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Abstract

Let d and t be fixed positive integers, and letKd
t,...,t denote the complete d-partite hypergraph with t ver-

tices in each of its parts, whose hyperedges are the d-tuples of the vertex set with precisely one element from
each part. According to a fundamental theorem of extremal hypergraph theory, due to Erdős [6], the number
of hyperedges of a d-uniform hypergraph on n vertices that does not contain Kd

t,...,t as a subhypergraph, is

nd−
1

td−1 . This bound is not far from being optimal.
We address the same problem restricted to intersection hypergraphs of (d− 1)-dimensional simplices in

Rd. Given an n-element set S of such simplices, letHd(S) denote the d-uniform hypergraph whose vertices
are the elements of S, and a d-tuple is a hyperedge if and only if the corresponding simplices have a point
in common. We prove that if Hd(S) does not contain Kd

t,...,t as a subhypergraph, then its number of edges
is O(n) if d = 2, and O(nd−1+ε) for any ε > 0 if d ≥ 3. This is almost a factor of n better than Erdős’s
above bound. Our result is tight, apart from the error term ε in the exponent. In particular, for d = 2, we
obtain a theorem of Fox and Pach [7], which states that every Kt,t-free intersection graph of n segments in
the plane has O(n) edges. The original proof was based on a separator theorem that does not generalize to
higher dimensions. The new proof works in any dimension and is simpler: it uses size-sensitive cuttings, a
variant of random sampling.

1 Introduction

Let H be a d-uniform hypergraph on n vertices. One of the fundamental questions of extremal graph and
hypergraph theory goes back to Turán and Zarankiewicz: What is the largest number exd(n,K) of hyperedges
(or, in short, edges) that H can have if it contains no subhypergraph isomorphic to fixed d-uniform hypergraph
K. (See Bollobás [2]). In the most applicable special case, K = Kd(t, . . . , t) is the complete d-partite
hypergraph on the vertex set V1, . . . , Vd with |V1| = . . . = |Vd| = t, consisting of all d-tuples that contain one
point from each Vi. For graphs (d = 2), it was proved by Erdős (1938) and Kővári-Sós-Turán [12] that

ex2(n,K2
t,t) ≤ n2−1/t.
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The order of magnitude of this estimate is known to be best possible only for t = 2 and 3 (Reiman [16];
Brown [3]). The constructions for which equality is attained are algebraic.

Erdős (1964) generalized the above statement to d-uniform hypergraphs for all d ≥ 2. A hypergraph H is
said to be K-free if it contains no copy of K as a (not necessarily induced) subhypergraph.

Theorem A ([6]). The maximum number of hyperedges that a d-uniform, Kd
t,...,t-free hypergraph of n vertices

can have satisfies
exd(n,Kd

t,...,t) ≤ n
d− 1

td−1 .

It was further shown in [6] that this bound cannot be substantially improved. There exists an absolute
constant C > 0 (independent of n, t, d) such that

exd(n,Kd
t,...,t) ≥ n

d− C

td−1 .

In particular, for every ε > 0, there exist Kd
t,...,t-free d-uniform hypergraphs with t ≈ (C/ε)1/(d−1), having at

least nd−ε edges. The construction uses the probabilistic method.

In certain geometric scenarios, better bounds are known. For instance, consider a bipartite graph with 2n
vertices that correspond to n distinct points and n distinct lines in the plane, and a vertex representing a point p
is connected to a vertex representing a line ` if and only if p is incident to ` (i.e., p ∈ `). Obviously, this graph is
K2

2,2-free (in short, K2,2-free). Therefore, by the above result, it has at most O(n3/2) edges. On the other hand,
according to a celebrated theorem of Szemerédi and Trotter (1983), the number of edges is at most O(n4/3),
and the order of magnitude of this bound cannot be improved. In [13], this result was generalized to incidence
graphs between points and more complicated curves in the plane.

