
Slides modi�ed from https://github.com/UGE-IGM/courspython

https://github.com/UGE-IGM/courspython
https://github.com/UGE-IGM/courspython

Chapitre 1 : Valeurs, types et variables

Dans ce chapitre vous allez :
�. découvrir des types Python de base, apprendre à les reconnaitre et les utiliser ;

�. connaitre quelles opérations sont supportées pour chaque types en jeu ;

�. apprendre à convertir d'un type vers un autre ;

�. découvrir la notion de variable et le mécanisme d'affectation ;

�. apprendre à faire saisir une donnée à l'utilisateur et utiliser sa réponse.

I Types de valeurs

Toutes les valeurs en Python possèdent un type. Le type d'une valeur définit les
opérations qu'il est possible de lui appliquer.
Les types de base sont :
• les nombres entiers (int)

• les nombres décimaux (float)

• les booléens (bool)

• les chaines de caractères (str)

• un type de valeur indéfinie (NoneType)

Nombres entiers (int)

In [1]:

983

Out[1]:

983

In [3]:

1234

Out[3]:

1234

In [4]:

-4 # un entier négatif

Out[4]:

-4

In [5]:

2 ** 10 # un très très grand entier !!!

Out[5]:

1024

Nombres décimaux (float)

In []:

3.14

In [6]:

-1.5

Out[6]:

-1.5

In [7]:

.1

Out[7]:

0.1

In [8]:

12.

Out[8]:

12.0

In [9]:

4.56e3 # notation scientifique

Out[9]:

4560.0

Booléens (bool)

Ce type permet de représenter les deux valeurs de vérité « vrai » et « faux ». On en
reparlera au prochain chapitre.

In [1]:

True # vrai

Out[1]:

True

In []:

False # faux

Attention : Les majuscules/minuscules sont importantes :

In [2]:

true # provoque une exception (une erreur)

NameError Traceback (most recent call last)
~\AppData\Local\Temp/ipykernel_21928/1293955843.py in <module>
----> 1 true # provoque une exception (une erreur)

NameError: name 'true' is not defined

Chaînes de caractères (str)

Une chaine de caractères est une succession de symboles (lettres, chiffres, ou
autres) entre des guillemets.
En Python, il y a plusieurs moyen d'en construire pour répondre à la nécessité
d'avoir à l'intérieur d'elle même des guillemets.

LA CONSTRUCTION DES CHAINES DE CARACTÈRES

In [6]:

'asdbonjour' # guillemets simples

Out[6]:

'asdbonjour'

In []:

"hello !" # guillemets doubles

In []:

"ம�த� �ற��ன� சகல�� �த��ரமாகேவ �ற���றன�." # caractères non-latins

"""Pour des chaînes plus longues (par exemple un paragraphe entier) on peut
utiliser des guillemets triples."""

Il faut faire un peu attention pour écrire une chaîne de caractères contenant des
apostrophes ou des guillemets :

In [1]:

print("hello, my namne is whatever")

hello, my namne is whatever

In []:

'Mon nom est "Personne".'

AFFICHAGE DE CHAÎNE

In []:

print("Bonjour à toi, Ô lecteur attentif !")

CARACTÈRES SPÉCIAUX : \N, \T, ', ", \

In []:

"sauts\nde\nligne" # \n provoquera un passage à la ligne si on affichait la chaine de caractère

In [10]:

print("sauts\nde\nligne")

sauts
de
ligne

In []:

print("Du\ttexte\nsur\t2 colonnes") # touche ⇥

In []:

print("D'autres symboles spéciaux : \' \" \\")

Valeur indé�nie (NoneType)

In []:

None # ça a l'air de ne servir à rien mais en fait c'est bien pratique

Véri�er vos connaissances

A ce stade, vous devez être capable :
• de citer les cinq types Python de base que nous avons vu ;

• de reconnaitre le type d'une expression simple ;

• de donner les trois manières de créer une chaine de caractères ;

• d'écrire des chaines de caractères contenant elle même des guillemets ;

• de citer les principaux caractères spéciaux qu'une chaine peut contenir et

d'expliquer leur effet ;

• savoir comment afficher une chaines de caractères.

Exercice 1 : Validité et correction de chaines de caractères

Les chaines de caractères suivantes sont-elles bien construites ? Si non, les corriger.
Remarque : Il se peut que vous ayez à faire des choix et qu'il y ait plusieurs
corrections possibles.

In []:

""Bonjour""

In []:

"\"Ceci est une citation\""

In []:

"Suis je une chaine ?'

In []:

"Je contiens une \tabulatio\n"

In []:

'"Ceci est encore une citation"'

II Opérations

Le type d'un objet détermine les opérations qu'on peut lui appliquer.

