
Near-Linear Time Approximation Algorithms for Curve
Simplification �

Pankaj K. Agarwal � Sariel Har-Peled� Nabil H. Mustafa� Yusu Wang�

December 22, 2003

Abstract

We consider the problem of approximating a polygonal curve� under a given error criterion
by another polygonal curve � � whose vertices are a subset of the vertices of � . The goal is to
minimize the number of vertices of � � while ensuring that the error between � � and � is below
a certain threshold. We consider two different error measures: Hausdorff and Fréchet. For both
error criteria, we present near-linear time approximation algorithms that, given a parameter � �
�, compute a simplified polygonal curve � � whose error is less than � and size at most the size
of an optimal simplified polygonal curve with error ���. We consider monotone curves in � �

in the case of Hausdorff error measure under the uniform distance metric and arbitrary curves
in any dimension for the Fréchet error measure under � � metrics. We present experimental
results demonstrating that our algorithms are simple and fast, and produce close to optimal
simplifications in practice.

1 Introduction

Given a polygonal curve, the curve-simplification problem asks for computing another polygonal
curve that approximates the original curve based on a predefined error criterion and whose size is
as small as possible. In a wide range of application areas, such as geographic information systems
(GIS), computer vision, computer graphics and data compression, curve simplification is used to re-
move unnecessary cluttering due to excessive details, to save memory space needed to store a curve,
and to expedite the processing of a curve. For example, one of the main problems in computational
cartography is to visualize geo-spatial information as a simple and easily readable map. To this end,
curve simplification is used to represent rivers, road-lines, coast-lines and other linear features at an
appropriate level of detail when a map of a large area is being produced.

�Research by the first, the third, and the fourth authors is supported by NSF under grants CCR-00-86013 EIA-98-
70724, EIA-01-31905, and CCR-02-04118, and by a grant from the U.S.–Israel Binational Science Foundation. Research
by the second author is supported by NSF CAREER award CCR-0132901.

�Department of Computer Science, Box 90129, Duke University, Durham NC 27708-0129; pankaj, nabil,
wys@cs.duke.edu.

�Department of Computer Science, DCL 2111; University of Illinois; 1304 West Springfield Ave., Urbana, IL 61801;
sariel@uiuc.edu.

1

1.1 Problem definition

Let � denote a polygonal curve in �� with ���� � � � � ��� as its sequence of vertices. Define � ���� �� �
as the polygonal curve ���� � � � � ���. A polygonal curve � � � ���� � � � � � ���� simplifies � if � � �� �
� � � � �� � �. Given an error measure � and a pair of indices � � � � 	 � �, let Æ� ������ � �
denote the error of the segment ���� with respect to � under the error measure � . Intuitively,
Æ� ������ � � measures how well ���� approximates the portion of � between �� and �� . The error
of a simplification � � � ���� � ��� � � � � ��� � ��� of � is defined as

Æ� ��
�� � � � ��	

�����
Æ� ��������� � � ��

We call � � an
-simplification of � , under the error measure � , if Æ� ��
�� � � �
. Let �� �
� � �

denote the minimum number of vertices in an
-simplification of � under the error measure � .
Given a polygonal curve � , an error measure � , and a parameter
, the curve-simplification prob-
lem asks for computing an
-simplification of size �� �
� � �.

In this paper, we consider two error measures:

� Hausdorff error measure. Let �
 �� ��
� � � be a distance function. The distance between

a point � and a line segment is defined as ���� � � �����	 ���� ��. The Hausdorff error
under the metric �, also referred to as �-Hausdorff error measure, is defined as

Æ
������ � � � ��	
�����

����� ������

We consider the Hausdorff error measure under the so-called uniform metric defined as

���� �� �

�
��� 	 ��� if �� � �� �

 otherwise.

� Fréchet error measure. Given two curves �
 ��� ���� �
� , and �
 ��� ���� �

� and a distance
function �
 �� � �

� , the Fréchet distance ���� �� between them is defined as

���� �� � ��
�
 ��� ��� ��� ���
�
 ��� ��� ��� ���

��	
������

���������� �������� (1)

where � and � range over continuous and monotonically non-decreasing functions with
���� � �� ���� � ��� ���� � � and ���� � ��. If �� and �� are the maps that realize the
Fréchet distance, then we refer to the map � � �� Æ ���� as the Fréchet map from � to �. For
a pair of indices � � � � 	 � �, the Fréchet error of a line segment ���� is defined to be

Æ� ������ � � � ������� � ���� �� ���

where � ��� �� denotes the portion of � from � to �. Given curves � and �� (its vertices
need not be a subset of the vertices of �), we say that �� is a weak
-simplification of
� if ���� � �� �
. Let ��� �
� � � denote the minimum number of vertices in a weak
-
simplification of � .