Given a set S of geometric objects, their intersection graph H(S) is defined as a graph on the vertex set
S, in which two vertices are joined by an edge if and only if the corresponding elements of S have a point
in common. To better understand the possible intersection patterns of edges of a geometric graph, that is,
of a graph drawn in the plane with possibly crossing straight-line edges, Pach and Sharir [13] initiated the
investigation of the following problem. What is the maximum number of edges in aKt,t-free intersection graph
of n segments in the plane? The Kővári-Sós-Turán theorem (Theorem A for d = 2) immediately implies the
upper bound n2−1/t. Pach and Sharir managed to improve this bound to O(n) for t = 2 and to O(n log n) for
any larger (but fixed) value of t. They conjectured that here O(n log n) can be replaced by O(n) for every t,
which was proved by Fox and Pach [7]. They later extended their proof to string graphs, that is, to intersection
graphs of arbitrary continuous arcs in the plane [8, 9]. Some weaker results were established by Radoic̆ić and
Tóth [15] by the “discharging method”.

The aim of the present note is to generalize the above results to d-uniform intersection hypergraphs of
(d − 1)-dimensional simplices in Rd, for any d ≥ 2. The arguments used in the above papers are based on
planar separator theorems that do not seem to allow higher dimensional extensions applicable to our problem.

Given an n-element set S of (d− 1)-dimensional simplices in general position in Rd, letHd(S) denote the
d-uniform hypergraph on the vertex set S, consisting of all unordered d-tuples of elements {S1, . . . , Sd} ⊂ S
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with S1∩. . .∩Sd 6= ∅. We prove the following theorem, providing an upper bound on the number of hyperedges
of a Kd

t,...,t-free intersection hypergraphHd(S) of (d−1)-dimensional simplices. This bound is almost a factor
of n better than what we obtain using the abstract combinatorial bound of Erdős (Theorem A), and it does not
depend strongly on t.

Theorem 1. Let d, t ≥ 2 be integers, let S be an n-element set of (d− 1)-dimensional simplices in Rd, and let
Hd(S) denote its d-uniform intersection hypergraph.

If Hd(S) is Kd
t,...,t-free, then its number of edges is O(nd−1+ε) for any ε > 0. For d = 2, the number of

edges is at most O(n).

To see that this bound is nearly optimal for every d, fix a hyperplane h in Rd with normal vector v, and pick
d − 1 sets P1, . . . , Pd−1, each consisting of n−1

d−1 parallel (d − 2)-dimensional planes in h, with the property
that any d − 1 members of P1 ∪ . . . ∪ Pd−1 that belong to different Pis have a point in common. For each
i (1 ≤ i ≤ d− 1), replace every plane pi ∈ Pi by a hyperplane hi parallel to v such that hi ∩ h = pi. Clearly,
the d-uniform intersection hypergraph of these n hyperplanes, including h, is Kd

2,...,2-free, and its number of
edges is (n−1d−1 )d−1 = Ω(nd−1). In each hyperplane, we can take a large (d − 1)-dimensional simplex so that
the intersection pattern of these simplices is precisely the same as the intersection pattern (i.e., the d-uniform
intersection hypergraph) of the underlying hyperplanes.

The proof of Theorem 1 is based on a partitioning scheme, which was first formulated by Pellegrini [14].
Given an n-element set S of (d− 1)-dimensional simplices (or other geometric objects) in Rd, let m denote the
number of hyperedges in their d-uniform intersection hypergraph, that is, the number of d-tuples of elements
of S having a point in common. For a parameter r ≤ n, a 1

r -cutting with respect to S is a partition of Rd into
simplices such that the interior of every simplex intersects at most n/r elements of S . The size of a 1

r -cutting
is the number of simplices it consists of. (See Matoušek [11].)

Theorem B ([5, 14]). Let d ≥ 2 be an integer, let S be an n-element set of (d − 1)-dimensional simplices in
Rd, and let m denote the number of d-tuples of simplices in S having a point in common.

