
Programmation 2

Slides modified from https://github.com/UGE-IGM/courspython

https://github.com/UGE-IGM/courspython
https://github.com/UGE-IGM/courspython

Chapitre 2 : Conditionnelles et expressions booléennes

Dans ce chapitre vous allez apprendre à :
�. effectuer des traitements différents selon si une condition est réalisée ou

non ;

�. manipuler les expressions logiques ;

�. écrire correctement en Python une structure conditionnelle, aussi complexe

soit-elle ;

�. expliquer l'ordre dans lequel les lignes d'un programme contenant des blocs

conditionnels seront exécutées en fonction des données fournies au

programme ;

�. simplifier, quand c'est possible, une imbrication de blocs conditionnels en

utilisant des opérateurs booléens ;

�. éliminer les opérateurs booléens d'une condition en introduisant de

nouveaux blocs conditionnels.

I Introduction

Au chapitre précédent, nous avons appris à écrire un programme court réalisant
des entrées/sorties avec l'utilisateur, pouvant affecter des valeurs à des
variables et effectuant des calculs arithmétiques sur ces variables.
Les instructions de nos programmes sont exécutées dans l'ordre, de manière
linéaire les unes après les autres. On va maintenant ajouter la possibilité de
faire des choix dans le programme, pour exécuter des instructions différentes
selon les cas.
Mais avant tout, commençons par un peu de révisions !

Exercice 1 : Révisions

Que réalise le programme suivant ?

note_cc1 = float(input('Note du premier contrôle : '))

note_cc2 = float(input('Note du second contrôle : '))

note_exam = float(input("Note de l'examen : "))

moyenne_cc = (note_cc1 + note_cc2) / 2

note_finale = (moyenne_cc + note_exam) / 2

print('Note finale :', note_finale)

In []:

note_cc1 = float(input('Note du premier contrôle : '))
note_cc2 = float(input('Note du second contrôle : '))
note_exam = float(input("Note de l'examen : "))

moyenne_cc = (note_cc1 + note_cc2) / 2
note_finale = (moyenne_cc + note_exam) / 2

print('Note finale :', note_finale)

Nous allons maintenant voir comment on pourrait :
• ne prendre en compte que la note_exam si celle-ci est supérieure à

la``note_finale` ;

• féliciter l'étudiant qui a une note_finale supérieure à 10 et encourager

celui qui en a une entre 8 et 10 .
Tout au long du cours, nous allons faire évoluer ce programme.

II Expressions booléennes

Les instructions conditionnelles (vues ci-dessous) sont écrites à l'aide
d'expressions booléennes, c'est à dire d'expressions qui s'évaluent en un valeur
de type bool (True ou False). Elles peuvent contenir des opérateurs de
comparaison, des opérateurs logiques, etc.

1) Opérateurs de comparaison

Plusieurs opérateurs ont des résultats booléens
• Comparaisons : a < b a <= b a >= b a > b

• Égalité ou inégalité : a == b a != b

Ces opérateurs fonctionnent sur de nombreux types de valeurs
• Sur les int et float : ordre naturel

• Sur les str : ordre lexicographique (dictionnaire)

• Sur d'autres types qu'on verra plus tard

In []:

1 == 3 - 2

In []:

1 < 3

In []:

3 <= 3

In []:

'aboyer' < 'abime'

In []:

1 < 4.0

Attention : on ne peut pas ordonner des valeurs de types différents (sauf des
nombres) !

In []:

'1' < 2

In []:

3.0 < 2 + 2

Par contre, les opérateurs == et != acceptent des opérandes de types
différents

In [3]:

2 == '2'

Out[3]:

False

In []:

'bonjour' != None

In []:

2 == 2.0 # Cas particulier : vrai car float(2) == 2.0

 Ne pas confondre l'opérateur d'égalité (==) avec l'opérateur d'affectation
(=) !

Exercice 2 : Opérateurs de comparaison

Que valent les expressions suivantes ?

In []:

1. < 2

In []:

"""1 >= 0
0 <= 1
"""

In []:

None != 0

In []:

"to" * 2 == "toto"

2) Opérateurs logiques

On peut combiner plusieurs expressions booléennes à l'aide d'opérateurs
logiques :
• a and b vaut False dès que l'une des variables vaut False , et vaut
True si les deux variables valent True .

• a or b vaut True si l'une des deux variables vaut True , et False sinon.
• not a vaut True si a vaut False , et vaut False si a vaut True .

In []:

True and False

In []:

not (3 + 4 != 7)

In []:

4 < 1 or 'Bonjour' >= 'Au revoir'

On peut résumer le comportement de ces opérateurs à l'aide de tableaux,
appelés tables de vérité :
a not a

True False

False True

a b a and b

True True True

True False False

False True False

False False False

a b a or b

True True True

True False True

False True True

False False False

In []:

x = 1 # essayer plusieurs valeurs de x
print(x >= 0 and x <= 10) # x appartient à l'intervalle fermé [0, 10]
print(x < 0 or x > 10) # x n'appartient pas à l'intervalle fermé [0, 10]
print(not (x < 0 or x > 10)) # comment interpréter cette ligne ??

EXERCICE 3 :

Pour quelles valeurs des variables n , somme et seuil l'expression suivante
vaut-elle True ?

(n <= 3 and somme + n > seuil) or n > 3

In []:

n = 2.1
somme = 0
seuil = 2
b = (n <= 3 and somme + n > seuil) or n > 3
print(b)

3) Analogies avec les opérations arithmétiques usuelles

Un True peut être vu comme l'entier . De même, False s'interprête comme
l'entier .
Remarque 1 : Pour garder le fait que not True == False , en réalité dans de
nombreux langages de programmation, True est un entier non nul
Remarque 2 : True or True = True , d'où avec cette analogies :
!!

1
0

1 + 1 = 1

In []:

bool(10)

In []:

bool(0)

In []:

print(int(True))
print(int(False))

Soit P et Q deux propositions logiques (True ou False) s'interprêtant
respectivement comme l'entier p ou q .
Alors : l'opérateur and peut être interprété comme une multiplication. En
effet, P and Q s'interprête comme l'entier
Alors : l'opérateur or peut être interprété comme une addition. En effet, P
and Q s'interprête comme l'entier
L'opérateur not change l'entier p en 1 - p .

p ⋅ q = pq

p ⋅ q = pq

4) Exemples simples de tautologies

Une tautologies est une expression logique qui s'évalue toujours à True .

In []:

P = False

P and False

Quelque soit la proposition logique P , P and False == False .

In []:

P = False

P or True

Quelque soit la proposition logique P , P or True == True .

In []:

P = False

not not P

Quelque soit la proposition logique P , not not P == P .

In []:

P = False

P and (not P)

Quelque soit la proposition logique P , P and (not P) = False
En effet, si p = 0 ou 1 est l'entier interprétant la proposition P , alors P
and (not P) s'interprête comme : .p(1 − p) = 0

In []:

P = True

P or (not P)

Quelque soit la proposition logique P , P or (not P) = True
En effet, si p = 0 ou 1 est l'entier interprétant la proposition P , alors P or
(not P) s'interprête comme : .p + (1 − p) = 1

5) Exemples plus avancé de tautologies

De manière générale, on peut donc déduire des tautologies à partir des
relations vérifier par l'adition et la multiplication des entiers.

A. P ��� �Q �� R� = ���

On va utiliser l'interprétation : P AND (Q or R) --> p (q + r) = pq +
pr --> (P AND Q) OR (P AND R)

In []:

P = True

Q = True

R = False

In []:

P and (Q or R)

In []:

(P and Q) or (P and R)

Une fois une conjecture posée avec l'analogie, on la démontre avec une table de
vérité !

P Q R Q or R

P and

(Q or

R)

P and

Q
P and R

(P and

Q) or (P

and R)

True True True True True True True True

True True False True True True False True

True False True True True False True True

True False False False False False False False

False True True True False False False False

False True False True False False False False

False False True True False False False False

False False False False False False False False

Donc : P AND (Q or R) == (P AND Q) OR (P AND R)

B. P ��� �Q ��� R� == �P ��� Q� ��� R

Interprétation :

P and (Q and R) --> p(qr) = pqr
(P and Q) and R --> (pq)r = pqr
Vérification informatique :

In []:

P = True

Q = True

R = True

In []:

P and (Q and R)

In []:

(P and Q) and R

Donc, P and (Q and R) == (P and Q) and R . On ne met donc pas de
parenthèse, puisqu'il n'y a aucune ambiguité d'évaluation des opérateurs and .