2

1.2 Previous results

The problem of approximating a polygonal curve � has been studied extensively during the last two
decades; see [11, 16] for surveys. Imai and Iri [14] formulated the curve-simplification problem as
computing a shortest path between two nodes in a directed acyclic graph �� : each vertex of �
corresponds to a node in �� , and there is an edge between two nodes ��� �� if Æ� ������ � � �
.
A shortest path from �� to �� in �� corresponds to an optimal
-simplification of � under the
error measure � . In �� , under the Hausdorff measure with uniform metric, their algorithm takes
���� ��� �� time. Chin and Chan [7], and Melkman and O’Rourke [15] improve the running time
of their algorithm to quadratic. Agarwal and Varadarajan [4] improve the running time to �������Æ�
for ��- and uniform-Hausdorff error measures , for an arbitrarily small constant Æ � �, by implicitly
representing the graph �� . In dimensions higher than two, Barequet et al. compute the optimal

-simplification under ��- or ��-Hausdorff error measures in quadratic time [6]. For ��-Hausdorff
error measure, an optimal simplification can be computed in near-quadratic time for � � � and in
�������	� �

�
	��
polylog�� in �� for � � �.

Curve simplification using the Fréchet error measure was first proposed by Godau [9], who
showed that �� �
� � � � ��� �
��� � �. Alt and Godau [5] also proposed an �����-time algorithm to
determine whether Æ� ����� �
 for given polygonal curves � and � of size � and �, respectively,
and for a given error measure
 � �. Following the approach of Imai and Iri [14], an
-simplification
of � , under the Fréchet error measure, of size �� �
� � � can be computed in ����� time.

The problem of developing a near-linear algorithm for computing an optimal
-simplification
remains elusive. Among the several heuristics that have been proposed over the years, the most
widely used is the Douglas-Peucker method [8] (together with its variants). Originally proposed
for simplifying curves under the Hausdorff error measure, its worst-case running time is ����� in
�
� . For � � � the running time is improved by Snoeyink et al. [12] to ��� ��� ��. However, the

Douglas-Peucker heuristic does not offer any guarantee on the size of the simplified curve—it can
return an
-simplification of size ���� even if �
�
� � � � ����.

Much work has been done on computing a weak
-simplification of a polygonal curve � . Imai
and Iri [13] give an optimal ����-time algorithm for finding an optimal weak
-simplification (under
the Hausdorff error measure) of a �-monotone curve in �� . As for weak
-simplification of planar
curves under Fréchet distance, Guibas et al. [10] proposed an ��� �����-time factor-2 approxima-
tion algorithm and an �����-time exact algorithm. They also proposed linear-time algorithms for
approximating some other variants of weak simplifications.

1.3 Our results

Let � be a polygonal curve in �� , and let
 � � be a parameter. We present simple, near-linear
algorithms for computing
-simplifications of � size at most �� �
� � � �, where � � is a constant.
We first develop an algorithm for an �-monotone polygonal curve in �� under the Hausdorff error
with respect to uniform metric.

Theorem 1.1 Let � be a �-monotone polygonal curve in �� with � vertices, and let
 � � be a
parameter. We can compute in ���� time a simplification �� of � of size at most �
�
��� � � so

3

that Æ
��� � �� �
, assuming that the distance between points is measured in uniform metric.

We have implemented the algorithm in �� . Experimental results demonstrate that our algorithm
computes simplifications of small size, and it is faster than the widely used Douglas-Peucker algo-
rithm.

Our second result is under the Fréchet-error measure. Unlike the previous case, we do not
assume � to be monotone, and the algorithm extends to higher dimensions.

Theorem 1.2 Let � be a polygonal curve in �� with � vertices, and let
 � � be a parameter.
We can compute in ��� ����� time a simplification �� of � of size at most �� �
��� � � so that
Æ� ��

�� � � �
, assuming that the distance between points is measured in any ��-metric.

To our knowledge, this is the first simple, near-linear approximation algorithm for curve sim-
plification under the Fréchet error measure that extends to � � �. We illustrate its simplicity and
efficiency by comparing its performance with Douglas-Peucker and exact algorithms. Our experi-
mental results on various data sets show that our algorithm is efficient and produces
-simplifications
of near-optimal size.

Finally, we analyze the relationship between simplification under Hausdorff and Fréchet error
measures. We note that �
�
� � � � �� �
� � � under any ��-metric. We show that �� �
� � � �
��� �
��� � �, thereby improving the result by Godau [9].

2 Hausdorff Simplification

Let � � ���� � � � � ��� be a �-monotone polygonal curve in �� , and let
 � � be a parameter. Let
!��� "� be the disk of radius " centered at � under uniform metric, i.e. !��� "� is a vertical segment
of length �" with � as its midpoint. A segment ���� is a valid segment, i.e. Æ
������ � � �
, if and
only if ���� intersects the segments !����
� for all 	 � � � #.

Lemma 2.1 Given an x-monotone polygonal curve � in �� and four indices � � � � $ � " � 	 �
�, Æ
������ � � � � � Æ
����� � � �.

PROOF. Let
� � Æ
������ � �. Let �� (resp. ���) be the intersection point of ���� (resp. ����) with
the vertical line passing through �� if such an intersection point exists. By definition, �� !����

��
for all � � # � 	. Hence ������ �
� and ������ �
�, and it follows that ������� �
� since � is an
�-monotone curve. Therefore by triangle inequality, we have that

����
�
�� � ������� ����

�
�� � �

�

See Figure 1 for an illustration.