Then, for any ε > 0 and any r ≤ n, there is a 1
r -cutting with respect to S of size at most

C2 · (r +
mr2

n2
) if d = 2, and

Cd,ε · (rd−1+ε +
mrd

nd
) if d ≥ 3.

Here C2 is an absolute constant and Cd,ε depends only on d and ε.

To construct a 1
r -cutting, we have to take a random sampleR ⊆ S, where each element of S is selected with

probability r/n. It can be shown that, for every k > 0, the expected value of the total number of k-dimensional
faces of all cells of the cell decomposition induced by the elements ofR isO(rd−1), while the expected number
of vertices (0-dimensional faces) is m(r/n)d. This cell decomposition can be further subdivided to obtain a
partition of Rd into simplices that meet the requirements. The expected number of elements of S that intersect
a given cell is at most n/r.
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Cuttings have been successfully used before, e.g., for an alternative proof of the Szemerédi-Trotter theo-
rem [4]. In our case, the use of this technique is somewhat unintuitive, as the size of the cuttings we construct
depends on the number of intersecting d-tuples, that is, on the parameter we want to bound. This sets up an un-
usual recurrence relation, where the required parameter appears on both sides, but nonetheless, whose solution
implies Theorem 1.

2 Proof of Theorem 1

For any element Sk ∈ S, let suppSk denote the supporting hyperplane of Sk. By slightly perturbing the
arrangement, if necessary, we can assume without loss of generality that the supporting hyperplanes of the
elements of S are in general position, that is,

(a) no d− j + 1 of them have a j-dimensional intersection (0 ≤ j ≤ d− 1), and

(b) the intersection of any d of them is empty or a point that lies in the relative interior of these d elements.

Theorem 1 is an immediate corollary of the following lemma.

Lemma 1. Let d, t ≥ 2 be fixed integers. Let S be an n-element set of (d−1)-dimensional simplices in general
position in Rd. Assume that their d-uniform intersection hypergraphHd(S) has m edges and is Kd

t,...,t-free.

If, for suitable constants C ≥ 1 and u, there exists a 1
r -cutting of size at most C(ru + mrd

nd ) with respect to
S, consisting of full-dimensional simplices, then

m ≤ C ′ · nu,

where C ′ is another constant (depending on d, t, C, and u).

Proof. For some value of the parameter r to be specified later, construct a 1
r -cutting {∆1, . . . ,∆k} with respect

to S, where k ≤ C(ru + mrd/nd). Using our assumption that the elements of S are in general position, we
can suppose that all cells ∆i are full-dimensional.

For every i (1 ≤ i ≤ k), let S inti ⊆ S denote the set of all elements in S that intersect the interior of
∆i. As {∆1, . . . ,∆k} is a cutting with respect to S, we have |S inti | ≤ n/r. Let Sbdi ⊆ S be the set of all
elements Sl ∈ S such that the supporting hyperplane suppSl of Sl contains a j-dimensional face of ∆i for
some j (0 ≤ j ≤ d− 1). Set Si = S inti ∪ Sbdi .

Using the general position assumption, we obtain that every j-dimensional face F of ∆i is contained in the
supporting hyperplanes of at most d− j ≤ d elements of S (0 ≤ j ≤ d− 1). The total number of proper faces
of ∆i of all dimensions is smaller than 2d+1, and each is contained in at most d elements of S. Therefore, we
have

|Si| < |S inti |+ |Sbdi | ≤ n/r + d2d+1.

Fix an intersection point q = S1 ∩ . . . ∩ Sd, and let S(q) = {S1, . . . , Sd} ⊆ S . Then either

1. q lies in the interior of some ∆i, in which case S(q) ⊆ S inti ⊆ Si, or
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2. q lies at a vertex (0-dimensional face) F or in the relative interior of a j-dimensional face F of some ∆i,
where 1 ≤ j ≤ d − 1. Take any Sl ∈ S(q). If F ⊂ suppSl, then Sl ∈ Sbdi ⊆ Si. If F 6⊂ suppSl, then
Sl intersects the interior of ∆i, and since q lies in the relative interior of Sl, we have that Sl ∈ S inti ⊆ Si.