C. ��� �P ��� Q� = �

P Q
P and

Q

not (P and

Q)
not P not Q

(not P) or

(not Q)

True True True False False False False

True False False True False True True

False True False True True False True

False False False True True True True

Donc : not(P and Q) == (not P) or (not Q) .

6) Véri�er vos connaissances

A ce stade, vous devez être capable de :
• citer les six opérateurs de comparaisons en Python ;

• savoir évaluer le résultat d'une expression logique simple ;

• comprendre les mécanisme de conversions implicites lors de l'évaluation

d'une expression logique ;

• citer les trois opérateurs logique que nous avons vus ;

• donner la table de vérité des trois opérateurs logique que nous avons vus ;

• savoir simplifier une expression logique simple.

EXERCICE 4 :

Donner le résultat des expressions logiques suivantes :

In []:

a = 10
b = 2
c = 6

In []:

a < b or a > c

In []:

a + b < 2 * c

In []:

a - b == b + c

In []:

(a > b and a > c) or (b > a and b > c)

In []:

a < b < c

In []:

a == b == c

In []:

(a <= b and a <= c) or not (b < a)

In []:

not (a > b and a > c) or (b > a and b > c)

EXERCICE 5 :

variables ne servent à rien ou etre simplifier
Les expressions logiques suivantes ne dépendent pas des variables x , y , z .
peuvent être simplifiées. Cela peut avoir une grande importance pour la lisibilité
d'un programme.
Simplifiez les autant que possible.

In [1]:

x = False

y = False

z = False

In [2]:

(x + y > 3 * z) or True

Out[2]:

True

In [3]:

n = input("abc")

abc34

In [5]:

(x == y and y == z) or (x == y and y == z)

Out[5]:

True

III Instructions conditionnelles

1) Cas simple : Conditionnelle Si

On peut maintenant modifier le flot d'instructions selon la valeur d'expressions
booléennes, ou conditions :
• Si une certaine condition est vraie, exécuter un certain groupe (ou bloc)

d'instructions

• Sinon, passer directement à la suite du programme

La syntaxe d'une instruction conditionnelle est :
début
if condition:

bloc d'instructions V
suite

• Les instructions du bloc v sont exécutées uniquement si condition est

évaluée à True

• Dans tous les cas, l'exécution reprend à l'instruction suivant le bloc v

EXEMPLE 1 :

In []:

prenom = input("Quel est votre prénom ? ")
if prenom == 'IRONMAN':

print('Très joli prénom !')
print('Bonjour', prenom, '!')

EXEMPLE 2 :

Reprenons maintenant notre exemple introductif :

In []:

La note finale est le maximum de la note d'examen
et de la moyenne entre examen et moyenne de contrôle
continu
note_cc1 = float(input('Note du premier contrôle : '))
note_cc2 = float(input('Note du second contrôle : '))
note_exam = float(input("Note de l'examen : "))

moyenne_cc = (note_cc1 + note_cc2) / 2
note_finale = (moyenne_cc + note_exam) / 2

if note_finale < note_exam:
Les deux instructions suivantes ne s'exécutent que si
la condition est vraie (remarquer le décalage des lignes)
note_finale = note_exam
print('Notes de contrôle non prise en compte.')

print('Note finale :', note_finale)

LA NOTION DE BLOC

Sur cet exemple, on a vu un groupe de lignes commençant par des espaces,
appelé bloc. Un bloc est utilisé pour regrouper plusieurs instructions dépendant
de la même condition.
• Un tel groupe d'instructions est appelé un bloc

• Le décalage du début de ligne est appelé indentation

• Commencer une ligne avec une indentation supérieure à la précédente

commence un nouveau bloc (sur le second exemple : note_finale =

note_exam)

• Un bloc se termine quand une ligne moins indentée apparaît (sur l'exemple :

print('Note finale :', note_finale))

• Pour indenter la ligne courante : touche "tabulation" (⇥)

• Pour désindenter une ligne : "Shift + tabulation" (⇧ + ⇥)

• Changer l'indentation change le sens du programme (essayer !)

ERREURS FRÉQUENTES LIÉES À L'INDENTATION :

In []:

if note_finale < note_exam # oubli des deux points (:)
note_finale = note_exam
print('Note de contrôle non prise en compte.')

