Near-Linear Time Approximation Algorithms
for Curve Simplification *

Pankaj K. Agarwal®, Sariel Har-Peled?, Nabil H. Mustafa', and Yusu Wang'

! Department of Computer Science,
Duke University, Durham, NC 27708-0129, USA.
{pankaj, nabil, wys}@cs.duke.edu
? Department of Computer Science, DCL 2111; University of Illinois;
1304 West Springfield Ave.; Urbana, IL 61801; USA;

sariel@cs.uiuc.edu

Abstract. We consider the problem of approximating a polygonal curve
P under a given error criterion by another polygonal curve P’ whose ver-
tices are a subset of the vertices of P. The goal is to minimize the number
of vertices of P’ while ensuring that the error between P’ and P is below
a certain threshold. We consider two fundamentally different error mea-
sures — Hausdorff and Fréchet error measures. For both error criteria,
we present near-linear time approximation algorithms that, given a pa-
rameter ¢ > 0, compute a simplified polygonal curve P’ whose error is
less than € and size at most the size of an optimal simplified polygonal
curve with error €/2. We consider monotone curves in the case of Haus-
dorff error measure and arbitrary curves for the Fréchet error measure.
We present experimental results demonstrating that our algorithms are
simple and fast, and produce close to optimal simplifications in practice.

1 Introduction

Given a polygonal curve, the curve simplification problem is to compute an-
other polygonal curve that approximates the original curve, according to some
predefined error criterion, and whose complexity is as small as possible. Curve
simplification has useful applications in various fields, including geographic in-
formation systems (GIS), computer vision, graphics, image processing, and data
compression. The massive amounts of data available from various sources make
efficient processing of this data a challenging task. One of the major applications
of this data is for cartographic purposes, where the information has to be visu-
alized and presented as a simple and easily readable map. Since the information
is too dense, the maps are usually simplified. To this end, curve simplification
is used to simplify the representation of rivers, roads, coastlines, and other fea-
tures when a map at large scale is produced. There are many advantages of the

* Research by the first, the third and the fourth authors is supported by NSF grants
ITR-333-1050, ETA-98-70724, ETA-01-31905, CCR-97-32787, and CCR-00-86013. Re-
search by second author is partially supported by a NSF CAREER award CCR-
0132901.

simplification process, such as removing unnecessary cluttering due to excessive
detail, saving disk and memory space, and reducing the rendering time.

1.1 Problem definition

Let P = (pi,...,pn) denote a polygonal curve in R?> or R?, where n is the size
of P. A curve P in R? is z-monotone if the z-coordinates of p; are increasing. A
curve P € R? is zy-monotone if both the z-coordinates and y-coordinates of p;
are increasing. A curve is monotone if there exists a coordinate system for which
it is z-monotone (or zy-monotone). A polygonal curve P' = (p; ,...,p;,) C P
simplifies Pif 1 =iy < --- < iy = n.

Let d(-,-) denote a distance function between points. In this paper we use
Ly, Ly, Ly, and uniform metrics to measure the distance between two points.
Uniform metric is defined in R? as follows: For two points a = (ag,a,),b =
(bgyby) in R%, d(a,b) is |ay, — by| if a; = b, and oo otherwise. The distance
between a point p and a segment e is defined as d(p, e) = minge, d(p, q).

Let dar(pip;, P) denote the error of a segment p;p; under error measure M.
M can be either Hausdorff (H) or Fréchet (F) error measure and will be defined
formally in Section 1.3. The error of simplification P’ = (p;,,...,p;,) of P is
defined as

om(P',P) = pax. O (Pi; Pij i P)-
Call P an e-simplification of P if §p;(P', P) < e. The curve-simplification prob-
lem is to compute the smallest size e-simplification of P, with its size denoted as
ka(e, P). dp(e, P) and kpr(e, P) will be denoted as dpr(e) and xpr(g) respec-
tively when P is clear from the context.

If we remove the constraint that the vertices of P’ are a subset of the vertices
of P, then P’ is called a weak e-simplification of P.