4

��

��

��

��

��

���

��

����

Figure 1. Dashed chain is the original curve. ���� stabs ����� �
��, ����� �

��, and ����� �
�� (vertical segments) in order.

Segment ���� stabs ����� ��
�� (dotted vertical segment), for any � � � � 	.

2.1 Algorithm

We compute an
-simplification � � of � using a greedy approach. Suppose we have added ��� � � � � �����
to � �. We find the smallest index # � ���� so that Æ
����������� � � �
. We set �� � # and add
��� to � �. We repeat this process until �� is encountered. We add �� to the sequence and return the
resulting sequence of vertices �� as the desired simplification.

Given the vertex ����� � ��, we find �� in time ��#	 $��� as follows. Let Cone���� ��� be the
set of rays emanating from �� that intersect the vertical segment !����
�. Cone���� ��� is the cone
bounded by rays emanating from �� and passing through the endpoints of !����
�. Set

%��� 	� �

��
�����

�������� ���

Then Æ
������ � � �
 if and only if �� %��� 	�. %��� "� � %��� " 	 �� � �������� ��� can be
computed in ���� from %��� " 	 ��. To compute ��, we visit the vertices �� of � one by one,
starting from ���� and maintain %�$� "� by spending ���� time at ��. We stop as soon as we reach
a vertex ���� such that ���� � %�$� # � ��. The total time spent in computing �� is ��# 	 $ � ��.
Hence the total running time is ����.

Lemma 2.2 � � is an
-simplification of � whose size is at most �
�
��� � �.

PROOF. It is clear that Æ
�� �� � � �
. We bound the size of � � by induction on the number of ver-
tices in � �. Let � � � ���� � � � � � ����, and let an optimal �
���-simplification be �
 � ���� � � � � � ����.
We prove the following claim: �� � 	� for all � � � � #, which then implies the lemma. This
claim is clearly true for � � � since ��� � ��� � ��. Assume it is true for � 	 �. If ���� � 	�,
we are done as �� � ���� � 	�. Otherwise, Æ
��������� � � � �
��, and Lemma 2.1 implies that
Æ
��������� � � �
 for any ���� � " � 	�. Hence �� � 	�, as required.

This completes the proof of Theorem 1.1.

Remark 2.3 Our algorithm does not compute an
-simplification of size at most �
�
��� � � if we
measure the distance between points in an ��-metric because the observation that Æ
������ � � �

if and only if ���� intersects !����
�, for every � � # � 	 no longer holds.

5

Size HS DP
500 106 92

1000 227 208
5000 1111 1020

10000 2156 2116
20000 4454 4158
40000 9118 8402
80000 17676 17284

100000 21934 21504 0

0.5

1

1.5

2

2.5

3

3.5

0 50000 100000 150000 200000 250000 300000 350000 400000 450000 500000

R
u

n
n

in
g

 t
im

e
 (

s
e

c
s
)

Input size

DP
HS

0

0.5

1

1.5

2

2.5

3

3.5

0 50000 100000 150000 200000 250000 300000 350000 400000 450000 500000

R
u

n
n

in
g

 t
im

e
 (

s
e

c
s
)

Input size

DP
HS

(a) (b)

Figure 2. Comparison between our (HS) and Douglas-Peucker (DP) algorithm on a sine curve
 ; � � ���. (a) Output
size as a function of the size of
 , (b) running time as a function of the size of
 .

2.2 Experiments

We have implemented our algorithm, called HS, on a SUN Blade-100 workstation with 500 MHz
CPU speed and 256MB RAM, running Sun OS 5.8. We also implemented the Douglas-Peucker
algorithm (DP), a widely used algorithm for curve simplification. We compare the performance of
our algorithm with the DP algorithm in terms of the output size and the running time. We use the
following two data sets.

Synthetic data. Points are sampled uniformly on a sinusoidal curve in the angular interval ��� &�.
More precisely, given a value of �, we choose the vertices to be

� � ���� � �����&���� � � � � � ���

We note that the sinusoidal curve is one of the most favorable curves for the Douglas-Peucker
algorithm in terms of its running time. The sinusoidal curve is convex in the interval ��� &�. For
a segment ���� , the vertex �� of � farthest from ���� is roughly in the middle of �� and �� . The
curve is partitioned at �� and each portion of the curve is simplified recursively. The running time
of the Douglas-Peucker algorithm is therefore ��� ��� ��. Figure 2(b) confirms this hypothesis.
Figure 2(b) also exhibits linear running time of our algorithm, outperforming the Douglas-Peucker
algorithm. The constant of proportionality in ���� of the running time of our algorithm is small, as
is evident from the low slope of the curve depicting the running time of our algorithm.