In both cases, S(q) ⊆ Si.

This means that if for each i we bound the number of d-wise intersection points between the elements of
Si, and we add up these numbers, we obtain an upper bound on Hd(S), the number of d-wise intersection
points between the elements of S. Within each Si, we apply the abstract hypergraph-theoretic bound of Erdős
(Theorem A) to conclude thatHd(Si) has at most |Si|d−1/t

d−1
edges. Hence,

m ≤
k∑
i=1

|Si|d−1/t
d−1

.

As |Si| ≤ n/r + d2d+1, substituting the bound on k, we get

m ≤ C · (ru +
mrd

nd
) · (d2d+1 +

n

r
)d−1/t

d−1

≤ 2dC · (ru +
mrd

nd
) · (n

r
)d−1/t

d−1
,

provided that nr ≥ d2d+1. Setting r = n
C0

, where C0 = (2d+1C)t
d−1

, we obtain

m ≤ 2dC

(
nu

Cu0
+
m

Cd0

)
C
d−1/td−1

0

m ≤ Cd−u0

2
nu +

m

2
,

which implies that m ≤ Cd−u0 nu, as required.

Now Theorem 1 follows from Theorem B, as one can choose u = 1 if d = 2 and u = d − 1 + ε if d ≥ 3.
This completes the proof.

Remark 1. Every d-uniform hypergraphH has a d-partite subhypergraphH′ that has at least d!
dd

times as many
hyperedges as H. Therefore, if K is d-partite, the maximum number of hyperedges that a d-partite K-free
hypergraph on n vertices can have is within a factor of d!

dd
from the same quantity over all K-free hypergraphs

on n vertices. If instead of abstract hypergraphs, we restrict our attention to intersection graphs or hypergraphs
of geometric objects, the order of magnitudes of the two functions may substantially differ. Given two sets of
segments S and T in the plane with |S| = |T | = n, let B(S, T ) denote their bipartite intersection graph, in
which the vertices representing S and T form two independent sets, and a vertex representing a segment in S is
joined to a vertex representing a segment in T are joined by an edge if and only if they intersect. It was shown
in [10] that any such K2,2-free bipartite intersection graph B(S, T ) of n vertices has O(n4/3) edges and that
this bound is tight. In fact, this result generalizes the Szemerédi-Trotter theorem mentioned above. On the other
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hand, if we assume that the (non-bipartite) intersection graph associated with the set S ∪ T , which contains the
bipartite graph B(S, T ), is also K2,2-free, then Theorem 1 implies that the number of edges drops to linear in
n. In the examples where B(S, T ) has a superlinear number of edges, there must be many intersecting pairs of
segments in S or in T .

Remark 2. The key assumption in Lemma 1 is that there exists a 1
r -cutting, whose size is sensitive to the number

of intersecting d-tuples of objects. Under these circumstances, in terms of the smallest size of a 1
r -cutting, one

can give an upper bound on the number of edges of Kd
t,...,t-free intersection hypergraphs with n vertices. For

d = 3, we know some stronger bounds on the size of vertical decompositions of space induced by a set of
triangles [5, 17], which imply the existence of 1

r -cuttings of size O(r2α(r) + mr3

n3 ). Thus, in this case, we can
deduce from Lemma 1 that every 3-uniform K3

t,t,t-free intersection hypergraph of n triangles has O(n2α(n))
edges. It is an interesting open problem to establish nearly tight bounds on the maximum number of edges that
a d-uniform Kd

t,...,t-free intersection hypergraph induced by n semialgebraic sets in Rd can have. Lemma 1
does not apply in this case, because in the best currently known constructions of cuttings for semialgebraic sets,
the exponent u is larger than d [1].
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