1.2 Previous results

The problem of approximating a polygonal curve has been studied extensively
during the last two decades, both for computing an e-simplification and a weak
e-simplification (see [Wei97] for a survey). Imai and Iri [II88] formulated this
simplification problem as computing a shortest path between two nodes in a
directed acyclic graph. Under the Hausdorff measure with uniform metric, their
algorithm runs in O(n?logn) time. Chin and Chan [CC92], and Melkman and
O’Rourke [MOS88] improve the running time of their algorithm to quadratic or
near quadratic. Agarwal and Varadarajan [AV00] improve the running time to
O(n*/3%9) for L, and uniform metric, for 6 > 0, by implicitly representing the
underlying graph.

Curve simplification using the Fréchet error measure was first proposed by
Godau [God91], who showed that k() is smaller than the size of the optimal
weak e/7-simplification. Alt and Godau [AG95] also proposed the first algorithm
to compute Fréchet distance between two polygonal curves in R? in time O(mn),
where m and n are the complexity of the two curves.

Since the problem of developing a near-linear time algorithm for computing
an optimal e-simplification remains elusive, several heuristics have been pro-
posed over the years. The most widely used heuristic is the Douglas-Peucker
method [DP73] (together with its variants), originally proposed for simplify-
ing curves under the Hausdorff error measure. Its worst case running time is
O(n?) in RZ. In R?, the running time was improved to O(n logn) by Snoeyink et
al. [HS94]. However, the Douglas-Peucker heuristic does not offer any guarantee
on the size of the simplified curve.

The second class of simplification algorithms compute a weak e-simplification
of the polygonal curve P. Imai and Iri [II86] give an optimal O(n) time algorithm
for finding an optimal weak e-simplification of a given monotone curve under
Hausdorff error measure. For weak e-simplification of curves in R? under Fréchet
distance, Guibas et al. [GHMS93] proposed a factor 2 approximation algorithm
with O(nlogn) running time, and an O(n?) exact algorithm using dynamic
programming.

1.3 Our results

In this paper, we study the curve-simplification problem under both the Fréchet
and Hausdorff error measures. We present simple near-linear time algorithms for
computing an e-simplification of size at most «(e/c), where ¢ > 1 is a constant.
In particular, our contributions are:

Hausdorff Error Measure. Define the Hausdorff error of a line segment p;p;
w.r.t. P, where p;,p; € P, < j, to be

du(pivj, P) = Jnax d(pr, pipj)

We prove the following theorem in Section 2.

Theorem 1. Given a monotone polygonal curve P and a parameter € > 0, one
can compute an €-simplification with size at most kg (e/2, P) in:

(i) O(n) time and space, under the Ly, Ly, Lo or uniform metrics in R? ;
(ii) O(nlogn) time and O(n) space, under Ly or Lo, metrics in R3.

We have implemented the algorithm in R? and present experimental results.

Fréchet Error Measure. Given two curves f : [a,a'] — R?, and g : [b,b'] —
R?, the Fréchet distance Fp(f,g) between them is defined as:,

Fo(f,9) = inf max d(f(a(t)),g(5(1)))
a:[0,1] = [a,a] tE0:1]
f:[0,1] = [b,0']

where a and § range over continuous and increasing functions with «(0) =
a,a(l) = a',3(0) = b and B(1) = b'. The Fréchet error of a line segment p;p;
where p;,p; € P, i < j, is defined to be

Or(pipj, P) = Fo(n(pi,pi), piPj),

where 7(p,q) denotes the subcurve of P from p to q. We prove the following
result in Section 3:

Theorem 2. Given a polygonal curve P in R¢ and a parameter € > 0, an e-
simplification of P with size at most kp(e/2, P) can be constructed in O(nlogn)
time and O(n) space.

The algorithm is independent of any monotonicity properties. To our knowl-
edge, it is the first efficient, simple approximation algorithm for curve simplifica-
tion in dimension higher than two under the Fréchet error measure. We provide
experimental results for polygonal chains in R*® to demonstrate the efficiency
and quality of our approximation algorithm.

Relations between simplifications. We further analyze the relations between
simplification under Hausdorff and Fréchet error measures, and Fréchet and
weak Fréchet e-simplification in Section 4.