Figure 2(a) shows the output size of the simplification computed by our and Douglas-Peucker
algorithms. Since we choose
 � ���, irrespective of the value of �, we are in effect computing
finer simplifications as we increase the value of �. This is why the output size increases with �. The
size of the simplifications computed by our algorithm is very close to that of the one computed by
the Douglas-Peucker algorithm.

Time-series data. We choose four NASDAQ stock indices: Composite index, industry index,
telecommunications index, and biotech index. The data was obtained from [1]. Each of the first two

6

0 1000 2000 3000 4000 5000 6000 7000 8000
0

500

1000

1500

2000

2500

0 200 400 600 800 1000 1200 1400
600

700

800

900

1000

1100

1200

1300

(a) (b)

Figure 3. (a) Composite-index curve (�� ��	 vertices), (b) Telecommunications-index curves (
� ��� vertices).

Industry-Index Composite-Index Telecomm-Index Biotech-Index
(7,289) (7,289) (1,263) (1,263)

 HS Exact HS Exact HS Exact HS Exact

0.05 6990 6989 6913 6905 1254 1254 1260 1260
0.10 6711 6695 6568 6543 1245 1245 1255 1253
0.50 5117 4962 4727 4511 1164 1161 1226 1225
1.00 4011 3765 3596 3327 1089 1087 1178 1178
3.00 2275 2001 1917 1645 812 769 1015 999
5.00 1636 1394 1333 1113 598 530 856 826
10.0 961 784 741 597 349 253 658 600
20.0 520 397 367 261 147 101 445 386
50.0 190 123 113 70 37 22 213 159

Figure 4. Size of �-simplifications of stock-index curves computed using HS and the optimal algorithms.

curves have �� ��� vertices, corresponding to the daily index values from January 1971 till January
2003. Each of the last two curves have �� ��� vertices, corresponding to the daily index values from
January 1993 till January 2003. Figure3 shows the composite-index and telecommunications-index
curves. Note that while the sizes of the stock time-series curves are not very large, simplification
can be used to understand the general trend of the stock data over time (Figure5 illustrates this fact
nicely).

Figure 4 gives the size of
-simplifications for various values of
 computed by the two algo-
rithms on these four curves. Since the curves in Figure 3 are too dense and it is hard to see all the
details, we magnify a portion of the composite-index of the curve and show its simplifications (as
part of the simplification of the entire curve) in Figure5.

The size of the simplifications produced by our algorithm are quite close to the size of the
optimal simplifications. The running time of our algorithm for the first two index curves (with
�� ��� vertices) varies between �� and �� milliseconds, and the running time for the next two index

7

3500 4000 4500 5000 5500 6000
200

300

400

500

600

700

800

900

3500 4000 4500 5000 5500 6000
200

300

400

500

600

700

800

3500 4000 4500 5000 5500 6000
200

300

400

500

600

700

800

(a) (b) (c)

Figure 5. (a) Portion of the composite-index curve (�� ��� vertices), and its simplifications with (b) � � ���� (��
vertices) (c) � � ���� (�� vertices).

curves (with �� ��� vertices) varies between � and � milliseconds. The optimal algorithm runs in
����� time, and takes between � to � minutes on these datasets.

3 Fréchet Simplification

Let � � ���� � � � � ��� be a polygonal curve in �� , and let
 � � be a parameter. Unlike Section 2,
we do not assume � to be �-monotone. We present an approximation algorithm for simplification
under the Fréchet error measure, but we first prove a few properties of the Fréchet error measure.
Let ���� �� be as defined in (1), and let ���� �� denote the Euclidean distance between two points in
�
� .

Lemma 3.1 Given two directed segments '(and �) in �� ,

��'(� �)� � ��	���'� ��� ��(�)���

PROOF. Let Æ � ��	���'� ��� ��(�)��. Then ��'(� �)� � Æ, since ' (resp. () has to be matched
to � (resp.)). Assume the natural parameterization for segment '(, *���
 ��� �� � '(, such that
*��� � ' � ��('�. Similarly, define +���
 ��� �� � �) for segment �), such that +��� �
�� ��) 	 ��. For any two matched points *��� and +���, let

%��� � *���	+��� � ��	 ���'	 �� � ��()��

Since %��� is a convex function, �%���� � Æ for any � ��� ��. Therefore ��'(� �)� � Æ.

Lemma 3.2 Given a polygonal curve � in �� and two directed segments '(and �),

� ��'(� � � 	���)� � � � � ��'(� �)��

8

PROOF. Assume that *���
 ��� �� � '(is the natural parameterization of '(, such that *��� �
' � ��('�. Let � ���, � ��� ��, be a parameterization of the polygonal curve � such that
� ��� and *��� realize the Fréchet distance between � and '(. As in the proof of Lemma3.1, let
+���
 ��� �� � �) be such that +��� � � � ��) 	 ��. By triangle inequality, for any � ��� ��,
��� ���� +���� � ��� ���� *���� � ��*���� +����� yielding the lemma.

��

��

��
���� ��

Figure 6. Dashed curve is
 ���� �� �, �� and �� are mapped to �� and �� on ���� , respectively.

Lemma 3.3 Let � � ���� ��� � � � � ��� be a polygonal curve in �� . For � � $ � " � 	,

Æ� ������ � � � � � Æ� ����� � � ��

PROOF. Let Æ
 � Æ� ������ � �. Let �
 � ���� ��� � ���� be the Fréchet map from ���� to � ���� �� �
(see Section 1.1 for definition). For any vertex �� � ���� �� �, set ��� � �����; see Figure 6 for
an illustration. By definition, ����� ���� � ���� ���� � Æ
. In particular, ����� ����� ����� ���� � Æ
. By
Lemma 3.1, ������� ������� � Æ
. It then follows from Lemma 3.2 that

Æ� ������ � � � ������� � ���� ���� � ��������� � ���� ���� � Æ
 � �Æ
�

3.1 Algorithm

As in Section 2.2, we use a greedy algorithm to compute a simplification �� of � , but with one
twist. Suppose we have added ��� � ��� � � � � � ��� � to � �. We find an index # � �� such that (i)
Æ� ������� � � �
 and (ii) Æ� ��������� � � �
. We set ���� � # and add ����� to � �. We repeat this
process until we encounter ��. We then add �� to � �.

Alt and Godau [5] have developed an algorithm that, given a pair � � � � 	 � �, can determine
in ��	 	 �� time whether Æ� ������ � � �
. Therefore, a first approach would be to add vertices
greedily one by one, starting with the first vertex ��� , and testing each edge �����, for $ � �� , by
invoking the Alt-Godau algorithm, until we find the index #. However, the overall algorithm could
take ����� time. To limit the number of times that Alt-Godau algorithm is invoked when computing
the index #, we proceed as follows.

First using an exponential search, we determine an integer $ � � such that Æ� ���������� � � � �

and Æ� ������������ � � � �
. Next, by performing a binary search in the interval ���� �����, we

determine an integer " ���� ����� such that Æ� ���������� � � �
 and Æ� ������������ � � �
. Note

9

ALGORITHM FS (� ,
)
Input: � � ���� � � � � ���;
 � ��
Output: � � � � such that Æ� �� �� � � �
.

begin
	 � �; �� � �; � � � ���� � ;
while (�� � �) do

$ � �;
while (Æ� ������������ � � � �
) do

$ � $ � � ;
end while
�� � ��; !��! � ����;
while (�� � �!��!	 ��) do
��" � ��� � !��!���;
if (Æ� ����������� � � �
)
�� � ��";

else !��! � ��";
end while
���� � �� � �� ; � � � � � � �������; 	 � 	 � � ;

end while
end

Figure 7. Computing �-simplification under the Fréchet error measure.

that in the worst case, the asymptotic costs of the exponential and binary searches are the same.
Set # � �� � ". See Figure 7 for pseudo-code of this algorithm. Since computing the value of #
requires invoking the Alt-Godau algorithm ��$� � ����� �� times, each with a pair ��� �� such
that � 	 � � �", the total time spent in computing the value of # is ���# 	 �� � �� ��� ��. Hence,
the overall running time of the algorithm is ��� ��� ��.

Theorem 3.4 Given a polygonal curve � � ���� � � � � ��� in �� and a parameter
 � �, we can
compute in ��� ����� time an
-simplification �� of � under the Fréchet error measure so that
�� �� � �� �
���.

PROOF. Compute � � by the greedy algorithm described above. By construction Æ� ��
�� � � �
,

so it suffices to prove that �� �� � �� �
��� � �. Let � � � ���� � ��� � � � � ��� � ���, and let
�
 � ���� � ��� � � � � ��� � ��� be an optimal �
���-simplification of � of size �� �
��� � �. We
claim that �� � 	� for all �. This would imply that # � $ � �� �
��� � �.

We prove the above claim by induction on �. For � � �, the claim is obviously true because
�� � 	� � �. Suppose ���� � 	���. If 	� � ����, we are done. So assume that 	� � ����.
Since �
 is an �
���-simplification, Æ� ��������� � � � �
��. Lemma 3.3 implies that for all
���� � 	� � 	�, Æ� ��������� � � � �
. But by construction, Æ� ������������ � � �
, therefore
�� � � � 	� and thus �� � 	�.

10

Remark 3.5 Our algorithm works within the same running time even if we measure the distance
between two points in any ��-metric.

3.2 Experiments

We have implemented our simplification algorithm, which we refer to as FS, and the �����-time
optimal Fréchet-simplification algorithm (referred to as Exact), outlined in Section1.2, that com-
putes an
-simplification of � of size ��
� � �. In this section, we measure the performance of our
algorithm in terms of the output size and the running time.

Data sets. We test our algorithms on two different types of data sets, each of which is a family of
polygonal curves in �� .

� Protein backbones. The first set of curves are derived from protein backbones by adding small
random “noise” vertices along the edges of the backbone. We have chosen two backbones
from the protein data bank [3]: PDB file ids � 	� and � �#. The number of vertices in
the original backbones of � 	� and � �# are ��� and ���, respectively. Protein A is the
original protein � 	�. ProteinB is � �# with �� ��� random vertices added: the new vertices
are uniformly distributed along the curve edges, and then perturbed slightly in a random
direction.

