme si la valeur 9 était présente initialement,
le deuxieme test, ligne 5, renvoie False car l'itérateur est épuisé.

26.4.3 Module itertools

Il existe de nombreuses fonctions générant des itérateurs. Le module itertools!” en est particulierement riche.
Nous n’allons pas faire une liste exhaustive du contenu de ce module, mais nous parlerons de quelques fonctions qui nous
paraissent utiles, notamment product () '8. Son fonctionnement fait penser au produit extérieur *° (outer product en
anglais) de I'algébre tensorielle. Nous montrerons également la fonction groupby () ?C permettant de faire des regrou-
pements puissants. Enfin, nous évoquerons rapidement les itérateurs infinis comme la fonction count() a la fin de la
rubrique.

26.4.3.1 Fonction product()

La fonction product () prend (au moins) deux conteneurs en argument et génére toutes les combinaisons possibles
d'association :

>>> dmport tdtertools

>>> predateurs = ["lion", "requin", "tigre"]

>>> proies = ["souris", "oiseau", '"gazelle"]

>>> for pred, proie in itertools.product(predateurs, proies):
print(pred, proie)

lion souris
lion oiseau
lion gazelle
requin souris
requin oiseau
requin gazelle
tigre souris
tigre oiseau
tigre gazelle

Il est possible de passer plus de deux conteneurs a la fonction, par exemple :

>>> ma_liste = [1, 2]
>>> Tlist(itertools.product(ma_liste, ma_liste, ma_liste))
[, 1, 1), (1, 1, 2), (1, 2, 1), (1, 2, 2), (2, 1, 1), (2, 1, 2), (2, 2, 1), (2, 2, 2)]

On a ici toutes les combinaisons possibles entre les trois objets ma_1liste passés en argument.

Avec deux conteneurs en argument, cette fonction product() revient a faire une double boucle sur les deux conte-
neurs. Elle est donc particulierement adaptée pour parcourir toutes les éléments d'un tableau. Par exemple, la commande
suivante parcourera toutes les cases d'un échiquier :

17. https://docs.python.org/fr/3.12/library/itertools.html

18. https://docs.python.org/fr/3.12/library/itertools.html#itertools.product
19. https://en.wikipedia.org/wiki/Outer_product

20. https://docs.python.org/fr/3.12/library/itertools.html#itertools.groupby

332 Cours de Python / Université Paris Cité / UFR Sciences du Vivant

https://docs.python.org/fr/3.12/library/itertools.html
https://docs.python.org/fr/3.12/library/itertools.html#itertools.product
https://en.wikipedia.org/wiki/Outer_product
https://docs.python.org/fr/3.12/library/itertools.html#itertools.groupby

26.4. Itérables, itérateurs, générateurs et module itertools Chapitre 26. Remarques complémentaires

>>> parcours_echiquier = ditertools.product("abcdefgh", "12345678")
>>> parcours_echiquier
<jtertools.product object at 0x7f192e412040>
>>> for col, ligne 1in parcours_echiquier:
print(col, ligne)

jm e pl e IR O R O Y
L

Mais attention, la fonction product () est un itérateur. Donc quand elle est épuisée, on ne peut plus I'utiliser :

>>> list(parcours_echiquier)

[]

Une utilisation particulierement utile de product() en bioinformatique peut étre de générer toutes les séquences
d'ADN possibles (mots) de deux lettres :
>>> bases = "atgc"
>>> list(itertools.product(bases, bases))
[('al, la')’ ('al’ Itl)’ ('a" Igl)’ ('a" !
('t', 'e"), ('g', 'a'), ('g', 'tY), ('g', !
('c', 'g"), ('c', 'ch)]

De méme, itertools.product(bases, bases, bases) itérera sur tous les mots de trois lettres possibles. Ou en-
core, si on définit une chaine de caractéres contenant les vingt acides aminés comme suit aas = "acdefghiklmnpgrstvwy
", itertools.product(aas, aas) produira tous les dipeptides possibles.

26.4.3.2 Fonction groupby ()

La fonction groupby () permet de faire des regroupements puissants. Pour vous montrer son fonctionnement, nous
allons prendre un exemple. Nous partons d’une liste de mots que nous triions par longueur avec |'argument key auquel
on passe la callback len (voir chapitre 12 Plus sur les listes) :

>>> mots = ["bar", "babar", "bam", "ba", "bababar", "barre", "bla", "barbare"]
>>> mots.sort(key=1len)

>>> mots

['ba', 'bar', 'bam', 'bla', 'babar', 'barre', 'bababar', 'barbare']

La fonction groupby () crée un itérateur particulier :

>>> qtertools.groupby(mots, key=1len)
<jtertools.groupby object at 0x7f467a6d0cad>
>>> list(itertools.groupby(mots, key=len))

[(2, <itertools._grouper object at Ox7f467a8cf700>),
(3, <itertools._grouper object at 0x7f467a58c0d0>),
(5, <itertools._grouper object at 0x7f467a58cl00>),
(7, <itertools._grouper object at 0x7f467a58c040>)]

e Lignes 1 et 3. |

est important de passer a I'argument key la méme fonction callback que lors du tri initial.

e Lignes 4 a 7. En transformant cet itérateur en liste, on voit qu'il génere une liste de tuples. Le premier élément de
chaque tuple est un entier correspondant a une longueur de mot, le second élément est un itérateur. Que contient

ce dernier?

>>> for longueur, diterateur in itertools.groupby(mots, key=len):

print(longueur, list(iterateur))

['ba']

2

3 ['bar', 'bam', 'bla']
5 ['babar', 'barre']

e

['bababar', 'barbare']

Lignes 4 a 7. La conversion de cet itérateur en liste montre qu'il contient tous les mots de méme longueur.

Cours de Python / Université Paris Cité / UFR Sciences du Vivant

333

Chapitre 26. Remarques complémentaires 26.4. Itérables, itérateurs, générateurs et module itertools

Comme vu dans une rubrique précédente, on peut passer une fonction lambda a I'argument key :

>>> mots.sort(key=lambda chaine: chaine.count("a"))
>>> mots
['ba', 'bar', 'bam', 'bla', 'barre', 'babar', 'barbare', 'bababar']
>>> qtertools.groupby(mots, key=lambda chaine: chaine.count("a"))
<itertools.groupby object at 0x7f467a6d0cad>
>>> list(itertools.groupby(mots, key=lambda chaine: chaine.count("a")))
[(1, <itertools._grouper object at Ox7f467a58c490>),
(2, <itertools._grouper object at 0x7f467a58cl00>),
(3, <itertools._grouper object at 0x7f467a58c040>)]
>>> for nb_a, iterateur 1in ditertools.groupby(mots, key=lambda chaine: chaine.count("a")):
print(nb_a, list(iterateur))

1 ['ba', 'bar', 'bam', 'bla', 'barre']
2 ['babar', 'barbare']
3 ['bababar']

Ici on a regroupé les mots suivant le nombre de lettres a qu'ils contiennent.

Conseil

Avant de faire un regroupement avecgroupby (), pensez a trier la liste initiale avec .sort () ou sorted() en utilisant
la méme fonction (ou fonction lambda) passée a I'argument key.

Remarque

Il existe aussi une méthode .groupby () qui procéde a des regroupements sur les dataframes pandas. Son mode de
fonctionnement est assez différent par rapport a la fonction groupby () du module itertools. Vous pouvez consulter le
chapitre 22 Modules pandas pour en savoir un peu plus.

26.4.4 Générateurs

Définition

Un générateur est un type d'itérateur particulier. On peut créer un générateur trés facilement avec le mot-clé yield
ou avec les expression génératrices (generator expressions en anglais) qui ont une syntaxe similaire a celle des listes de
compréhension.

La création d'un générateur avec le mot-clé yield consiste a créer une fonction utilisant ce mot-clé. A partir de ce
moment |3, la fonction renvoie un générateur. Avant de voir un exemple, imaginons une fonction qui crée et renvoie une
liste :

>>> def cree_alphabet():
e alphabet = []
for i in range(97, 123):
alphabet.append(chr(i))
return alphabet

>>> alphabet = cree_alphabet()

>>> alphabet

[lal’ Ibl’ 'C', ldl, lel’ lfl’ Igl’ lhl g
lrl’ ISI, ltl’ lul, lvl, 'W', IXI, 1

Pour créer un générateur équivalent, il suffira de remplacer le .append() par un yield et d'enlever le return :

334 Cours de Python / Université Paris Cité / UFR Sciences du Vivant

26.4. Itérables, itérateurs, générateurs et module itertools Chapitre 26. Remarques complémentaires

>>> def alphabet_generator():
for i in range(97, 123):
yield chr(d)

>>> gen = alphabet_generator()

>>> gen

<generator object alphabet_generator at 0x7feldffe39f0>
>>> for lettre in gen:

print(lettre)
a
b
c
[...]
y
z
>>>
>>> list(gen)
[]

Comme pour tous les itérateurs, une fois tous les éléments parcourus le générateur est épuisé. Notez que le yield
n'est pas une fonction mais un mot-clé, on n'utilise donc pas de parenthéses. Ce mot-clé yield n'a de sens que dans
une fonction et ne s'utilise que pour créer des générateurs.

La technique avec une expression génératrice ressemble 3 la syntaxe des listes de compréhension (voir la rubrique
Listes de compréhension du chapitre 12 Plus sur les listes), mais on |'entoure de parenthéses a la place des crochets :

>>> [nxx2 for n in range(10)] # Liste de compréhension.
[0, 1, 4, 9, 16, 25, 36, 49, 64, 81]
>>> (nxx2 for n in range(10)) # Expression génératrice.
<generator object <genexpr> at 0x7f917feb39f0>
>>> gen = (n**x2 for n in range(10))
>>> for n in gen:

print(n)

Loool
81

A nouveau, le générateur est épuisé apres avoir itéré dessus :

>>> for nb 1in gen:
print(nb)

>>>

Pour aller plus loin

Un générateur est un itérateur, mais l'inverse n'est pas vrai. Pour comprendre toutes les subtilités liées a cette
comparaison, vous pouvez consulter cette page?! sur le site Datacamp.

Conseil

Comme vous le voyez, créer un générateur est extrémement aisé avec le mot-clé yield ou les expressions génératrices
par rapport a |'écriture d'une classe itérateur (voir ci-dessus). Ainsi nous vous conseillons d'utiliser plutdt les générateurs
lorsque vous souhaitez créer des itérateurs simples.

21. https://www.datacamp.com/tutorial/python-iterators-generators-tutorial

Cours de Python / Université Paris Cité / UFR Sciences du Vivant 335

https://www.datacamp.com/tutorial/python-iterators-generators-tutorial

Chapitre 26. Remarques complémentaires 26.4. Itérables, itérateurs, générateurs et module itertools

336

26.4.5 Pourquoi utiliser des itérateurs?

A ce stade, vous vous posez peut-étre la question « Pourquoi utiliser des itérateurs? ». Nous donnons quelques
réponses dans cette rubrique.

26.4.5.1 Consommation de resources optimisée

La premiére raison fondamentale est la consommation de resources. Lorsque vous créez un itérateur, Python ne va
pas construire I'ensemble des éléments dans la mémoire, mais plutot préparer la « moulinette » qui réalisera les itérations.
Résultat, le processsus est trés peu consommateur de mémoire méme en créant un itérateur itérant sur un tres grand
nombre d'éléments. Par ailleurs, Python crée les éléments au fur et a mesure et a la demande. C'est pour cela qu’on parle
parfois « d'évaluation paresseuse ou fainéante >? » dans le sens ot la valeur suivante d’un itérateur n'est pas pré-calculée
mais plutot évaluée quand on lui demande. Trey Hunner 23 parle ainsi d’objets itérables « paresseux ».

Un itérateur sera par ailleurs trés rapide car en interne il fait appel a des routines optimisées en C. Mais aussi,
I'utilisation de fonctions Python qui sont elles aussi optimisées (par exemple sum()) rend les itérateurs particuliérement
efficaces.

Afin de quantifier cela, on propose de mesurer le temps d'exécution de trois petits morceaux de code faisant une
somme de tous les entiers de 1 a 100000 (cent mille) avec un générateur, une boucle Python classique et une liste de
compréhension. Pour faire une telle mesure, nous utilisons le module timeit >* qui est particulierement bien optimisé pour
cela. Voici un exemple d'utilisation de timeit :

$ python -m timeit "sum(n**2 for n in range(100000))"
50 loops, best of 5: 3.76 msec per loop

On peut lancer timeit directement a la ligne de commande Unix avec I'option -m suivie de I'instruction Python 3
exécuter entre guillemets. Python va effectuer plusieurs fois I'instruction (ici 50 fois) et donnera une approximation au
plus juste du temps d'exécution de celle-ci. Le nombre d'exécutions de l'instruction dépendra du temps pris par celle-ci
et sera entierement déterminé par Python.

En revenant a notre problématique, voici les résultats de notre somme de 1 3 100000 (testé sur un ordinateur portable
relativement récent avec la version Python 3.12) :
$ python -m timeit "sum(n**2 for n in range(100000))"

50 loops, best of 5: 3.76 msec per loop
$ python -m timeit "somme=0" "for n in range(100000): somme += nx*x2"
50 loops, best of 5: 3.59 msec per loop

$ python -m timeit "sum([n**2 for n in range(100000)])"
50 loops, best of 5: 4.89 msec per loop

e Ligne 1. On utilise un générateur et la fonction sum() pour calculer cette somme. Notez que lorsqu'un générateur
est utilisé dans une fonction, les parenthéses ne sont pas obligatoires. Cela simplifie la syntaxe par rapport a
sum((nxx2 for n in range(nb))).

e Ligne 3. On utilise une boucle Python classique pour calculer cette somme. Notez que pour pouvoir utiliser timeit
sur une ligne, on est obligé de passer deux arguments entre guillemets (initialisation de la variable somme et boucle).

e Ligne 5. On utilise une liste de compréhension pour calculer cette somme.

La méthode avec les générateurs est a peu pres équivalente a |'utilisation d'une boucle classique ou on accumule la
somme, preuve que les deux méthodes sont bien optimisées. De maniére spectaculaire, la liste de compréhension est bien
plus lente (presque 1 ms de plus). Ceci vient du fait qu'il faut créer la liste de tous les éléments en mémoire, ce qui est
contre-productif. Le générateur ou la boucle classique se contentent d'itérer et sont bien plus économes.

Dernier point, un test réalisé avec la version Python 3.13 sortie en octobre 2024 conduit aux mémes observations.

26.4.5.2 Itérateurs infinis

Bien que la taille de la mémoire d'un ordinateur soit finie, il est possible de créer des itérateurs infinis! Par exemple,
la fonction count () ?° du module itertools itére de O (lorsqu'on I'appelle sans argument) jusqu'a I'infini :

22. https://en.m.wikipedia.org/wiki/Lazy_evaluation

23. https://treyhunner.com/2018/06/how-to-make-an-iterator-in-python/
24. https://docs.python.org/fr/3/library/timeit.html

25. https://docs.python.org/3/library/itertools.html#itertools.count

Cours de Python / Université Paris Cité / UFR Sciences du Vivant

https://en.m.wikipedia.org/wiki/Lazy_evaluation
https://treyhunner.com/2018/06/how-to-make-an-iterator-in-python/
https://docs.python.org/fr/3/library/timeit.html
https://docs.python.org/3/library/itertools.html#itertools.count

26.4. Itérables, itérateurs, générateurs et module itertools Chapitre 26. Remarques complémentaires

>>> dqterateur = dtertools.count()
>>> dmport tdtertools
>>> qterateur = dtertools.count()
>>> for i in iterateur:

print(i)

— W N H O .

Boucle 1infinie]

Attention de ne pas transformer cet itérateur en liste ou tuple sous peine de saturer la mémoire de |'ordinateur et de
le faire planter!

)26)27

Dans le méme module les fonctions cycle(et repeat(sont également des itérateurs infinis.

26.4.5.3 Meilleure lisibilité

De maniére générale, I'utilisation d’itérateurs peut améliorer la lisibilité de vos programmes. Cet article 2 fait remarquer
que le simple fait de créer un itérateur et de le nommer donne un sens a ce qu'il contient. En reprenant notre exemple
sur la somme des carrés :

tous_les_carres = (n*x*2 for n in range(nb))
somme = sum(tous_les_carres)

Si on compare a la boucle for :

somme = 0
for n in range(nb):
somme += n**x2

On voit que ce que représente I'objet tous_les_carres n'existe tout simplement pas avec la boucle for! Par
ailleurs, outre I'avantage de rapidité, I'utilisation de la fonction sum() rend la lecture tres claire.

Dernier point, les itérateurs et notamment les générateurs, donnent un moyen de faire de la programmation fonction-
nelle>® en Python. Sans rentrer dans les considérations théoriques, nous avons déja vu I'idée générale lorsque nous avons
abordé le method chaining sur les chaines de caractéres ou sur les dataframes pandas. Initialement, la programmation
fonctionnelle en Python utilisait la fonction map () (ainsi que les fonctions filter () et reduce() non abordées ici).
Mais depuis I'arrivée des générateurs, on préfére ces derniers qui sont considérés plus Pythoniques. Regardons un exemple
ou nous transformons une chaine de caracteres en entiers puis nous calculons la somme. D'abord avec un générateur :

>>> ligne = "9 11 25 92 49 98 62 72 63 74"
>>> sum(int(nb) for nb 1in ligne.split())

555
>>>

Ensuite avec la fonction map () :

>>> line = "9 11 25 92 49 98 62 72 63 74"
>>> sum(map(int, line.split()))
555

Ne trouvez-vous pas que la version avec le générateur est plus lisible ?

Comme proposé par Dan Bader3°, on peut chainer les générateurs :

26. https://docs.python.org/3/library/itertools.html#itertools.cycle

27. https://docs.python.org/3/library/itertools.html#itertools.repeat

28. https://treyhunner.com/2019/06/loop-better-a-deeper-look-at-iteration-in-python/#How_iterators_
can_improve_your_code

29. https://fr.wikipedia.org/wiki/Programmation_fonctionnelle

30. https://dbader.org/blog/python-iterator-chains

Cours de Python / Université Paris Cité / UFR Sciences du Vivant 337

https://docs.python.org/3/library/itertools.html#itertools.cycle
https://docs.python.org/3/library/itertools.html#itertools.repeat
https://treyhunner.com/2019/06/loop-better-a-deeper-look-at-iteration-in-python/#How_iterators_can_improve_your_code
https://treyhunner.com/2019/06/loop-better-a-deeper-look-at-iteration-in-python/#How_iterators_can_improve_your_code
https://fr.wikipedia.org/wiki/Programmation_fonctionnelle
https://dbader.org/blog/python-iterator-chains

Chapitre 26. Remarques complémentaires 26.5. Gestion des exceptions

338

>>> qmport math

>>> Tligne = "9 11 25 92 49 98 62 72 63 74"

>>> nombres = (int(nb) for nb in ligne.split())

>>> dnverses = (nb*x-1 for nb in nombres)

>>> cos_inverses = (math.cos(nb) for nb in inverses)
>>> sum(cos_inverse)

9.988141056338993

Une chose a noter dans cet exemple est que lorsqu’on crée un générateur a partir d'un autre générateur, le générateur
initial n'est pas déclenché. Par exemple, en Ligne 4 pour inverses le générateur nombres n'est pas encore déclenché,
ou en Ligne 5 pour cos_inverses le générateur inverses n'est pas déclenché non plus. Tous les générateurs seront
déclenchés en chaine lorsqu’on exécutera la Ligne 6.

Conseil

En écrivant un générateur par ligne, le code est bien lisible. Evitez une syntaxe en une ligne qui s'avérera illisible :
(math.cos(nb) for nb in (nbxx-1 for nb in (int(nb) for nb 1in ligne.split())))

26.5 Gestion des exceptions

Les langages de programmation comme Python contiennent un systéme de gestion des exceptions3!. Qu'est-ce
qu'une exception ? Sur la page anglaise de Wikipedia 32, une exception est définie comme une anomalie de I'exécution d’un
programme requérant une action spéciale, en général I'arrét de I'exécution. Le plus souvent, une exception correspond a
une erreur que Python rencontre lorsqu'il tente d’exécuter les lignes de code qu’on lui soumet. Par exemple, un probleme
de syntaxe, une variable ou objet qui prend une valeur aberrante (par exemple diviser par 0, parcourir une liste au-dela
du nombre d'éléments, etc.).

Le systeme de gestion des exceptions évite que votre programme « plante » en prévoyant vous-méme les sources
d'erreurs éventuelles.

Voici un exemple dans lequel on demande a I'utilisateur d’entrer un nombre entier, puis on affiche ce nombre.

>>> nb = dint(input("Entrez un nombre entier : "))
Entrez un nombre entier : 23

>>> print(nb)

23

La fonction input () demande a l'utilisateur de saisir une chaine de caractéres. Cette chaine de caracteéres est ensuite
transformée en nombre entier avec la fonction int ().

Si I'utilisateur ne rentre pas un nombre, voici ce qui se passe :

>>> nb = dint(input("Entrez un nombre entier : "))
Entrez un nombre entier : ATCG
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
ValueError: invalid literal for int() with base 10: 'ATCG'

L'erreur provient de la fonction int() qui n'a pas pu convertir la chaine de caractéres "ATCG" en nombre entier, ce
qui est parfaitement normal. En termes plus techniques, on dira que « Python a levé une exception de type ValueError
». Eh oui il y a de nombreux types d'exceptions différents (voir plus bas) ! Le nom de I'exception apparaft toujours comme
le premier mot de la derniére ligne du message d’erreur. Si nous lancions ces lignes de code sous forme de script (du style
python script.py), cet exemple conduirait a I'arrét de |'exécution du programme.

Le jeu d'instructions try / except permet de tester |'exécution d'une commande et d'intervenir en cas de levée
d'exception.

31. https://fr.wikipedia.org/wiki/Syst%C3%A8me_de_gestion_d%27exceptions
32. https://en.wikipedia.org/wiki/Exception_handling

Cours de Python / Université Paris Cité / UFR Sciences du Vivant

https://fr.wikipedia.org/wiki/Syst%C3%A8me_de_gestion_d%27exceptions
https://en.wikipedia.org/wiki/Exception_handling

26.5. Gestion des exceptions Chapitre 26. Remarques complémentaires

>>> try:
nb = int(input("Entrez un nombre entier : "))
except:
print("Vous n'avez pas entré un nombre entier !")

Entrez un nombre entier : ATCG
Vous n'avez pas entré un nombre entier !

Dans cet exemple, |'exception levée par la fonction int() (qui ne peut pas convertir "ATCG" en nombre entier) est
interceptée et déclenche I'affichage du message d’avertissement.
On peut ainsi redemander sans cesse un nombre entier a |'utilisateur, jusqu'a ce que celui-ci en rentre bien un.

>>> while True:

try:
nb = int(input("Entrez un nombre entier : "))
print("Le nombre est", nb)
break

except:

print("Vous n'avez pas entré un nombre entier !")
print("Essayez encore")

Entrez un nombre entier : ATCG

Vous n'avez pas entré un nombre entier !
Essayez encore

Entrez un nombre entier : toto

Vous n'avez pas entré un nombre entier !
Essayez encore

Entrez un nombre entier : 3.2

Vous n'avez pas entré un nombre entier !
Essayez encore

Entrez un nombre entier : 55

Le nombre est 55

Notez que dans cet exemple, I'instruction while True est une boucle infinie car la condition True est toujours
vérifiée. L'arrét de cette boucle est alors forcé par la commande break lorsque I'utilisateur a effectivement entré un
nombre entier.

La gestion des exceptions est tres utile dés lors que des données extérieures entrent dans un programme Python, que
ce soit directement par |'utilisateur (avec la fonction input()) ou par des fichiers. Cela est fondamental si vous distribuez
votre code a la communauté : si les utilisateurs ne connaissent pas Python, un message comme Vous n'avez pas entré

un nombre entier ! reste plus clair que ValueError: invalid literal for +int() with base 10: 'ATCG'.

Vous pouvez par exemple vérifier qu'un fichier a bien été ouvert.

>>> nom = "toto.pdb"
>>> try:
with open(nom, "r") as fichier:
for ligne in fichier:
print(ligne)

except:
print("Impossible d'ouvrir le fichier", nom)

Si une erreur est déclenchée, c'est sans doute que le fichier n'existe pas a I'emplacement indiqué sur le disque ou que
vous n'avez pas les droits pour le lire.
Il est également possible de spécifier le type d’erreur a gérer. Le premier exemple que nous avons étudié peut s'écrire :
>>> try:
nb = int(input("Entrez un nombre entier : "))

except ValueError:
print("Vous n'avez pas entré un nombre entier !")

Entrez un nombre entier : ATCG
Vous n'avez pas entré un nombre entier !

Ici, on intercepte une exception de type ValueError, ce qui correspond bien a un probleme de conversion avec
int().

Cours de Python / Université Paris Cité / UFR Sciences du Vivant 339

Chapitre 26. Remarques complémentaires 26.5. Gestion des exceptions

Attention, si vous précisez le type d'exception comme ValueError, le except ValueError n'empéchera pas la
levée d'une autre exception.

>>> try:
nb = dint(variable)
except ValueError:
print("Vous n'avez pas entré un nombre entier !")

Traceback (most recent call last):
File "<stdin>", 1line 2, in <module>
NameError: name 'variable' 1is not defined. Did you mean: 'callable'?

Ici I'exception levée est de type NameError, car variable n'existe pas. Alors que si vous mettez except tout court,
cela intercepte n'importe quelle exception.

>>> try:
nb = dint(variable)
except:
print("Vous n'avez pas entré un nombre entier !")
Vous n'avez pas entré un nombre entier !
>>>

Vous voyez qu'ici cela pose un nouveau probleme : le message d’erreur ne correspond pas a |'exception levée !

Conseil

e Nous vous conseillons vivement de toujours préciser le type d'exception dans vos except. Cela évite d'intercepter
une exception que vous n'aviez pas prévue. |l est possible d'intercepter plusieurs types d'exceptions en passant un
tuple 3 except, par exemple : except (Exceptionl, Exception2).

e Par ailleurs, ne mettez pas trop de lignes dans le bloc du try. Dans un tel cas, il peut étre tres pénible de trouver la
ligne qui a conduit a I'exécution du except. Pire encore, il se peut que des lignes que vous aviez prévues ne soient
pas exécutées ! Donc gardez des choses simples dans un premier temps, comme par exemple tester les conversions
de type ou vérifier qu'un fichier existe bien et que vous pouvez I'ouvrir.

Il existe de nombreux types d'exception comme RuntimeError, TypeError, NameError, I0Error, etc. Vous pouvez
aller voir la liste compléte ®3 sur le site de Python. Nous avions déja croisé des noms d'exception au chapitre 23 (Avoir
la classe avec les objets) en regardant ce que contient le module builtins.

>>> dmport builtins
>>> dir(builtins)

['"ArithmeticError', 'AssertionError', 'AttributeError', 'BaseException',
Loool

'UserWarning', 'ValueError', 'Warning', 'ZeroDivisionError'

[ooo]

Leur présence dans le module builtins signifie qu'elles font partie du langage lui méme, au méme titre que les
fonctions de base comme range (), list(), etc.

Avez-vous aussi remarqué que leur nom commence toujours par une majuscule et qu'il peut en contenir plusieurs a
la facon CamelCase? Si vous avez bien lu le chapitre 16 Bonnes pratiques en programmation Python, avez-vous deviné
pourquoi ? Et bien, c'est parce que les exceptions sont des classes. C'est trés intéressant car il est ainsi possible
d'utiliser I'héritage pour créer ses propres exceptions a partir d'exceptions pré-existantes. Nous ne développerons pas cet
aspect, mais en guise d'illustration, regardez ce que renvoit un help () de I'exception OverflowError.

33. https://docs.python.org/fr/3.12/library/exceptions.html#exceptions.TypeError

340 Cours de Python / Université Paris Cité / UFR Sciences du Vivant

https://docs.python.org/fr/3.12/library/exceptions.html#exceptions.TypeError

26.6. Shebang et /usr/bin/env python3 Chapitre 26. Remarques complémentaires

>>> help(OverflowError)

[...]

class OverflowError (ArithmeticError)

| Result too large to be represented.

| Method resolution order:
| OverflowError

| ArithmeticError

| Exception

| BaseException

| object

L'exception OverflowError hérite de ArithmeticError, c'est-a-dire qu'OverflowError a été concue a partir de
ArithmeticError et en hérite de tous ses attributs.

Un autre aspect trés important que nous avons croisé au chapitre 24 Avoir plus la classe avec les objets est la
possibilité de lever vous-méme une exception avec le mot-clé raise. Nous avions vu le code suivant :

if valeur < 0:
raise ValueError("Z'avez déja vu une masse négative ?")

La ligne 2 leve une exception ValueError lorsque la variable valeur est négative. L'instruction raise est bien
pratique lorsque vous souhaitez stopper |'exécution d'un programme si une variable ne se trouve pas dans le bon intervalle
ou ne contient pas la bonne valeur. Vous avez sans doute compris maintenant pourquoi on parlait de « levée » d’'exception...

Enfin, on peut aussi étre trés précis dans le message d'erreur. Observez la fonction download_page () qui, avec le
module urllib, télécharge un fichier sur internet.

import urllib.request

def download_page(address):
error = ""
page = nn
try:
data = urllib.request.urlopen(address)
page = data.read()
except IOError as e:
if hasattr(e, 'reason'):
error = "Cannot reach web server: " + str(e.reason)
if hasattr(e, 'code'):
error = f"Server failed {e.code:d}"
return page, error

data, error = download_page("https://files.rcsb.org/download/1BTA.pdb")

if error:
print(f"Erreur rencontrée : {error}")
else:
with open("proteine.pdb", "w") as prot:
prot.write(data.decode("utf-8"))
print("Protéine enregistrée")

La variable e est une instance de I'exception IOError. Certains de ses attributs sont testés avec la fonction hasattr ()
pour ainsi affiner le message renvoyé (ici contenu dans la variable error).
Si tout se passe bien, la page est téléchargée est stockée dans la variable data, puis enregistrée sur le disque dur.

26.6 Shebang et /usr/bin/env python3

Lorsque I'on programme sur un systéme Unix (Mac OS X ou Linux par exemple), on peut exécuter directement un
script Python, sans appeler explicitement la commande python.

Pour cela, deux opérations sont nécessaires :

Etape 1. Préciser la localisation de I'interpréteur Python en indiquant dans la premigre ligne du script :

#! /usr/bin/env python

Par exemple, si le script test.py contenait :

Cours de Python / Université Paris Cité / UFR Sciences du Vivant

341

Chapitre 26. Remarques complémentaires 26.7. Passage d'arguments avec *args et xxkwargs

print("Hello World !")

il va alors contenir :

print("Hello World !")

Etape 2.. Rendre le script Python exécutable en lancant I'instruction :

$ chmod +x test.py

Remarque
La ligne n'est pas considérée comme un commentaire par Python, ni comme une ins-
truction Python d’ailleurs . Cette ligne a une signification particuliére pour le systéme d’exploitation Unix.

Pour exécuter le script, il suffit alors de taper son nom précédé des deux caracteres ./ (afin de préciser au shell ou se
trouve le script) :

$./test.py
Hello World !

Définition
Le shebang ** correspond aux caractéres qui se trouvent au début de la premiere ligne du script test.
Le shebang est suivi du chemin complet du programme qui interpréte le script ou du programme qui sait ou se
trouve l'interpréteur Python. Dans |'exemple précédent, c'est le programme /usr/bin/env qui indique ol se trouve
I'interpréteur Python.

26.7 Passage d’arguments avec *args et *xxkwargs

Avant de lire cette rubrique, nous vous conseillons de bien relire et maitriser la rubrique Arguments positionnels et
arguments par mot-clé du chapitre 10 Fonctions.

Dans le chapitre 10, nous avons vu qu'il était nécessaire de passer a une fonction tous les arguments positionnels
définis dans celle-ci. Il existe toutefois une astuce permettant de passer un nombre arbitraire d'arguments positionnels :

>>> def fct(xargs):
print(args)
>>> fct()
O
>>> fct(1)
(1,)
>>> fct(1, 2, 5, "Python")
(1, 2, 5, '"Python')
>>> fct(z=1)
Traceback (most recent call last):
File "<stdin>", 1line 1, in <module>
TypeError: fct() got an unexpected keyword argument 'z'

L'utilisation de la syntaxe *args permet d'empaqueter tous les arguments positionnels dans un tuple unique args
récupéré au sein de la fonction. L'avantage est que nous pouvons passer autant d'arguments positionnels que I'on veut.
Toutefois, on s'apercoit en ligne 10 que cette syntaxe ne fonctionne pas avec les arguments par mot-clé.

Il existe un équivalent avec les arguments par mot-clé :

34. http://fr.wikipedia.org/wiki/Shebang

342 Cours de Python / Université Paris Cité / UFR Sciences du Vivant

http://fr.wikipedia.org/wiki/Shebang

26.7. Passage d'arguments avec *args et xxkwargs Chapitre 26. Remarques complémentaires

>>> def fct(xxkwargs):
print(kwargs)
>>> fect()
{}
>>> fct(z=1, gogo="toto")
{'gogo': 'toto', 'z': 1}
>>> fct(z=1, gogo="toto", y=-67)
{'y': -67, 'gogo': 'toto', 'z': 1}
>>> fet(1, 2)
Traceback (most recent call last):
File "<stdin>", 1line 1, in <module>
TypeError: fct() takes 0 positional arguments but 2 were given

La syntaxe *xkwargs permet d'empaqueter I'ensemble des arguments par mot-clé, quel que soit leur nombre, dans
un dictionnaire unique kwargs récupéré dans la fonction. Les clés et valeurs de celui-ci sont les noms des arguments et les
valeurs passées a la fonction. Toutefois, on s'apercoit en ligne 9 que cette syntaxe ne fonctionne pas avec les arguments
positionnels.

Si on attend un mélange d’arguments positionnels et par mot-clé, on peut utiliser xargs et xxkwargs en méme
temps :

>>> def fct(xargs, *xkwargs):
print(args)
print(kwargs)

>>> fct()

O

{}

>>> fct(1, 2)

(1, 2)

{}

>>> fct(z=1, y=2)

O

{'y': 2, 'z': 1}

>>> fct(1, 2, 3, z=1, y=2)

(1, 2, 3)

{'y': 2, 'z': 1}

Deux contraintes sont toutefois a respecter. Il faut toujours :

e mettre *args avant xxkwargs dans la définition de la fonction;
e passer les arguments positionnels avant ceux par mot-clé lors de |'appel de la fonction.

Il est possible de combiner des arguments positionnels avec *args et des arguments par mot-clé avec xxkwargs, par
exemple :

def fct(a, b, *args, *xkwargs):

Dans un tel cas, il faudra obligatoirement passer les deux arguments a et b a la fonction, ensuite on pourra mettre
un nombre arbitraire d'arguments positionnels (récupérés dans le tuple args), puis un nombre arbitraire d’arguments par
mot-clé (récupérés dans le dictionnaire kwargs).

Conseil

Les noms *args et xxkwargs sont des conventions en Python, ils rappellent les mots arguments et keyword argu-
ments. Bien qu'on puisse mettre ce que |'on veut, nous vous conseillons de respecter ces conventions pour faciliter la
lecture de votre code par d'autres personnes.

L'utilisation de la syntaxe xargs et xxkwargs est tres classique dans le module Fenétres graphiques et Tkinter
présenté dans le chapitre 25 (en ligne).

Il est possible d'utiliser ce mécanisme d'empaquetage / désempaquetage (packing / unpacking) dans I'autre sens :

Cours de Python / Université Paris Cité / UFR Sciences du Vivant

343

Chapitre 26. Remarques complémentaires

26.8. Décorateurs

>>> def fct(a, b, c):
print(a,b,c)

>>> t = (-5,6,7)

>>>
>>> fct(xt)
567

Avec la syntaxe xt on désempaquette le tuple a la volée lors de I'appel a la fonction. Cela est aussi possible avec un

dictionnaire :

>>> def fct(x, y, z):
print(x, vy, z)

>>> dico = {'x': -1, 'y': -2, 'z': -3}
>>> fct(xxdico)
-1 -2 -3

Attention toutefois a bien respecter deux choses :

e la concordance entre le nom des clés du dictionnaire et le nom des arguments dans la fonction (sinon cela renvoie
une erreur) ;

e |'utilisation d'une double étoile pour désempaqueter les valeurs du dictionnaire (si vous utilisez une seule étoile,
Python désempaquettera les clés!).

Ce mécanisme de désempaquetage est aussi utilisable avec les objets zip, on parle de zip unpacking. Souvenons-nous,

un objet zip permettait d'assembler plusieurs listes, éléments par éléments (voir Chapitre 12 Plus sur les listes) :

>>> animaux = ["poulain", "renard", "python'"]

>>> couleurs = ["alezan", "roux", "vert"]

>>> zip(range(3), animaux, couleurs)

<zip object at 0x7f333febc880>

>>> triplets = list(zip(range(3), animaux, couleurs))

>>> triplets

[(6, 'poulain', 'alezan'), (1, 'renard', 'roux'), (2, 'python', 'vert')]

Lignes 1 a 4. On crée un objet zip avec trois objets de trois éléments.
Lignes 5 a 7. Cet objet zip en conjonction avec la fonction 1ist() nous permet d’associer les éléments par ordre

d'apparition (tous les éléments a la position 1 se retrouve ensemble, idem pour les positions 2 et 3). Au final, I'objet
triplets est une liste de tuples de trois éléments.

L'opérateur * en combinaison avec la fonction zip va nous permettre de désempaqueter triplets pour récupérer

les listes initiales (range(3), animaux et couleurs) :

>>> zip(*triplets)

<zip object at 0x7f333fd44980>

>>> Tlist(zip(xtriplets))

[(6, 1, 2), ('poulain', 'renard', 'python'), ('alezan', 'roux', 'vert')]

Bien siir, on peut I'utiliser |'affectation multiple :

>>> numéros2, animaux2, couleurs2 = zip(*triplets)
>>> numéros2

(0, 1, 2)

>>> animaux2

('poulain', 'renard', 'python')

>>> couleurs2

('alezan', 'roux', 'vert')

Au final, on récupeére des tuples au lieu des listes initiales. Mais a ce stade, vous devriez étre capable de les retransformer

en liste;-).

26.8 Décorateurs

Dans le chapitre 24, nous avons rencontré la notion de décorateur pour déclarer des objets de type property. Cela
permettait de rendre des méthodes accessibles comme des attributs (décorateur @property), et plus généralement de

344

Cours de Python / Université Paris Cité / UFR Sciences du Vivant

26.8. Décorateurs Chapitre 26. Remarques complémentaires

contrdler 'acces, la modification et la destruction d'attributs (décorateurs @nom_attribut.setter et @nom_attribut
.deleter). Il existe d'autres décorateurs prédéfinis en Python (e.g. @staticmethod, @classmethod, etc.). Nous allons
voir dans cette section comment on crée ses propres décorateurs et les mécanismes sous-jacents. Nous vous conseillons
de bien relire commment fonctionne les fonctions de rappel, ou fonctions callback (chapitre 25 Tkinter).

Définition

Un décorateur est une fonction qui modifie le comportement d'une autre fonction.

Ceci étant dit, comme cela fonctionne-t-il 7 Commencons par une fonction simple qui affiche de la nourriture :

def dmprime_victuaille():
print("tomate / mozza")

On souhaite améliorer cette fonction et transformer cette victuaille en sandwich, en affichant une tranche de pain avant
et aprés. La stratégie va étre de créer une fonction spéciale, qu'on appelle décorateur, modifiant imprime_victuaille

0.

def transforme_en_sandwich(fonction_a_decorer):
def emballage():
print("Pain")
fonction_a_decorer()
print("Pain")
return emballage

La fonction transforme_en_sandwich() est notre décorateur, elle prend en argument la fonction que I'on sou-
haite décorer sous forme de callback (donc sans les parenthéses). On voit qu'a l'intérieur, on définit une sous-fonction
emballage() qui va littéralement « emballer » (wrap) notre fonction a décorer, c'est-a-dire, effectuer une action avant
et aprés I'appel de la fonction a décorer. Enfin, le décorateur renvoie cette sous-fonction emballage sous forme de
callback. Pour que le décorateur soit actif, il faudra « transformer » la fonction a décorer avec notre fonction décoratrice :

imprime_victuaille = transforme_en_sandwich(imprime_victuaille)

Voici le code complet implémentant la fonction imprime_victuaille() décorée :

def transforme_en_sandwich(fonction_a_decorer):
def emballage():
print("Pain")
fonction_a_decorer()
print("Pain")
return emballage

def imprime_victuaille():
print("tomate/ mozza")

if __name__ == "__main__":
print("Fonction non décorée:")
imprime_victuaille()
print()
print("Fonction décorée:")
imprime_victuaille = transforme_en_sandwich(imprime_victuaille)
imprime_victuaille()

Au final I'idée est d'appeler la fonction décoratrice plutét que la fonction imprime_victuaille() elle-méme.
Regardons ce que donne |'exécution de la fonction avant et aprés décoration :

Fonction non décorée:
tomate/ mozza

Fonction décorée:
Pain

tomate/ mozza
Pain

Cours de Python / Université Paris Cité / UFR Sciences du Vivant 345

Chapitre 26. Remarques complémentaires 26.8. Décorateurs

Le premier appel en ligne 13 exécute la fonction simple, alors que le second en ligne 17 exécute la fonction décorée.
Cette construction peut sembler ardue et difficile a comprendre. Heureusement, Python a une notation en « sucre
syntaxique » (syntactic sugar) qui en facilite la lecture. Celle-ci utilise le symbole @ :

def transforme_en_sandwich(fonction_a_decorer):
def emballage():
print("Pain")
fonction_a_decorer()
print("Pain")
return emballage

@transforme_en_sandwich
def imprime_victuaille():
print("tomate / mozza")

if __name == "__main__":

imprime_victuaille()
La ligne 8 transforme irrémédiablement la fonction imprime_victuaille() en fonction décorée. Cela parait déja
un peu plus lisible. L'exécution donnera bien siir :
Pain
tomate / mozza
Pain
Au final, la notation :
@decorator
def fct():
[...]

est équivalente a :

fct = decorator(fct)

Cela fonctionne avec n'importe quelle fonction prenant en argument une autre fonction.

Conseil

Nous vous conseillons bien siir d'utiliser systématiquement la notation @decorator qui est plus lisible et intuitive.

Si tout cela vous semble ardu (on vous comprend...), vous devez vous dire « pourquoi utiliser une construction aussi
complexe ? ». Et bien, c'est tout simplement parce qu'un décorateur est ré-utilisable dans n'importe quelle fonction. Si
on reprend la méme fonction décoratrice que ci-dessus :

@transforme_en_sandwich
def dmprime_victuaillel():
print("tomate / mozza")

@transforme_en_sandwich
def imprime_victuaille2():
print("jambon / fromage")

if __name__ == "__main__":
imprime_victuaillel()
print()

imprime_victuaille2()

On a donc un décorateur permettant de transformer en sandwich n’importe quelle fonction imprimant une victuaille!
Ceci renverra :

346 Cours de Python / Université Paris Cité / UFR Sciences du Vivant

26.9. Un peu de transformée de Fourier avec NumPy Chapitre 26. Remarques complémentaires

Pain

tomate / mozza
Pain

Pain

jambon / fromage
Pain

Un exemple plus concret de décorateur pourrait étre la mesure du temps d’exécution d'une fonction :

import time

def mesure_temps(fonction_a_decorer):
def emballage():
tempsl = time.time()
fonction_a_decorer ()
temps2 = time.time()
print(f"Le temps d'éxécution de {fonction_a_decorer.__name__} est "
f"{temps2 - tempsl} s")
return emballage

En ligne 8, I'attribut . __name__ renvoie le nom de la fonction sous forme de chaine de caracteres. Dans cet exemple,
le décorateur @mesure_temps mis devant n'importe quelle fonction affichera systématiquement le temps d’exécution de
celle-ci.

Pour finir, si on revient sur le décorateur @property vu dans le chapitre 24 Avoir plus la classe avec les objets, nous
avions vu également qu'il existait une fonction property (). Donc pour les décorateurs pré-existants que nous avons
abordés dans le chapitre 24, il existe des fonctions équivalentes. Comme dans notre exemple, la notation @decorateur
va finalement appeler la fonction décoratrice. Donc derriere une notation @quelquechose, il existe toujours une fonction
quelquechose () remplissant ce role de décorateur.

Pour aller plus loin

Pour aller plus loin, vous pouvez consulter ce trés bon article3® sur le site RealPython. Il y est expliqué en outre
comment on peut gérer le passage d'arguments quand on utilise des décorateurs, ainsi que I'utilisation de décorateurs
multiples.

26.9 Un peu de transformée de Fourier avec NumPy

La transformée de Fourier est trés utilisée pour I'analyse de signaux, notamment lorsqu’'on souhaite extraire des
périodicités au sein d'un signal bruité. Le module NumPy posséde la fonction fft () (dans le sous-module fft) permettant
de calculer des transformées de Fourier.

Voici un petit exemple sur la fonction cosinus de laquelle on souhaite extraire la période a |'aide de la fonction fft() :

import numpy as np

debut = -2 * np.pi
fin = 2 % np.pi
pas = 0.1

X = np.arange(debut,fin,pas)
y = np.cos(x)

TF = np.fft.fft(y)

ABSTF = np.abs(TF)

pas_xABSTF = 1/(fin-debut)

X_ABSTF = np.arange(0,pas_xABSTF * len(ABSTF),pas_xABSTF)

Plusieurs commentaires sur cet exemple :
Ligne 1. On charge le module NumPy avec le nom raccourci np.
Lignes 3 a 6. On définit I'intervalle (de —27 a 27 radians) pour les valeurs en abscisse ainsi que le pas (0,1 radians).

35. https://realpython.com/primer-on-python-decorators/

Cours de Python / Université Paris Cité / UFR Sciences du Vivant

347

https://realpython.com/primer-on-python-decorators/

Chapitre 26. Remarques complémentaires 26.10. Sauvegardez votre historique de commandes

348

Lignes 7. On calcule directement les valeurs en ordonnées avec la fonction cosinus du module NumPy. On constate

ici que NumPy redéfinit certaines fonctions ou constantes mathématiques de base, comme p1i, cos() ou abs() (valeur
absolue, ou module d'un nombre complexe). Ces fonctions sont directement utilisables avec un objet array.

Ligne 9. On calcule la transformée de Fourier avec la fonction fft() qui renvoie un vecteur (objet array 3 une

dimension) de nombres complexes. Eh oui, le module NumPy gére aussi les nombres complexes !

Ligne 10. On extrait le module du résultat précédent avec la fonction abs().
Ligne 11. La variable x_ABSTFL représente |'abscisse du spectre (en radian™!).
Ligne 12. La variable ABSTF contient le spectre lui méme. L'analyse de ce dernier nous donne un pic 3 0,15 radian™!,

ce qui correspond bien a 27 (c'est plutdt bon signe de retrouver ce résultat).

26.10 Sauvegardez votre historique de commandes

Vous pouvez sauvegarder |'historique des commandes utilisées dans l'interpréteur Python avec le module readline.
>>> print("hello")

hello

>>> a = 22

>>> a = a + 11
>>> print(a)
33

>>> dmport readline
>>> readline.write_history_file()

Quittez Python. L'historique de toutes vos commandes est dans votre répertoire personnel, dans le fichier .history.
Relancez I'interpréteur Python.

>>> qmport readline
>>> readline.read_history_file()

Vous pouvez accéder aux commandes de la session précédente avec la fleche du haut de votre clavier. D'abord les

commandes readline.read_history_file() et import readline de la session actuelle, puis print(a), a = a +
11, a = 22.

Cours de Python / Université Paris Cité / UFR Sciences du Vivant

CHAPITRE 2/

Mini-projets

Dans ce chapitre, nous vous proposons quelques scénarios pour développer vos compétences en Python et mettre en
ceuvre les concepts que vous avez rencontrés dans les chapitres précédents.

27.1 Description des projets

27.1.1 Mots anglais dans le protéome humain

L'objectif de ce premier projet est de découvrir si des mots anglais peuvent se retrouver dans les séquences du protéome
humain, c’est-a-dire dans les séquences de |'ensemble des protéines humaines.

Vous aurez a votre disposition :

e Le fichier english-common-words.txt !, qui contient les 3 000 mots anglais les plus fréquents, a raison d'1 mot
par ligne.

e Le fichier human-proteome.fasta? qui contient le protéome humain sous la forme de séquences au format
FASTA. Attention, ce fichier est assez gros. Ce fichier provient de la banque de données UniProt a partir de cette
page 3.

Conseil

Des explications sur le format FASTA et des exemples de code sont fournis dans I'annexe A Quelques formats de
données en biologie.

27.1.2 Genbank2fasta

Ce projet consiste a écrire un convertisseur de fichier, du format GenBank au format FASTA.

Pour cela, nous allons utiliser le fichier GenBank du chromosome | de la levure de boulanger Saccharomyces cerevisiae.
Vous pouvez télécharger ce fichier :

e soit via le lien sur le site du cours NC_OOll33.gbk4;

https://python.sdv.u-paris.fr/data-files/english-common-words.txt
https://python.sdv.u-paris.fr/data-files/human-proteome.fasta
https://www.uniprot.org/help/human_proteome
https://python.sdv.u-paris.fr/data-files/NC_001133.gbk

Ao

349

https://python.sdv.u-paris.fr/data-files/english-common-words.txt
https://python.sdv.u-paris.fr/data-files/human-proteome.fasta
https://www.uniprot.org/help/human_proteome
https://python.sdv.u-paris.fr/data-files/NC_001133.gbk

Chapitre 27. Mini-projets 27.1. Description des projets

350

e soit directement sur la page de Saccharomyces cerevisiae S288c chromosome I, complete sequence® sur le site du
NCBI, puis en cliquant sur Send to, puis Complete Record, puis Choose Destination : File, puis Format : GenBank
(full) et enfin sur le bouton Create File.
Vous trouverez des explications sur les formats FASTA et GenBank ainsi que des exemples de code dans |'annexe A
Quelques formats de données en biologie.
Vous pouvez réaliser ce projet sans ou avec des expressions réguliéres (abordées dans le chapitre 17).

27.1.3 Simulation d’un pendule

On se propose de réaliser une simulation d'un pendule simple® en Tkinter. Un pendule simple est représenté par
une masse ponctuelle (la boule du pendule) reliée a un pivot immobile par une tige rigide et sans masse. On néglige les
effets de frottement et on considére le champ gravitationnel comme uniforme. Le mouvement du pendule sera calculé en
résolvant numériquement I'équation différentielle suivante :

2
as(t) = <3 ()=~ wsin(0(1))

ou O représente I'angle entre la verticale et |a tige du pendule, ag I'accélération angulaire, g la gravité, et [la longueur
de la tige (note : pour la dérivation d'une telle équation vous pouvez consulter la page wikipedia’ ou I'accompagnement
pas a pas, cf. la rubrique suivante).

Pour trouver la valeur de 6 en fonction du temps, on pourra utiliser la méthode semi-implicite d'Euler® de résolution
d'équation différentielle. La formule ci-dessus donne I'accélération angulaire au temps t : ag(t) = —% x sin(6(t)). A
partir de celle-ci, la méthode propose le calcul de la vitesse angulaire au pas suivant : vg(t + 61) = vg(t) + ag(t) x 61
(ot &1 représente le pas de temps entre deux étapes successives de la simulation). Enfin, cette vitesse vg(z + 6¢) donne
I'angle 6 au pas suivant : 0(t 4 8t) = 6(r) +vg (¢ + 6¢) x 6t. On prendra un pas de temps 8¢ = 0.05 s, une accélération
gravitationnelle g = 9.8 m.s™2 et une longueur de tige de [= 1 m.

X Pendule — o X

Demarrer
Arréter

theta dtheta
(rad) (rad/dt)
0.6 -5.4
valeur
initiale
de theta |
2.356j

Quitter
FIGURE 27.1 — Application pendule.