In []:

if note_finale < note_exam:
note_finale = note_exam

print('Note de contrôle non prise en compte.') # ligne pas assez indentée

In []:

if note_finale < note_exam:
note_finale = note_exam

print('Note de contrôle non prise en compte.') # ligne trop indentée

In []:

if note_finale < note_exam:
note_finale = note_exam # oubli d'indentation

Véri�er vos connaissances

A ce stade, vous devez être capable :
• d'écrire correctement en Python une structure conditionnelle simple

(utilisation des :, indentation, ...) ;

• d'évaluer le résultat d'une structure conditionnelle simple en Python ;

• d'identifier les différents blocs dans un programme

EXERCICE 6 :

Écrire un programme qui demande un entier saisi au clavier par l’utilisateur et
affiche strictement positif s’il est strictement positif.

In []:

n = int(input("Entrez un nombre : "))
if n > 0:

print("strictement positif")

EXERCICE 7 :

Écrire un programme qui demande à l’utilisateur le poids de son bagage en
kilos. Si le bagage pèse plus de 20 kilos, le programme affichera le message :

Vous devez payer un supplément.

EXERCICE 8 :

Qu'affiche le programme suivant :

a = 10

if a > 1000:

 print("grand")

print("nombre")

2) Conditionnelles Si ... Sinon ...

On peut ajouter un second bloc d'instructions
• Si une certaine condition est vraie, exécuter le premier bloc

• Sinon, exécuter le second

• Enfin, continuer l'exécution normale du programme
Syntaxe :

Seul l'un des deux blocs d'instructions, v ou bien f, est exécuté
• Le bloc v uniquement si condition est évaluée à True

• Le bloc f uniquement si condition est évaluée à False

• Dans tous les cas, reprise à l'instruction suivant le bloc f

début
if <condition>:

bloc v
else:

bloc f
suite

NOTRE EXEMPLE FAVORI

En plus de la dernière version, on cherche à savoir si le contrôle continu a été
pris en compte.

In []:

La note finale est le maximum de la note d'examen
et de la moyenne entre examen et moyenne de contrôle
continu

note_cc1 = float(input('Note du premier contrôle : '))
note_cc2 = float(input('Note du second contrôle : '))
note_exam = float(input("Note de l'examen : "))

moyenne_cc = (note_cc1 + note_cc2) / 2

if moyenne_cc < note_exam:
Bloc à exécuter si la condition est vraie
note_finale = note_exam
print('Notes de contrôle non prise en compte.')

else: # moyenne_cc >= note_exam
Bloc à exécuter si la condition est fausse
note_finale = (moyenne_cc + note_exam) / 2
print('Notes de contrôle prise en compte.')

Instruction exécutée dans tous les cas
print('Note finale :', note_finale)

Un autre exemple : la division euclidienne

In []:

dividende = int(input("Donner moi un dividende : "))
diviseur = int(input("Donner moi un diviseur : "))
if diviseur != 0:

print(dividende, '=', dividende // diviseur, '*', diviseur, '+', dividende % diviseur)
else:

print('Erreur de saisie ? Division par zéro...')

Véri�er vos connaissances

A ce stade, vous devriez savoir :
• écrire une structure conditionnelle Si ... Sinon

EXERCICE 9 :

Écrire un programme qui demande un entier saisi au clavier par l’utilisateur et
affiche positif si l'entier est positif ou nul et negatif sinon.

3) Conditionnelles composées

Cette construction peut être imbriquée :
début
if <condition 1>:

if <condition 2>:
bloc v1v2

else:
bloc v1f2

suite 2
else:

bloc f1
suite 1

Toutes les variantes sont possibles — si chaque else correspond à un if de
même indentation !

NOTRE EXEMPLE FAVORI

On veut désormais ajouter la possibilité de tester si les notes données sont des
notes positives.

In []:

La note finale est le maximum de la note d'examen
et de la moyenne entre examen et moyenne de contrôle
continu

note_cc1 = float(input('Note du premier contrôle : '))
note_cc2 = float(input('Note du second contrôle : '))
note_exam = float(input("Note de l'examen : "))

On vérifie qu'aucune note n'est négative
if note_cc1 >= 0 and note_cc2 >= 0 and note_exam >= 0:

moyenne_cc = (note_cc1 + note_cc2) / 2
Condition dans la condition
if moyenne_cc < note_exam:

Indentation supplémentaire
note_finale = note_exam
print('Note de contrôle non prise en compte.')

else:
note_finale = (moyenne_cc + note_exam) / 2
print('Note de contrôle prise en compte.')

print('Note finale :', note_finale)
else:

print('Erreur de saisie (note négative).')