� Stock-index curves. The second family of curves is generated from the daily NASDAQ index
values over the period January 1971 to January 2003 (data is obtained from [1]). We take a
pair of index curves ����� ���� � � � �� and ��)�� ���� � � � �� and generate the curve
�����)�� ���� � � � �� in �

� . In particular, we take telecommunication index and Bio-
technology index as the �- and)-coordinates and time as the ,-coordinates to construct the
curve Tel-bio in �� . In the second case, we take transportation, telecommunication index,
and time as �-,)-, and ,-coordinates, respectively, to construct curve Trans-Tel in �� .

These two families of curves have different structures. The stock-index curves exhibit an easily
distinguishable global trend; however, locally there is a lot of noise. The protein curves, though
coiled and irregular-looking, exhibit local patterns that represent the structural elements of the pro-
tein backbones (commonly referred to as the secondary structure). In each of these cases, simplifi-
cation helps identify certain patterns (e.g., secondary structure elements) and trends in the data.

Output size. We compare the quality (size) of simplifications produced by our algorithm (FS)
and optimal algorithm (Exact) in Figure 8 for curves from the above two families respectively.
The simplifications produced by our algorithm are almost always within �# of the optimal.

For monotone curves, the simplifications produced by algorithm HS (using Hausdorff error
measure) and FS (using Fréchet error measure) are similar, as shown in Figure 9. Note that HS
is using uniform metric and FS is under �� metric, which accounts for the smaller size of the
simplifications computed by FS.

To provide a visual picture of the simplification produced by various (commonly used) algo-
rithms for curves in �� , Figure 14 shows the simplifications of protein A computed by the FS, exact

11

Output size
ProteinA ProteinB

(327) (9,777)

 FS Exact FS Exact

0.05 327 327 6786 6431
0.12 327 327 1537 651
1.20 254 249 178 168
1.60 220 214 140 132
2.00 134 124 115 88
5.00 37 36 41 39
10.0 22 22 24 20
20.0 10 8 8 6
50.0 2 2 2 2

Output size
Trans-Tel Tel-Bio
(7,057) (1,559)

 FS Exact FS Exact

0.05 6882 6880 1558 1558
0.50 4601 4469 1473 1471
1.20 2811 2637 1292 1279
3.00 1396 1228 974 942
5.00 890 732 772 720
10.0 414 329 490 402
20.0 168 124 243 200
50.0 47 35 94 73

(a) (b)

Figure 8. The sizes of Fréchet simplifications on (a) protein data and (b) stock-index data.

3500 4000 4500 5000 5500 6000
200

300

400

500

600

700

800

3500 4000 4500 5000 5500 6000
200

300

400

500

600

700

800

Figure 9. Simplify a portion of the composite-index curve (with �� ��� vertices) using algorithm HS(left) and FS (right)
for error � �
���. The simplified curve has ��� and
�� vertices respectively.

(i.e., optimal) Fréchet simplification algorithm, and the Douglas-Peucker heuristic (using Hausdorff
error measure under �� metric).

Running time. As the running time for the optimal algorithm is orders of magnitude slower
than our algorithm, we compare the efficiency of our algorithm (FS) with the widely used Douglas-
Peucker simplification algorithm under the Hausdorff measure – we can extend the Douglas-Peucker
algorithm to simplify curves under the Fréchet error measure; however, such an extension is ineffi-
cient and can take ����� time in the worst case.

Figures 10 illustrates the running time of the two algorithms. Note that as
 increases, resulting
in small simplified curves, the running time of Douglas-Peucker decreases. This phenomenon is fur-
ther illustrated in Figure 11, which compares the running time of our algorithm with the Douglas-
Peucker on Protein B (with artificial noise added) with �� ��� vertices. This phenomenon is due

12

Running time (ms.)
ProteinA ProteinB

(327) (9,777)

 FS DP FS DP

0.05 3 16 146 772
0.50 3 16 171 524
1.20 4 16 176 488
1.60 5 12 202 394
2.00 5 11 210 354
5.00 5 11 209 356
10.0 5 10 222 329
20.0 5 8 233 263
50.0 2 1 87 50

Running time (ms.)
Trans-Tel Tel-Bio
(7,057) (1,559)

 FS DP FS DP

0.05 82 599 16 113
0.50 103 580 17 114
1.20 113 559 19 113
3.00 119 510 22 109
5.00 121 472 24 109
10.0 127 411 25 96
20.0 146 360 27 85
50.0 162 271 27 71

(a) (b)

Figure 10. The running time of FS and Douglas-Peucker algorithm on (a) protein data and (b) stock-index data.

to the fact that, at each step, the DP algorithm determines whether a line segment ���� simplifies
� ���� �� �. The algorithm recursively solves two subproblems only if Æ
������ � � �
. Thus, as
 in-
creases, it needs to make fewer recursive calls. Our algorithm, however, proceeds in a linear fashion
from the first vertex to the last vertex using exponential and binary search. Suppose the algorithm
returns � � � ���� � � � � � ���� for an input polygonal curve � � ���� � � � � ���. The exponential search
takes ���� time, while the binary search takes

����
��� ���� ������ where �� � 	��� 	 	� and # is

the number of vertices of � �. Thus as
 increases, �� increases, and therefore the time for binary
search increases, as Figure 11 illustrates. Note however that if
 is so large that # � �, i.e., the sim-
plification is just one line segment connecting �� to ��, the algorithm does not perform any binary
search and is much faster, as the case for
 � ���� illustrates in Figure11.