Pour la visualisation, vous pourrez utiliser le widget canvas du module Tkinter (voir le chapitre 25 Fenétres graphiques
et Tkinter (en ligne), rubrique Un canvas animé dans une classe). On cherche a obtenir un résultat comme montré dans
la figure 27.1.

https://www.ncbi.nlm.nih.gov/nuccore/NC_001133
https://fr.wikipedia.org/wiki/Pendule_simple
https://en.wikipedia.org/wiki/Pendulum_(mathematics)#math_Eq._1
https://en.wikipedia.org/wiki/Euler_method

© NG

Cours de Python / Université Paris Cité / UFR Sciences du Vivant

https://www.ncbi.nlm.nih.gov/nuccore/NC_001133
https://fr.wikipedia.org/wiki/Pendule_simple
https://en.wikipedia.org/wiki/Pendulum_(mathematics)#math_Eq._1
https://en.wikipedia.org/wiki/Euler_method

27.2. Accompagnement pas a pas Chapitre 27. Mini-projets

Nous vous conseillons de procéder d'abord a la mise en place du simulateur physique (c'est-a-dire obtenir 8 en fonction
du temps ou du pas de simulation). Faites par exemple un premier script Python qui produit un fichier a deux colonnes
(temps et valeur de 6). Une fois que cela fonctionne bien, il vous faudra construire 'interface Tkinter et I'animer. Vous
pouvez ajouter un bouton pour démarrer / stopper le pendule et une régle pour modifier sa position initiale.

N'oubliez pas, il faudra mettre dans votre programme final une fonction qui convertit I'angle 6 en coordonnées
cartésiennes x et y dans le plan du canvas. Faites également attention au systéme de coordonnées du canvas ou les
ordonnées sont inversées par rapport a un repere mathématique. Pour ces deux aspects, reportez-vous a |'exercice
Polygone de Sierpinski du chapitre 25 Fenétres graphiques et Tkinter (en ligne).

27.2 Accompagnement pas a pas

Vous trouverez ci-apres les différentes étapes pour réaliser les mini-projets proposés. Prenez le temps de bien com-
prendre une étape avant de passer a la suivante.

27.2.1 Mots anglais dans le protéome humain

L'objectif de ce premier projet est de découvrir si des mots anglais peuvent se retrouver dans les séquences du protéome
humain, c’est-a-dire dans les séquences de |'ensemble des protéines humaines.

27.2.1.1 Composition aminée

Dans un premier temps, composez 5 mots anglais avec les 20 acides aminés.

27.2.1.2 Des mots

Téléchargez le fichier english-common-words.txt °. Ce fichier contient les 3000 mots anglais les plus fréquents, a raison
d'l mot par ligne.

Créez un script words_in_proteome.py et écrivez la fonction read_words() qui va lire les mots contenus dans le
fichier dont le nom est fourni en argument du script et renvoyer une liste contenant les mots convertis en majuscule et
composés de 3 caracteres ou plus.

Dans le programme principal, affichez le nombre de mots sélectionnés.

27.2.1.3 Des protéines

Téléchargez maintenant le fichier human-proteome.fasta ', Attention, ce fichier est assez gros. Ce fichier provient de
la banque de données UniProt a partir de cette page '*.

Voici les premiéres lignes de ce fichier ([...] indique une coupure que nous avons faite) :
>sp|095139 |[NDUB6_HUMAN NADH dehydrogenase [ubiquinone] 1 beta [...]
MTGYTPDEKLRLQQLRELRRRWLKDQELSPREPVLPPQKMGPMEKFWNKFLENKSPWRKM
VHGVYKKSIFVFTHVLVPVWIIHYYMKYHVSEKPYGIVEKKSRIFPGDTILETGEVIPPM
KEFPDQHH
>sp|075438 |[NDUB1_HUMAN NADH dehydrogenase [ubiquinone] 1 beta [...]
MVNLLQIVRDHWVHVLVPMGFVIGCYLDRKSDERLTAFRNKSMLFKRELQPSEEVTWK
>sp|Q8N4C6|NIN_HUMAN Ninein 0S=Homo sapiens 0X=9606 GN=NIN PE=1 SV=4
MDEVEQDQHEARLKELFDSFDTTGTGSLGQEELTDLCHMLSLEEVAPVLQQTLLQDNLLG
RVHFDQFKEALILILSRTLSNEEHFQEPDCSLEAQPKYVRGGKRYGRRSLPEFQESVEEF
PEVTVIEPLDEEARPSHIPAGDCSEHWKTQRSEEYEAEGQLRFWNPDDLNASQSGSSPPQ

Toujours dans le script words_in_proteome.py, écrivez la fonction read_sequences() qui va lire le protéome
dans le fichier dont le nom est fourni en second argument du script. Cette fonction va renvoyer un dictionnaire dont les
clefs sont les identifiants des protéines (par exemple, 095139, 075438, Q8N4C6) et dont les valeurs associées sont les
séquences.

Dans le programme principal, affichez le nombre de séquences lues. A des fins de test, affichez également la séquence
associée a la protéine 095139.

9. https://python.sdv.u-paris.fr/data-files/english-common-words.txt
10. https://python.sdv.u-paris.fr/data-files/human-proteome.fasta
11. https://www.uniprot.org/help/human_proteome

Cours de Python / Université Paris Cité / UFR Sciences du Vivant 351

https://python.sdv.u-paris.fr/data-files/english-common-words.txt
https://python.sdv.u-paris.fr/data-files/human-proteome.fasta
https://www.uniprot.org/help/human_proteome

Chapitre 27. Mini-projets 27.2. Accompagnement pas a pas

352

27.2.1.4 A la péche aux mots

Ecrivez maintenant la fonction search_words_in_proteome() qui prend en argument la liste de mots et le dic-
tionnaire contenant les séquences des protéines et qui va compter le nombre de séquences dans lesquelles un mot est
présent. Cette fonction renverra un dictionnaire dont les clefs sont les mots et les valeurs le nombre de séquences qui
contiennent ces mots. La fonction affichera également le message suivant pour les mots trouvés dans le protéome :

ACCESS found 1in 1 sequences
ACID found in 38 sequences
ACT found in 805 sequences
[...]

Cette étape prend quelques minutes. Soyez patient.

27.2.1.5 Et le mot le plus fréquent est...

Pour terminer, écrivez maintenant la fonction find_most_frequent_word() qui prend en argument le dictionnaire
renvoyé par la précédente fonction search_words_in_proteome () et qui affiche le mot trouvé dans le plus de protéines,
ainsi que le nombre de séquences dans lesquelles il a été trouvé, sous la forme :

=> xxx found in yyy sequences

Quel est ce mot?
Quel pourcentage des séquences du protéome contiennent ce mot ?

27.2.1.6 Pour étre plus complet

Jusqu'a présent, nous avions déterminé, pour chaque mot, le nombre de séquences dans lesquelles il apparaissait.
Nous pourrions aller plus loin et calculer aussi le nombre de fois que chaque mot apparait dans les séquences.

Pour cela modifier la fonction search_words_in_proteome() de facon a compter le nombre d'occurrences d'un
mot dans les séquences. La méthode .count() vous sera utile.

Déterminez alors quel mot est le plus fréquent dans le protéome humain.

27.2.2 genbank2fasta (sans expression réguliére)

Ce projet consiste a écrire un convertisseur de fichier, du format GenBank au format FASTA. L'annexe A Quelques
formats de données en biologie rappelle les caractéristiques de ces deux formats de fichiers.

Le jeu de données avec lequel nous allons travailler est le fichier GenBank du chromosome | de la levure du boulanger
Saccharomyces cerevisiae. Les indications pour le télécharger sont indiqués dans la description du projet.
Dans cette rubrique, nous allons réaliser ce projet sans expression réguliére.

27.2.2.1 Lecture du fichier

Créez un script genbank2fasta.py et créez la fonction 1it_fichier () qui prend en argument le nom du fichier et
qui renvoie le contenu du fichier sous forme d'une liste de lignes, chaque ligne étant elle-méme une chaine de caracteres.
Testez cette fonction avec le fichier GenBank NC_001133. gbk et affichez le nombre de lignes lues.

27.2.2.2 Extraction du nom de I'organisme

Dans le méme script, ajoutez la fonction extrait_organisme() qui prend en argument le contenu du fichier
précédemment obtenu avec la fonction 1it_fichier () (sous la forme d'une liste de lignes) et qui renvoie le nom de
I'organisme. Pour récupérer la bonne ligne vous pourrez tester si les premiers caracteres de la ligne contiennent le mot-clé
ORGANISM.

Testez cette fonction avec le fichier GenBank NC_001133.gbk et affichez le nom de |'organisme.

Cours de Python / Université Paris Cité / UFR Sciences du Vivant

27.2. Accompagnement pas a pas Chapitre 27. Mini-projets

27.2.2.3 Recherche des génes

Dans le fichier GenBank, les génes sens sont notés de cette maniére :

gene 58..272
ou
gene <2480..>2707

et les génes antisens (ou encore complémentaires) de cette facon :

gene complement (55979..56935)
ou
gene complement (<13363..>13743)
Les valeurs numériques séparées par .. indiquent la position du geéne dans le génome (numéro de la premiére base,

numéro de la derniére base).

Remarque

Le symbole < indique un géne partiel sur I'extrémité 5', c'est-a-dire que le codon START correspondant est incomplet.
Respectivement, le symbole > désigne un gene partiel sur I'extrémité 3', c'est-a-dire que le codon STOP correspondant
est incomplet. Pour plus de détails, consultez la documentation du NCBI sur les délimitations des génes'?. Nous vous
proposons ici d'ignorer ces symboles > et <.

Repérez ces différents genes dans le fichier NC_001133. gbk. Pour récupérer ces lignes de génes il faut tester si la
ligne commence par

gene

(c’est-a-dire 5 espaces, suivi du mot gene, suivi de 12 espaces). Pour savoir s'il s'agit d'un géne sur le brin direct ou
complémentaire, il faut tester la présence du mot complement dans la ligne lue.

Ensuite si vous souhaitez récupérer la position de début et de fin de géne, nous vous conseillons d’utiliser la fonction
replace() et de ne garder que les chiffres et les . Par exemple

gene <2480..>2707

sera transformé en
2480..2707

Enfin, avec la méthode .split() vous pourrez facilement récupérer les deux entiers de début et de fin de géne.

Dans le méme script genbank2fasta. py, ajoutez la fonction recherche_genes () qui prend en argument le contenu
du fichier (sous la forme d'une liste de lignes) et qui renvoie la liste des genes.

Chaque gene sera lui-méme une liste contenant le numéro de la premiére base, le numéro de la derniére base et une
chalne de caractére "sens' pour un gene sens et "antisens" pour un géne antisens.

Testez cette fonction avec le fichier GenBank NC_001133.gbk et affichez le nombre de génes trouvés, ainsi que le
nombre de génes sens et antisens.

27.2.2.4 Extraction de la séquence nucléique du génome

La taille du génome est indiqué sur la premiére ligne d'un fichier GenBank. Trouvez la taille du génome stocké dans
le fichier NC_001133. gbk.
Dans un fichier GenBank, la séquence du génome se trouve entre les lignes

ORIGIN

12. https://www.ncbi.nlm.nih.gov/Sitemap/samplerecord.html#BaseSpanB

Cours de Python / Université Paris Cité / UFR Sciences du Vivant 353

https://www.ncbi.nlm.nih.gov/Sitemap/samplerecord.html#BaseSpanB

Chapitre 27. Mini-projets 27.2. Accompagnement pas a pas

et
//

Trouvez dans le fichier NC_001133.gbk la premiére et derniére ligne de la séquence du génome.
Pour récupérer les lignes contenant la séquence, nous vous proposons d'utiliser un algorithme avec un drapeau
is_dnaseq (qui vaudra True ou False). Voici |'algorithme proposé en pseudo-code :
is_dnaseq <- False
Lire chaque ligne du fichier gbk
si la ligne contient "//"
is_dnaseq <- False
si is_dnaseq vaut True
accumuler la séquence
si la ligne contient "ORIGIN"
is_dnaseq <- True

Au début ce drapeau aura la valeur False. Ensuite, quand il se mettra a True, on pourra lire les lignes contenant la
séquence, puis quand il se remettra a False on arrétera.

Une fois la séquence récupérée, il suffira d'éliminer les chiffres, retours chariots et autres espaces (Conseil : calculer
la longueur de la séquence et comparer la a celle indiquée dans le fichier gbk).

Toujours dans le méme script genbank2fasta. py, ajoutez la fonction extrait_sequence() qui prend en argument
le contenu du fichier (sous la forme de liste de lignes) et qui renvoie la séquence nucléique du génome (dans une chaine
de caractéres). La séquence ne devra pas contenir d’'espaces, ni de chiffres ni de retours chariots.

Testez cette fonction avec le fichier GenBank NC_001133. gbk et affichez le nombre de bases de la séquence extraite.
Vérifiez que vous n’avez pas fait d'erreur en comparant la taille de la séquence extraite avec celle que vous avez trouvée
dans le fichier GenBank.

27.2.2.5 Construction d’'une séquence complémentaire inverse

Toujours dans le méme script, ajoutez la fonction construit_comp_inverse() qui prend en argument une séquence
d’ADN sous forme de chaine de caractéres et qui renvoie la séquence complémentaire inverse (également sous la forme
d'une chaine de caractéres).

On rappelle que construire la séquence complémentaire inverse d'une séquence d’ADN consiste 3 :

e Prendre la séquence complémentaire. C'est-a-dire remplacer la base a par la base t, t par a, c par g et g par c.

e Prendre l'inverse. C'est-a-dire que la premiére base de la séquence complémentaire devient la derniére base et

réciproquement, la derniére base devient la premiere.

Pour vous faciliter le travail, ne travaillez que sur des séquences en minuscule.

Testez cette fonction avec les séquences atcg, AATTCCGG et gattaca.

27.2.2.6 Ecriture d'un fichier FASTA

Toujours dans le méme script, ajoutez la fonction ecrit_fasta() qui prend en argument un nom de fichier (sous
forme de chaine de caractéres), un commentaire (sous forme de chaine de caractéres) et une séquence (sous forme de
chaine de caractéres) et qui écrit un fichier FASTA. La séquence sera a écrire sur des lignes ne dépassant pas 80 caractéres.

Pour rappel, un fichier FASTA suit le format suivant :
>commentaire
sequence sur une ligne de 80 caractéres maxi

suite de 1la SEQUENCE vt iininnnnnnnnnnnns
suite de 1a SEQUENCE v it iiinnnnnnnnnnnenns

Testez cette fonction avec :

e nom de fichier : test.fasta

e commentaire : mon commentaire

e séquence :
atcgatc

354 Cours de Python / Université Paris Cité / UFR Sciences du Vivant

27.2. Accompagnement pas a pas Chapitre 27. Mini-projets

27.2.2.7 Extraction des genes

Toujours dans le méme script, ajoutez la fonction extrait_genes() qui prend en argument la liste des génes, la
séquence nucléotidique compléte (sous forme d'une chaine de caractéres) et le nom de |'organisme (sous forme d'une
chaine de caractéres) et qui pour chaque géne :

e extrait la séquence du gene dans la séquence compléte;;

e prend la séquence complémentaire inverse (avec la fonction construit_comp_inverse() si le géne est antisens;

e enregistre le géne dans un fichier au format FASTA (avec la fonction ecrit_fasta());

e affiche a I'écran le numéro du géne et le nom du fichier FASTA créé.

La premiére ligne des fichiers FASTA sera de la forme :

>nom-organisme |numéro-du-géne|début|fin|sens ou antisens

Le numéro du geéne sera un numéro consécutif depuis le premier géene jusqu'au dernier. Il n'y aura pas de différence
de numérotation entre les genes sens et les genes antisens.
Testez cette fonction avec le fichier GenBank NC_001133. gbk.

27.2.2.8 Assemblage du script final

Pour terminer, modifiez le script genbank2fasta.py de facon a ce que le fichier GenBank a analyser (dans cet
exemple NC_001133. gbk), soit entré comme argument du script.

Vous afficherez un message d'erreur si :

e le script genbank2fasta.py est utilisé sans argument,

e le fichier fourni en argument n’existe pas.

Pour vous aider, n'hésitez pas a jeter un ceil aux descriptions des modules sys et pathlib dans le chapitre 9 Modules.

Testez votre script ainsi finalisé.

Bravo, si vous étes arrivés jusqu'a cette étape.

27.2.3 genbank2fasta (avec expressions réguliéres)

Ce projet consiste a écrire un convertisseur de fichier, du format GenBank au format FASTA. L'annexe A Quelques
formats de données en biologie rappelle les caractéristiques de ces deux formats de fichiers.

Le jeu de données avec lequel nous allons travailler est le fichier GenBank du chromosome | de la levure du boulanger
Saccharomyces cerevisiae. Les indications pour le télécharger sont indiqués dans la description du projet.

Dans cette rubrique, nous allons réaliser ce projet avec des expressions réguliéres en utilisant le module re.

27.2.3.1 Lecture du fichier

Créez un script genbank2fasta.py et créez la fonction 1it_fichier () qui prend en argument le nom du fichier et
qui renvoie le contenu du fichier sous forme d'une liste de lignes, chaque ligne étant elle-méme une chaine de caracteres.
Testez cette fonction avec le fichier GenBank NC_001133.gbk et affichez le nombre de lignes lues.

27.2.3.2 Extraction du nom de I'organisme

Dans le méme script, ajoutez la fonction extrait_organisme() qui prend en argument le contenu du fichier
précédemment obtenu avec la fonction 1it_fichier () (sous la forme d'une liste de lignes) et qui renvoie le nom de
I'organisme. Utilisez de préférence une expression réguliére.

Testez cette fonction avec le fichier GenBank NC_001133. gbk et affichez le nom de I'organisme.

27.2.3.3 Recherche des genes

Dans le fichier GenBank, les génes sens sont notés de cette maniére :

gene 58..272
ou
gene <2480..>2707

Cours de Python / Université Paris Cité / UFR Sciences du Vivant 355

Chapitre 27. Mini-projets 27.2. Accompagnement pas a pas

356

et les génes antisens de cette facon :

gene complement (55979..56935)
ou
gene complement (<13363..>13743)
Les valeurs numériques séparées par .. indiquent la position du géne dans le génome (numéro de la premiére base,

numéro de la derniére base).

Remarque
Le symbole < indique un géne partiel sur I'extrémité 5’, c'est-a-dire que le codon START correspondant est incomplet.
Respectivement, le symbole > désigne un géne partiel sur I'extrémité 3', c'est-a-dire que le codon STOP correspondant

est incomplet. Pour plus de détails, consultez la documentation du NCBI sur les délimitations des genes 3.

Repérez ces différents génes dans le fichier NC_001133. gbk. Construisez deux expressions régulieres pour extraire du
fichier GenBank les génes sens et les génes antisens.

Modifiez ces expressions régulieres pour que les numéros de la premiére et de la derniére base puissent étre facilement
extraits.

Dans le méme script genbank2fasta. py, ajoutez la fonction recherche_genes () qui prend en argument le contenu
du fichier (sous la forme d'une liste de lignes) et qui renvoie la liste des génes.

Chaque gene sera lui-méme une liste contenant le numéro de la premiére base, le numéro de la derniére base et une
chalne de caractére "sens'" pour un gene sens et "antisens" pour un géne antisens.

Testez cette fonction avec le fichier GenBank NC_001133.gbk et affichez le nombre de génes trouvés, ainsi que le
nombre de génes sens et antisens.

27.2.3.4 Extraction de la séquence nucléique du génome

La taille du génome est indiqué sur la premiére ligne d'un fichier GenBank. Trouvez la taille du génome stocké dans
le fichier NC_001133. gbk.
Dans un fichier GenBank, la séquence du génome se trouve entre les lignes

ORIGIN

et
/7

Trouvez dans le fichier NC_001133.gbk la premiére et derniére ligne de la séquence du génome.

Construisez une expression réguliere pour extraire du fichier GenBank les lignes correspondantes a la séquence du
génome.

Modifiez ces expressions régulieres pour que la séquence puisse étre facilement extraite.

Toujours dans le méme script, ajoutez la fonction extrait_sequence() qui prend en argument le contenu du fichier
(sous la forme de liste de lignes) et qui renvoie la séquence nucléique du génome (dans une chaine de caractéres). La
séquence ne devra pas contenir d'espaces.

Testez cette fonction avec le fichier GenBank NC_001133. gbk et affichez le nombre de bases de la séquence extraite.
Vérifiez que vous n’avez pas fait d'erreur en comparant la taille de la séquence extraite avec celle que vous avez trouvée
dans le fichier GenBank.

27.2.3.5 Construction d’une séquence complémentaire inverse

Toujours dans le méme script, ajoutez la fonction construit_comp_inverse () qui prend en argument une séquence
d’ADN sous forme de chaine de caractéres et qui renvoie la séquence complémentaire inverse (également sous la forme
d'une chaine de caracteres).

On rappelle que construire la séquence complémentaire inverse d'une séquence d’ADN consiste 3 :

13. https://www.ncbi.nlm.nih.gov/Sitemap/samplerecord.html#BaseSpanB

Cours de Python / Université Paris Cité / UFR Sciences du Vivant

https://www.ncbi.nlm.nih.gov/Sitemap/samplerecord.html#BaseSpanB

27.2. Accompagnement pas a pas Chapitre 27. Mini-projets

e Prendre la séquence complémentaire. C'est-a-dire a remplacer la base a par la base t, t par a, c par g et g par c.

e Prendre l'inverse. C'est-a-dire a que la premiére base de la séquence complémentaire devient la derniére base et
réciproquement, la derniére base devient la premiére.

Pour vous faciliter le travail, ne travaillez que sur des séquences en minuscule.

Testez cette fonction avec les séquences atcg, AATTCCGG et gattaca.

27.2.3.6 Ecriture d'un fichier FASTA

Toujours dans le méme script, ajoutez la fonction ecrit_fasta() qui prend en argument un nom de fichier (sous
forme de chaine de caractéres), un commentaire (sous forme de chaine de caractéres) et une séquence (sous forme de
chaine de caractéres) et qui écrit un fichier FASTA. La séquence sera a écrire sur des lignes ne dépassant pas 80 caractéres.

Pour rappel, un fichier FASTA suit le format suivant :

>commentaire

sequence sur une ligne de 80 caractéres maxi
suite de 1a SEQUENCE v it irnnnnnnnnnnnnnnns
suite de 1la SéqUeNCevveeirinneennnnnns

Testez cette fonction avec :

e nom de fichier : test.fasta

e commentaire : mon commentaire

e séquence :
atcgatc

27.2.3.7 Extraction des genes

Toujours dans le méme script, ajoutez la fonction extrait_genes() qui prend en argument la liste des genes, la
séquence nucléotidique compléte (sous forme d'une chaine de caractéres) et le nom de I'organisme (sous forme d'une
chafne de caractéres) et qui pour chaque géne :

e extrait la séquence du gene dans la séquence compléte;;

e prend la séquence complémentaire inverse (avec la fonction construit_comp_inverse() si le géne est antisens;

e enregistre le géne dans un fichier au format FASTA (avec la fonction ecrit_fasta());

e affiche a I'écran le numéro du gene et le nom du fichier fasta créé.

La premiere ligne des fichiers FASTA sera de la forme :

>nom-organisme |numéro-du-geéne|début|fin|sens ou antisens

Le numéro du géne sera un numéro consécutif depuis le premier géne jusqu'au dernier. Il n'y aura pas de différence
de numérotation entre les génes sens et les génes antisens.

Testez cette fonction avec le fichier GenBank NC_001133. gbk.

27.2.3.8 Assemblage du script final

Pour terminer, modifiez le script genbank2fasta.py de facon a ce que le fichier GenBank a analyser (dans cet
exemple NC_001133. gbk), soit entré comme argument du script.

Vous afficherez un message d'erreur si :

e le script genbank2fasta.py est utilisé sans argument,

e le fichier fourni en argument n'existe pas.

Pour vous aider, n'hésitez pas a jeter un ceil aux descriptions des modules sys et pathlib dans le chapitre 9 sur les
modules.

Testez votre script ainsi finalisé.

Cours de Python / Université Paris Cité / UFR Sciences du Vivant 357

Chapitre 27. Mini-projets 27.2. Accompagnement pas a pas

358

27.2.4 Simulation d’un pendule

L'objectif de ce projet est de simuler un pendule simple '* en deux dimensions, puis de le visualiser 3 I'aide du module
tkinter. Le projet peut s'avérer complexe. Tout d'abord, il y a I'aspect physique du projet. Nous allons faire ici tous
les rappels de mécanique nécessaires a la réalisation du projet. Ensuite, il y a la partie tkinter qui n'est pas évidente
au premier abord. Nous conseillons de bien séparer les deux parties. D'abord réaliser la simulation physique et vérifier
qu'elle fonctionne (par exemple, en écrivant un fichier de sortie permettant cette vérification). Ensuite passer a la partie

graphique tkinter si et seulement si la premiére partie est fonctionnelle.

27.2.4.1 Mécanique d’un pendule simple

Nous allons décrire ici ce dont nous avons besoin concernant la mécanique d'un pendule simple. Notamment, nous
allons vous montrer comment dériver |'équation différentielle permettant de calculer la position du pendule a tout moment
en fonction des conditions initiales. Cette page est largement inspirée de la page Wikipedia en anglais 1°. Dans la suite,
une grandeur représentée en gras, par exemple P, représente un vecteur avec deux composantes dans le plan 2D (P, P,).
Cette notation en gras est équivalente a la notation avec une fleche au dessus de la lettre. La méme grandeur représentée
en italique, par exemple P, représente le nombre scalaire correspondant. Ce nombre peut étre positif ou négatif, et sa
valeur absolue vaut la norme du vecteur.

Un pendule simple est représenté par une masse ponctuelle (la boule du pendule) reliée a un axe immobile par une
tige rigide et sans masse. Le pendule simple est un systeme idéal. Ainsi, on néglige les effets de frottement et on considére
le champ gravitationnel comme uniforme. La figure 27.2 montre un schéma du systéme ainsi qu'un bilan des forces
agissant sur la masse. Les deux forces agissant sur la boule sont son poids P et la tension T due a la tige.

La figure 27.3 montre un schéma des différentes grandeurs caractérisant le pendule. La coordonnée naturelle pour
définir la position du pendule est I'angle 6. Nous verrons plus tard comment convertir cet angle en coordonnées car-
tésiennes pour |'affichage dans un canvas tkinter. Nous choisissons de fixer 8 = 0 lorsque le pendule est a sa position
d'équilibre. Il s’agit de la position ou la boule est au plus bas. C'est une position a laquelle le pendule ne bougera pas
s'il n'a pas une vitesse préexistante. Nous choisissons par ailleurs de considérer 0 positif lorsque le pendule se balance
3 droite, et négatif de |'autre cOté. g décrit |'accélération due a la gravité, avec P = mg, ou si on raisonne en scalaire
P =mg. Les deux vecteurs représentant les composantes tangentielle et orthogonale au mouvement du pendule de P sont
représentées sur le schéma (les annotations indiquent leur norme).