2 Hausdorff simplification

Let P = (p1,...,ps) be a monotone polygonal curve in R? or R3. For a given
distance function d(-,-), let D(p,r) = {q | (p,q) < r} be the disk of radius r cen-
tered at p. Let D; denote D(p;, e). Then pibj is a valid segment, i.e. 6 (pip;) <€,
if and only if p;p; intersects D;y1,...,D;_1 in order. We now define a general
problem, and use it to compute e-simplification of polygonal curves under dif-

ferent distance metrics.

2.1 Segment cover

Let E = (e, e2,...,en) be a sequence of segments. E is called an e-segment
cover of P if there exists a subsequence of vertices p;, = p1,Piss -+ Pimyr = Pns
iy < @2 < ... < imq1, such that e; intersects Dy, Dj 41, ..., D;,, in order,
and the endpoints of e; lie in D;; and D;,,, respectively. An e-segment cover is
optimal if its size is minimum among all e-segment covers. The following lemma
is straightforward.

Lemma 1. Let u.(P) denote the size of an optimal e-segment cover. For a
monotone curve P, u.(P) < kg(e, P).

Lemma 2. Let E = (e1,e2,...,6e,) be an €/2-segment cover of size m of a
monotone polygonal curve P. Then an e-simplification of size at most m can be
computed in O(m) time.

PROOF. By the definition of an £/2-segment cover, there exists a subsequence
of vertices pi, = p1,Diy,-++,Pi,y1 = Pn such that e; intersects D(p;;,c/2),
D(pi;+1,€/2), ..., D(pi;,,,€/2), and the endpoints of e; lie in D(p;;,e/2) and
D(pi;,,,e/2). See Figure 1 for an example of an optimal e-segment cover under
uniform metric. Define the polygonal curve P’ = (p;, = p1,.--,PipsPimsr = Pn)-

Using the triangle inequality one can easily verify that the segment p;, p;, ,, inter-
sects all the disks D(p;;,€), D(pi;+1,€),- - -, D(pi;,.,€) in order. Hence p;;p;;,,
is a valid segment. Therefore, the polygonal curve P’ is an e-simplification of P,
and it can be constructed in O(m) time.

2.2 An approximation algorithm

In this section, we present near-linear approximation algorithms for computing
an e-simplification of a monotone polygonal curve P in R? and R® under the
Hausdorff error measure.

Algorithm. The approximation algorithm to compute an e-simplification for
a monotone curve P, denoted HausdorffSimp, in fact computes an optimal £/2-
segment cover of P. It then follows from Lemma 2 that the vertex set of an
optimal £/2-segment cover also forms an e-simplification P’ of P. The size of P’
is at most kp(e/2, P) by Lemma 1.

Fig. 1. Covering the vertical segments of length 2¢ with maximal set of stabbing lines.

An ordered set of disks D has a line transversal if there exists a line inter-
secting all the disks D; € D in order. We use the greedy method of Guibas
et al. [GHMS93] to compute an optimal e-segment cover: start with the set
D = (D,). Now iteratively add each disk Dy, k = 2,3, ... to D. If there does not
exist a line transversal for D after adding disk Dy, then add the vertex p;; = px
to our segment-cover, set D = (J, and continue. Let S = (p;,,...,p;,,) be the
polygonal curve computed by algorithm HausdorffSimp. Clearly, the segments
C(S) = (e; = pi;pi; 11,5 = 1,...,(m — 1)) form a £/2-segment cover. It can be
shown that the resulting set C(S) computed is an optimal €/2-cover.

Analysis. Given a set of ¢ disks D = (D4, ..., D;), it takes linear time to
compute a line that stabs D in order in R? under L;, Ls, Loo, and uniform
metrics [Ame92, GHMS93]. The algorithm is incremental, and we can use a data
structure so that it only takes constant time to update the data structure while
adding a new disk. Thus our greedy approach uses O(n) time and space overall in
R?. In R?, the line transversal under L; and L., metrics can be computed in O (i)
time using linear programming, and one needs to update it efficiently when a new
disk is added. (Of course, we can use techniques for dynamic linear programming
[Ram00], but we describe a faster and simpler approach.) Therefore, we use an
exponential-binary search method using the linear programming algorithm as a