4 Comparisons

In this section, we prove relationships between various error measures.

Hausdorff vs. Fréchet. One natural question is to compare the quality of simplifications produced
under the Hausdorff- and the Fréchet- error measures. Given a curve � � ���� � � � � ���, it is not too
hard to show that Æ
������ � � � Æ� ����� � � � under any ��-metrics, which implies that �
�
� � � �
�� �
� � �. The inverse however does not hold, and there are polygonal curves � and values of
 for
which �
�
� � � � ���� and �� �
� � � � ����.

The Fréchet error measure takes the order along the curve into account, and hence is more
useful in some cases especially when the order of the curve is important (such as curves derived
from protein backbones). Figure 12 illustrates a substructure of a protein backbone, where the
-

13

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0 5 10 15 20 25 30 35 40 45 50

R
u
n
n
in

g
 t
im

e
 (

s
e
c
s
)

Error

DP
FS

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0 5 10 15 20 25 30 35 40 45 50

R
u
n
n
in

g
 t
im

e
 (

s
e
c
s
)

Error

DP
FS

Figure 11. Comparison of running time of FS and DP algorithms for varying � on Protein B.

(a) (b) (c)

Figure 12. (a) Polygonal chain (a piece of protein backbone) composed of three alpha-helices, (b) its Fréchet �-
simplification and (c) its Hausdorff �-simplification using DP algorithm.

simplification under Fréchet error measure preserves the overall structure, while the
-simplification
under Hausdorff error measure is unable to preserve it. Note that the Douglas-Peucker algorithm is
also based on Hausdorff error measure. Therefore the above discussion holds for it as well.

Weak-Fréchet vs. Fréchet. In Section 3 we described a fast approximation algorithm for com-
puting an
-simplification of � under the Fréchet error measure, where we used the Fréchet measure
in a local manner: we restrict the curve ���� � � � � ��� to match to the line segment ���� . We can re-
move this restriction to make the measure more global by considering weak
-simplification. More
precisely, given � and - � �.�� .�� � � � � .�, where .� does not necessarily lie on � , - is a weak

-simplification under Fréchet error measure if ���� -� �
. The following lemma shows that for
Fréchet error measure, the size of the optimal
-simplification can be bounded in terms of the size
of the optimal weak
-simplification:

Theorem 4.1 Given a polygonal curve � ,

�� �
� � ��� �
��� � �� �
����

14

�

��� � ��� �������

�����

����� � �����

����

��

����
���

�����

����������

�

�

(a) (b)

���������� �

����� � �����
�����

��� � ���

(c)

Figure 13. Relationship between �� ���
 � and �� ���
 �: (a) � � ����� and � �������; (b) depicts the map �,
�������� � ��������, and � � ������. (c) the case for �� � �� and ���� � ����: � � �������� � ��������.

PROOF. The second inequality is immediate, so we prove the first one. Let - � �.�� � � � � .� be an
optimal weak �
���-simplification of � , and let �
 - � � be a Fréchet map so that ���� ����� �

�� for all � - (see Section 1.1 for the definition). For � � � � �, let � � �������� be the
edge of � that contains ��.��, and let ��� be the endpoint of � that is closer to ��.��. We set
� � � ���� � � � � ��	�; we remove a vertex from this sequence if it is the same as its predecessor.
Clearly, 	� � 	���, so � � is a simplification of � . Next we show that Æ� ��������� � � � �
, for all
� � � � �.

Let ' � ��.�� and (� ��.����. See Figure 13 (a) for an illustration.

Claim A ��'(� � �'� (�� �
���

PROOF. By construction, ��.�� '�, ��.���� (� �
��. Therefore, ��'(� .�.���� �
�� (by Lemma 3.1).
On the other hand, since - is a weak (
��)-simplification of � ,��.�.���� � �'� (�� �
��. The claim
then follows from Lemma 3.2.

Let �
 � �'� (� � '(be a Fréchet map such that ���� ����� �
��, for all � � �'� (�. Let /
be the line containing '(. We define a map 0
 � � / that maps a point � � to the intersection
point of / with the line through � and parallel to �������������. See Figure 13 (b) for an illustration.
If ��� � ��� , then ����� � 0������ �
�� since ��'� ���� � ��'� ������: This is the case depicted in
Figure 13. Hence, we can infer that

����������� 0�����0�������� �
��� (2)

15

Similarly, we define a map 1
 ��� � / that maps a point � ��� to the intersection point of /
with the line through � and parallel to �������������. As above,

������������ � 1�������1�������� �
��� (3)

Let � (resp. �) denote the point 0����� (resp. 1�������); see Figure 13 (c).