Si on déplace le pendule de sa position d'équilibre, il sera mii par la force F résultant de la tension T et de son poids
P (cf. plus bas). Comme le systéme est considéré comme parfait (pas de frottement, gravité uniforme, etc.), le pendule
ne s'arrétera jamais. Si on le monte a 6 = +20 deg et qu'on le lache, le pendule redescendra en passant par 0 =0 deg,
remontera de |'autre co6té a 8 = —20 deg, puis continuera de la sorte indéfiniment, grace a la conservation de |'énergie
dans un systéme fermé (c'est-a-dire sans « fuite » d'énergie).

Ici, on va tenter de simuler ce mouvement en appliquant les lois du mouvement de Newton '© et en résolvant les
équations correspondantes numériquement. D’apres la seconde loi de Newton, la force (F) agissant sur la boule est égale
a sa masse (m) fois son accélération (a) :

F=ma

Cette loi est exprimée ici dans le systéme de coordonnées cartésiennes (le plan a 2 dimensions). La force F et
I'accélération a sont des vecteurs dont les composantes sont respectivement (Fy,F,) et (ax,ay). La force F correspond
a la somme vectorielle de T et P. La tige du pendule étant rigide, le mouvement de la boule est restreint sur le cercle
de rayon égal a la longueur L de la tige (dessiné en pointillé). Ainsi, seule la composante tangentielle de I'accélération a
sera prise en compte dans ce mouvement. Comment la calculer ? La force de tension T étant orthogonale au mouvement
du pendule, celle-ci n'aura pas d'effet. De méme, la composante orthogonale mgcos@ due au poids P n'aura pas d'effet
non plus. Au final, on ne prendra en compte que la composante tangentielle due au poids, c'est-a-dire mgsin6 (cf. figure
27.3). Au final, on peut écrire |'expression suivante en raisonnant sur les valeurs scalaires :

F = ma = —mgsin0

14. https://fr.wikipedia.org/wiki/Pendule_simple
15. https://en.wikipedia.org/wiki/Pendulum_(mathematics)
16. https://fr.wikipedia.org/wiki/Lois_du_mouvement_de_Newton

Cours de Python / Université Paris Cité / UFR Sciences du Vivant

https://fr.wikipedia.org/wiki/Pendule_simple
https://en.wikipedia.org/wiki/Pendulum_(mathematics)
https://fr.wikipedia.org/wiki/Lois_du_mouvement_de_Newton

27.2. Accompagnement pas a pas Chapitre 27. Mini-projets

- -

N
’

/" masse
+~— ponctuelle

FIGURE 27.2 — Bilan des forces dans un pendule simple.

Le signe — dans cette formule est trés important. Il indique que I'accélération s'oppose systématiquement a 0. Si le
pendule se balance vers la droite et que 6 devient plus positif, I'accélération tendra toujours a faire revenir la boule dans
I'autre sens vers sa position d'équilibre a 6 = 0. On peut faire un raisonnement équivalent lorsque le pendule se balance
vers la gauche et que 0 devient plus négatif.

Si on exprime |'accélération en fonction de 8, on trouve ce résultat qui peut sembler peu intuitif au premier abord :

a= —gsin@

Le mouvement du pendule ne dépend pas de sa masse !

Idéalement, nous souhaiterions résoudre cette équation en I'exprimant en fonction de 8 seulement. Cela est possible
en reliant 6 a la longueur effective de I'arc s parcourue par le pendule :
s=06L

Pour bien comprendre cette formule, souvenez-vous de la formule bien connue du cercle [= 2zr (ou / est la circon-
férence, et r le rayon)! Elle relie la valeur de 0 a la distance de I'arc entre la position actuelle de la boule et I'origine (a
0 =0). On peut donc exprimer la vitesse du pendule en dérivant s par rapport au temps 7 :

ds de
= —_— :Li
v dt dt

On peut aussi exprimer I'accélération a en dérivant I'arc s deux fois par rapport a t :

Cours de Python / Université Paris Cité / UFR Sciences du Vivant 359

Chapitre 27. Mini-projets 27.2. Accompagnement pas a pas

FI1GURE 27.3 — Caractérisation géométrique d'un pendule simple.

d’s _Ld29
darr Tar
A nouveau, cette derniére formule exprime |'accélération de la boule lorsque le mouvement de celle-ci est restreint sur
le cercle pointillé. Si la tige n'était pas rigide, I'expression serait différente.
Si on remplace a dans la formule ci-dessus, on trouve :

a=

d*0
L—— = —gsin0
dr? §
Soit en remaniant, on trouve |'équation différentielle en 6 décrivant le mouvement du pendule :
d’0 g
— + =sin@ =0
dr? L

Dans la section suivante, nous allons voir comment résoudre numériquement cette équation différentielle.

27.2.4.2 Résolution de I’équation différentielle du pendule

Il existe de nombreuses méthodes numériques de résolution d'équations différentielles'”. L'objet ici n'est pas de

faire un rappel sur toutes ces méthodes ni de les comparer, mais juste d’'expliquer une de ces méthodes fonctionnant
efficacement pour simuler notre pendule.

Nous allons utiliser la méthode semi-implicite d'Euler '8, Celle-ci est relativement intuitive & comprendre.

17. https://en.wikipedia.org/wiki/Numerical_methods_for_ordinary_differential_equations
18. https://en.wikipedia.org/wiki/Semi-implicit_Euler_method

360 Cours de Python / Université Paris Cité / UFR Sciences du Vivant

https://en.wikipedia.org/wiki/Numerical_methods_for_ordinary_differential_equations
https://en.wikipedia.org/wiki/Semi-implicit_Euler_method

27.2. Accompagnement pas a pas Chapitre 27. Mini-projets

Commencons d’abord par calculer I'accélération angulaire ag au temps t en utilisant I'équation différentielle précé-
demment établie :

d%0 g .

L'astuce sera de calculer ensuite la vitesse angulaire au pas suivant ¢ + 8¢ grace a la relation :

ag(t)

de

ve(t+0t) = E(l—i—&) ~vg(t)+ag(t) x ot
Cette équation est ni plus ni moins qu'un remaniement de la définition de |'accélération, a savoir, la variation de
vitesse par rapport a un temps. Cette vitesse vg (7 + 0t) permettra au final de calculer 6 au temps t + 8¢ (c’est-a-dire ce

que l'on cherchel) :

O(r+61) = 0(t) +ve(t+0t) x Ot

Dans une réalisation algorithmique, il suffira d'initialiser les variables de notre systéme puis de faire une boucle sur
un nombre de pas de simulation. A chaque pas, on calculera ag(¢), puis vg(t + 0t) et enfin 6(¢+ 6¢) a I'aide des formules
ci-dessus.

L'initialisation des variables pourra ressembler a cela :

L <-1 # longueur tige en m

g <- 9.8 # accélération gravitationnelle en m/s”"2
t <-0 # temps initial en s

dt <- 0.05 # pas de temps en s

conditions initiales
theta <- pi / 4 # angle initial en rad
dtheta <- 0 # vitesse angulaire 1initiale en rad/s

afficher_position_pendule(t, theta) # afficher position de départ

L'initialisation des valeurs de theta et dtheta est trés importante, car elle détermine le comportement du pendule.
Nous avons choisi ici d’avoir une vitesse angulaire nulle et un angle de départ du pendule 6 = /4 rad =45 deg. Le pas
dt est également trés important, c'est lui qui déterminera I'erreur faite sur I'intégration de I'équation différentielle. Plus
ce pas est petit, plus on est précis, mais plus le calcul sera long. Ici, on choisit un pas dt de 0.05 s qui constitue un bon
compromis.

A ce stade, vous avez tous les éléments pour tester votre pendule. Essayez de réaliser un petit programme python
pendule_basic.py qui utilise les conditions initiales ci-dessus et simule le mouvement du pendule. A la fin de cette
rubrique, nous proposons une solution en langage algorithmique. Essayez dans un premier temps de le faire vous-méme.
A chaque pas, le programme écrira le temps ¢ et I'angle 8 dans un fichier pendule_basic.dat. Dans les équations,
0 doit é&tre exprimé en radian, mais nous vous conseillons de convertir cet angle en degré dans le fichier (plus facile a
comprendre pour un humain !). Une fois ce fichier généré, vous pourrez observer le graphe correspondant avec matplotlib
en utilisant le code suivant :

import matplotlib.pyplot as plt
import numpy as np

La fonction np.genfromtxt() renvoie un array a 2 dim.
array_data = np.genfromtxt("pendule_basic.dat")

col 0: t, col 1: theta

t = array_data[:,0]

theta = array_datal:,1]

Figure.

fig, ax = plt.subplots(figsize=(8, 8))
mini = min(theta) *x 1.2

maxi = max(theta) x 1.2

ax.set_x1im(0, max(t))
ax.set_ylim(mini, maxi)
ax.set_xlabel("t (s)")
ax.set_ylabel("theta (deg)")
ax.plot(t, theta)
fig.savefig("pendule_basic.png")

Cours de Python / Université Paris Cité / UFR Sciences du Vivant 361

Chapitre 27. Mini-projets 27.2. Accompagnement pas a pas

362

Si vous observez une sinusoide, bravo, vous venez de réaliser votre premiere simulation de pendule! Vous avez
maintenant le « squelette » de votre « moteur » de simulation. N'hésitez pas a vous amuser avec d'autres conditions
initiales. Ensuite vous pourrez passer a la rubrique suivante.

Si vous avez bloqué dans I'écriture de la boucle, voici a quoi elle pourrait ressembler en langage algorithmique :

tant qu'on n'arréte pas le pendule:

acc angulaire au tps t (en rad/s”2)
d2theta <- -(g/L) * sin(theta)
v angulaire mise a jour de t -> t + dt
dtheta <- dtheta + d2theta x dt
theta mis a jour de t -> t + dt
theta <- theta + dtheta * dt
t mis a jour
<- t + dt
mettre a jour 1'affichage
afficher_position_pendule(t, theta)

= o+

27.2.4.3 Constructeur de I'application en tkinter

Nous allons maintenant construire |'application tkinter en vous guidant pas a pas. |l est bien siir conseillé de relire le

chapitre 25 sur Fenétres graphiques et Tkinter (en ligne) avant de vous lancer dans cette partie.

Comme expliqué largement dans les chapitres 23 Avoir la classe avec les objets et 24 Avoir plus la classe avec les
objets (en ligne), nous allons construire |'application avec une classe. Le programme principal sera donc trés allégé et se

contentera d'instancier I'application, puis de lancer le gestionnaire d'événements :

if __name__ == "__main__":
"""Programme principal (instancie la classe principale, donne un
titre et lance le gestionnaire d'événements)
nnn
app_pendule = AppliPendule()
app_pendule.title("Pendule")
app_pendule.mainloop()

Ensuite, nous commencons par écrire le constructeur de la classe. Dans ce constructeur, nous aurons une section
initialisant toutes les variables utilisées pour simuler le pendule (voir rubrique précédente), puis, une autre partie générant
les widgets et tous les éléments graphiques. Nous vous conseillons vivement de bien les séparer, et surtout de mettre

des commentaires pour pouvoir s'y retrouver. Voici un « squelette » pour vous aider :

class AppliPendule(tk.Tk):
def __init__(self):

Instanciation de la classe Tk.
tk.Tk.__init__(self)
Ici vous pouvez définir toutes les variables
concernant la physique du pendule.
self.theta = np.pi / 4 # valeur intiale theta
self.dtheta = 0 # vitesse angulaire initiale

Loool
self.g = 9.8 # cst gravitationnelle en m/s”"2
Loool

Oci vous pouvez construire 1'application graphique.
self.canv = tk.Canvas(self, bg='gray', height=400, width=400)
Création d'un boutton demarrer, arreter, quitter.

Pensez a placer les widgets avec .pack()

Loool

La figure 27.4 vous montre un apercu de ce que I'on voudrait obtenir.

Pour le moment, vous pouvez oublier la réglette fixant la valeur initiale de 0, les labels affichant la valeur de 6 et vg
ainsi que les points violets « laissés en route » par le pendule. De méme, nous dessinerons le pivot, la boule et la tige
plus tard. A ce stade, il est fondamental de tout de suite lancer votre application pour vérifier que les widgets sont bien

placés. N'oubliez pas, un code complexe se teste au fur et a mesure lors de son développement.

Conseil

Cours de Python / Université Paris Cité / UFR Sciences du Vivant

27.2. Accompagnement pas a pas Chapitre 27. Mini-projets

X Pendule — O X

Demarrer

theta dtheta
(rad) (rad/dt)
0.6 =054
valeur
initiale
de theta
2.356

Quitter

FIGURE 27.4 — Application pendule.

Pour éviter un message d’erreur si toutes les méthodes n'existe pas encore, vous pouvez indiquer command=self.quit
pour chaque bouton (vous le changerez apres).

27.2.4.4 Créations des dessins dans le canvas

Le pivot et la boule pourront étre créés avec la méthode .create_oval(), la tige le sera avec la méthode .
create_line(). Pensez a créer des variables pour la tige et la boule lors de I'instanciation car celles-ci bougeront par
la suite.

Comment placer ces éléments dans le canvas? Vous avez remarqué que lors de la création de ce dernier, nous avons
fixé une dimension de 400 x 400 pixels. Le pivot se trouve au centre, c'est-a-dire au point (200,200). Pour la tige et
la boule, il sera nécessaire de connaitre la position de la boule dans le repére du canvas. Or, pour l'instant, nous
définissons la position de la boule avec I'angle 6. Il va donc nous falloir convertir 6 en coordonnées cartésiennes (x,y)
dans le repére mathématique défini dans la figure 27.3, puis dans le repére du canvas (x.,y.) (cf. rubrique suivante).

Conversion de 6 en coordonnées (x,y) Cette étape est relativement simple si on considére le pivot comme le centre du
repére. Avec les fonctions trigonométriques sin() et cos (), vous pourrez calculer la position de la boule (voir I'exercice
sur la spirale dans le chapitre 7 Fichiers). Faites attention toutefois aux deux aspects suivants :
e la trajectoire de la boule suit les coordonnées d'un cercle de rayon L (si on choisit L = 1 m, ce sera plus simple);
e nous sommes décalés par rapport au cercle trigonométrique classique ; si on considére L =1 m:
— quand 6 =0, on a le point (0,—1) (pendule en bas);
— quand 6 =+7m/2 =90 deg, on a (1,0) (pendule a droite) ;
— quand 6 = —m/2 = —90 deg, on a (—1,0) (pendule a gauche);
— quand 6 =+ = +180 deg, on a (0,1) (pendule en haut).
La figure 27.3 montre graphiquement les valeurs de 6.
Si vous n'avez pas trouvé, voici la solution :

1 self.x = np.sin(self.theta) x self.L
2 self.y = -np.cos(self.theta) * self.L

Cours de Python / Université Paris Cité / UFR Sciences du Vivant 363

Chapitre 27. Mini-projets 27.2. Accompagnement pas a pas

364

Conversion des coordonnées (x,y) en (x;,y.) Il nous faut maintenant convertir les coordonnées naturelles mathéma-
tiques du pendule (x,y) en coordonnées dans le canvas (x.,y.). Plusieurs choses sont importantes pour cela :
e le centre du repére mathématique (0,0) a la coordonnée (200,200) dans le canvas;
e il faut choisir un facteur de conversion : par exemple, si on choisit L = 1 m, on peut proposer le facteur 1 m —
100 pixels;
e |'axe des ordonnées dans le canvas est inversé par rapport au repére mathématique.

Conseil

Dans votre classe, cela peut étre une bonne idée d'écrire une méthode qui réalise cette conversion. Celle-ci pourrait
s'appeler par exemple map_realcoor2canvas().

Si vous n'avez pas trouvé, voici la solution :

self.conv_factor = 100
self.x_c = self.xxself.conv_factor + 200
self.y_c = -self.y*xself.conv_factor + 200

27.2.4.5 Gestion des boutons

Il reste maintenant a gérer les boutons permettant de démarrer / stopper le pendule. Pour cela il faudra créer trois

méthodes dans notre classe :

e La méthode .start() : met en mouvement le pendule; si le pendule n'a jamais été en mouvement, il part de son
point de départ; si le pendule avait déja été en mouvement, celui-ci repart d'ou on |'avait arrété (avec la vitesse
qu'il avait a ce moment-1a).

e La méthode .stop() : arréte le mouvement du pendule.

e La méthode .move() : gére le mouvement du pendule (génere les coordonnées du pendule au pas suivant).

Le bouton « Démarrer » appellera la méthode .start(), le bouton « Arréter » appellera la méthode .stop() et

le bouton « Quitter » quittera I'application. Pour lier une action au clic d'un bouton, on se souvient qu'il faut donner a
I'argument par mot-clé command une callback (c'est-a-dire le nom d'une fonction ou méthode sans les parenthéses) :

e btnl = tk.Button(self, text="Quitter", command=self.quit)

e btn2 tk.Button(self, text="Demarrer", command=self.start)

e btn3 = tk.Button(self, text="Arréter", command=self.stop)

Ici, self.start() et self.stop() sont des méthodes que I'on doit créer, self.quit() pré-existe lorsque la fenétre

tkinter est créée.

Nous vous proposons ici une stratégie inspirée du livre de Gérard Swinnen 1. Créons d’abord un attribut d'instance
self.is_moving dans le constructeur. Celui-ci va nous servir de « drapeau » pour définir le mouvement du pendule.
Il contiendra un entier positif ou nul. Lorsque ce drapeau sera égal a 0, le pendule sera immobile. Lorsqu'il sera > 0, le
pendule sera en mouvement. Ainsi :

e la méthode .start() ajoutera 1 a self.is_moving. Si self.is_moving est égal a 1 alors la méthode self.

move () sera appelée;

e la méthode .stop() mettra la valeur de self.is_moving a 0.

Puisque .start() ajoute 1 3 self.is_moving, le premier clic sur le bouton « Démarrer » appellera la méthode
.move () car self.is_moving vaudra 1. Si I'utilisateur appuie une deuxiéme fois sur le bouton « Démarrer », self
.is_moving vaudra 2, mais n'appellera pas .move() une deuxiéme fois; cela sera vrai pour tout clic ultérieur de
I'utilisateur sur ce bouton. Cette astuce évite des appels concurrents de la méthode .move ().

27.2.4.6 Le coeur du programme : la méthode .move()

Il nous reste maintenant a générer la méthode .move () qui meut le pendule. Pour cela vous pouvez vous inspirer de
la rubrique Un canvas animé dans une classe du chapitre 25 Fenétres graphiques et Tkinter (en ligne).
Cette méthode va réaliser un pas de simulation de 7 a £+ &¢. Il faudra ainsi réaliser dans |'ordre :

19. https://inforef.be/swi/python.htm

Cours de Python / Université Paris Cité / UFR Sciences du Vivant

https://inforef.be/swi/python.htm

27.3. Scripts de correction Chapitre 27. Mini-projets

e Calculer la nouvelle valeur de 6 (self.theta) au pas f+ 8¢ comme nous |'avons fait précédemment avec la
méthode semi-implicite d'Euler.

e Convertir la nouvelle valeur de 6 (self.theta) en coordonnées cartésiennes dans le repére du pendule (self.x

et self.y).

Convertir ces coordonnées cartésiennes dans le repére du Canvas (self.x_c et self.y_c).

Mettre a jour le dessin de la baballe et de la tige avec la méthode self.canv.coords().

Incrémenter le pas de temps.

Si le drapeau self.1is_moving est supérieur a 0, la méthode self.move() est rappelée aprés 20 millisecondes

(Conseil : la méthode .after () est votre amie).

27.2.4.7 Ressources complémentaires

Si vous étes arrivé jusqu'ici, bravo, vous pouvez maintenant admirer votre superbe pendule en mouvement :-)!

Voici quelques indications si vous voulez aller un peu plus loin.

Si vous souhaitez mettre une réglette pour modifier la position de départ du pendule, vous pouvez utiliser la classe
tk.Scale(). Si vous souhaitez afficher la valeur de 6 qui se met a jour au fur et a mesure, il faudra instancier un objet
avec la classe tk.StringVar (). Cet objet devra étre passé a I'argument textvariable lors de la création de ce Label
avec tk.Label(). Ensuite, vous pourrez mettre a jour le texte du Label avec la méthode self.instance_StringVar
.set().

Pour le fun, si vous souhaitez laisser une « trace » du passage du pendule avec des points colorés, vous pouvez utiliser
tout simplement la méthode self.canv.create_1line() et créer une ligne d'un pixel de hauteur et de largeur pour
dessiner un point. Pour améliorer |'esthétique, vous pouvez faire en sorte que ces points changent de couleur aléatoirement
a chaque arrét / redémarrage du pendule.

27.3 Scripts de correction

Voici les scripts corrigés pour les différents mini-projets.

Remarque
e Prenez le temps de chercher par vous-méme avant de télécharger les scripts de correction.
e Nous proposons une correction. D'autres solutions sont possibles.

Mots anglais dans le protéome humain : words_in_proteome.py 2°

Genbank2fasta (sans expression réguliére) : genbank2fasta_sans_regex.py °*

Genbank2fasta (avec expressions réguliéres) : genbank2fasta_avec_regex.py >

Simulation d'un pendule version simple : tk_pendule.py %3

Simulation d'un pendule++ (avec réglette et affichage se mettant a jour) : tk_pendule.py %*

20. https://python.sdv.u-paris.fr/data-files/words_in_proteome.py

21. https://python.sdv.u-paris.fr/data-files/genbank2fasta_sans_regex.py
22. https://python.sdv.u-paris.fr/data-files/genbank2fasta_avec_regex.py
23. https://python.sdv.u-paris.fr/data-files/tk_pendule_simple.py

24. https://python.sdv.u-paris.fr/data-files/tk_pendule.py

Cours de Python / Université Paris Cité / UFR Sciences du Vivant 365

https://python.sdv.u-paris.fr/data-files/words_in_proteome.py
https://python.sdv.u-paris.fr/data-files/genbank2fasta_sans_regex.py
https://python.sdv.u-paris.fr/data-files/genbank2fasta_avec_regex.py
https://python.sdv.u-paris.fr/data-files/tk_pendule_simple.py
https://python.sdv.u-paris.fr/data-files/tk_pendule.py

ANNEXE A

Quelques formats de données en biologie

A.1 FASTA

Le format FASTA est utilisé pour stocker une ou plusieurs séquences, d'’ADN, d'ARN ou de protéines. Ces séquences
sont classiquement représentées sous la forme :
>en-téte
séquence avec un nombre maximum de caractéres par ligne
séquence avec un nombre maximum de caractéres par ligne
séquence avec un nombre maximum de caractéres par ligne

séquence avec un nombre maximum de caractéres par ligne
séquence avec un nombre max

La premiére ligne débute par le caractére > et contient une description de la séquence. On appelle souvent cette ligne
« ligne de description » ou « ligne de commentaire ».

Les lignes suivantes contiennent la séquence a proprement dite, mais avec un nombre maximum fixe de caractéres
par ligne. Ce nombre maximum est généralement fixé a 60, 70 ou 80 caractéres. Une séquence de plusieurs centaines de
bases ou de résidus est donc répartie sur plusieurs lignes.

Un fichier est dit multifasta lorsqu'il contient plusieurs séquences au format FASTA, les unes a la suite des autres.

Les fichiers contenant une ou plusieurs séquences au format FASTA portent la plupart du temps I'extension . fasta
mais on trouve également .seq, .fas, .fna ou .faa.

A.1.1 Exemples

La séquence protéique au format FASTA de I'insuline humaine !, extraite de la base de données UniProt, est :

>sp|P01308|INS_HUMAN Insulin OS=Homo sapiens 0X=9606 GN=INS PE=1 SV=1
MALWMRLLPLLALLALWGPDPAAAFVNQHLCGSHLVEALYLVCGERGFFYTPKTRREAED
LQVGQVELGGGPGAGSLQPLALEGSLQKRGIVEQCCTSICSLYQLENYCN

La premiére ligne contient la description de la séquence (/nsulina), le type de base de données (ici, sp qui signifie Swiss-
Prot), son identifiant (P01308) et son nom (INS_HUMAN) dans cette base de données, ainsi que d'autres informations
(OS=Homo sapiens OX=9606 GN=INS PE=1 SV=1B).

Les lignes suivantes contiennent la séquence sur des lignes ne dépassant pas, ici, 60 caractéres. La séquence de
I'insuline humaine est composée de 110 acides aminés, soit une ligne de 60 caractéres et une seconde de 50 caracteres.

1. https://www.uniprot.org/uniprot/P01308

366

https://www.uniprot.org/uniprot/P01308

A.l. FASTA Annexe A. Quelques formats de données en biologie

Définition

UniProt? est une base de données de séquences de protéines. Ces séquences proviennent elles-mémes de deux autres
bases de données : Swiss-Prot (ou les séquences sont annotées manuellement) et TrEMBL (ot les séquences sont annotées
automatiquement).

Voici maintenant la séquence nucléique (ARN), au format FASTA, de l'insuline humaine 3, extraite de la base de
données GenBank* :

>BT006808.1 Homo sapiens insulin mRNA, complete cds
ATGGCCCTGTGGATGCGCCTCCTGCCCCTGCTGGCGCTGCTGGCCCTCTGGGGACCTGACCCAGCCGCAG
CCTTTGTGAACCAACACCTGTGCGGCTCACACCTGGTGGAAGCTCTCTACCTAGTGTGCGGGGAACGAGG
CTTCTTCTACACACCCAAGACCCGCCGGGAGGCAGAGGACCTGCAGGTGGGGCAGGTGGAGCTGGGCGGG
GGCCCTGGTGCAGGCAGCCTGCAGCCCTTGGCCCTGGAGGGGTCCCTGCAGAAGCGTGGCATTGTGGAAC
AATGCTGTACCAGCATCTGCTCCCTCTACCAGCTGGAGAACTACTGCAACTAG

On retrouve sur la premiére ligne la description de la séquence (Homo sapiens insulin mRNA), ainsi que son identifiant
(BT006808.1) dans la base de données GenBank.

Les lignes suivantes contiennent les 333 bases de la séquence, réparties sur cinq lignes de 70 caractéres maximum. Il
est curieux de trouver la base T (thymine) dans une séquence d'ARN, qui ne devrait contenir normalement que les bases
A, U, G et C. lci, la représentation d'une séquence d'’ARN avec les bases de I'ADN est une convention.

Pour terminer, voici trois séquences protéiques, au format FASTA, qui correspondent a I'insuline humaine (Homo
sapiens), féline (Felis catus) et bovine (Bos taurus) :

>sp|P01308 | INS_HUMAN Insulin OS=Homo sapiens 0X=9606 GN=INS PE=1 SV=1
MALWMRLLPLLALLALWGPDPAAAFVNQHLCGSHLVEALYLVCGERGFFYTPKTRREAED
LQVGQVELGGGPGAGSLQPLALEGSLQKRGIVEQCCTSICSLYQLENYCN
>sp|P06306|INS_FELCA Insulin OS=Felis catus 0X=9685 GN=INS PE=1 SV=2
MAPWTRLLPLLALLSLWIPAPTRAFVNQHLCGSHLVEALYLVCGERGFFYTPKARREAED
LQGKDAELGEAPGAGGLQPSALEAPLQKRGIVEQCCASVCSLYQLEHYCN
>sp|P01317 | INS_BOVIN Insulin 0S=Bos taurus 0X=9913 GN=INS PE=1 SV=2
MALWTRLRPLLALLALWPPPPARAFVNQHLCGSHLVEALYLVCGERGFFYTPKARREVEG
PQVGALELAGGPGAGGLEGPPQKRGIVEQCCASVCSLYQLENYCN

Ces séquences proviennent de la base de données UniProt ®. Chaque séquence est délimitée par la ligne d’en-téte qui
débute par >.

A.1.2 Manipulation avec Python

A partir de I'exemple précédent des 3 séquences d'insuline, voici un exemple de code qui lit un fichier FASTA avec
Python :

prot_dict = {}
with open("insulin.fasta", "r") as fasta_file:
prot_id = ""
for line in fasta_file:
if line.startswith(">"):
prot_id = line[1l:].split()[0]
prot_dict[prot_id] = ""
else:
prot_dict[prot_id] += line.strip()
for id in prot_dict:
print(id)
print(prot_dict[id][:30])

Pour chaque séquence lue dans le fichier FASTA, on affiche son identifiant et son nom, puis les 30 premiers résidus
de sa séquence :

https://www.uniprot.org/
https://www.ncbi.nlm.nih.gov/nuccore/BT006808.1?report=fasta
https://www.ncbi.nlm.nih.gov/nuccore/AY899304.1?report=genbank
https://www.uniprot.org/

aorwn

Cours de Python / Université Paris Cité / UFR Sciences du Vivant 367

https://www.uniprot.org/
https://www.ncbi.nlm.nih.gov/nuccore/BT006808.1?report=fasta
https://www.ncbi.nlm.nih.gov/nuccore/AY899304.1?report=genbank
https://www.uniprot.org/

Annexe A. Quelques formats de données en biologie A.2. GenBank

sp|P06306 | INS_FELCA
MAPWTRLLPLLALLSLWIPAPTRAFVNQHL
sp|P01317 | INS_BOVIN
MALWTRLRPLLALLALWPPPPARAFVNQHL
sp|PO1308 | INS_HUMAN
MALWMRLLPLLALLALWGPDPAAAFVNQHL

Notez que les protéines sont stockées dans un dictionnaire (prot_dict) ou les clefs sont les identifiants et les valeurs
les séquences.

On peut faire la méme chose avec le module Biopython :

from Bio import SeqIO
with open("insulin.fasta", "r") as fasta_file:
for record in SeqlO.parse(fasta_file, "fasta"):
print(record.id)
print(str(record.seq)[:30])

Cela produit le méme résultat. L'utilisation de Biopython rend le code plus compacte car on utilise ici la fonction
SeqIO.parse() qui s'occupe de lire le fichier FASTA.

Remarque
L'attribut .1d renvoie I'identifiant d'une séquence, c'est-a-dire la premiére partie de I'entéte, sans le caractére >. Pour
obtenir I'entéte complet (toujours sans le caractére >), il faut utiliser I'attribut .description.

A.2 GenBank

GenBank est une banque de séquences nucléiques. Le format de fichier associé contient I'information nécessaire pour
décrire un géne ou une portion d'un génome. Les fichiers GenBank portent le plus souvent I'extension . gbk.

Le format GenBank est décrit de maniére trés compléte sur le site du NCBI®. En voici néanmoins les principaux
éléments, avec I'exemple du géne qui code pour la trypsine’ chez I'Homme.

A.2.1 L’en-téte

LOCUS HUMTRPSGNA 800 bp mRNA linear PRI 14-JAN-1995
DEFINITION Human pancreatic trypsin 1 (TRY1) mRNA, complete cds.
ACCESSION M22612

VERSION M22612.1
KEYWORDS trypsinogen.
SOURCE Homo sapiens (human)

ORGANISM Homo sapiens
Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi;
Mammalia; Eutheria; Euarchontoglires; Primates; Haplorrhini;
Catarrhini; Hominidae; Homo.

e Ligne 1 (LOCUS) : le nom du locus (HUMTRPSGNA), la taille du géne (800 paires de bases), le type de molécule
(ARN messager).

Ligne 3 (ACCESSION) : I'identifiant de la séquence (M22612).

Ligne 4 (VERSION) : la version de la séquence (M22612.1). Le nombre qui est séparé de I'identifiant de la séquence
par un point est incrémenté pour chaque nouvelle version de la fiche GenBank. Ici, .1 indique que nous en sommes
a la premiére version.

Ligne 6 (SOURCE) : la provenance de la séquence (souvent |'organisme d'origine).

Ligne 7 (ORGANISME) : le nom scientifique de I'organisme, suivi de sa taxonomie (lignes 8 a 10).

6. https://www.ncbi.nlm.nih.gov/Sitemap/samplerecord.html
7. https://www.ncbi.nlm.nih.gov/nuccore/M22612.1

368 Cours de Python / Université Paris Cité / UFR Sciences du Vivant

https://www.ncbi.nlm.nih.gov/Sitemap/samplerecord.html
https://www.ncbi.nlm.nih.gov/nuccore/M22612.1

A.2. GenBank

Annexe A. Quelques formats de données en biologie

A.2.2 Les features

[...]
FEATURES
source
gene
CcDS
sig_peptide
[...]

e Ligne 9 (gene 1..800) : la délimitation du geéne. Ici, de la base 1 a la base 800. Par ailleurs, la notation <x. .y
indique que la séquence est partielle sur I'extrémité 5. Réciproquement, x..y> indique que la séquence est partielle
sur I'extrémité 3'. Enfin, pour les séquences d"ADN, la notation complement(x..y) indique que le géne se trouve

Location/Qualifiers

1..800

/organism="Homo sapiens"
/mol_type="mRNA"
/db_xref="taxon:9606"

/map="7q32-

qter"

/tissue_type="pancreas"

1..800

/gene="TRY1"

7..750

/gene="TRY1"
/codon_start=1

/product="trypsinogen"

/protein_id="AAA61231.1"
/db_xref="GDB:G00-119-620"

/translation="MNPLLILTFVAAALAAPFDDDDKIVGGYNCEENSVPYQVSLNSG
YHFCGGSLINEQWVVSAGHCYKSRIQVRLGEHNIEVLEGNEQFINAAKIIRHPQYDRK
TLNNDIMLIKLSSRAVINARVSTISLPTAPPATGTKCLISGWGNTASSGADYPDELQC
LDAPVLSQAKCEASYPGKITSNMFCVGFLEGGKDSCQGDSGGPVVCNGQLQGVVSWGD

GCAQKNKPGVYTKVYNYVKWIKNTIAANS"

119-620"

7..51
/gene="TRY1"
/note="G00O-

de la base x a la base y, mais sur le brin complémentaire.

codante.

Ligne 10 (/gene="TRY1") : le nom du géne.
Ligne 11 (CDS 7..750) : la délimitation de la séquence codante.

Ligne 14 (/product="trypsinogen") : le nom de la protéine produite.
Lignes 17 a 20 (/translation="MNPLLIL...) : la séquence protéique issue de la traduction de la séquence

e Ligne 22 (sig_peptide 7..51) : la délimitation du peptide signal.

A.2.3 La séquence

[...]
ORIGIN
1 accaccatga
61 gatgatgatg
121 gtgtccctga
181 gtatcagcag
241 gaagtcctgg
301 tacgacagga
361 atcaacgccc
421 tgcctcatct
481 cagtgcctgg
541 attaccagca
601 gattctggtg
661 ggctgtgccc
721 attaagaaca
781 aataaagtga
/1

atccactcct
acaagatcgt
attctggcta
gccactgcta
aggggaatga
agactctgaa
gcgtgtccac
ctggetggeg
atgctcctgt
acatgttctg
gccectgtggt
agaagaacaa
ccatagctgc
ccctgttctc

gatccttacc
tgggggctac
ccacttctgt
caagtcccgc
gcagttcatc
caatgacatc
catctctctg
caacactgcg
gctgagccag
tgtgggcttc
ctgcaatgga
gcctggagtc
caatagctaa

tttgtggcag
aactgtgagg
ggtggctccc
atccaggtga
aatgcagcca
atgttaatca
cccaccgcecc
agctctggeg
gctaagtgtg
cttgagggag
cagctccaag
tacaccaagg
agcccccagt

ctgctcttge
agaattctgt
tcatcaacga
gactgggaga
agatcatccg
agctctcctc
ctccagccac
ccgactaccc
aagcctccta
gcaaggattc
gagttgtctc
tctacaacta
atctcttcag

tgcccecttt
cccctaccag
acagtgggtg
gcacaacatc
ccacccccaa
acgtgcagta
tggcacgaag
agacgagctg
ccctggaaag
atgtcagggt
ctggggtgat
cgtgaaatgg
tctctatacc

La séquence est contenue entre les balises ORIGIN (ligne 2) et // (ligne 17).

Chaque ligne est composée d'une série d'espaces, puis du numéro du premier nucléotide de la ligne, puis d'au plus
6 blocs de 10 nucléotides. Chaque bloc est précédé d'un espace. Par exemple, ligne 10, le premier nucléotide de la ligne

(t) est le numéro 421 dans la séquence.

Cours de Python / Université Paris Cité / UFR Sciences du Vivant

369

Annexe A. Quelques formats de données en biologie A.3. PDB

A.2.4 Manipulation avec Python

A partir de I'exemple précédent, voici comment lire un fichier GenBank avec Python et le module Biopython :

from Bio import SeqIO

with open("M22612.gbk", "r") as gbk_file:
record = SeqlO.read(gbk_file, "genbank")
print(record.id)
print(record.description)
print(record.seq[:60])

Pour la séquence lue dans le fichier GenBank, on affiche son identifiant, sa description et les 60 premiers résidus :

M22612.1
Human pancreatic trypsin 1 (TRY1) mRNA, complete cds.
ACCACCATGAATCCACTCCTGATCCTTACCTTTGTGGCAGCTGCTCTTGCTGCCCCCTTT

Il est également possible de lire un fichier GenBank sans le module Biopython. Une activité dédiée est proposée dans
le chapitre 27 Mini-projets (en ligne).

A.3 PDB

La Protein Data Bank® (PDB) est une banque de données qui contient les structures de biomacromolécules (protéines,
ADN, ARN, virus...). Historiquement, le format de fichier qui y est associé est le PDB, dont une documentation détaillée
est disponible sur le site éponyme . Les extensions de fichier pour ce format de données sont .ent et surtout .pdb.

Un fichier PDB est constitué de deux parties principales : I'en-téte et les coordonnées.

e L'en-téte est lisible et utilisable par un étre humain (comme par une machine).

e Alinverse, les coordonnées sont surtout utilisables par un programme pour calculer certaines propriétés de la struc-
ture ou simplement la représenter sur I'écran d'un ordinateur. Bien siir, un utilisateur expérimenté peut parfaitement
jeter un ceil a cette seconde partie.

Examinons ces deux parties avec la trypsine bovine 1.

A.3.1 En-téte

Pour la trypsine bovine, I'en-téte compte 510 lignes. En voici quelques unes :

8. https://www.rcsb.org/
9. http://www.wwpdb.org/documentation/file-format-content/format33/v3.3.html

10. https://www.rcsb.org/structure/2PTN

370 Cours de Python / Université Paris Cité / UFR Sciences du Vivant

https://www.rcsb.org/
http://www.wwpdb.org/documentation/file-format-content/format33/v3.3.html
https://www.rcsb.org/structure/2PTN

A.3. PDB Annexe A. Quelques formats de données en biologie

HEADER HYDROLASE (SERINE PROTEINASE) 26-0CT-81 2PTN

TITLE ON THE DISORDERED ACTIVATION DOMAIN IN TRYPSINOGEN.

TITLE 2 CHEMICAL LABELLING AND LOW-TEMPERATURE CRYSTALLOGRAPHY

COMPND MOL_ID: 1;

COMPND 2 MOLECULE: TRYPSIN;

COMPND 3 CHAIN: A;

[...]

SOURCE 2 ORGANISM_SCIENTIFIC: BOS TAURUS;

[...]

EXPDTA X-RAY DIFFRACTION

[...]

REMARK 2 RESOLUTION. 1.55 ANGSTROMS.

[...]

DBREF 2PTN A 16 245 UNP POO760 TRY1_BOVIN 21 243

SEQRES 1 A 223 ILE VAL GLY GLY TYR THR CYS GLY ALA ASN THR VAL PRO
SEQRES 2 A 223 TYR GLN VAL SER LEU ASN SER GLY TYR HIS PHE CYS GLY
SEQRES 3 A 223 GLY SER LEU ILE ASN SER GLN TRP VAL VAL SER ALA ALA
SEQRES 4 A 223 HIS CYS TYR LYS SER GLY ILE GLN VAL ARG LEU GLY GLU

[...]

HELIX 1 H1 SER A 164 ILE A 176 1SNGL ALPHA TURN,REST IRREG. 13
HELIX 2 H2 LYS A 230 VAL A 235 5CONTIGUOUS WITH H3 6
HELIX 3 H3 SER A 236 ASN A 245 1CONTIGUOUS WITH H2 10
SHEET 1 A7 TYRA 20 THR A 21 ©

SHEET 2 A 7 LYS A 156 PRO A 161 -1 N CYS A 157 0O TYR A 20

[...]

SSBOND 1 CYS A 22 CYS A 157 1555 1555 2.04
SSBOND 2 CYS A 42 CYS A 58 1555 1555 2.02
[...]

e Ligne 1. Cette ligne HEADER contient :
— le nom de la protéine : HYDROLASE (SERINE PROTEINASE),
— la date de dépdt de cette structure dans la banque de données : 26 octobre 1981
— et l'identifiant de la structure dans la PDB, on parle souvent de « code PDB » : 2PTN.

Ligne 2. TITLE correspond au titre de I'article scientifique dans lequel a été publié cette structure.

Lignes 4-6. COMPND indique que la trypsine est composée d'une seule chaine peptidique, appelée ici A.

Ligne 8. SOURCE indique le nom scientifique de I'organisme dont provient cette protéine (ici, le boeuf).

Ligne 10. EXPDTA précise la technique expérimentale employée pour déterminer cette structure. Ici, la cristallogra-

phie aux rayons X. Mais on peut également trouver SOLUTION NMR pour de la résonance magnétique nucléaire

en solution, ELECTRON MICROSCOPY pour de la microscopie électronique.

e Ligne 12. REMARK 2 précise, dans le cas d'une détermination par cristallographie aux rayons X, la résolution
obtenue, ici 1,55 Angstroms.

e Ligne 14. DBREF indique les liens éventuels vers d'autres banques de données. Ici, I'identifiant correspondant a
cette protéine dans UniProt (UNP) est P00760 .

e Ligne 15-18. SEQRES donnent a la séquence de la protéine. Les résidus sont représentés par leur code a trois
lettres.

e Lignes 20-22 et 23-24. HELIX et SHEET correspondent aux structures secondaires hélices « et brin B de cette
protéine. Ici, HI SER A 164 ILE A 176 indique qu'il y a une premiére hélice o (HI), comprise entre les résidus
Serl64 et 1lel76 de la chaine A.

e Lignes 26-27. SSBOND indique les ponts disulfures. Ici, entre les résidus Cys22 et Cyslb57 et entre les résidus Cys4?2
et Cysh8.

A.3.2 Coordonnées

Avec la méme protéine, la partie coordonnées représente plus de 1 700 lignes. En voici quelques unes correspondantes
au résidu leucine 99 :

11. https://www.uniprot.org/uniprot/POO760

Cours de Python / Université Paris Cité / UFR Sciences du Vivant 371

https://www.uniprot.org/uniprot/P00760

Annexe A. Quelques formats de données en biologie A.3. PDB

372

[...]

ATOM 601 N LEU A 99 10.007 19.687 17.536 1.00 12.25 N
ATOM 602 CA LEU A 99 9.599 18.429 18.188 1.00 12.25 C
ATOM 603 C LEU A 99 10.565 17.281 17.914 1.00 12.25 C
ATOM 604 O LEU A 99 10.256 16.101 18.215 1.00 12.25 0
ATOM 605 CB LEU A 99 8.149 18.040 17.853 1.00 12.25 C
ATOM 606 CG LEU A 99 7.125 19.029 18.438 1.00 18.18 C
ATOM 607 CD1 LEU A 99 5.695 18.554 18.168 1.00 18.18 C
ATOM 608 CD2 LEU A 99 7.323 19.236 19.952 1.00 18.18 C

[...]

Chaque ligne correspond a un atome et débute par ATOM ou HETATM. ATOM désigne un atome de la structure de la
biomolécule. HETATM est utilisé pour les atomes qui ne sont pas une biomolécule, comme les ions ou les molécules d'eau.
Toutes les lignes de coordonnées ont sensiblement le méme format. Par exemple, pour la premiere ligne :
e ATOM (ou HETATM).
e 601 : le numéro de I'atome.
e N : le nom de I'atome. Ici, un atome d'azote du squelette peptidique. La structure compléte du résidu leucine est
représentée figure A.l.
LEU : le résidu dont fait partie I'atome. Ici, une leucine.
A : le nom de la chaine peptidique.
99 : le numéro du résidu dans la protéine.
10.007 : la coordonnée x de I'atome.
19.687 : la coordonnée y de |'atome.
17.536 : la coordonnée z de I'atome.
1.00 : le facteur d'occupation, c'est-a-dire la probabilité de trouver I'atome a cette position dans |'espace en
moyenne. Cette probabilité est inférieure a 1 lorsque, expérimentalement, on n'a pas pu déterminer avec une totale
certitude la position de I'atome. Par exemple, dans le cas d'un atome trés mobile dans une structure, qui est
déterminé comme étant a deux positions possibles, chaque position aura alors la probabilité 0.50.
e 12.25 : |e facteur de température, qui est proportionnel a la mobilité de I'atome dans I'espace. Les atomes situés
en périphérie d'une structure sont souvent plus mobiles que ceux situés au coeur de la structure.
e N : |'élément chimique de I'atome. Ici, |'azote.

Une documentation plus compléte des différents champs qui constituent une ligne de coordonnées atomiques se trouve
sur le site de la PDB .

Les résidus sont ensuite décrits les uns aprés les autres, atome par atome. Voici par exemple les premiers résidus de
la trypsine bovine :

[...]

ATOM 1 N ILE A 16 -8.155 9.648 20.365 1.00 10.68 N
ATOM 2 CA ILE A 16 -8.150 8.766 19.179 1.00 10.68 C
ATOM 3 C ILE A 16 -9.405 9.018 18.348 1.00 10.68 C
ATOM 4 0 ILE A 16 -10.533 8.888 18.870 1.00 10.68 0
ATOM 5 CB ILE A 16 -8.091 7.261 19.602 1.00 10.68 C
ATOM 6 CGl ILE A 16 -6.898 6.882 20.508 1.00 7.42 C
ATOM 7 CG2 ILE A 16 -8.178 6.281 18.408 1.00 7.42 C
ATOM 8 CD1 ILE A 16 -5.555 6.893 19.773 1.00 7.42 C
ATOM 9 N VAL A 17 -9.224 9.305 17.090 1.00 9.63 N
ATOM 16 CA VAL A 17 -10.351 9.448 16.157 1.00 9.63 C
ATOM 11 C VAL A 17 -10.500 8.184 15.315 1.00 9.63 C
ATOM 12 0 VAL A 17 -9.496 7.688 14.748 1.00 9.63 0
ATOM 13 CB VAL A 17 -10.123 10.665 15.222 1.00 9.63 C
ATOM 14 CG1 VAL A 17 -11.319 10.915 14.278 1.00 11.95 C
ATOM 15 CG2 VAL A 17 -9.737 11.970 15.970 1.00 11.95 C
[...]

Vous remarquerez que le numéro du premier résidu est 16 et non pas 1. Cela s'explique par la technique expérimentale
utilisée qui n'a pas permis de déterminer la structure des 15 premiers résidus.

La structure de la trypsine bovine n'est constituée que d'une seule chaine peptidique (notée A). Lorsqu’une structure
est composée de plusieurs chaines, comme dans le cas de la structure du récepteur GABAB 1 et 2 chez la drosophile

12. http://www.wwpdb.org/documentation/file-format-content/format33/sect9.html

Cours de Python / Université Paris Cité / UFR Sciences du Vivant

http://www.wwpdb.org/documentation/file-format-content/format33/sect9.html

A3. PDB

Annexe A. Quelques formats de données en biologie

FIGURE A.1 - Structure tridimensionnelle d'un résidu leucine. Les noms des atomes sont indiqués en noir.

(code PDB 5X9X 13) :

[...]

ATOM 762 HB1 ALA
ATOM 763 HB2 ALA
ATOM 764 HB3 ALA
TER 765 ALA
ATOM 766 N GLY
ATOM 767 CA GLY
ATOM 768 C GLY
[...]

WWw> > > >

La premiére chaine est

TER 765 ALA A

44 37.162 -2.955 2.220 1.00 0.00 H
44 38.306 -2.353 3.417 1.00 0.00 H
a4 38.243 -1.621 1.814 1.00 0.00 H
44

95 -18.564 3.009 13.772 1.00 0.00 N
95 -19.166 3.646 12.621 1.00 0.00 C
95 -20.207 2.755 11.976 1.00 0.00 C

notée A et la seconde B. La séparation entre les deux chaines est marquée par la ligne :

44

Dans un fichier PDB, chaque structure porte un nom de chaine différent (par exemple : A,B,C', etc.).

Enfin, lorsque la structure est déterminée par RMN, il est possible que plusieurs structures soient présentes dans le
méme fichier PDB. Toutes ces structures, ou « modéles », sont des solutions possibles du jeu de contraintes mesurées
expérimentalement en RMN. Voici un exemple, toujours pour la structure du récepteur GABAB 1 et 2 chez la drosophile :

13. http://www.rcsb.org/structure/5X9X

Cours de Python / Université Paris Cité / UFR Sciences du Vivant

373

http://www.rcsb.org/structure/5X9X

Annexe A. Quelques formats de données en biologie A.3. PDB

374

[...]
MODEL 1
ATOM 1 N META 1 -27.283 -9.772 5.388 1.00 0.00 N
ATOM 2 CA MET A 1 -28.233 -8.680 5.682 1.00 0.00 C
[...]
ATOM 1499 HG2 GLU B 139 36.113 -5.242 2.536 1.00 0.00 H
ATOM 1500 HG3 GLU B 139 37.475 -4.132 2.428 1.00 0.00 H
TER 1501 GLU B 139
ENDMDL
MODEL 2
ATOM 1 N META 1 -29.736 -10.759 4.394 1.00 0.00 N
ATOM 2 CA MET A 1 -28.372 -10.225 4.603 1.00 0.00 C
[...]
ATOM 1499 HG2 GLU B 139 36.113 -5.242 2.536 1.00 0.00 H
ATOM 1500 HG3 GLU B 139 37.475 -4.132 2.428 1.00 0.00 H
TER 1501 GLU B 139
ENDMDL
MODEL 2
ATOM 1 N META 1 -29.736 -10.759 4.394 1.00 0.00 N
ATOM 2 CA MET A 1 -28.372 -10.225 4.603 1.00 0.00 C
[...]

Chaque structure est encadrée par les lignes :
MODEL n

et :
ENDMDL

ot n est le numéro du modele. Pour la structure du récepteur GABAB 1 et 2, il y a 20 modéles de décrits dans le
fichier PDB.

A.3.3 Manipulation avec Python

Le module Biopython peut également lire un fichier PDB.

Voici comment charger la structure de la trypsine bovine :

from Bio.PDB import PDBParser

parser = PDBParser()

prot_id = "2PTN"

prot_file = "2PTN.pdb"

structure = parser.get_structure(prot_id, prot_file)

Remarque

Les fichiers PDB sont parfois (trés) mal formatés. Si Biopython ne parvient pas a lire un tel fichier, remplacez alors
la ligne 2 par parser = PDBParser (PERMISSIVE=1). Soyez néanmoins trés prudent quant aux résultats obtenus.

Affichage du nom de la structure et de la technique expérimentale utilisée pour déterminer la structure :

print(structure.header["head"])
print(structure.header["structure_method"])

ce qui produit :
hydrolase (serine proteinase)

x-ray diffraction

Extraction des coordonnées de I'atome N du résidu llel6 et de I'atome CA du résidu Vall7 :

Cours de Python / Université Paris Cité / UFR Sciences du Vivant

A.3. PDB Annexe A. Quelques formats de données en biologie
model = structure[0]
chain = model["A"]
resl = chain[16]

res2 = chain[17]
print(resl.resname,
print(res2.resname, res2["CA"].coord)

ce qui produit :

ILE [-8.15499973
VAL [-10.35099983

L'objet res1["N"].coord est un array de NumPy (voir le chapitre 20 Module NumPy). On peut alors obtenir

res1["N"].coord)

9.64799976
9.44799995

20.36499977]
16.15699959]

simplement les coordonnées x, y et z d'un atome :

Remarque

méme lorsque la structure ne contient qu'un seul modeéle. C'est d'ailleurs le cas ici, puisque la structure a été obtenue

print(resl1["N"].coord[0],

ce qui produit :

-8.155 9.648 20.365

resl["N"].coord[1],

resl["N"].coord[2])

Biopython utilise la hiérarchie suivante :
structure > model > chain > residue > atom

par cristallographie aux rayons X.