Points along o Sine curve . Douglas-Peucker vs. HausdorffSimp
e = 0.6|Approx. DP '4 | I I I I I I I Doﬁghﬁgg‘sﬁfﬁ:T _
100 28 29
200 48 58| %) T
500 148 120 ¢ s} 1
1000| 284 247| 3 55l l
20000 552) 459 £ |]
5000/ 1336| 1073| £
10000| 2700| 2173 & Mf T
20000| 5360 4391 L y
40000, 10720 9237 s}]
100000 26800] 22095 L™

0 50000 100000 150000 200000 250000 300000 350000 400000 450000 500000
Input size

(a)

Fig. 2. (a) Sizes of e-simplifications computed by Hausdorf£Simp and Douglas-Peucker,
(b) comparing running times of Hausdorf£Simp and Douglas-Peucker for € = 0.6.

black-box, and obtain an O(n logn) running time. The exponential-binary search
method will be described in more detail in the next section. Putting everything
together proves Theorem 1.

Remark. It can be shown that for monotone curves, the size of the Hausdorff
simplification is in fact equal to the size of the Fréchet simplification. In the
next section, we extend this approach (with an extra logarithmic overhead) to
work for simplifying arbitrary curves under the Fréchet error measure.

2.3 Experiments

In this section, we compare the results of our approximation algorithm for
curve simplification under the Hausdorff error measure with the Douglas-Peucker
heuristic. For our experiments, there are two input parameters — the size of the
input polygonal curve, and the error threshold e for simplification. Similarly,
there are two output parameters — the size of the simplified curve for a partic-
ular €, and the time for the simplification algorithm. All our experiments were
run on a Sun Blade-100 machine running SunOS 5.8 with 256MB RAM.

We implemented algorithm HausdorffSimp for planar z-monotone curves
under uniform metric. We compare HausdorffSimp with Douglas-Peucker on
inputs that are most favorable for Douglas-Peucker, where the curve is al-
ways partitioned at the middle vertex, and then recursively simplified. Fig-
ure 2(b) compares the running time of the two algorithms, where the curve
consists of point sets of varying sizes sampled from a sinusoidal curve. As ex-
pected, HausdorffSimp exhibits empirically linear running time, outperforming

the Douglas-Peucker heuristic. Figure 2(a) shows the sizes of e-simplifications
produced when € = 0.6, and the curves again consist of points sampled from a
sinusoidal curve.

3 Fréchet simplification

We now present algorithms for simplification under the Fréchet error measure. It
is easy to verify that dp(¢) can be computed exactly in O(n?) time following the
approach of Imai and Iri [II88]. Therefore we focus on approximation algorithms
below.

Lemma 3. Given two directed segments uv and xy in R?,
.7:D(’U/U, :vy) = max{d(u, .’17), d(’l}, y)}a

where d(-,-) represents the L1, Lo or Lo, norm.

PROOF. Let § denote the maximum of d(u, z) and d(v, y). Note that Fp (uv, zy) >
0, since u (resp. v) has to be matched to x (resp. y). Assume the natural pa-
rameterization for segment uwv, A(t) : [0,1] = wv, such that A(t) = u+t(v — u).
Similarly, define B(t) : [0,1] — xy for segment zy, such that B(t) = x +t(y — z).
For any two matched points A(t) and B(t), let C(t) = A(t) — B(t) = (1 —t)(u —
z) + t(v — y). Since C(t) is a convex function, ||C(¢)|| < § for any ¢ € [0,1].
Therefore Fp(uv, zy) < 0.

Lemma 4. Given a polygonal curve P and two directed line segments uv and

zy,
| Fp(P,uv) — Fp (P, zy) |< Fp(uv, zy).

Lemma 5. Let P = (p1,p2,...,pn) be a polygonal curve. Forl < i < j <m,
6r(pipj, P) < 2 6p(pipm, P).

Proor. Let 6* = dp(pipm). Suppose under the optimal matching between
7(p1, pm) and pipm, p; and p; are matched to p; and p; € pipn, respectively
(see Figure 3 for an illustration). Then obviously, Fp (7 (pi,p;), pip;) < 6*. In
particular, we have that d(p;,p;) < 0%, and d(p;,p;) < §*. Now by Lemma 3,
Fo(pipj, pip;) < 6*. It then follows from Lemma 4 that

dr(pipj) = Fo(m(pi,p;),pipj) < Fo(m(pi,pj), pip;) +0* < 20™.

3.1 An O(nlogn) Algorithm

The algorithm (denoted FrechetSimp) will compute an e-simplification P’ of P
in a greedy manner: set the initial simplification as P' = (p;, = p1), and itera-
tively add vertices to P’ as follows. Assume P’ = (p;,,...,p;;). The algorithm
finds an index k > i; such that (i) 67 (pi;,pr) < € and (i4) 6F(pi;, Prt1) > €. Set
ij+1 = k, and repeat the above procedure till the last vertex of P.

Fig. 3. Bold dashed curve is w(p;, pm), pi and p; are matched to p; and p; respectively.

Lemma 6. FrechetSimp computes P' such that dp(P',P) < ¢, and |P'| <
EF(S/Q).

PROOF. It is clear that the algorithm computes a curve that is an e-simplification
of P. It remains to show that the size of the curve P’ is bounded by kr(e/2).

Let @ = (pj, = p1,...,Pj, = Pn) be the optimal e/2-simplification of P,
where 1 < j,, < nfor1 <m <I[. Let P = (p;, = p1,...,Pi, = Pn), Where
1<ip, <nforl<m<k.

The proof proceeds by induction. The following invariant will always be true:
im > Jjm, for all m. This implies that k <, and therefore k < kp(e/2).

Assume iy,—1 > Jm—1- Let i’ = i, + 1. Then note that 0r(p;,,_,,pir) > €,
and 6p(p;,,_,,py—1) < € By the inductive step, i’ > jpu—1. If i’ > j,,, we are
done. So assume i’ < j,,. Since @Q is an e/2-simplification, 6r(pj,, ,pj..) < /2.
Lemma 5 implies that for all j,,—1 < @1 < j' < jm, 0r(pi,,_,pjr) < €. But
since 0 (pi,, _,,Pir) > €, &' > jm and hence ., > j,.

After computing vertex p;, € P’, find the next vertex p;,,,, as follows:
let b, be a bit that is one if dp(p;,,i,.+p) > € and zero otherwise. b, can be
computed in O(p) time by the algorithm proposed in [AG95]. Recall our goal:
finding two consecutive bits ba and ba4; such that bp = 0 and bayy = 1.
Clearly, then the index of the next vertex is iy,,+1 =i + A. A can be computed
by performing an exponential search, followed by a binary search. First find
the smallest j such that by; = 1 by computing the bits by;r, j' < j. The total
time can be shown to be O(iy+1 — im). Next, use binary search to find two
consecutive bits in the range byj-1,...,by;. Note that this is not strictly a binary
search, as the bits which are ones are not necessarily consecutive. Nevertheless,
it is easy to verify that the same divide and conquer approach works. This
requires computing O(j — 1) = O(log(im+1 — im)) bits in this range, and it takes
O(im+1 — im) time to compute each of them. Therefore computing p;,,,, takes
O((im41 — im) 10g(im+1 — im)) time. Summing over all i;’s yields the running
time of O(nlogn), proving Theorem 2.

3.2 Experiments

We now present experiments comparing our O(nlogn) algorithm FrechetSimp
with () the optimal O(n?) time Fréchet simplification algorithm for quality; and

Curve 1 Curve 2 Curve 8
Size: 327 1998 9777

e |Aprz.|Ezact|Aprz.|Ezact|Aprz.| Ezact
0.05| 327 327| 201| 201| 6786| 6431
0.08| 327| 327| 168| 168| 4277 3197
0.12| 327 327| 134| 134| 1537| 651
1.20| 254 249 42 42| 178| 168
1.60| 220{ 214 36 36| 140 132
2.00| 134 124 32 32| 115 88

Table 1. Comparing the size of simplifications produced by FrechetSimp with the
optimal algorithm.

(i7) with the Douglas-Peucker algorithm under Hausdorff error measure (with Lo
metric) to demonstrate its efficiency. Our experiments were run a Sun Blade-100
machine with 256 RAM.

Recall that the O(n?) running time of the optimal algorithm is independent
of the input curve, or the error measure ¢ — it is always 2(n3). Therefore,
it is orders of magnitude slower than the approximation algorithm, and so we
omit its empirical running time. We focus on comparing the quality (size) of
simplifications produced by FrechetSimp and the optimal Fréchet simplification
algorithm. The results are presented in Table 1. Curve 1 is a protein backbone,
Curve 2 is a set of points forming a circle, and Curve 3 is a protein backbone
with some artificial noise. As seen from Table 1, the size of the simplifications
produced by our approximation algorithm is always close to the optimal sized
simplification.

We compare the efficiency of FrechetSimp with the Douglas-Peucker heuris-
tic. Figure 4 compares the running time of our approximation algorithm with
Douglas-Peucker for a protein backbone (with artificial noise added) with 49633
vertices. One can make an interesting observation: as e decreases, Douglas-
Peucker’s performance decreases. However, as € decreases, the performance of
our approximation algorithms increases or remains nearly the same. This is due
to the fact that Douglas-Peucker tries to find a line segment that simplifies a
curve, and recurses into subproblems only if that fails. Thus, as € decreases,
it needs to make more recursive calls. Our approximation algorithm, however,
proceeds in a linear fashion from the first vertex to the last vertex, and hence it
is more stable towards changes in €.

4 Comparisons

In this section, we compare the output under two different error measures, and
we relate two different Fréchet simplifications.

Hausdorff vs. Fréchet . One natural question is to compare the quality of
simplifications produced under the Hausdorff and the Fréchet error measures.

Douglas-Peucker vs. FrechetSimp
55 T T T T T T

I Dougleé-Peuckerl—»f
5 FrechetSimp ---x--- 4

451 .

Running time (secs)

Fig. 4. Comparing running times of FrechetSimp and Douglas-Peucker for varying ¢
for a curve with 49633 vertices.

(a) (b) (c)

Fig.5. (a) Polygonal chain composed of three alpha-helices, (b) its Fréchet e-
simplification and (c) its Douglas-Peucker Hausdorff e-simplification.

Given a curve P = (p1,...,pn), it is not too hard to show that 0m(pip;) <
0r(pipj). The converse however does not hold.

The Fréchet error measure takes the order along the curve into account, and
hence is more useful in some cases especially when the order of the curve is
important (such as curves derived from protein backbones). Figure 5 illustrates
a substructure of a protein backbone, where e-simplifying under Fréchet error
measure preserves the overall structure, while e-simplifying under Hausdorff er-
ror measure is unable to preserve it.

Weak Fréchet vs. Fréchet . In the previous section we described a fast
approximation algorithm for computing an e-simplification of P under Fréchet
error measure, where we used the Fréchet measure in a local manner: we restrict
the curve (p;,...,p;) to match to the line segment p;p;. We can remove this
restriction to make the measure more global by instead looking at the weak
Fréchet e-simplification. More precisely, given P and S = (s1, S2,. .., Sn), where
it is not necessary that s; € P, S is a weak e-simplification under Fréchet error

Fig.6. In (a), v and v are the points that s; and s;11 are mapped to in the optimal
matching between P and S. In (b), j; = k and j;+1 = m.

measure if Fp(P,S) < e. The following lemma shows that the size of the optimal
Fréchet simplification can be bounded by the size of the optimal weak Fréchet
simplification:

Lemma 7. Given a polygonal curve P, let kr(g) denote the size of the minimum
weak e-simplification of P. Then

kp(e) < kr(e/4)

PRrROOF. Assume S = (sq,...,s;) is an optimal weak ¢/4-simplification of P, i.e.,
Fp(S,P) < /4. For any edge s;s;11, let u € pgpry1 and v € pypm+t1 denote
the points on P that s; and s;y1 are mapped to respectively in the optimal
matching between P and S. See Figure 6 (a) for an illustration. Let p;, (resp.
Dji4.) denotes the endpoint of pypr41 (resp. pmpm+1) that is closer to u (resp. v).
In other words, ||pj; — ull < 1/2||pr+1 — psll, and ||pji,, — vl < 1/2{[pptr — -
Set P' = (pj, = p1,...,Pj, = Pn). It is easy to verify that j; < j, for any
1<i<r<it.