Claim B ����� ��������� �
���

PROOF. Since ����� � ��, ������� � �� �
��, the claim follows from Lemma 3.1.

Claim C ����� � ���� � ����� �� �
���

PROOF. By definition of Fréchet distance,

����� � ���� � ����� �� � ��	 � ���0�������� ����������

��0�������1�������� � ������� ����� ���

������������ � 1��������� ��

By (2) and (3), the first and the third terms are at most
��. To bound the second term, observe that
0������� � �������� and 1������� � ��������. It then follows from the definition of the map � and
Claim A that

������������������� � ������� ����� �� � ��'(� � �'� (�� �
���

which implies that the second term is at most
�� as well. Thus proves the claim.

Claim B and C along with Lemma 3.2 imply that Æ� ��������� � � � �
, and therefore Æ� ��
�� � � �

. This completes the proof of the theorem.

5 Conclusions

In this paper we presented near-linear approximation algorithms for curve simplification under
Hausdorff and Fréchet error measures. We presented the first efficient approximation algorithm for
Fréchet simplifications of a curve in dimension higher than two. Our experimental results demon-
strate that our algorithms are efficient.

We conclude by mentioning a few open problems.

(i) Does there exist a near-linear algorithm for computing an
-simplification of size at most
 �� �
� � � for a polygonal curve � , where � � is a constant?

(ii) Is it possible to compute the optimal
-simplification under Hausdorff error measure in near-
linear time, or under Fréchet error measure in sub-cubic time?

(iii) Is there any provably efficient exact/approximation algorithm for curve simplification in ��

that returns a simple curve if the input curve is simple.

16

References

[1] http://www.marketdata.nasdaq.com/mr4b.html.

[2] http://www.cs.uic.edu/wolfson/html/mobile.html.

[3] Protein data bank. http://www.rcsb.org/pdb/.

[4] P. Agarwal and K. R. Varadarajan. Efficient algorithms for approximating polygonal chains. Discrete
Comput. Geom., 23:273–291, 2000.

[5] H. Alt and M. Godeau. Computing the frechet distance between two polygonal curves. International
Journal of Computational Geometry, pages 75–91, 1995.

[6] G. Barequet, D. Z. Chen, O. Daescu, M. T. Goodrich, and J. Snoeyink. Efficiently approximating
polygonal paths in three and higher dimensions. Algorithmica, 33(2):150 – 167, 2002.

[7] W. S. Chan and F. Chin. Approximation of polygonal curves with minimum number of line segments.
In Proc. 3rd Annual International Symposium on Algorithms and Computation, pages 378–387, 1992.

[8] D. H. Douglas and T. K. Peucker. Algorithms for the reduction of the number of points required to
represent a digitized line or its caricature. Canadian Cartographer, 10(2):112–122, 1973.

[9] M. Godau. A natural metric for curves: Computing the distance for polygonal chains and approximation
algorithms. In Proc. of the 8th Annual Symposium on Theoretical Aspects of Computer Science, pages
127–136, 1991.

[10] L. J. Guibas, J. E. Hershberger, J. B. Mitchell, and J. Snoeyink. Approximating polygons and subdivi-
sions with minimum link paths. International Journal of Computational Geometry and Applications,
3(4):383–415, 1993.

[11] P. Heckbert and M. Garland. Survey of polygonal surface simplification algorithms. In SIGGRAPH 97
Course Notes: Multiresolution Surface Modeling, 1997.

[12] J. Hershberger and J. Snoeyink. An ��� ����� implementation of the Douglas-Peucker algorithm for
line simplification. In Proc. 10th Annual ACM Symposium on Computational Geometry, pages 383–
384, 1994.

[13] H. Imai and M. Iri. An optimal algorithm for approximating a piecewise linear function. Information
Processing Letters, 9(3):159–162, 1986.

[14] H. Imai and M. Iri. Polygonal approximations of a curve-formulations and algorithms. In G. T.
Toussaint, editor, Computational Morphology, pages 71–86. North-Holland, Amsterdam, Netherlands,
1988.

[15] A. Melkman and J. O’Rourke. On polygonal chain approximation. In G. T. Toussaint, editor, Compu-
tational Morphology, pages 87–95. North-Holland, Amsterdam, Netherlands, 1988.

[16] R. Weibel. Generalization of spatial data: principles and selected algorithms. In M. van Kreveld,
J. Nievergelt, T. Roos, and P. Widmayer, editors, Algorithmic Foundations of Geographic Information
System. Springer-Verlag Berlin Heidelberg New York, 1997.

17

FS EXACT DP

 � ���

 � ���

 � ���

 � ����

Figure 14. Simplifications of a protein (Protein A) backbone.

18

	Introduction
	Problem definition
	Previous results
	Our results

	Hausdorff Simplification
	Algorithm
	Experiments

	Fréchet Simplification
	Algorithm
	Experiments

	Comparisons
	Conclusions
	References