Opérations sur les nombres

Addition (a + b), soustraction (a - b), multiplication (a * b), puissance (a **
b)
• sur deux int et produisant un int

• ou sur deux float et produisant un float

• ou sur un int et un float et produisant un float

In []:

4 + 5

In [5]:

4 - 5.

Out[5]:

-1.0

In []:

4. * 5.

In []:

4 ** 0.5 # 4 puissance 1/2 c'est la racine carrée de 4 !

Division "réelle" (a / b) : produit toujours un float

In []:

1/3

In []:

4 / 2 # ne donne pas un entier !!

Division euclidienne :
• quotient (a // b)

• reste, ou modulo (a % b)

• si a et b de type int , produisent un int , sinon un float

In [3]:

7 // 2

Out[3]:

3

In []:

7 % 2

In []:

divmod(7, 2)

In []:

4 // 2 # cette fois c'est un entier...

In []:

4 % 2 # le reste est nul car 4 est pair (divisible par 2)

In []:

4.0 // 1.75 # donne un float !

In []:

4.0 % 1.75

Les opérations suivent les règles de priorité usuelles :

In []:

4 + 2 * 1.5

On peut aussi utiliser des parenthèses :

In []:

(4 + 2) * 1.5

Opérations sur les chaînes de caractères

Concaténation : s + t

In []:

'Universite' + 'Sorbonne' + 'Paris' + "Nord"

In []:

'Universite' + ' Sorbonne' + ' Paris' + " Nord"

Répétition : s * a

In []:

'Hip ' * 3 + 'Hourra !'

In []:

('Hip ' * 3 + 'Hourra ! ') * 2

Beaucoup d'autres opérations (sur les chaînes, les nombres...) : on verra ça plus tard

Conversions / transformations de type

On a parfois besoin de convertir une valeur d'un type à l'autre :
• Une valeur en chaîne de caractères avec la fonction str

In []:

"J'ai " + 10 + ' ans.'

In []:

"J'ai " + str(10) + ' ans.'

• Un float , et parfois un str en int

In []:

int(3.5) # float vers int

In []:

int('14') # str vers int

In []:

int('3.5') # impossible : deux conversions (str -> float -> int)

In []:

int('deux') # impossible : ne représente pas un nombre

• Un int , et parfois un str en float

In []:

float(3) # int vers float

In []:

float('14.2') # str vers float

In []:

float('3,5') # impossible : virgule au lieu de point

In []:

float('bonjour') # impossible : ne représente pas un nombre

Accès au typage d'une expression

On peut accéder au type d'une expression grâce à la fonction prédéfinie type .

In []:

type("salut")

In []:

type(4 / 2)

In []:

type(2 * 4.8)

Véri�er vos connaissances

A ce stade, vous devez être capable de :
• décrire les opérations disponibles en Python sur les nombres et de connaitre le

type du résultat ;

• décrire les opérations disponibles en Python sur les chaines de caractères ;

• savoir convertir un type numérique en chaine de caractère, et inversement ;

• savoir comment accéder au type d'une valeur Python.

Exercice 2 : valeur et type d'une opération

Pour chacune des instructions suivantes :
�. donner le type et le résultat de l'expression donnée ;

�. vérifier le résultat.
On pourra utiliser la fonction type si nécessaire pour vérifier le type du résultat.

In []:

2 * 5

In []:

2 + 1.5

In []:

2.0 * 4

In []:

'2.0' * 4

In []:

'2.0' * 4.0

In []:

4 / 2

In []:

4.0 / 2

In []:

5 / 2

In []:

5 % 2

In []:

5 // 2

In []:

int(4.0) / 2

In []:

str(4) / 2

In []:

'toto' + str(4)

In []:

float(4) * 2

In []:

int(str(4) * 2)

In []:

'toto' + 'titi'

In []:

int('toto') + 'titi'

In []:

int(2.0) * 4

In []:

'toto' * str(4)

In []:

int('1.25')

III Variables et a�ectations

Une variable est un nom servant à désigner une valeur
• Une variable est remplacée par sa valeur dans les calculs

• Seules les opérations du type de la valeur sont permises
L'affectation est le fait de lier une valeur à une variable
• Syntaxe : nom = expression

Attention : Ce n'est pas du tout le = des mathématiques, il faut le lire

comme "prend la valeur"

In [12]:

x = 3
y ='USPN'
z = x + 2
print(x)
print(y)
print(z)

3
USPN
5
UPSN

• On peut réaffecter une variable (même une valeur d'un type différent)

In []:

print(x)
x = 'USPN'
print(x)

• On ne peut utiliser une variable que si elle a été préalablement définie !