Enfin, pour afficher les coordonnées des carbones o (notés CA) des 10 premiers résidus (a partir du résidu 16, car

c'est le premier résidu dont on connaft la structure) :

ILE
VAL
GLY
GLY
TYR
THR
CYS
GLY
ALA
ASN

res_start = 16

model = structure[0]

chain =

model["A"]
for i in range(10):
idx = res_start + i
print(chain[idx].resname, idx, chain[idx]["CA"].coord)

avec pour résultat :

16
17
18
19
20
21
22
23
24
25

Il est aussi tres intéressant (et formateur) d’écrire son propre parser de fichier PDB, c'est-a-dire un programme qui
lit un fichier PDB (sans le module Biopython). Dans ce cas, la figure A.2 vous aidera a déterminer comment extraire les

[-8.
[-10.
[-12.
[-10.
[-12.
[-13.
[-10.
[-11.
[-10.
[-6.

14999962
35099983
02099991
90200043
65100002
01799965
02000046
68299961
64799976
96999979

H W o O o

. 76599979
.44799995
.63000011
.89899993
.44200003
0.
-1.
-2.
-2.
-3.

93800002
16299999
86500001
62700009
43700004

19.
16.
14.
16.
19.
22.
23.
26.
.36100006]
.02000046]

30
31

17900085]
15699959]
25899982]
68400002]
01600075]
76000023]
76000023]
7140007]

différentes informations d'une ligne de coordonnées ATOM ou HETATM.

Exemple :

pour extraire le nom du résidu, il faut isoler le contenu des colonnes 18 & 20 du fichier PDB, ce qui
correspond aux index de 17 a 19 pour une chaine de caractéres en Python (soit la tranche de chaine de caractéres

[17:20], car la premiére borne est incluse et la seconde exclue).

Pour lire le fichier PDB de la trypsine bovine (2PTN. pdb) et extraire (encore) les coordonnées des carbones o des 10

premiers résidus, nous pouvons utiliser le code suivant :

Cours de Python / Université Paris Cité / UFR Sciences du Vivant

375

Annexe A. Quelques formats de données en biologie A.4. Format XML, CSV et TSV

376

with open("2PTN.pdb", "r") as pdb_file:
res_count = 0
for line in pdb_file:
if line.startswith("ATOM"):
atom_name = line[12:16].strip()
res_name = line[17:20].strip()
res_num = int(line[22:26])
if atom_name == "CA":
res_count += 1
x = float(line[30:38])
y = float(line[38:46])
z = float(line[46:54])
print(res_name, res_num, X, y, Zz)
if res_count >= 10:
break

ce qui donne :

ILE 16 -8.15 8.766 19.179
VAL 17 -10.351 9.448 16.157
GLY 18 -12.021 6.63 14.259
GLY 19 -10.902 3.899 16.684
TYR 20 -12.651 1.442 19.016
THR 21 -13.018 0.938 22.76
CYS 22 -10.02 -1.163 23.76
GLY 23 -11.683 -2.865 26.714
ALA 24 -10.648 -2.627 30.361
ASN 25 -6.97 -3.437 31.02

Remarque
Pour extraire des valeurs numériques, comme des numéros de résidus ou des coordonnées atomiques, il ne faudra pas
oublier de les convertir en entiers ou en floats.

A.4 Format XML, CSV et TSV

Les formats XML, CSV et TSV dont des formats de fichiers trés largement utilisés en informatique. lls sont également
trés utilisés en biologie. En voici quelques exemples :

A.41 XML

Le format XML est un format de fichier a balises qui permet de stocker quasiment n'importe quel type d'information
de facon structurée et hiérarchisée. L’acronyme XML signifie Extensible Markup Language qui pourrait se traduire en
francais par « Langage de balisage extensible * ». Les balises dont il est question servent 3 délimiter du contenu :

<balise>contenu</balise>

La balise <balise> est une balise ouvrante. La balise </balise> est une balise fermante. Notez le caractére / qui
marque la différence entre une balise ouvrante et une balise fermante.
Il existe également des balises vides, qui sont a la fois ouvrantes et fermantes :

<balise />

Une balise peut avoir certaines propriétés, appelées attributs, qui sont définies, dans la balise ouvrante. Par exemple :

<balise propriétél=valeurl propriété2=valeur2>contenu</balise>

Un attribut est un couple nom et valeur (par exemple propriétél est un nom et valeurl est la valeur associée).
Enfin, les balises peuvent étre imbriquées les unes dans les autres :

14. https://fr.wikipedia.org/wiki/Extensible_Markup_Language

Cours de Python / Université Paris Cité / UFR Sciences du Vivant

https://fr.wikipedia.org/wiki/Extensible_Markup_Language

A.4. Format XML, CSV et TSV Annexe A. Quelques formats de données en biologie

<protein>
<element>élément 1</element>
<element>élément 2</element>
<element>élément 3</element>
</protein>

Dans cet exemple, nous avons trois balises element qui sont contenues dans une balise protein.
Voici un autre exemple avec |'enzyme trypsine > humaine (code P07477 19), telle qu'on peut la trouver décrite dans
la base de données UniProt :
<?xml version='1.0"' encoding='UTF-8'?>
<uniprot xmlns="http://uniprot.org/uniprot" xmlns:xsi=[...]>
<entry dataset="Swiss-Prot" created="1988-04-01" modified="2018-09-12" [...]>
<accession>P07477</accession>
<accession>A1A509</accession>

[...]

<gene>

<name type="primary'">PRSS1</name>

<name type="synonym">TRP1</name>

<name type="synonym">TRY1</name>

</gene>

[...]

<sequence length="247" mass="26558" checksum="DD49A487B8062813" [...]>
MNPLLILTFVAAALAAPFDDDDKIVGGYNCEENSVPYQVSLNSGYHFCGGSLINEQWVVS
AGHCYKSRIQVRLGEHNIEVLEGNEQFINAAKIIRHPQYDRKTLNNDIMLIKLSSRAVIN
ARVSTISLPTAPPATGTKCLISGWGNTASSGADYPDELQCLDAPVLSQAKCEASYPGKIT
SNMFCVGFLEGGKDSCQGDSGGPVVCNGQLQGVVSWGDGCAQKNKPGVYTKVYNYVKWIK
NTIAANS

</sequence>

</entry>

[...]

</uniprot>

e La ligne 1 indique que nous avons bien un fichier au format XML.

e La ligne 3 indique que nous avons une entrée UniProt. Il s'afit d'une balise ouvrante avec plusieurs attributs
(dataset="Swiss-Prot", created="1988-04-01", etc.).

o Les lignes 4 et 5 précisent les numéros d'accession dans la base de données UniProt qui font référence a cette
méme protéine.

e Les lignes 8-10 listent les quatre génes correspondants a cette protéine. Le premier géne porte I'attribut type
="primary" et indique qu'il s'agit du nom officiel du gene de la trypsine. L'attribut type="synonym'" pour les
autres genes indique qu'il s'agit bien de noms synonymes pour le gene PRSS1.

e Les lignes 13-18 contiennent la séquence de la trypsine. Dans les attributs de la balise <sequence>, on retrouve,
par exemple, la taille de la protéine (length="247").

Voici un exemple de code Python pour manipuler le fichier XML de la trypsine humaine :

from 1xml import etree
import re

with open("PO7477.xml") as xml_file:
xml_content = xml_file.read()

xml_content = re.sub("<uniprot [A>]+>", "<uniprot>", xml_content)
root = etree.fromstring(xml_content.encode("utf-8"))

for gene in root.xpath("/uniprot/entry/gene/name"):
print(f'"gene : {gene.text} ({gene.get('type')})")

sequence = root.xpath("/uniprot/entry/sequence")[0]

print(f"sequence: {sequence.text.strip()}")
print(f"length: {sequence.get('length')}")

e Ligne 1. On utilise le sous-module etree du module Ixm/ pour lire le fichier XML.

15. https://www.uniprot.org/uniprot/PO7477
16. https://www.uniprot.org/uniprot/PO7477.xml

Cours de Python / Université Paris Cité / UFR Sciences du Vivant

377

https://www.uniprot.org/uniprot/P07477
https://www.uniprot.org/uniprot/P07477.xml

Annexe A. Quelques formats de données en biologie A.4. Format XML, CSV et TSV

378

Ligne 2. On utilise le module d'expressions réguliéres re pour supprimer tous les attributs de la balise uniprot
(ligne 7). Nous ne rentrerons pas dans les détails, mais ces attributs rendent plus complexe la lecture du fichier
XML.

e Ligne 9. La variable root contient le fichier XML prét a étre manipulé.

Ligne 11. On recherche les noms des génes (balises <name></name>) associés a la trypsine. Pour cela, on utilise
la méthode .xpath(), avec comme argument |'enchainement des différentes balises qui conduisent aux noms des
genes.

Ligne 12. Pour chaque nom de geéne, on va afficher son contenu (gene.text) et la valeur associée a |'attribut
type avec la méthode .get("type").

Ligne 14. On stocke dans la variable sequence la balise associée a la séquence de la protéine. Comme root.
xpath("/uniprot/entry/sequence") renvoie un itérateur et qu'il n'y a qu'une seule balise séquence, on prend
ici le seul et unique élément root.xpath("/uniprot/entry/sequence") [0].

Ligne 15. On affiche le contenu de la séquence sequence.text, nettoyé d'éventuels retours chariots ou espaces
sequence.text.strip().

Ligne 16. On affiche la taille de la séquence en récupérant la valeur de I'attribut length (toujours de la balise
<sequence></sequence>).

Le résultat obtenu est le suivant :

gene :
gene :

gene

gene :

PRSS1 (primary)
TRP1 (synonym)
: TRY1 (synonym)
TRYP1 (synonym)

sequence: MNPLLILTFVAAALAAPFDDDDKIVGGYNCEENSVPYQVSLNSGYHFCGGSLINEQWVVS
AGHCYKSRIQVRLGEHNIEVLEGNEQFINAAKIIRHPQYDRKTLNNDIMLIKLSSRAVIN
ARVSTISLPTAPPATGTKCLISGWGNTASSGADYPDELQCLDAPVLSQAKCEASYPGKIT
SNMFCVGFLEGGKDSCQGDSGGPVVCNGQLQGVVSWGDGCAQKNKPGVYTKVYNYVKWIK

NTIAANS

length: 247

A.4.2 CSV et TSV

A.4.2.1 Définition des formats

L'acronyme CSV signifie « Comma-Separated values », qu’'on peut traduire littéralement par « valeurs séparées par
des virgules ». De facon similaire, TSV signifie « Tabulation-Separated Values », soit des « valeurs séparées par des
tabulations ».

Ces deux formats sont utiles pour stocker des données structurées sous forme de tableau, comme vous pourriez |'avoir
dans un tableur.

A titre d'exemple, le tableau ci-dessous liste les structures associées a la transferrine, protéine présente dans le plasma
sanguin et impliquée dans la régulation du fer. Ces données proviennent de la Protein Data Bank (PDB). Pour chaque
protéine (PDB ID) est indiqué le nom de I'organisme associé (Source), la date a laquelle cette structure a été déposée
dans la PDB (Deposit Date), le nombre d'acides aminés de la protéine et sa masse moléculaire (MW).

PDB ID Source Deposit Date Length MW

1A8E Homo sapiens 1998-03-24 329 36408.40
1A8F Homo sapiens 1998-03-25 329 36408.40
1AIV Gallus gallus 1997-04-28 686 75929.00

1A0V Anas platyrhynchos 1996-12-11 686 75731.80
Ll L]] L] L

Voici maintenant I'équivalent en CSV 17 :

17. https://python.sdv.u-paris.fr/data-files/transferrin_report.csv

Cours de Python / Université Paris Cité / UFR Sciences du Vivant

https://python.sdv.u-paris.fr/data-files/transferrin_report.csv

A.4. Format XML, CSV et TSV Annexe A. Quelques formats de données en biologie

PDB ID,Source,Deposit Date,Length,MW

1A8E,Homo sapiens,1998-03-24,329,36408.40
1A8F,Homo sapiens,1998-03-25,329,36408.40
1AIV,Gallus gallus,1997-04-28,686,75929.00
1A0V,Anas platyrhynchos,1996-12-11,686,75731.80
[...]

Sur chaque ligne, les différentes valeurs sont séparées par une virgule. La premiére ligne contient le nom des colonnes
et est appelée ligne d'en-téte.

L'équivalent en TSV 18 est :

PDB ID Source Deposit Date Length Mw

1A8E Homo sapiens 1998-03-24 329 36408.40
1A8F Homo sapiens 1998-03-25 329 36408.40
1ATV Gallus gallus 1997-04-28 686 75929.00
1A0V Anas platyrhynchos 1996-12-11 686 75731.80
[...]

Sur chaque ligne, les différentes valeurs sont séparées par une tabulation.

Attention

Le caractere tabulation est un caractere invisible « élastique », c’est-a-dire qu'il a une largeur variable suivant I'éditeur
de texte utilisé. Par exemple, dans la ligne d'en-téte, I'espace entre PDB ID et Source apparait comme différent de
I'espace entre Deposit Date et Length alors qu'il y a pourtant une seule tabulation a chaque fois.

A.4.2.2 Lecture

En Python, le module csv de la bibliothéque standard est trés pratique pour lire et écrire des fichiers au format CSV
et TSV. Nous vous conseillons de lire la documentation trés compléte sur ce module *°.

Voici un exemple :

import csv

with open("transferrin_report.csv") as f_in:
f_reader = csv.DictReader(f_in)
for row in f_reader:
print(row["PDB ID"], row["Deposit Date"], row["Length"])

e Ligne 1. Chargement du module csv.

e Ligne 3. Ouverture du fichier.

e Ligne 4. Utilisation du module csv pour lire le fichier CSV comme un dictionnaire (fonction DictReader()). La
ligne d'en-téte est utilisée automatiquement pour définir les clés du dictionnaire.

e Ligne 5. Parcours de toutes les lignes du fichier CSV.

e Ligne 6. Affichage des champs correspondants a PDB ID, Deposit Date, Length.

Le résultat obtenu est :

1A8E 1998-03-24 329
1A8F 1998-03-25 329
1AIV 1997-04-28 686
1A0V 1996-12-11 686
[...]

Il suffit de modifier légérement le script précédent pour lire un fichier TSV :

18. https://python.sdv.u-paris.fr/data-files/transferrin_report.tsv
19. https://docs.python.org/fr/3.7/library/csv.html

Cours de Python / Université Paris Cité / UFR Sciences du Vivant 379

https://python.sdv.u-paris.fr/data-files/transferrin_report.tsv
https://docs.python.org/fr/3.7/library/csv.html

Annexe A. Quelques formats de données en biologie A.4. Format XML, CSV et TSV

380

import csv

with open("transferrin_PDB_report.tsv") as f_in:
f_reader = csv.DictReader(f_in, delimiter="\t")
for row in f_reader:
print(row["PDB ID"], row["Deposit Date"], row["Length"])

e Ligne 3. Modification du nom du fichier lu.
e Ligne 4. Utilisation de |'argument delimiter="\t", qui indique que les champs sont séparés par des tabulations.

Le résultat obtenu est strictement identique au précédent.

A.4.2.3 Ecriture

Voici un exemple d'écriture de fichier CSV :

import csv

with open("test.csv", "w") as f_out:
fields = ["Name", "Quantity"]
f_writer = csv.DictWriter(f_out, fieldnames=fields)
f_writer.writeheader ()

f_writer.writerow({"Name": "girafe", "Quantity":5})
f_writer.writerow({"Name": "tigre", "Quantity":3})
f_writer.writerow({"Name": "singe", "Quantity":8})

Ligne 3. Ouverture du fichier test.csv en lecture.
Ligne 4. Définition du nom des colonnes (Name et Quantity).
Ligne 5. Utilisation du module csv pour écrire un fichier CSV a partir d'un dictionnaire.

Ligne 6. Ecriture des noms des colonnes.
Ligne 7-9. Ecriture de trois lignes. Pour chaque ligne, un dictionnaire dont les clefs sont les noms des colonnes est

fourni comme argument a la méthode .writerow().
Le contenu du fichier test.csv est alors :

Name,Quantity
girafe,5
tigre,3
singe,8

De facon tres similaire, I'écriture d'un fichier TSV est réalisée avec le code suivant :

import csv

with open("test.tsv", "w") as f_out:
fields = ["Name", "Quantity"]
f_writer = csv.DictWriter(f_out, fieldnames=fields, delimiter="\t")
f_writer.writeheader()

f_writer.writerow({"Name": "girafe", "Quantity":5})
f_writer.writerow({"Name": "tigre", "Quantity":3})
f_writer.writerow({"Name": "singe", "Quantity":8})

e Ligne 3. Modification du nom du fichier en écriture.
e Ligne 5. Utilisation de I'argument delimiter="\t", qui indique que les champs sont séparés par des tabulations.

Le contenu du fichier test.tsv est :

Name Quantity
girafe 5
tigre 3
singe 8

Vous étes désormais capables de lire et écrire des fichiers aux formats CSV et TSV. Les codes que nous vous avons
proposés ne sont que des exemples. A vous de poursuivre |'exploration du module csv.

Remarque

Cours de Python / Université Paris Cité / UFR Sciences du Vivant

A.4. Format XML, CSV et TSV Annexe A. Quelques formats de données en biologie

Le module pandas décrit dans le chapitre 22 Module Pandas est tout a fait capable de lire et écrire des fichiers CSV
et TSV. Nous vous conseillons de I'utiliser si vous analysez des données avec ces types de fichiers.

Cours de Python / Université Paris Cité / UFR Sciences du Vivant 381

A.4. Format XML, CSV et TSV

Annexe A. Quelques formats de données en biologie

9102/60/¥0 dd IOV #1WUIL 63925/E £1RULIOLUR3U0-JELLLIOJ-3] /U0 R UR LIND0P/B.10" qpd MM MM//:d33Y W) USYE} 3DUaIal
(ZT0Z "I "AON) OE’E UOISI3A SPING SJU33U0D - JeLnog 314 gad

_ {sgitisg<asl} {3z-9:} {3z 9:}{7e"g: {Fe-g:} {ze"8:} {s1:}{pp:t{st:} {se:t{st:}{sp, s} {pg:}{so:l}, _Ax.mcocﬁn_ucmn.mcocaivmc_bmtﬁmr:._o*cogn_

. SZH5TH T 9RIT O%FE ALFL BHIE 8% STEPFHST SCYSTESEE PS%S9-%. :(P|0) Pulls psjeulto) uoyifd

log:gL]l o8—6L {sz:} z woje sy uo sfieyd g1
[gLoL] 8L—1L {sz<:} r logquwiAs Juswisla BT
0T
[99:09] 99—19 {429} 9 Jo1oe) aunlesadwl
[og:+s] 09—ss {429} 9 Aouednado
[¥G:9%] vs—iv {i£'8:} g8 wosisbuy ul 7 Jol sa1eulplood [euoboylo
[ov:8e]l ob—6e {Je'8:} 8 wosjsbuy Ul A J0J 523)2U]pI0o0d |euchoylio
[ge:0oe]l B8E—T1E {4£78:%F 8 wot3sbuy Ul X oy s21eujpiood [euchoypio
£
[tz:9z] iz {s1:} 1 S3NP|SaJ JO UOILIBSU] 0} 3P0D 8
[9z:zzl 9z—€z {pp:} 14 J2qwinu 23uanbas 2npisal ¥
[zz:1zl 7z {s1:} 1 Jaunuapl uieys 9
T
[oz:£1] oz—s81 {sg£:} £ 2uieu anpisal 5
[LT:9T] LT {sT:} 1 103ED|pUl UOI}ED0| 3}eula)|e t
lotigrl 91—¢€T {sv.:} 4 sweu woye[g
T
[tT:9] t1—20 {PS:} < Jaquinu jeuas woe[g
[9:01 90—T10 {s9:} 9 VRIYLEE, 40 . WOLY, i
uooeixa uoyifgd abues jewuoj yjbua ucijiuyap play
st 1] [T O . - | -
2 ¥ ¥ o¥d WOLY
2 ¥ ¥ o¥d HOLY
2 ¥ Y odd WOoOLY
o ¥ - odd HOLY
o] ¥ ¥ odd HOLY
2 ¥ ¥ o¥d WOLY
N ¥ ¥ o¥d HOLY
o] £ ¥ KETD WOLY
o] E Y ETD WHOLY
2 £ - ETD HOLY
N £ ¥ ETD HOLY
cmwhwm¢mmﬁcmmhwm¢mN.—cmwhmmvmm.ﬂcmmhmmm_mNHcmmﬁ@ﬂ*MNAQmwhwmwmw.—.ammhmmvmm.ﬁcmwﬁwm¢mN._“LMn_EJC
8L LLLLLLLLLY999999999G6GSGGESG5GSGE5GSGFFPFPPPPPPPECEEEEEEEECECZELLEZZEZEZITTIITITTITITIOON0N00 0 OO0 YHNO

€'t jewoj 9|4y add

Cours de Python / Université Paris Cité / UFR Sciences du Vivant

FIGURE A.2 — Format PDB et les différents champs de coordonnées.

382

ANNEXE B

Installation de Python

Attention
La procédure d'installation ci-dessous a été testée avec la version Miniconda Latest - Conda 24.5.0 Python
3.12.4 released Jun 26, 2024.

Python est déja présent sous Linux ou Mac OS X et s'installe trés facilement sous Windows. Toutefois, nous décri-
vons dans cet ouvrage |'utilisation de modules supplémentaires qui sont trés utiles en bioinformatique (NumPy, scipy,
matplotlib, pandas, Biopython), mais également les notebooks Jupyter.

On va donc utiliser un gestionnaire de paquets qui va installer ces modules supplémentaires. On souhaite également que
ce gestionnaire de paquets soit disponible pour Windows, Mac OS X et Linux. Fin 2018, il y a deux grandes alternatives :

1. Anaconda et Miniconda : Anaconda' est une distribution compléte de Python qui contient un gestionnaire de

paquets tres puissant nommé conda. Anaconda installe de trés nombreux paquets et outils mais nécessite un espace
disque de plusieurs gigaoctets. Miniconda? est une version allégée d'Anaconda, donc plus rapide 3 installer et
occupant peu d'espace sur le disque dur. Le gestionnaire de paquet conda est aussi présent dans Miniconda.

2. Pip : pip? est le gestionnaire de paquets de Python et qui est systématiquement présent depuis la version 3.4.

B.1 Que recommande-t-on pour l'installation de Python?

Quel que soit le systéme d’exploitation, nous recommandons |'utilisation de Miniconda dont la procédure d’installation
est détaillée ci-dessous pour Windows, Mac OS X et Linux. Le gestionnaire de paquets conda est tres efficace. Il gere la
version de Python et les paquets compatibles avec cette derniére de maniére optimale.

Par ailleurs, nous vous recommandons vivement la lecture de la rubrique sur les éditeurs de texte. Il est en effet
fondamental d'utiliser un éditeur robuste et de savoir le configurer pour « pythonner » efficacement.

Enfin, dans tout ce qui suit, nous partons du principe que vous installerez Miniconda en tant qu’utilisateur, et non
pas en tant qu'administrateur. Autrement dit, vous n'aurez pas besoin de droits spéciaux pour pouvoir installer Miniconda
et les autres modules nécessaires. La procédure proposée a été testée avec succeés sous Windows 10 et 11, Mac OS X,
Ubuntu 22.04 et 24.04).

1. https://www.anaconda.com/
2. https://conda.io/miniconda.html
3. https://pip.pypa.io/en/stable/

383

https://www.anaconda.com/
https://conda.io/miniconda.html
https://pip.pypa.io/en/stable/

Annexe B. Installation de Python B.2. Installation de Python avec Miniconda

Depuis quelques années, Windows 10 (et 11) propose le WSL* (Windows Subsystem for Linux). Le WSL permet de
lancer un terminal Linux au sein de Windows et propose (quasiment) toutes les fonctionnalités disponibles sous un vrai
systeme Linux. Nous ne détaillons par comment I'installer, mais vous pouvez vous référer a la page d’installation sur le site
de Microsoft . Si vous avez installé WSL sur votre ordinateur, nous vous recommandons de suivre la procédure ci-dessous
comme si vous étiez sous Linux (rubrique Installation de Python avec Miniconda pour Linux), plutét que d'installer la
version Windows.

B.2 Installation de Python avec Miniconda

Nous vous conseillons I'installation de la distribution Miniconda® qui présente I'avantage d'installer Python et un
puissant gestionnaire de paquets appelé conda. Dans toute la suite de cette annexe, I'indication avec le $ et un espace
comme suit :

$
signifie 'invite d'un shell quel qu'il soit (PowerShell sous Windows, bash sous Mac OS X et Linux).

B.2.1 Installation de Python avec Miniconda pour Linux

Dans un navigateur internet, ouvrez la page du site Miniconda https://conda.io/miniconda.html puis
cliquez sur le lien Miniconda3 Linux 64-bit correspondant a Linuxet et Python 3.12.
Vous allez télécharger un fichier dont le nom ressemble a quelque chose du type :
Miniconda3-latest-Linux-x86_64.sh.
Dans un shell, lancez I'installation de Miniconda avec la commande :
$ bash Miniconda3-latest-Linux-x86_64.sh

Dans un premier temps, validez la lecture de la licence d'utilisation :

Welcome to Miniconda3 py312_24.5.0-0

In order to continue the installation process, please review the license
agreement.

Please, press ENTER to continue

>>>

Comme demandé, appuyez sur la touche Entrée. Faites ensuite défiler la licence d'utilisation avec la touche Espace.
Tapez yes puis appuyez sur la touche Entrée pour valider :

Do you accept the license terms? [yes|no]
[no] >>> yes

Le programme d'installation vous propose ensuite d'installer Miniconda dans le répertoire miniconda3 dans votre
répertoire personnel. Par exemple, dans le répertoire /home/pierre/miniconda3 si votre nom d'utilisateur est pierre.
Validez cette proposition en appuyant sur la touche Entrée :

Miniconda3 will now be installed into this location:
/home/pierre/miniconda3

- Press ENTER to confirm the location
- Press CTRL-C to abort the dinstallation
- Or specify a different location below

[/home/pierre/miniconda3] >>>

Le programme d'installation va alors installer Python et le gestionnaire de paquets conda.

Cette étape terminée, le programme d'installation vous propose d'initialiser conda pour que celui-ci soit accessible a
chaque fois que vous ouvrez un shell. Nous vous conseillons d’accepter en tapant yes puis en appuyant sur la touche
Entrée.

4. https://fr.wikipedia.org/wiki/Windows_Subsystem_for_Linux
5. https://learn.microsoft.com/fr-fr/windows/wsl/install
6. https://conda.io/miniconda.html

384 Cours de Python / Université Paris Cité / UFR Sciences du Vivant

https://conda.io/miniconda.html
https://fr.wikipedia.org/wiki/Windows_Subsystem_for_Linux
https://learn.microsoft.com/fr-fr/windows/wsl/install
https://conda.io/miniconda.html

B.2. Installation de Python avec Miniconda Annexe B. Installation de Python

Do you wish the installer to initialize Miniconda3
by running conda init? [yes|no]
[no] >>> yes

L'installation de Miniconda est terminée. L'espace utilisé par Miniconda sur votre disque dur est d'environ 450 Mo.

B.2.1.1 Test de I'interpréteur Python

Ouvrez un nouveau shell. Vous devriez voir dans votre invite la chaine (base) indiquant que I'environnement conda
de base est activé. A partir de maintenant, lorsque vous taperez la commande python, c'est le Python 3 de Miniconda
qui sera lancé :

$ python

Python 3.12.4 | packaged by Anaconda, Inc. | (main, Jun 18 2024, 15:12:24) [GCC 11.2.0] on Llinux
Type "help", "copyright", "credits" or "license" for more information.

>>>

Quittez Python en tapant la commande exit() puis appuyant sur la touche Entrée.

B.2.1.2 Test du gestionnaire de paquets conda

De retour dans le shell, testez si le gestionnaire de paquets conda est fonctionnel. Tapez la commande conda dans
le shell, vous devriez avoir la sortie suivante :

$ conda
usage: conda [-h] [-v] [--no-plugins] [-V] COMMAND ...

conda is a tool for managing and deploying applications, environments and packages.

options:
-h, --help Show this help message and exit.
[...]

Si c'est bien le cas, bravo, conda et bien installé et vous pouvez passez 3 la suite (rendez-vous a la rubrique Installation
des modules supplémentaires) !

B.2.1.3 Désinstallation de Miniconda

Si vous souhaitez supprimer Miniconda, rien de plus simple, il suffit de suivre ces deux étapes :
Etape 1. Supprimer le répertoire de Miniconda. Par exemple pour I'utilisateur pierre :

$ rm -rf /home/pierre/miniconda3

Etape 2. Dans le fichier de configuration du shell Bash, supprimer les lignes comprises entre

>>> conda initialize >>>

et

<<< conda 1initialize <<<

B.2.2 Installation de Python avec Miniconda pour Mac OS X

Dans un navigateur internet, ouvrez la page du site Miniconda https://conda.io/miniconda.html puis
cliquez sur le lien Miniconda3 macOS Intel x86 64-bit bash correspondant a Mac OS X et Python 3.12.

Vous allez télécharger un fichier dont le nom ressemble a quelque chose du type :

Miniconda3-latest-Mac0OSX-x86_64.sh.

Le systeme d'exploitation Mac OS X étant basé sur Unix, la suite de la procédure est en tout point identique a la
procédure détaillée a la rubrique précédente pour Linux.

Donc, lancez la commande :
$ bash Miniconda3-latest-MacOSX-x86_64.sh

Cours de Python / Université Paris Cité / UFR Sciences du Vivant

385

https://conda.io/miniconda.html

Annexe B. Installation de Python B.2. Installation de Python avec Miniconda

puis suivez les mémes instructions que dans la rubrique précédente (la seule petite subtilité est pour le chemin,
choisissez /User/votre_nom_utilisateur/miniconda3 sous Mac au lieu de /home/votre_nom_utilisateur/
miniconda3 sous Linux).

B.2.3 Installation de Python avec Miniconda pour Windows 10 et 11

Dans cette rubrique, nous détaillons I'installation de Miniconda sous Windows.

Attention

Nous partons du principe qu’aucune version d'Anaconda, Miniconda, ou encore de Python « classique » (obtenue sur
le site officiel de Python ”) n’est installée sur votre ordinateur. Si tel est le cas, nous vous recommandons vivement de la
désinstaller pour éviter des conflits de version.

e Dans un navigateur internet, ouvrez la page du site Miniconda https://conda.io/miniconda.html puis
cliquez sur le lien Miniconda3 Windows 64-bit correspondant a Windows et Python 3.12. Vous allez télécharger un
fichier dont le nom ressemble a quelque chose du type : Miniconda3-latest-Windows-x86_64.exe.

e Une fois téléchargé, double-cliquez sur ce fichier, cela lancera I'installateur de Miniconda :

2 Miniconda3 py312_24.5.0-0 (64-bit) Setup = X

Welcome to Miniconda3
py312_24 5.0-0 (64-bit) Setup

Setup will guide you through the installation of Miniconda3
py312_24,5.0-0 (54-bit).

It is recommended that you dose all other applications
before starting Setup. This will make it possible to update
relevant system files without having to reboot your
computer.

Clidk Next to continue.

(") ANACONDA.

FiGURE B.1 - Installation Miniconda étape 1.

e Cliquez sur Next, vous arrivez alors sur I'écran suivant :

e Lisez la licence et (si vous étes d'accord) cliquez sur | agree. Vous aurez ensuite :

e Gardez le choix de l'installation seulement pour vous (case cochée a Just me (recommended)), puis cliquez sur
Next. Vous aurez ensuite :

e L'installateur vous demande ou installer Miniconda, nous vous recommandons de laisser le choix par défaut (res-
semblant & C:\Users\votre_nom_utilisateur\Miniconda3). Cliquez sur Next, vous arriverez sur :

e Gardez la case Register Anaconda as my default Python 3.12 cochée et ne cochez pas la case Add Anaconda to
my PATH environment variable. Vous pouvez garder la case Create Shortcuts cochée. Cliquez ensuite sur Install,
I'installation se lance et durera quelques minutes :

e A la fin, vous obtiendrez :

e Décochez les cases Learn more about Anaconda Cloud et Learn how to get started with Anaconda et cliquez sur
Finish. Miniconda est maintenant installé.

7. https://www.python.org/downloads/

386 Cours de Python / Université Paris Cité / UFR Sciences du Vivant

https://conda.io/miniconda.html
https://www.python.org/downloads/

B.2. Installation de Python avec Miniconda Annexe B. Installation de Python

D Miniconda3 py312_24.5.0-0 (64-bit) Setup - X
. License Agreement
_) ANACONDA Please review the license terms before installing Miniconda3

py312_24,5.0-0 (54-bit).

Press Page Down to see the rest of the agreement.

AMACOMNDA TERMS OF SERVICE -

Flease read these Terms of Service carefully before purchasing, using, accessing, or
downloading any Anaconda Offerings (the "Offerings”). These Anaconda Terms of

Service ("TOS") are between Anaconda, Inc. ("Anaconda™) and you (“fou®), the

individual or entity acquiring and/or providing access to the Offerings. These TOS govern
‘four access, download, installation, or use of the Anaconda Offerings, which are

provided to You in combination with the terms set forth in the applicable Offering
Description, and are hereby incorporated into these TOS. Except where indicated
otherwise, references to ™ou™ shall indude Your Users. You hereby acknowledge that
these TOS are binding, and You affirm and signify your consent to these TOS by Y]

If you accept the terms of the agreement, dick I Agree to continue. You must accept the
agreement to install Miniconda3 py312_24.5.0-0 (4-bit).

< Back Cancel

FIGURE B.2 — Installation Miniconda étape 2.

D Miniconda3 py312_24.5.0-0 (64-bit) Setup - X

Select Installation Type

_) ANACONDA Please select the type of installation you would like to perform for
Miniconda3 py312_24.5.0-0 (54-bit).

Install for:

(®) Just Me (recommended)

() All Users (requires admin privileges)

FiGURE B.3 - Installation Miniconda étape 3.

B.2.3.1 Initialisation de conda

Il nous faut maintenant initialiser conda. Cette manipulation va permettre de le rendre visible dans n'importe quel
shell Powershell.

L'installateur a en principe ajouté des nouveaux raccourcis dans le Menu Démarrer contenant le mot Anaconda :

e Anaconda Powershell Prompt (Miniconda3) : pour lancer un shell Powershell (shell standard de Windows
équivalent du bash sous Linux) avec conda qui est activé correctement ;

e Anaconda Prompt (Miniconda3) : méme chose mais avec le shell nommé cmd ; ce vieux shell est limité et nous
vous en déconseillons I'utilisation.

Nous allons maintenant initialiser conda « a la main ». Cliquez sur Anaconda Powershell Prompt (Miniconda3)
qui va lancer un Powershell avec conda activé, puis tapez la commande conda init :

Lorsque vous presserez la touche Entrée vous obtiendrez une sortie de ce style :

Cours de Python / Université Paris Cité / UFR Sciences du Vivant 387

Annexe B. Installation de Python B.2. Installation de Python avec Miniconda

D Miniconda3 py312_24.5.0-0 (64-bit) Setup = x

Choose Install Location

\z_) ANACONDA Choose the folder in which to install Miniconda3 py312_24.5.0-0
(B4-bit).

Setup will install Miniconda3 py312_24.5.0-0 (64-bit) in the following folder. To installin a
different folder, dick Browse and select another folder. Click Next to continue,

Destination Folder

Browse...

Space reguired: 4123 MB
Space available: 67.3 GB

FIGURE B.4 — Installation Miniconda étape 4.

2 Miniconda? py312_24.5.0-0 (64-bit) Setup — *

Advanced Installation Options:
-‘,-‘) ANACONDA. Customize how Miniconda3 integrates with Windows

Create shortcuts (supported packages only).
[] Add Miniconda3 to my PATH environment variable

NOT recommendad. This can lead to conflicts with other applications. Instead, use
the Commmand Prompt and Powershell menus added to the Windows Start Menu.,

Register Miniconda3 as my default Python 3.12

Recommended. Allows other programs, such as VSCode, PyCharm, etc. to
automatically detect Miniconda3 as the primary Python 3. 12 on the system.

[clear the package cache upon completion
Recommended. Recovers some disk space without harming functionality.

< Back Install Cancel

FIGURE B.5 — Installation Miniconda étape 5.

$ conda 1init
no change
no change
no change
no change
no change
no change
no change
no change

:\Users\Pat\miniconda3\Scripts\conda.exe
:\Users\Pat\miniconda3\Scripts\conda-env.exe
:\Users\Pat\miniconda3\Scripts\conda-script.py
:\Users\Pat\miniconda3\Scripts\conda-env-script.py
:\Users\Pat\miniconda3\condabin\conda.bat
:\Users\Pat\miniconda3\Library\bin\conda.bat
:\Users\Pat\miniconda3\condabin_conda_activate.bat
:\Users\Pat\miniconda3\condabin\rename_tmp.bat

no change :\Users\Pat\miniconda3\condabin\conda_auto_activate.bat
no change :\Users\Pat\miniconda3\condabin\conda_hook.bat
no change :\Users\Pat\miniconda3\Scripts\activate.bat

no change :\Users\Pat\miniconda3\condabin\deactivate.bat

modified :\Users\Pat\miniconda3\Scripts\activate

modified :\Users\Pat\miniconda3\Scripts\deactivate

modified :\Users\Pat\miniconda3\etc\profile.d\conda.sh

modified :\Users\Pat\miniconda3\etc\fish\conf.d\conda. fish

no change :\Users\Pat\miniconda3\shell\condabin\Conda.psml

modified :\Users\Pat\miniconda3\shell\condabin\conda-hook.psl

no change :\Users\Pat\miniconda3\Lib\site-packages\xontrib\conda.xsh
modified :\Users\Pat\miniconda3\etc\profile.d\conda.csh

modified :\Users\Pat\Documents\WindowsPowerShell\profile.psl

C
C
C
C
C
C
C
C
C
C
C
no change C:\Users\Pat\miniconda3\condabin\activate.bat
C
C
C
C
C
C
C
C
C
C
H

modified KEY_CURRENT_USER\Software\Microsoft\Command Processor\AutoRun

388 ==> For changes to take effect, close and re—opgp’%ﬁjdeceyféﬁﬂ £nbluiversité Paris Cité / UFR Sciences du Vivant
$ conda init
no change C:\Users\Pat\Miniconda3\Scripts\conda.exe

[. CeNlleara\Da+\Mamrna~ArnAdA-a2\Crrranmnt+ec\rAanAda—anyy ava

B.2. Installation de Python avec Miniconda

Annexe B. Installation de Python

2 Miniconda3 py312_24.5.0-0 (64-bit) Setup -

Installing

:l ANACONDA. please wait while Miniconda3 py312_24,5.0-0 (54-bit) is being

installed.

Setting up the package cache. ..

Show details

< Back Mext = Cancel

FIGURE B.6 — Installation Miniconda étape 6.
2 Miniconda3 py312_24.5.0-0 (64-bit) Setup —

Completing Miniconda3
py312_24.5.0-0 (64-bit) Setup

Thank you for installing Miniconda.

We recommend you bookmark these links so you can refer
back to them later.

[Getting started with Conda

[welcome to Anacenda

(") ANACONDA.

< Back Cancel

FIGURE B.7 — Installation Miniconda étape 7.

Notez que cette manipulation créera automatiquement un fichier

C:\Users\nom_utilisateur\Documents\WindowsPowerShell\profile.psl.

Here are some helpful tips and resources to get you started.

Ce fichier sera exécuté a chaque lancement d'un Powershell (équivalent du .bashrc sous bash) et fera en sorte que

conda soit bien activé.

B.2.3.2 Test de I'interpréteur Python

Nous sommes maintenant préts a tester |'interpréteur Python. En premier lieu, il faut lancer un shell PowerShell. Pour
cela, cliquez sur le bouton Windows et tapez powershell. Vous devriez voir apparaitre le menu suivant :

Cliquez sur l'icbne Windows PowerShell, cela va lancer un shell PowerShell avec un fond bleu (couleur que I'on
peut bien slir modifier en cliquant sur la petite icone représentant un terminal dans la barre de titre). En principe, l'invite
du shell doit ressembler a (base) PS C:\Users\Pat>. La partie (base) indique que conda a bien été activé suite a
I'initialisation faite si dessus (plus exactement c'est son environnement de base qui est activé, mais ca ne nous importe
pas pour l'instant). Pour tester si Python est bien installé, il suffit alors de lancer I'interpréteur Python en tapant la

commande python :
Si tout s'est bien passé, vous devriez avoir un affichage de ce style :

Cours de Python / Université Paris Cité / UFR Sciences du Vivant

389

Annexe B. Installation de Python B.2. Installation de Python avec Miniconda

390

Rechercher Applications Documents Web Plus =

Meilleur résultat

>~ Anaconda Prompt (miniconda3) >

Application

Applications
i Anaconda Prompt (miniconda3)

~ Anaconda Powershell Prompt Application
(miniconda3)

Rechercher sur le Web
Ouvrir

anaconda - Afficher plus de résultats de

recherche Exécuter en tant qu administrateur

Ouvrir 'emplacement du fichier
Anaconda B

Epingler au menu Démarrer

Epingler la barre des taches
anaconda prompt
Désinstaller

anaconda download

0
8
AL anaconda python
0
0
0

anaconda navigator

FI1GURE B.8 — Menu Anaconda Powershell Prompt

B Anaconda Powershell Prompt (Miniconda3)

(base) PS C:\Users\Pat> conda init

FIGURE B.9 — Initialisation de conda

Windows PowerShell
Application de bureau

Applications
B2 Windows PowerShell ISE
B Windows PowerShell (x86)

2 Windows PowerShell ISE (x86)

F1GURE B.10 — Menu pour lancer un PowerShell.

(base) PS C:\Users\Pat> python

Python 3.12.4 | packaged by Anaconda, Inc. | (main, Jun 18 2024, 15:03:56) [MSC v.1929 64 bit (AMD64)] on
win32

Type "help", "copyright", "credits" or "license" for more information.

>>>

Cela signifie que vous étes bien dans I'interpréteur Python. A partir de 13 vous pouvez taper exit () puis appuyer sur

Cours de Python / Université Paris Cité / UFR Sciences du Vivant

B.2. Installation de Python avec Miniconda Annexe B. Installation de Python

N Windows PowerShell - O p4

Windows PowerShell
Copyright (C) Microsoft Corporation. Tous droits réservés.

Testez le nouveau systeme multiplateforme PowerShell https://aka.ms/pscore6

Le chargement des profils personnels et systeme a durée 866

(base) PS C:\Users\Pat> python

Python 3.12.4 | packaged by Anaconda, Inc. | (main, Jun 18 2024, 15:0
MSC v.1929 64 bit (AMD64)] on win32

Type "help", "copyright", "credits" or "license" for more information.

>

F1GURE B.11 — Lancement de l'interpréteur Python dans un PowerShell.

la touche Entrée pour sortir de I'interpréteur Python.

B.2.3.3 Test du gestionnaire de paquets conda

Une fois revenu dans le shell, tapez la commande conda, vous devriez obtenir :

usage: conda-script.py [-h] [-v] [--no-plugins] [-V] COMMAND ...

conda is a tool for managing and deploying applications, environments and packages.

options:
-h, --help Show this help message and exit.
-v, —--verbose Can be used multiple times. Once for detailed output, twice for INFO logging, thrice
for DEBUG
logging, four times for TRACE logging.
--no-plugins Disable all plugins that are not built into conda.
-V, --version Show the conda version number and exit.
[...]

Si c'est le cas, bravo, conda est bien installé et vous pouvez passez a la suite (rendez-vous a la rubrique Installation
des modules supplémentaires) !

B.2.3.4 Désinstallation de Miniconda

Si vous souhaitez désinstaller Miniconda, rien de plus simple. Dans le menu Windows, tapez Anaconda puis Désins-
taller. Cela vous emménera dans le panneau de configuration. Faites alors un clic droit sur Miniconda3 py312..., puis
cliquez sur Désinstaller. Cela devrait ouvrir la fenétre suivante :

Cliquez sur Next. Vous aurez alors I'écran suivant :

Cliquez sur Uninstall, puis a I'écran suivant confirmez que vous souhaitez désintaller Miniconda :

Le désinstallateur se lancera alors (cela peut prendre quelques minutes) :

Une fois la désinstallation terminée, cliquez sur Next :

Puis enfin sur Finish :

A ce point, Miniconda est bien désinstallé. |l reste toutefois une derniére manipulation que I'installateur n'a pas
effectué : il faut détruire a la main le fichier

C:\Users\nom_utilisateur\Documents\WindowsPowerShell\profile.psl

(bien siir, remplacez nom_utilisateur par votre propre nom d'utilisateur). Si vous ne le faites pas, cela affichera
un message d'erreur a chaque fois que vous lancerez un Powershell.

Cours de Python / Université Paris Cité / UFR Sciences du Vivant 391

Annexe B. Installation de Python B.3. Utilisation de conda pour installer des modules complémentaires

2 Miniconda3 py312_24.5.0-0 (64-bit) Uninstall - x

Welcome to Miniconda3
py312_24.5.0-0 (64-bit) Uninstall

Setup will guide you through the uninstallation of Miniconda3
py312_24.5.0-0 (64-bit).

Before starting the uninstallation, make sure Miniconda3
py312_24.5.0-0 (64-bit) is not running.

Click Mext to continue.

") ANACONDA.

&
-
Lt

FIGURE B.12 — Désinstallation de Miniconda (étape 1).

2 Miniconda3 py312_24.5.0-0 (64-bit) Uninstall - X

. Uninstall Miniconda3 py312_24_5.0-0 (64-bit)
_) ANACO‘NDA Remaove Miniconda3 py312_24.5.0-0 (64-bit) from your

computer,

Miniconda3 py312_24.5.0-0 {(54-bit) will be uninstalled from the following folder. Click Uninstall
to start the uninstallation.

Uninstalling from: | C:\Users\Patminiconda3

< Back Uninstall Cancel

FIGURE B.13 — Désinstallation de Miniconda (étape 2).

B.3 Utilisation de conda pour installer des modules complémentaires

B.3.1 Installation des modules supplémentaires

Cette étape sera commune pour les trois systémes d'exploitation. A nouveau, lancez un shell (c'est-a-dire PowerShell
sous Windows ou un terminal pour Mac OS X ou Linux).
Dans le shell, tapez la ligne suivante puis appuyez sur la touche Entrée :

$ conda install numpy pandas matplotlib scipy biopython jupyterlab

Cette commande va lancer l'installation des modules externes NumPy, pandas, matplotlib, scipy, Biopython et Jupyter
lab. Ces modules vont étre téléchargés depuis internet par conda, il faut bien siir que votre connexion internent soit
fonctionnelle. Au début, conda va déterminer les versions des paquets a télécharger en fonction de la version de Python
ainsi que d'autres parameétres (cela prend une a deux minutes). Cela devrait donner la sortie suivante :

392 Cours de Python / Université Paris Cité / UFR Sciences du Vivant

B.3. Utilisation de conda pour installer des modules complémentaires

Annexe B.

Installation de Python

QO Miniconda3 py312_24.5.0-0 (64-bit) Uninsta — >

Uninstall Miniconda3 py312_24_5.0-0 (64-bit)
{i_) ANACONDA Remaove Miniconda3 py312_24.5.0-0 (64-bit) from your

computer.

Miniconda3 py312_24.5.0-0 (64-bit) will be uninstalled fram the following folder. Click Uninstall
to start the uninstallation.

s O Miniconda3 py312_24.5.0-0 (64-bit) Uninsta :I

Are you sure you want to remove "C\Users\Pat\miniconda3’ and all of
its contents?

Anaconda, Inc,

< Back Uninstall Cancel

FIGURE B.14 - Désinstallation de Miniconda (étape 3).

2 Minicenda3 py312_24.5.0-0 (64-bit) Uninstall —
Uninstalling
%3 ANACONDA. Flease wait while Miniconda3 py312_24.5.0-0 (54-bit) is being

uninstalled.

Removing files and folders...

Show details

Anaconda, Inc,

< Back Mext = Cancel

FIGURE B.15 — Désinstallation de Miniconda (étape 4).

Channels:
- defaults
Platform: linux-64
Collecting package metadata (repodata.json): done
Solving environment: done

Package Plan
environment location: /home/fuchs/miniconda3

added / updated specs:
- biopython
- jupyterlab
- matplotlib
- numpy
- pandas

- scipy

The following packages will be downloaded:

package | build

___________________________ I_________________
anyio-4.2.0 | py312h06a4308 0 238 KB
on2-cffi-21.3. yhd3eb1b6_0 15 KB
COUféré@rB}‘E/Wﬁ' Awuaﬁ\(@f§¢ﬁlpﬁfl§| Clbgla/liuﬂs‘é’eémﬂ@ﬁs du Vivantz g
asttokens-2.0.5 | pyhd3eb1b06_0 20 KB

[...]

393

Annexe B. Installation de Python B.3. Utilisation de conda pour installer des modules complémentaires

2 Miniconda3 py312_24.5.0-0 (64-bit) Uninstall —

Uninstallation Complete
J AN ACONDA Uninstall was completed successfully.

Completed

Show details

< Back Cancel

FIGURE B.16 — Désinstallation de Miniconda (étape 5).
2 Miniconda3 py312_24.5.0-0 (64-bit) Uninstall —

Completing Miniconda3
py312_24.5.0-0 (64-bit) Uninstall

Miniconda3 py312_24.5.0-0 (64-bit) has been uninstalled
from your computer.

Click Finish to close Setup.

i) ANACONDA.

< Back Cancel

FIGURE B.17 — Désinstallation de Miniconda (étape 6).

Une fois que les versions des paquets ont été déterminées, conda vous demande confirmation avant de démarrer
le téléchargement. Tapez y puis appuyez sur la touche Entrée pour confirmer. S’en suit alors le téléchargement et
I'installation de tous les paquets (cela prendra quelques minutes) :

Une fois que tout cela est terminé, vous récupérez la main dans le shell :

[...]

Downloading and Extracting Packages:

mk1-2023.1.0 | 171.5 MB | #

B R R
| 92%

Preparing transaction: done

Verifying transaction: done

Executing transaction: done

$

B.3.2 Test des modules supplémentaires

Pour tester la bonne installation des modules, lancez |'interpréteur Python :

$ python

394 Cours de Python / Université Paris Cité / UFR Sciences du Vivant

B.3. Utilisation de conda pour installer des modules complémentaires Annexe B. Installation de Python

Puis tapez les lignes suivantes :

import numpy
import scipy
import Bio

import matplotlib
import pandas

Vous devriez obtenir la sortie suivante :

>>> dmport numpy

>>> dmport scipy

>>> dmport Bio

>>> dmport matplotlib
>>> dmport pandas

>>>

Si aucune erreur ne s'affiche et que vous récupérez la main dans l'interpréteur, bravo, ces modules sont bien installés.
Quittez l'interpréteur Python en tapant la commande exit() puis en appuyant sur la touche Entrée.
Vous étes de nouveau dans le shell. Nous allons maintenant pouvoir tester Jupyter. Tapez dans le shell :

$ jupyter lab

Cette commande devrait ouvrir votre navigateur internet par défaut et lancer Jupyter :

CQ ®wams - n o

G ® > ®

FIGURE B.18 — Test de Jupyter : ouverture dans un navigateur.

Pour quitter Jupyter, allez dans le menu File puis sélectionnez Quit. Vous pourrez alors fermer I'onglet de Jupyter.
Pendant ces manipulations dans le navigateur, de nombreuses lignes ont été affichées dans I'interpréteur :

(base) PS C:\Users\Pat> jupyter lab
[I 18:26:05.544 LabApp] JupyterLab extension loaded from C:\Users\Pat\Miniconda3\lib\site-packages\

jupyterlab
[I 18:26:05.544 LabApp] JupyterLab application directory 1is C:\Users\Pat\Miniconda3\share\jupyter\lab
[...]

[I 18:27:20.645 LabApp] Interrupted...
[I 18:27:32.986 LabApp] Shutting down 0 kernels
(base) PS C:\Users\Pat>

Il s'agit d'un comportement normal. Quand Jupyter est actif, vous n'avez plus la main dans I'interpréteur et tous ces
messages s'affichent. Une fois que vous quittez Jupyter, vous devriez récupérer la main dans |'interpréteur. Si ce n'est
pas le cas, pressez deux fois la combinaison de touches Ctrl + C

Si tous ces tests ont bien fonctionné, bravo, vous avez installé correctement Python avec Miniconda ainsi que tous
les modules qui seront utilisés pour ce cours. Vous pouvez quitter le shell en tapant exit puis en appuyant sur la touche
Entrée et aller faire une pause!

B.3.3 Un mot sur pip pour installer des modules complémentaires

Conseil

Si vous étes débutant, vous pouvez sauter cette rubrique.

Cours de Python / Université Paris Cité / UFR Sciences du Vivant 395

Annexe B. Installation de Python B.4. Choisir un bon éditeur de texte

396

Comme indiqué au début de ce chapitre, pip® est un gestionnaire de paquets pour Python et permet d'installer des
modules externes. Pip est également présent dans Miniconda, donc utilisable et parfaitement fonctionnel. Vous pouvez
vous poser la question « Pourquoi utiliser le gestionnaire de paquets pip si le gestionnaire de paquets conda est déja
présent 7 ». La réponse est simple, certains modules ne sont présents que sur les dépdts pip. Si vous souhaitez les installer
il faudra impérativement utiliser pip. Inversement, certains modules ne sont présents que dans les dépsts de conda.
Toutefois, pour les modules classiques (comme NumPy, scipy, etc), tout est gérable avec conda.

Sauf cas exceptionnel, nous vous conseillons I'utilisation de conda pour gérer I'installation de modules
supplémentaires.

Si vous souhaitez installer un paquet qui n'est pas présent sur un dép6t conda avec pip, assurez vous d'abord que
votre environnement conda est bien activé (avec conda activate ou conda activate nom_environnement). La
syntaxe est ensuite trés simple :

$ pip install nom_du_paquet

Si votre environnement conda était bien activé lors de I'appel de cette commande, celle-ci aura installé votre paquet
dans I'environnement conda. Tout est donc bien encapsulé dans |'environnement conda, et I'ajout de tous ces paquets
ne risque pas d'interférer avec le Python du systéme d’exploitation, rendant ainsi les choses bien « propres ».

B.4 Choisir un bon éditeur de texte

La programmation nécessite d'écrire des lignes de code en utilisant un éditeur de texte. Le choix de cet éditeur
est donc fondamental, celui-ci doit nous aider a repérer rapidement certaines zones du programme afin d'étre efficace.
Outre les fonctions de manipulation / remplacement / recherche de texte, un bon éditeur doit absolument posséder la
coloration syntaxique (syntax highlighting en anglais). Celle-ci change la couleur et / ou la police de certaines zones
du code comme les mot-clés du langage, les zones entre guillemets, les commentaires, etc. Dans ce qui suit, nous vous
montrons des éditeurs faciles a prendre en main par les débutants pour Linux, Windows et Mac OS X.

B.4.1 Installation et réglage de gedit sous Linux

Pour Linux, on vous recommande I'utilisation de I'éditeur de texte gedit qui a les avantages d'étre simple a utiliser et
présent dans la plupart des distributions Linux.
Si gedit n'est pas installé, vous pouvez |'installer avec la commande :

$ sudo apt install -y gedit

Il faudra entrer votre mot de passe utilisateur puis valider en appuyant sur la touche Entrée.

Pour lancer cet éditeur, tapez la commande gedit dans un shell ou cherchez gedit dans le lanceur d'applications.
Vous devriez obtenir une fenétre similaire a celle-ci :

On configure ensuite gedit pour que I'appui sur la touche Tab corresponde a une indentation de 4 espaces, comme
recommandée par la PEP 8 (chapitre 15 Bonnes pratiques en programmation Python). Pour cela, cliquez sur I'icéne en
forme de 3 petites barres horizontales en haut a droite de la fenétre de gedit, puis sélectionnez Préférences. Dans la
nouvelle fenétre qui s'ouvre, sélectionnez I'onglet Editeur puis fixez la largeur des tabulations 3 4 et cochez la case Insérer
des espaces au lieu des tabulations :

Si vous le souhaitez, vous pouvez également cochez la case Activer I'indentation automatique qui indentera automati-
quement votre code quand vous étes dans un bloc d'instructions. Fermez la fenétre de parameétres une fois la configuration
terminée.

B.4.2 Installation et réglage de Notepad++ sous Windows

Sous Windows, nous vous recommandons I'excellent éditeur Notepad++ °. Une fois cet éditeur installé, il est important
de le régler correctement. En suivant le menu Parametres, Préférences, vous arriverez sur un panneau vous permettant
de configurer Notepad—++.

En premier on va configurer |'appui sur la touche Tab afin qu'il corresponde a une indentation de 4 espaces, comme
recommandé par la PEP 8 (chapitre 15 Bonnes pratiques en programmation Python). Dans la liste sur la gauche, cliquez

8. https://pip.pypa.io/en/stable/
9. https://notepad-plus-plus.org/download

Cours de Python / Université Paris Cité / UFR Sciences du Vivant

https://pip.pypa.io/en/stable/
https://notepad-plus-plus.org/download

B.4. Choisir un bon éditeur de texte Annexe B. Installation de Python

Ouvrir 1o Document 1 sans titre

Textebrut ~ Largeur des tabulations: 4 ~ Lig 1, Col 1 - INS

FIGURE B.19 — Editeur de texte gedit.

x Préférences

Affichage Editeur Police et couleurs Greffons

Tabulations
Largeur des tabulations : (4 = |+ |
Insérer des espaces au lieu de tabulations
Activer l'indentation automatique
Enregistrement des fichiers
Créer une copie de sauvegarde des fichiers avant 'enregistrement

Enregistrer automatiquement toutes les | 10 = + | minutes

Textebrut ¥ Largeur des tabulations: 4 ~ Lig 1, Col1 = INS

F1GURE B.20 — Configuration de gedit.

sur Langage, puis a droite dans le carré Tabulations cochez la case Insérer des espaces en réglant sur 4 espaces
comme indiqué ci-dessous :

Ensuite, il est important de faire en sorte que Notepad++ affiche les numéros de ligne sur la gauche (trés pratique
lorsque I'interpréteur nous indique qu'il y a une erreur, par exemple, a la ligne 47). Toujours dans la fenétre Préférences,

dans la liste sur la gauche cliquez sur Zones d'éd+ition, puis sur la droite cochez la case Afficher la numérotation
des lignes comme indiqué ici :

Cours de Python / Université Paris Cité / UFR Sciences du Vivant 397

Annexe B. Installation de Python

B.4. Choisir un bon éditeur de texte

398

|Préférences '
Général Menu Langage Tabulations
Zones d'édition (/] Compacter le menu Langage
Nouveau document s 9ag [DEfauIt] A
Dossier par défaut Langages disponibles Langages cachés normal
Historique des fichiers ré 929 P 939 actionscript
Extensions de fichier Normal Text ~ Python ada
PHP asm
| Coloration C asnl
Impression C++ asp .
Sauvegarde C# S autoit
Autocomplétion Objective-C avs
Instance Multiple Java baanc
Délimiteur Resource file bash
Cloud HTML - batch v
Moteur de recherche XML o
Divers Makefile
Pascal "
Batch Taille : 4
INI file Insérer des espaces
MS-DOS Style v
Fermer

FiGure B.21 — Configuration de Notepad++ : indentation avec des espaces.

Préférences -
Général Curseur Multiédition
[Zones d'édition Clignotement :) o
Nouveau document Largeur : 1 N vif 2 [Activer (Ctrl+Clic/sélection)
Dossier par défaut 1 I en
Historique des fichiers ré
Extensions de fichier Contrdle de repli de bloc Largeur des lignes Ligne pliée
Langage . "
ngragﬂcn O simple [[] Afficher la marge droite O Défaut
Isr:E\;:Zsalrodne O Fleche Afficher un filet vertical @ Aligné
AutocomplétiQn O Cercle Colorer l'arriére-plan O Indenté
Instance Multiple
Délimiteur @ carré ,
Cloud o . Afficher la numérotation des lignes
Moteur de recherche Aucun X
Divers Largeur de la bordure Afficher la marge de signet
I 2 []Pas de bordure Surligner la ligne actuelle

[CJ Activer le lissage de police
[CJ Activer le défilement au-dela de la dernié

0 Désactiver le défilement avancé
(en cas de probléeme du touchpad)

Fermer

F1GURE B.22 — Configuration de Notepad++ : numéro de ligne.

B.4.3 Installation et réglage de TextWrangler/BBedit sous Mac OS X

Sur les anciennes versions de Mac OS X (< 10.14), TextWrangler1© était un éditeur de texte simple, intuitif et
efficace. Toutefois son développement a été arrété car il fonctionnait en 32-bits. Il a été remplacé par BBedit!! qui
possede de nombreuses fonctionnalités supplémentaires mais qui doit en principe étre acheté. Toutefois, ce dernier est
utilisable gratuitement avec les mémes fonctionnalités que TextWrangler, sans les nouvelles fonctionnalités étendues. Ne
possédant pas de Mac, nous nous contentons ici de vous donner quelques liens utiles :

La page de téléchargement '?;

La page vers de nombreuses ressources '3 utiles;

Le manuel d'utilisation 1* (avec toutes les instructions pour son installation au chapitre 2);

Une page sur Stackoverflow > qui vous montre comment faire en sorte que I'appui sur la touche Tab affiche 4
espaces plutot qu'une tabulation.

10.
. https://www.barebones.com/products/bbedit/
12.
13.
14.
15.

http://www.barebones.com/products/textwrangler/

http://www.barebones.com/products/bbedit/download.html
https://www.barebones.com/support/bbedit/
https://s3.amazonaws.com/BBSW-download/BBEdit_12.6.6_User_Manual.pdf
https://stackoverflow.com/questions/5750361/auto-convert-tab-to-4-spaces-in-textwrangler

Cours de Python / Université Paris Cité / UFR Sciences du Vivant

http://www.barebones.com/products/textwrangler/
https://www.barebones.com/products/bbedit/
http://www.barebones.com/products/bbedit/download.html
https://www.barebones.com/support/bbedit/
https://s3.amazonaws.com/BBSW-download/BBEdit_12.6.6_User_Manual.pdf
https://stackoverflow.com/questions/5750361/auto-convert-tab-to-4-spaces-in-textwrangler

B.5. Comment se mettre dans le bon répertoire dans le shell Annexe B. Installation de Python

B.4.4 Pour aller plus loin

Jusque 13, nous vous avons montré des éditeurs de texte simples qui sont, selon nous, idéaux pour apprendre un langage
de programmation. Ainsi, on se concentre sur le langage Python plut6t que toutes les options de I'éditeur. Toutefois, pour
les utilisateurs plus avancés, nous vous conseillons des plateformes de développement ® ou IDE (integrated development
environment) qui, au-dela de I'édition, permettent par exemple d'exécuter le code et de le debugger (c'est-a-dire, y
chasser les erreurs). On peut citer par exemple les IDE libres Visual Studio code !’ et Spyder 8.

B.5 Comment se mettre dans le bon répertoire dans le shell

Pour apprendre Python, nous allons devoir écrire des scripts, les enregistrer dans un répertoire, puis les exécuter avec
I'interpréteur Python. Il faut pour cela étre capable d'ouvrir un shell et de se mettre dans le répertoire ou se trouve ce
script.

Notre livre n'est pas un cours d'Unix, mais il convient au moins de savoir se déplacer dans I'arborescence avant de
lancer Python. Sous Linux et sous Mac il est donc fondamental de connaitre les commandes Unix cd, pwd, 1s et la
signification de .. (point point).

Sous Linux, il existe une astuce trés pratique. Si vous utilisez |'explorateur de fichiers Nautilus, quand vous étes dans un
répertoire, faites un clic droit et choisissez dans le menu QOuvrir dans un terminal. Vous vous retrouverez automatiquement
dans le bon répertoire (vous pouvez vous en assurer avec la commande Unix pwd).

{ bioinfo-prog_cours-python.git = : Q

70 Récents
> @ cours 41 éléments

* Favoris

faf Dossier personnel
Nouveau dossier

[Bureau Nouveau document >
¥ Téléchargements Ajouter auxsignets
[z Corbeille Tout sélectionner
0 A / Ouvrir dans un terminal
Open Tilix Here
P Propriétés

FIGURE B.23 - Lancement d'un terminal depuis un répertoire donné avec Nautilus).

De facon similaire sous Windows, il existe deux astuces trés pratiques. Lorsqu’on utilise |'explorateur Windows et que
I'on est dans un répertoire donné :

v s | Python - m] X
Accueil Partage Affichage v e
« v N > Ce PC » user_data (D:) > PAT > Python v U Rechercher dans : Python P
Bureau A [0 Nom Modifié le Type Taille
¥ Téléchargeme &/ testpy 14/11/2018 19:33 Fichier PY 1Ko
= Documents
=Images

FIGURE B.24 — Lancement d'un powershell depuis un répertoire donné (étape 1).

16. https://fr.wikipedia.org/wiki/Environnement_de_d%C3%A9veloppement
17. https://code.visualstudio.com/
18. https://www.spyder-ide.org/

Cours de Python / Université Paris Cité / UFR Sciences du Vivant 399

https://fr.wikipedia.org/wiki/Environnement_de_d%C3%A9veloppement
https://code.visualstudio.com/
https://www.spyder-ide.org/

Annexe B. Installation de Python B.6. Python web et mobile

400

Il est possible d’ouvrir un PowerShell directement dans ce répertoire :
Premiere astuce
Il suffit de taper powershell dans la barre qui indique le chemin :

v s | Python - O
Accueil Partage Affichage
&« v 4 powershell j—) Rechercher dans : Python
) powershell)
NEW_VEISION-P pechercher « powershell » Type Taille
tmp R Fichier PY 1Ko
W cePC
m Bureau

FIGURE B.25 — Lancement d'un powershell depuis un répertoire donné (étape 2).

puis on appuie sur entrée et le PowerShell se lance en étant directement dans le bon répertoire !

Deuxieme astuce

En pressant la touche Shift et en faisant un clic droit dans un endroit de I'explorateur qui ne contient pas de fichier
(attention, ne pas faire de clic droit sur un fichier!). Vous verrez alors s'afficher le menu contextuel suivant :

Cliquez sur QOuvrir la fenétre PowerShell ici, a nouveau votre Powershell sera directement dans le bon répertoire !

Vérification

La figure suivante montre le PowerShell, ouvert de la premiére ou la deuxieme facon, dans lequel nous avons lancé
la commande s qui affiche le nom du répertoire courant (celui dans lequel on se trouve, dans notre exemple D:\PAT\
Python) ainsi que les fichiers s'y trouvant (ici il n'y a qu'un fichier : test.py). Ensuite nous avons lancé I'exécution de
ce fichier test.py en tapant python test.py.

A votre tour!

Pour tester si vous avez bien compris, ouvrez votre éditeur favori, tapez les lignes suivantes puis enregistrez ce fichier
avec le nom test.py dans le répertoire de votre choix.

import tkinter as tk

racine = tk.Tk()

label = tk.Label(racine, text="J'adore Python !")

bouton = tk.Button(racine, text="Quitter", command=racine.quit)
bouton["fg"] = "red"

label.pack()

bouton.pack()

racine.mainloop()

print("C'est fini I")

Comme nous vous |I'avons montré ci-dessus, ouvrez un shell et déplacez-vous dans le répertoire ol se trouve test.py.
Lancez le script avec I'interpréteur Python :

$ python test.py

Si vous avez fait les choses correctement, cela devrait afficher une petite fenétre avec un message « J'adore Python !
» et un bouton Quitter.

B.6 Python web et mobile

Si vous ne pouvez ou ne souhaitez pas installer Python sur votre ordinateur (quel dommage !), des solutions alternatives
s'offrent a vous.

Des sites internet vous proposent I'équivalent d'un interpréteur Python utilisable depuis votre navigateur web :

e repl.it 19.

e Tutorials Point??;

19. https://repl.it/languages/python3
20. https://www.tutorialspoint.com/execute_python3_online.php

Cours de Python / Université Paris Cité / UFR Sciences du Vivant

https://repl.it/languages/python3
https://www.tutorialspoint.com/execute_python3_online.php

B.6. Python web et mobile Annexe B. Installation de Python

« v 1 > Ce PC » user_data (D:) > PAT > Python

PN

~ [] Nom
3 Acces rapide
m Bureau & testpy

Affichage >

v

Trier par
Regrouper par >

Actualiser

Personnaliser ce dossier...

Coller

Coller le raccourci

Annuler Copier Ctrl+Z
.’SJ Open with Code

Ouvrir l'interpréteur de commandes Linux ici

Accorder l'acces a >

Nouveau >

Propriétés

-

1 élément

FIGURE B.26 — Lancement d'un powershell depuis un répertoire donné (étape 2bis).

e et bien sur I'incontournable Python Tutor?!.

Des applications mobiles vous permettent aussi de « pythonner » avec votre smartphone :
e Pydroid 3% pour Android ;

21. http://pythontutor.com/visualize.html#mode=edit
22. https://play.google.com/store/apps/details?id=ru.iiec.pydroid3

Cours de Python / Université Paris Cité / UFR Sciences du Vivant 401

http://pythontutor.com/visualize.html#mode=edit
https://play.google.com/store/apps/details?id=ru.iiec.pydroid3

Annexe B. Installation de Python B.6. Python web et mobile

¥ Windows PowerShell - o

indows Powershell _ _]]
Copyright (C) Microsoft Corporation. Tous droits réservés.

PS D:\PAT\Python> Ts

Répertoire : D:\PAT\Python

LastwriteTime Length Name
14/11/2018 19:33 249 test.py
PS D:\PAT\Python> python test.py

'est fini !
PS D:\PAT\Python>

FIGURE B.27 — Lancement d'un powershell depuis un répertoire donné (étape 3).

e Pythonista 323 pour iOS (payant).
Soyez néanmoins conscient que ces applications web ou mobiles peuvent étre limitées, notamment sur leur capacité
a installer des modules supplémentaires et a gérer les fichiers.

23. https://itunes.apple.com/us/app/pythonista-3/id1085978097

402 Cours de Python / Université Paris Cité / UFR Sciences du Vivant

https://itunes.apple.com/us/app/pythonista-3/id1085978097

	Avant-propos
	Quelques mots sur l'origine de ce cours
	Remerciements
	Le livre

	1 Introduction
	1.1 Qu'est-ce que Python ?
	1.2 Conseils pour l'apprentissage de Python
	1.3 Conseils pour installer et configurer Python
	1.4 Notations utilisées
	1.5 Introduction au shell
	1.6 Premier contact avec Python
	1.7 Premier programme
	1.8 Commentaires
	1.9 Notion de bloc d'instructions et d'indentation
	1.10 Autres ressources

	2 Variables
	2.1 Définition et création
	2.2 Les types de variables
	2.3 Nommage
	2.4 Écriture scientifique
	2.5 Opérations
	2.6 La fonction type()
	2.7 Conversion de types
	2.8 Note sur le vocabulaire et la syntaxe
	2.9 Minimum et maximum
	2.10 Exercices

	3 Affichage
	3.1 La fonction print()
	3.2 Messages d'erreur
	3.3 Écriture formatée et f-strings
	3.4 Écriture scientifique
	3.5 Exercices

	4 Listes
	4.1 Définition
	4.2 Utilisation
	4.3 Opération sur les listes
	4.4 Indiçage négatif
	4.5 Tranches
	4.6 Fonction len()
	4.7 Les fonctions range() et list()
	4.8 Listes de listes
	4.9 Minimum, maximum et somme d'une liste
	4.10 Problème avec les copies de listes
	4.11 Note sur le vocabulaire et la syntaxe
	4.12 Exercices

	5 Boucles et comparaisons
	5.1 Boucles for
	5.2 Comparaisons
	5.3 Boucles while
	5.4 Exercices

	6 Tests
	6.1 Définition
	6.2 Tests à plusieurs cas
	6.3 Importance de l'indentation
	6.4 Tests multiples
	6.5 Instructions break et continue
	6.6 Tests de valeur sur des floats
	6.7 Exercices

	7 Fichiers
	7.1 Lecture dans un fichier
	7.2 Écriture dans un fichier
	7.3 Ouvrir deux fichiers avec l'instruction with
	7.4 Note sur les retours à la ligne sous Unix et sous Windows
	7.5 Importance des conversions de types avec les fichiers
	7.6 Du respect des formats de données et de fichiers
	7.7 Exercices

	8 Dictionnaires et tuples
	8.1 Dictionnaires
	8.2 Tuples
	8.3 Exercices

	9 Modules
	9.1 Définition
	9.2 Importation de modules
	9.3 Obtenir de l'aide sur les modules importés
	9.4 Quelques modules courants
	9.5 Module random : génération de nombres aléatoires
	9.6 Module sys : passage d'arguments
	9.7 Module pathlib : gestion des fichiers et des répertoires
	9.8 Exercices

	10 Fonctions
	10.1 Principe et généralités
	10.2 Définition
	10.3 Passage d'arguments
	10.4 Renvoi de résultats
	10.5 Arguments positionnels et arguments par mot-clé
	10.6 Variables locales et variables globales
	10.7 Principe DRY
	10.8 Exercices

	11 Plus sur les chaînes de caractères
	11.1 Préambule
	11.2 Chaînes de caractères et listes
	11.3 Caractères spéciaux
	11.4 Préfixe de chaîne de caractères
	11.5 Méthodes associées aux chaînes de caractères
	11.6 Extraction de valeurs numériques d'une chaîne de caractères
	11.7 Fonction map()
	11.8 Test d'appartenance
	11.9 Conversion d'une liste de chaînes de caractères en une chaîne de caractères
	11.10 Method chaining
	11.11 Exercices

	12 Plus sur les listes
	12.1 Méthodes associées aux listes
	12.2 Construction d'une liste par itération
	12.3 Test d'appartenance
	12.4 Fonction zip()
	12.5 Copie de listes
	12.6 Initialisation d'une liste de listes
	12.7 Liste de compréhension
	12.8 Tris puissants de listes
	12.9 Exercices

	13 Plus sur les fonctions
	13.1 Appel d'une fonction dans une fonction
	13.2 Fonctions récursives
	13.3 Portée des variables
	13.4 Portée des listes
	13.5 Règle LGI
	13.6 Recommandations
	13.7 Exercices

	14 Conteneurs
	14.1 Généralités
	14.2 Plus sur les dictionnaires
	14.3 Plus sur les tuples
	14.4 Sets et frozensets
	14.5 Récapitulation des propriétés des conteneurs
	14.6 Dictionnaires et sets de compréhension
	14.7 Module collections
	14.8 Exercices

	15 Création de modules
	15.1 Pourquoi créer ses propres modules ?
	15.2 Création d'un module
	15.3 Utilisation de son propre module
	15.4 Les docstrings
	15.5 Visibilité des fonctions dans un module
	15.6 Module ou script ?
	15.7 Exercice

	16 Bonnes pratiques en programmation Python
	16.1 De la bonne syntaxe avec la PEP 8
	16.2 Les docstrings et la PEP 257
	16.3 Outils de contrôle qualité du code
	16.4 Outil de formatage automatique du code
	16.5 Organisation du code
	16.6 Conseils sur la conception d'un script
	16.7 Pour terminer : la PEP 20

	17 Expressions régulières et parsing
	17.1 Définition et syntaxe
	17.2 Quelques ressources en ligne
	17.3 Le module re
	17.4 Exercices

	18 Jupyter et ses notebooks
	18.1 Installation
	18.2 JupyterLab
	18.3 Création d'un notebook
	18.4 Le format Markdown
	18.5 Des graphiques dans les notebooks
	18.6 Les magic commands
	18.7 Lancement d'une commande Unix

	19 Module Biopython
	19.1 Installation et convention
	19.2 Chargement du module
	19.3 Manipulation de séquences
	19.4 Interrogation de la base de données PubMed
	19.5 Exercices

	20 Module NumPy
	20.1 Installation et convention
	20.2 Chargement du module
	20.3 Objets de type array
	20.4 Construction automatique de matrices
	20.5 Chargement d'un array depuis un fichier
	20.6 Concaténation d'arrays
	20.7 Un peu d'algèbre linéaire
	20.8 Parcours de matrice et affectation de lignes et colonnes
	20.9 Masques booléens
	20.10 Quelques conseils
	20.11 Exercices

	21 Module Matplotlib
	21.1 Installation et convention
	21.2 Chargement du module
	21.3 Représentation en nuage de points
	21.4 Représentation sous forme de courbe
	21.5 Représentation en diagramme en bâtons

	22 Module Pandas
	22.1 Installation et convention
	22.2 Chargement du module
	22.3 Series
	22.4 Dataframes
	22.5 Un exemple plus concret avec les kinases
	22.6 Exercices

	23 Avoir la classe avec les objets
	23.1 Construction d'une classe
	23.2 Exercices

	24 Avoir plus la classe avec les objets
	24.1 Espace de noms
	24.2 Polymorphisme
	24.3 Héritage
	24.4 Composition
	24.5 Différence entre les attributs de classe et d'instance
	24.6 Accès et modifications des attributs depuis l'extérieur
	24.7 Bonnes pratiques pour construire et manipuler ses classes
	24.8 Note finale de sémantique
	24.9 Exercices

	25 Fenêtres graphiques et Tkinter
	25.1 Utilité d'une GUI
	25.2 Quelques concepts liés à la programmation graphique
	25.3 Notion de fonction callback
	25.4 Prise en main du module Tkinter
	25.5 Construire une application Tkinter avec une classe
	25.6 Le widget canvas
	25.7 Pour aller plus loin
	25.8 Exercices

	26 Remarques complémentaires
	26.1 Différences Python 2 et Python 3
	26.2 Anciennes méthodes de formatage des chaînes de caractères
	26.3 Fonctions lambda
	26.4 Itérables, itérateurs, générateurs et module itertools
	26.5 Gestion des exceptions
	26.6 Shebang et /usr/bin/env python3
	26.7 Passage d'arguments avec *args et **kwargs
	26.8 Décorateurs
	26.9 Un peu de transformée de Fourier avec NumPy
	26.10 Sauvegardez votre historique de commandes

	27 Mini-projets
	27.1 Description des projets
	27.2 Accompagnement pas à pas
	27.3 Scripts de correction

	A Quelques formats de données en biologie
	A.1 FASTA
	A.2 GenBank
	A.3 PDB
	A.4 Format XML, CSV et TSV

	B Installation de Python
	B.1 Que recommande-t-on pour l'installation de Python ?
	B.2 Installation de Python avec Miniconda
	B.3 Utilisation de conda pour installer des modules complémentaires
	B.4 Choisir un bon éditeur de texte
	B.5 Comment se mettre dans le bon répertoire dans le shell
	B.6 Python web et mobile