It remains to show that P’ as constructed above is indeed an e-simplification
of P. Fp(m(u,v),uv) < e/2 follows from Fp (7 (u, v), s;si+1) < £/4 and Lemma 4.
Let [denote the line containing segment uv. We construct a segment u'v’ C [
such that Fp(7(pj;,pji..), u'v") < /2. We describe how to compute u', and v’
can be computed similarly. Let p € uv denote the point that pyy; is mapped to
in the optimal matching between 7(u,v) and wv. If j; = k+1, i.e. pj, is the right
endpoint of edge pgpr+1, then set v’ = p. Otherwise, u' is the point on [such that
pru' is parallel to pyy1p. See Figure 6 (b) for an illustration. Note that in both
cases, ||p;, —u'|| < €/2, (resp. ||pj;,, —v'|| < €/2) which together with Lemma, 3
implies that Fp(u'v’,pj;pj,.,) < €/2. On the other hand, the original optimal
matching between uv and 7(u,v) can be modified into a matching between u'v’
and 7(pj;,pj;4,) such that Fp(u'v',7(pj;,pjiy,)) < €/2 (proof omitted due to
lack of space). It then follows from Lemma 4 that Fp(7(pj;, Pjiy1), PjiPjis.) < €
fori =1...t, implying that ép(P’,P) < e.

References

[AG95]

[Ame92]

[AV00]

[CC92]

[DP73]

H. Alt and M. Godeau. Computing the frechet distance between two polygo-
nal curves. International Journal of Computational Geometry, pages 75-91,
1995.

N. Amenta. Finding a line transversal of axial objects in three dimensions.
In Proc. 8rd ACM-SIAM Symposium on Discrete Algorithms, pages 6671,
1992.

P.K. Agarwal and K. R. Varadarajan. Efficient algorithms for approximat-
ing polygonal chains. Discrete Comput. Geom., 23:273-291, 2000.

W. S. Chan and F. Chin. Approximation of polygonal curves with minimum
number of line segments. In Proc. 3rd Annual International Symposium on
Algorithms and Computation, pages 378-387, 1992.

D. H. Douglas and T. K. Peucker. Algorithms for the reduction of the
number of points required to represent a digitized line or its caricature.
Canadian Cartographer, 10(2):112-122, 1973.

[GHMS93] L. J. Guibas, J. E. Hershberger, J. B. Mitchell, and J.S. Snoeyink. Approx-

[God91]

[HS94]

[T186]

[TT88]

[MOSS]

[Ram00]

[Wei97]

imating polygons and subdivisions with minimum link paths. International
Journal of Computational Geometry and Applications, 3(4):383-415, 1993.
M. Godau. A natural metric for curves: Computing the distance for polyg-
onal chains and approximation algorithms. In Proc. of the 8th Annual Sym-
posium on Theoretical Aspects of Computer Science, pages 127-136, 1991.
J. Hershberger and J. Snoeyink. An O(nlogn) implementation of the
Douglas-Peucker algorithm for line simplification. In Proc. 10th Annual
ACM Symposium on Computational Geometry, pages 383—384, 1994.

H. Imai and M. Iri. An optimal algorithm for approximating a piecewise
linear function. Information Processing Letters, 9(3):159-162, 1986.

H. Imai and M. Iri. Polygonal approximations of a curve-formulations and
algorithms. In G. T. Toussaint, editor, Computational Morphology, pages
71-86. North-Holland, Amsterdam, Netherlands, 1988.

A. Melkman and J. O’'Rourke. On polygonal chain approximation. In G. T.
Toussaint, editor, Computational Morphology, pages 87-95. North-Holland,
Amsterdam, Netherlands, 1988.

E.A. Ramos. Linear optimization queries revisited. In Proc. 16th Annual
ACM Symposium on Computational Geometry, pages 176-181, 2000.
Robert Weibel. Generalization of spatial data: principles and selected al-
gorithms. In Marc van Kreveld, Jirg Nievergelt, Thomas Roos, and Pe-
ter Widmayer, editors, Algorithmic Foundations of Geographic Information
System. Springer-Verlag Berlin Heidelberg New York, 1997.

DP

EXACT

APPROX

e=4.0

Fig. 7. Simplifications of a protein (1cja) backbone