In []:

print(foo)

Étapes de l'a�ectation

AFFECTATION SIMPLE : � = 40 + 2

In []:

x = 40 + 2
print(x)

�. Calcul du membre droit (ici 42) et stockage dans la mémoire

�. Création du nom x (sauf si déjà créé)

�. Création du lien entre variable et valeur

DEUXIÈME EXEMPLE : � = �

In []:

y = x
print(x, y)

�. Calcul du membre droit après remplacement de chaque variable par la valeur

associée (ici x remplacé par 42)

�. Création du nom y (sauf si déjà créé)

�. Création du lien entre y et 42

TROISIÈME EXEMPLE : � = � + 1

In []:

x = x + 1
print(x)

�. Calcul du membre droit après remplacement de chaque variable par la valeur

associée (ici x remplacé par 42 , résultat : 43)

�. Nom x déjà existant, création du lien entre x et 43

Remarque : L'instruction x = x + 1 peut aussi s'écrire x += 1 . De même, x
*= 2 est une version rapide de x = x * 2 .

In []:

x += 1
print(x)

DERNIER EXEMPLE : � = -6.5

In []:

x = -6.5
print(x)

 Quelques points de détail :
• On peut réaffecter une variable avec une valeur de type différent (comme dans le

dernier exemple)

• En cas de réaffectation d'une variable, le lien précédent est perdu.

• Si aucun autre lien n'existe vers la valeur précédente, celle-ci est "détruite" par le

système de ramasse-miette (garbage collector)

Véri�er vos connaissances

A ce stade, vous devez être capable :
• d'expliquer ce qu'est une variable à quelqu'un ;

• d'expliquer ce qu'est l'opération d'affectation d'une variable ;

• dessiner l'état de la mémoire à l'issue d'une suite d'intructions simples.

Exercice 3 : Etat de la mémoire après une suite d'instruction

Dessiner l'état de la mémoire à l'issue des instructions suivantes :

Que vaut alors x et y ?

x = 2
y = 3
x += y
y *= 2

Nommage des variables

Règles de nommage des variables :
• Commencent par une lettre, suivie de lettres et de chiffres

• Le caractère underscore '_' est considéré comme une lettre

• Éviter les caractères spéciaux (accents, cédille, etc.)

• Les mots réservés (ou mots-clés) de Python sont interdits

• Il y a aussi des conventions (vues plus tard)

Exemples : _ex2 Ex2mpl1
Contre-exemple : 2014mlv

Mots-clés et autres mots réservés

Les mots suivants sont réservés pour le langage :

Au passage :

• Tout ce qui se trouve après un caractère # est un commentaire

• Mettre des commentaires dans le code est un bon moyen de pouvoir le

reprendre facilement

and as assert break class continue
def del elif else except finally
for from global if import in
is lambda nonlocal not or pass
raise return try while with yield
True False None

Véri�er vos connaissances

A ce stade, vous devez être capable :
• de choisir un nom de variable correct et signifiant.

Exercice 4 : nommage de variables

Indiquer parmi les mots suivants ceux qui ne sont pas des noms valides pour une
variable :

 bonjour Hi! au revoir oui
 Ciao NON byeBye7 6hello6
 abc def 6hello6 _upem_
 good_morning __repr__ good-afternoon f()

IV Lecture et a�chage

Fonction de saisie : x = input("Veuillez rentrer ...")
• L'utilisateur tape une ligne au clavier

• La ligne est stockée sous forme de chaîne de caractères (str)

• Cette valeur peut ensuite être affectée à une variable (ici x)

• On peut aussi omettre le message d'invite pour l'utilisateur, mais cela devient

moins convivial
Fonction d'affichage : print(x)
• Affiche dans le terminal la chaîne de caractères associée à x

• On peut afficher plusieurs valeurs d'un coup en les séparant par des virgules :

print(x, y, z, ...)

• Appelle automatiquement la fonction str sur chacun de ses arguments

• S'il y a plusieurs arguments, insère automatiquement des espaces

• Passe automatiquement à la ligne

In []:

prenom = input('votre prenom : ')

In []:

prenom

In []:

print("Bonjour", prenom, "!")

Remarque : Il existe de nombreuses possibilités pour l'affichage de texte, consulter
la pour plus de détails.documentation officielle

http://docs.python.org/
http://docs.python.org/

Véri�er vos connaissances

A ce stade, vous devez être capable :
• d'afficher n'importe qu'elle chaine de caractère

• stocker dans une variable une donnée entrée par l'utilisateur, en la convertissant

correctement

Exercice 5 : lecture d'entiers

Commenter ligne par ligne le programme suivant et indiquer ce qui est affiché si
l'utilisateur saisit 4 :

In [13]:

r = input("Donnez moi un entier : ")
print(r + r)
n = int(r)
print(n + n)

Donnez moi un entier : 342
342342
684

Exercice 6 : a�chage mixte

Corriger le programme suivant :

In []:

nombre = 3
print("j'ai" + nombre + "pommes")