Véri�er vos connaissances

A ce stade, vous devriez être capable :
• d'expliquer quelles lignes seront exécutées dans un programme contenant

des blocs conditionnels en fonction des données fournies au programme ;

• simplifier, quand c'est possible, une imbrication de blocs conditionnels en

utilisant des opérateurs booléens ;

• éliminer les opérateurs booléens d'une condition en introduisant de

nouveaux blocs conditionnels.

Exercice 10 : Evaluations d'un programme

Qu’affiche le programme ci-dessus lorsque :
• le premier nombre donné est 1 et le second est 0.

• le premier nombre donné est 2 et le second est 2.

• le premier nombre donné est 3 et le second est 0.

• le premier nombre donné est 4 et le second est 4.

a = int(input('Donnez un nombre : '))

b = int(input('Donnez un nombre : '))

print('toto')

if a > 2:

 print('tata')

 if b >= a:

 print('truc')

 else:

 print('bla')

 print('poire')

print('42')

EXERCICE 11 : TRANSFORMATION DE CONDITIONS IMBRIQUÉES

Modifier le programme suivant pour qu'il ne contienne qu'une seule condition.

a = int(input("Donnez moi un entier : "))

b = int(input("Donnez moi un entier : "))

if a > 0:

 if b == 2 * a

 print("Le nombre positif b est le double de a")

 else:

 print("a est négatif ou b n'est pas le double de a")

else:

 print("a est négatif ou b n'est pas le double de a")

4) Conditionnelles enchaînées :

Cas particulier où le bloc else contient seulement un autre if : le mot-clé
elif

Le code...

... s'écrit aussi :

On peut ainsi enchaîner autant de conditions qu'on le souhaite, lorsque les cas
ne se recouvrent pas :

début
if <condition 1>:

bloc **v1**
else:

if <condition 2>:
bloc **f1v2**

else:
bloc **f1f2**

suite

début
if <condition 1>:

bloc **v1**
elif <condition 2>:

bloc **f1v2**
else:

bloc **f1f2**
suite

début
if <condition 1>:

Exemple final :

bloc **v1**
elif <condition 2>:

bloc **f1v2**
elif <condition 3>:

bloc **f1f2v3**
else:

bloc **f1f2f3**
suite

In []:

La note finale est le maximum de la note d'examen
et de la moyenne entre examen et moyenne de contrôle
continu

note_cc1 = float(input('Note du premier contrôle : '))
note_cc2 = float(input('Note du second contrôle : '))
note_exam = float(input("Note de l'examen : "))

if note_cc1 < 0 or note_cc2 < 0 or note_exam < 0:
Négation de note_cc1 >= 0 and note_cc2 >= 0 and note_exam >= 0
print('Erreur de saisie (note négative).')

else:
moyenne_cc = (note_cc1 + note_cc2) / 2

if moyenne_cc < note_exam:
note_finale = note_exam
print('Note de contrôle non prise en compte.')

else:
note_finale = (moyenne_cc + note_exam) / 2
print('Note de contrôle prise en compte.')

print('Note finale :', note_finale)

if note_finale < 8:
print("T'as pas assez bossé... Tant pis !")

elif note_finale < 10:
print('Encore un petit effort !')

elif note_finale < 12:
print('Ça passe !')

elif note_finale < 14:
print('Pas mal !')

else: # Quelles valeurs possibles ?
print('Bravo !')

Véri�er vos connaissances

A ce stade, vous devriez être capable :
• d'écrire correctement en Python une structure conditionnelle simple ou

complexe ;

Exercice 12 : Où est cette valeur ?

Pour quelles plages de valeur de la variable a le programme suivant affiche-t-il
X ?
Que se passe-t-il si a n’est pas de type int ?

if a > 10:

 print('a grand')

elif a < 5:

 print('a petit')

else:

 print('X')

In [1]:

a = "10.3"
if a > 10:

print('a grand')
elif a < 5:

print('a petit')
else:

print('X')

--
-
TypeError Traceback (most recent call las
t)
Input In [1], in <cell line: 2>()
 1 a = "10.3"
----> 2 if a > 10:
 3 print('a grand')
 4 elif a < 5:

TypeError: '>' not supported between instances of 'str' and 'int'

In [9]:

reload_ext nbtutor

In [10]:

%%nbtutor -r -f
empty = []
foo = 10
pass

In [11]:

print("hello")

hello

In []:

In []:

