Universite
TI Sorbonne
Paris Nord

Programmation 2

Slides modified from https://github.com/UGE-IGM/courspython

https://github.com/UGE-IGM/courspython
https://github.com/UGE-IGM/courspython

Chapitre 2 : Conditionnelles et expressions booléennes

Dans ce chapitre vous allez apprendre a :

1. effectuer des traitements différents selon si une condition est réalisée ou
non;

2. manipuler les expressions logiques ;

3. écrire correctement en Python une structure conditionnelle, aussi complexe
soit-elle;

4. expliquer l'ordre dans lequel les lignes d'un programme contenant des blocs
conditionnels seront exécutées en fonction des données fournies au
programme ;

5. simplifier, quand c'est possible, une imbrication de blocs conditionnels en

utilisant des opérateurs booléens ;

. éliminer les opérateurs booléens d'une condition en introduisant de

nouveaux blocs conditionnels.

| Introduction

Au chapitre précédent, nous avons appris a écrire un programme court réalisant
des entrées/sorties avec |'utilisateur, pouvant affecter des valeurs a des
variables et effectuant des calculs arithmétiques sur ces variables.

Les instructions de nos programmes sont exécutées dans 'ordre, de maniere
linéaire les unes apres les autres. On va maintenant ajouter la possibilité de
faire des choix dans le programme, pour exécuter des instructions différentes
selon les cas.

Mais avant tout, commencons par un peu de révisions !

Exercice 1 : Révisions

Que réalise le programme suivant ?

note_ccl = float(input('Note du premier contréle : '))
note_cc2 = float(input('Note du second contrble : '))
note_exam = float(input("Note de 1l'examen : "))

moyenne_cc = (note_ccl + note_cc2) / 2
note_finale = (moyenne_cc + note_exam) / 2

print('Note finale :', note_finale)

In []:

note_ccl = float(input('Note du premier contrdle : "))
note_cc2 = float(input('Note du second contrdle : "))
note_exam = float(input("Note de 1l'examen : "))

moyenne_cc = (note_ccl + note_cc2) / 2
note_finale = (moyenne_cc + note_exam) / 2

print('Note finale :', note_finale)

Nous allons maintenant voir comment on pourrait :
e ne prendre en compte que la note_exam si celle-ci est supérieure a

la” "note_finale " ;
o féliciter l'étudiant quiaune note_finale supérieurea 10 et encourager

celuiquienauneentre 8 et 10.
Tout au long du cours, nous allons faire évoluer ce programme.

|l Expressions booléennes

Les instructions conditionnelles (vues ci-dessous) sont écrites a l'aide
d'expressions booléennes, c'est a dire d'expressions qui s'évaluent en un valeur
de type bool (True ou False). Elles peuvent contenir des opérateurs de
comparaison, des opérateurs logiques, etc.

1) Opérateurs de comparaison

Plusieurs opérateurs ont des résultats booléens
e Comparaisons: a < b a<=ba>Dba>b
e Egalité ouinégalité: a == b a != b

Ces opérateurs fonctionnent sur de nombreux types de valeurs
e Surles int et float :ordre naturel

e Surles str :ordre lexicographique (dictionnaire)

e Sur d'autres types qu'on verra plus tard

In []:
3 <=3

In []:

'aboyer' < 'abime'

In []:

1 <4.0

Attention : on ne peut pas ordonner des valeurs de types différents (sauf des
nombres) !

In []:
l1l <2

In []:
3.0 < 2 + 2

Par contre, les opérateurs == et != acceptent des opérandes de types
différents

Out[3]:
False
In []:
'bonjour' != None
In []:

2 ==2.0 # Cas particulier :@ vrai car float(2) == 2.0

Ne pas confondre 'opérateur d'égalité (==) avec l'opérateur d'affectation

Exercice 2 : Opérateurs de comparaison

Que valent les expressions suivantes ?

2) Opérateurs logiques

On peut combiner plusieurs expressions booléennes a l'aide d'opérateurs
logiques:
e a and b vaut False des que l'une des variables vaut False, et vaut
True siles deux variables valent True.
e a 0or b vaut True sil'une des deux variables vaut True, et False sinon.
e not a vaut True si a vaut False, etvaut Falsesi avaut True.

In []:

True and False

In []:

not (3 + 4 1=17)

In []:

4 <1 or 'Bonjour' >= 'Au revoir'

On peut résumer le comportement de ces opérateurs a l'aide de tableau,

appelés tables de vérité :

a not a

True False

False True

a b aand b
True True True
True False False
False True False
False False False
a b aor b
True True True
True False True
False True True
False False False

In []:

X = 1 # essayer plusieurs valeurs de x
print(x >= 0 and x <= 10) # x appartient a 1'intervalle fermé [0, 10]

print(x < @ oxr x > 10) # x n'appartient pas a 1'intervalle fermé [0, 10]
print(not (x < @ ox x > 10)) # comment interpréter cette ligne ??

EXERCICE 3 :

Pour quelles valeurs des variables n, somme et seuil l'expression suivante
vaut-elle True ?

(n <= 3 and somme + n > seuil) or n > 3

In []:
n=2.1
somme = 0
seuil = 2

b = (n <= 3 and somme + n > seuil) or n > 3
print(b)

3) Analogies avec les opérations arithmétiques usuelles

Un True peut étre vu comme l'entier 1. De méme, False s'interpréte comme
l'entier 0.

Remarque 1: Pour garder le fait que not True == False, enréalité dans de
nombreux langages de programmation, True est un entier non nul
Remarque2: True or True = True,d'ouaveccetteanalogies:1+1=1

I

In []:
bool(10)
In []:
bool(0)
In []:

print(int(Txue))
print(int(False))

Soit P et Q deux propositions logiques (True ou False)s'interprétant
respectivement comme l'entier pou (.

Alors : l'opérateur and peut étre interprété comme une multiplication. En
effet, P and Q s'interpréte comme l'entierp - ¢ = pq

Alors : l'opérateur or peut étre interprété comme une addition. En effet, P
and Q s'interpréte comme l'entierp - ¢ = pq

L'opérateur not change l'entierpen 1l - p.

4) Exemples simples de tautologies

Une tautologies est une expression logique qui s'évalue toujoursa True.

In []:

P = False
P and False

Quelque soit la proposition logique P, P and False == False.

In []:

P = False
P or True

Quelque soit la proposition logique P, P or True == True.

In []:

P = False
not not P

Quelque soit la proposition logique P, not not P == P.

In []:

P = False
P and (not P)

Quelque soit la proposition logique P, P and (not P) = False
Eneffet,si p = @ ou 1 estl'entierinterprétant la proposition P, alors P
and (not P) s'interpréte comme:p(1 — p) = 0.

In []:

P = True
P or (not P)

Quelque soit la proposition logique P, P or (not P) = True
Eneffet,sip = @ ou 1 estl'entierinterprétant la proposition P, alors P or
(not P) s'interpréte comme:p+ (1 —p) = 1.

5) Exemples plus avancé de tautologies

De maniere générale, on peut donc déduire des tautologies a partir des
relations vérifier par 'adition et la multiplication des entiers.

AP AND (Q OR R) = 222

On va utiliser l'interprétation: P AND (Q or R) -->p (g + r) = pq +
pr --> (P AND Q) OR (P AND R)

In []:
P = True
Q = True
R = False
In []:

P and (Q oxr R)

In []:
(P and Q) or (P and R)

Une fois une conjecture posée avec 'analogie, on la démontre avec une table de

B.P AND (Q AND R) == (P AND Q) AND R

vérité !
P and b and (P and

P Q R Q or R |(z? or Q P and R g:,do;)(P
True True True True True True True True
True True False True True True False True
True False True True True False True True
True False False False False False False False
False True True True False False False False
False True False True False False False False
False False True True False False False False
False False False False False False False False

Donc: P AND (Q or R) == (P AND Q) OR (P AND R)

Interprétation:

P and (Q and R) -->p(qr)=pqr
(P and Q) and R -->(pqg)r=pqr
Vérification informatique:

In []:

P = True
Q = True
R = True
In []:

P and (Q and R)

In []:
(P and Q) and R

Donc, P and (Q and R) == (P and Q) and R.Onne metdonc pasde
parenthese, puisqu'il n'y a aucune ambiguité d'évaluation des opérateurs and.

C. NOT (P AND Q) = ?

p Q ; and (;I)Ot (P and not P not Q ((::tt (;’)) or
True True True False False False False
True False False True False True True
False True False True True False True
False False False True True True True

Donc: not(P and Q) == (not P) or (not Q).

6) Vérifier vos connaissances

A ce stade, vous devez étre capable de:
o citer les six opérateurs de comparaisons en Python;

e savoir évaluer le résultat d'une expression logique simple ;

e comprendre les mécanisme de conversions implicites lors de |'évaluation
d'une expression logique;

e citer les trois opérateurs logique que nous avons vus ;

e donner la table de vérité des trois opérateurs logique que nous avons vus ;

e savoir simplifier une expression logique simple.

EXERCICE 4 :

Donner le résultat des expressions logiques suivantes :

In []:

a = 10
b =2
c =6
In []:

a<bora>c

In []:

a+b<2*c

In []:

(a >band a > c) or (b >aand b > c)

In []:

a<b«<c

In []:
a==>b ==
In []:

(a <= b and a <= c) or not (b < a)

In []:

not (a > b and a > c) oxr (b > a and b > ¢)

EXERCICE 5:

variables ne servent a rien ou etre simplifier

Les expressions logiques suivantes ne dépendent pas des variables x, y, z.
peuvent étre simplifiées. Cela peut avoir une grande importance pour la lisibilité
d'un programme.

Simplifiez les autant que possible.

In [1]:

X = False
y = False
z = False
In [2]:

(x +y >3 * z) or True

Out[2]:
True

In [3]:

n = input("abc")

abc34

In [5]:

(x ==y and y == z) or (x ==y and y == z)

Out[5]:

True

Il Instructions conditionnelles

1) Cas simple : Conditionnelle Si

On peut maintenant modifier le flot d'instructions selon la valeur d'expressions
booléennes, ou conditions:

e Si une certaine condition est vraie, exécuter un certain groupe (ou bloc)
d'instructions

e Sinon, passer directement a la suite du programme

début

condition

La syntaxe d'une instruction conditionnelle est :

début
if condition:

bloc d'instructions V
suite

e Les instructions du bloc v sont exécutées uniquement si condition est
évaluée a True

e Dans tous les cas, 'exécution reprend a l'instruction suivant le bloc v

EXEMPLE 1 :

In []:

prenom = input("Quel est votre prénom ? ")
if prenom == 'IRONMAN":

print('Tres joli prénom !")
print('Bonjour', prenom, '!")

EXEMPLE 2 :

Reprenons maintenant notre exemple introductif :

In []:

La note finale est le maximum de la note d'examen
et de la moyenne entre examen et moyenne de contréle
continu

note_ccl = float(input('Note du premier contrdle : "))
note_cc2 = float(input('Note du second contrdle : "))
note_exam = float(input("Note de 1l'examen : "))

moyenne_cc = (note_ccl + note_cc2) / 2
note_finale = (moyenne_cc + note_exam) / 2

if note_finale < note_exam:
Les deux instructions suivantes ne s'exécutent que si
la condition est vraie (remarquer le décalage des lignes)
note_finale = note_exam
print('Notes de contrble non prise en compte.')

print('Note finale :', note_finale)

LA NOTION DE BLOC

Sur cet exemple, on a vu un groupe de lignes commencant par des espaces,
appelé bloc. Un bloc est utilisé pour regrouper plusieurs instructions dépendant
de la méme condition.

Un tel groupe d'instructions est appelé un bloc

Le décalage du début de ligne est appelé indentation

Commencer une ligne avec une indentation supérieure a la précédente
commence un nouveau bloc (sur le second exemple: note_finale =
note_exam)

Un bloc se termine quand une ligne moins indentée apparait (sur l'exemple:
print('Note finale :', note_finale))

Pour indenter la ligne courante : touche "tabulation" (-)

Pour désindenter une ligne : "Shift + tabulation" (T + -»)

Changer l'indentation change le sens du programme (essayer !)

ERREURS FREQUENTES LIEES A L'INDENTATION :

In []:

if note_finale < note_exam # oubli des deux points (:)
note_finale = note_exam
print('Note de contrble non prise en compte.')

In []:

if note_finale < note_exam:
note_finale = note_exam
print('Note de contrble non prise en compte.') # ligne pas assez indentée

In []:

if note_finale < note_exam:
note_finale = note_exam
print('Note de contrdle non prise en compte.') # ligne trop indentée

In []:

if note_finale < note_exam:
note_finale = note_exam # oubli d'indentation

Vérifier vos connaissances

A ce stade, vous devez étre capable:
e d'écrire correctement en Python une structure conditionnelle simple

(utilisation des :, indentation, ...) ;
o d'évaluer le résultat d'une structure conditionnelle simple en Python;

o d'identifier les différents blocs dans un programme

EXERCICE 6 :

Ecrire un programme qui demande un entier saisi au clavier par utilisateur et
affiche strictement positif s'il est strictement positif.

In []:
n = int(input("Entrez un nombre : "))
ifn > 0:

print("strictement positif")

EXERCICE 7 :

Ecrire un programme qui demande a l'utilisateur le poids de son bagage en
kilos. Si le bagage pese plus de 20 kilos, le programme affichera le message :

Vous devez payer un supplément.

EXERCICE 8 :

Qu'affiche le programme suivant:

a = 10

if a > 1000:
print("grand")

print("nombre")

2) Conditionnelles Si ... Sinon

On peut ajouter un second bloc d'instructions
e Siune certaine condition est vraie, exécuter le premier bloc

e Sinon, exécuter le second

e Enfin, continuer 'exécution normale du programme

Syntaxe:

début
if <condition>:
bloc v
else:
bloc f
suite

Seul {'un des deuxblocs d'instructions, v ou bien f, est exécuté
e Le blocvuniquementsi condition estévaluéea True

e Le bloc funiquementsi condition estévaluéea False

e Danstous les cas, reprise a l'instruction suivant le bloc f

début

Y

condition

\'I‘El/ \lux

bloc v bloc f

NS

suite

NOTRE EXEMPLE FAVORI

En plus de la derniere version, on cherche a savoir si le controle continu a été
pris en compte.

In []:

La note finale est le maximum de la note d'examen
et de la moyenne entre examen et moyenne de contréle
continu

note_ccl = float(input('Note du premier contrdle : "))
note_cc2 = float(input('Note du second contrdle : "))
note_exam = float(input("Note de 1l'examen : "))

moyenne_cc = (note_ccl + note_cc2) / 2

if moyenne_cc < note_exam:
Bloc a exécuter si la condition est vraie
note_finale = note_exam
print('Notes de contrdle non prise en compte.')
else: # moyenne_cc >= note_exam
Bloc a exécuter si la condition est fausse
note_finale = (moyenne_cc + note_exam) / 2
print('Notes de contrble prise en compte.')

Instruction exécutée dans tous les cas
print('Note finale :', note_finale)

Un autre exemple: la division euclidienne

In []:
dividende = int(input("Donner moi un dividende : "))
diviseur = int(input("Donner moi un diviseur : "))
if diviseur !'= 0:
print(dividende, '=', dividende // diviseur, '*', diviseur, '+', dividende % diviseur)
else:

print('Erreur de saisie ? Division par zéro...')

Vérifier vos connaissances

A ce stade, vous devriez savoir :
e écrire une structure conditionnelle S1 ... Sinon

EXERCICE 9 :

Ecrire un programme qui demande un entier saisi au clavier par l'utilisateur et
affiche positif sil'entier est positif ou nul et negatif sinon.

3) Conditionnelles composées

Cette construction peut étre imbriquée :

début
if <condition 1>:
if <condition 2>:
bloc viv2
else:
bloc vif2
suite 2
else:
bloc f1
suite 1

début

Y

condition 1

condition 2 faux

bloc v1v2 bloc v1{2

/

suite 1

Toutes les variantes sont possibles — si chaque else correspondaun if de
méme indentation !

NOTRE EXEMPLE FAVORI

On veut désormais ajouter la possibilité de tester si les notes données sont des
notes positives.

In []:

La note finale est le maximum de la note d'examen
et de la moyenne entre examen et moyenne de contréle

continu

note_ccl = float(input('Note du premier contrdle : "))
note_cc2 = float(input('Note du second contrdle : "))
note_exam = float(input("Note de l'examen : "))

On vérifie qu'aucune note n'est négative
if note_ccl >= © and note_cc2 >= 0 and note_exam >= 0:
moyenne_cc = (note_ccl + note_cc2) / 2
Condition dans la condition
if moyenne_cc < note_exam:
Indentation supplémentaire
note_finale = note_exam
print('Note de contrb6le non prise en compte.')
else:
note_finale = (moyenne_cc + note_exam) / 2
print('Note de contrble prise en compte.')
print('Note finale :', note_finale)
else:
print('Erreur de saisie (note négative).')

Vérifier vos connaissances

A ce stade, vous devriez étre capable :
e d'expliquer quelles lignes seront exécutées dans un programme contenant

des blocs conditionnels en fonction des données fournies au programme ;
o simplifier, quand c'est possible, une imbrication de blocs conditionnels en
utilisant des opérateurs booléens;
e éliminer les opérateurs booléens d'une condition en introduisant de

nouveaux blocs conditionnels.

Exercice 10 : Evaluations d'un programme
Qu'affiche le programme ci-dessus lorsque :

e le premier nombre donné est 1 et le second est O.
¢ le premier nombre donné est 2 et le second est 2.
¢ le premier nombre donné est 3 et le second est 0.

¢ le premier nombre donné est 4 et le second est 4.

a = int(input('Donnez un nombre : '))
b = int(input('Donnez un nombre : "))
print('toto"')
if a > 2:

print('tata')

if b >= a:

print('truc')
else:

print('bla")
print('poire')
print('42")

EXERCICE 11 : TRANSFORMATION DE CONDITIONS IMBRIQUEES

Modifier le programme suivant pour qu'il ne contienne qu'une seule condition.

a int(input("Donnez moi un entier : "))
b int(input("Donnez moi un entier : "))
if a > 0:
if b==2*a
print("Le nombre positif b est le double de a")
else:
print("a est négatif ou b n'est pas le double de a")

else:
print("a est négatif ou b n'est pas le double de a")

4) Conditionnelles enchainées :

Cas particulier ou le bloc else contient seulement un autre if :le mot-clé
elif
Le code...

début
if <condition 1>:
bloc **v1**
else:
if <condition 2>:
bloc **flv2**
else:
bloc **fl1f2**
suite

... s'écrit aussi :

début
if <condition 1>:
bloc **v1**
elif <condition 2>:
bloc **flv2**
else:
bloc **f1f2**
suite

On peut ainsi enchainer autant de conditions qu'on le souhaite, lorsque les cas
ne se recouvrent pas:

début
if <condition 1>:

bloc **v1**
elif <condition 2>:

bloc **flv2**
elif <condition 3>:

bloc **f1f2v3**
else:

bloc **f1f2f3**
suite

Exemple final:

In []:

La note finale est le maximum de la note d'examen
et de la moyenne entre examen et moyenne de contréle
continu

note_ccl = float(input('Note du premier contrdle : "))
note_cc2 = float(input('Note du second contrdle : "))
note_exam = float(input("Note de 1'examen : "))

if note_ccl < @ or note_cc2 < @ or note_exam < 0:
Négation de note_ccl >= @ and note_cc2 >= @ and note_exam >= 0
print('Erreur de saisie (note négative).')

else:
moyenne_cc = (note_ccl + note_cc2) / 2

if moyenne_cc < note_exam:

note_finale = note_exam

print('Note de contr6le non prise en compte.')
else:

note_finale = (moyenne_cc + note_exam) / 2

print('Note de contrble prise en compte.')
print('Note finale :', note_finale)

if note_finale < 8:
print("T'as pas assez bossé... Tant pis !")
elif note_finale < 10:
print('Encore un petit effort !")
elif note_finale < 12:
print('Ca passe !")
elif note_finale < 14:
print('Pas mal !")
else: # Quelles valeurs possibles ?
print('Bravo !")

Vérifier vos connaissances

A ce stade, vous devriez étre capable :
e d'écrire correctement en Python une structure conditionnelle simple ou

complexe;

Exercice 12 : Ou est cette valeur?

Pour quelles plages de valeur de la variable a le programme suivant affiche-t-il
X ?
Que se passe-t-il si a n'est pas de type int ?

if a > 10:

print('a grand')
elif a < 5:

print('a petit')
else:

print('X")

In [1]:

a = "10.3"
if a > 10:

print('a grand")
elif a < 5:

print('a petit")
else:

print('X")

TypeError Traceback (most recent call las
t)

Input In [1], in <cell line: 2>()
1a="10.3"

----> 2 if a > 10:
3 print('a grand')
4 elif a < 5:

TypeError: '>' not supported between instances of 'str' and 'int'
In [9]:

reload_ext nbtutor

In [10]:

%%nbtutor -r -f
empty = []

foo = 10

pass

In [11]:
print("hello")

hello

In []:

In []:

