Near-Linear Time Approximation Algorithms for Curve Simplification *

Pankaj K. Agarwal¹, Sariel Har-Peled², Nabil H. Mustafa¹, and Yusu Wang¹

Department of Computer Science,
 Duke University, Durham, NC 27708-0129, USA.
 {pankaj, nabil, wys}@cs.duke.edu
 Department of Computer Science, DCL 2111; University of Illinois;
 1304 West Springfield Ave.; Urbana, IL 61801; USA;
 sariel@cs.uiuc.edu

Abstract. We consider the problem of approximating a polygonal curve P under a given error criterion by another polygonal curve P' whose vertices are a subset of the vertices of P. The goal is to minimize the number of vertices of P' while ensuring that the error between P' and P is below a certain threshold. We consider two fundamentally different error measures — Hausdorff and Fréchet error measures. For both error criteria, we present near-linear time approximation algorithms that, given a parameter $\varepsilon > 0$, compute a simplified polygonal curve P' whose error is less than ε and size at most the size of an optimal simplified polygonal curve with error $\varepsilon/2$. We consider monotone curves in the case of Hausdorff error measure and arbitrary curves for the Fréchet error measure. We present experimental results demonstrating that our algorithms are simple and fast, and produce close to optimal simplifications in practice.

1 Introduction

Given a polygonal curve, the curve simplification problem is to compute another polygonal curve that approximates the original curve, according to some predefined error criterion, and whose complexity is as small as possible. Curve simplification has useful applications in various fields, including geographic information systems (GIS), computer vision, graphics, image processing, and data compression. The massive amounts of data available from various sources make efficient processing of this data a challenging task. One of the major applications of this data is for cartographic purposes, where the information has to be visualized and presented as a simple and easily readable map. Since the information is too dense, the maps are usually simplified. To this end, curve simplification is used to simplify the representation of rivers, roads, coastlines, and other features when a map at large scale is produced. There are many advantages of the

^{*} Research by the first, the third and the fourth authors is supported by NSF grants ITR-333-1050, EIA-98-70724, EIA-01-31905, CCR-97-32787, and CCR-00-86013. Research by second author is partially supported by a NSF CAREER award CCR-0132901.

simplification process, such as removing unnecessary cluttering due to excessive detail, saving disk and memory space, and reducing the rendering time.

1.1 Problem definition

Let $P = \langle p_1, \ldots, p_n \rangle$ denote a polygonal curve in \mathbb{R}^2 or \mathbb{R}^3 , where n is the size of P. A curve P in \mathbb{R}^2 is x-monotone if the x-coordinates of p_i are increasing. A curve $P \in \mathbb{R}^3$ is xy-monotone if both the x-coordinates and y-coordinates of p_i are increasing. A curve is monotone if there exists a coordinate system for which it is x-monotone (or xy-monotone). A polygonal curve $P' = \langle p_{i_1}, \ldots, p_{i_k} \rangle \subseteq P$ simplifies P if $1 = i_1 < \cdots < i_k = n$.

Let $d(\cdot, \cdot)$ denote a distance function between points. In this paper we use L_1, L_2, L_∞ , and uniform metrics to measure the distance between two points. Uniform metric is defined in \mathbb{R}^2 as follows: For two points $a = (a_x, a_y), b = (b_x, b_y)$ in \mathbb{R}^2 , d(a, b) is $|a_y - b_y|$ if $a_x = b_x$ and ∞ otherwise. The distance between a point p and a segment p is defined as $d(p, e) = \min_{q \in e} d(p, q)$.

Let $\delta_M(p_ip_j, P)$ denote the error of a segment p_ip_j under error measure M. M can be either Hausdorff (H) or Fréchet (F) error measure and will be defined formally in Section 1.3. The error of simplification $P' = \langle p_{i_1}, \ldots, p_{i_k} \rangle$ of P is defined as

$$\delta_M(P', P) = \max_{1 \le j \le k} \delta_M(p_{i_j} p_{i_{j+1}}, P).$$

Call P' an ε -simplification of P if $\delta_M(P',P) \leq \varepsilon$. The curve-simplification problem is to compute the smallest size ε -simplification of P, with its size denoted as $\kappa_M(\varepsilon,P)$. $\delta_M(\varepsilon,P)$ and $\kappa_M(\varepsilon,P)$ will be denoted as $\delta_M(\varepsilon)$ and $\kappa_M(\varepsilon)$ respectively when P is clear from the context.

If we remove the constraint that the vertices of P' are a subset of the vertices of P, then P' is called a weak ε -simplification of P.

1.2 Previous results

The problem of approximating a polygonal curve has been studied extensively during the last two decades, both for computing an ε -simplification and a weak ε -simplification (see [Wei97] for a survey). Imai and Iri [II88] formulated this simplification problem as computing a shortest path between two nodes in a directed acyclic graph. Under the Hausdorff measure with uniform metric, their algorithm runs in $O(n^2 \log n)$ time. Chin and Chan [CC92], and Melkman and O'Rourke [MO88] improve the running time of their algorithm to quadratic or near quadratic. Agarwal and Varadarajan [AV00] improve the running time to $O(n^{4/3+\delta})$ for L_1 and uniform metric, for $\delta > 0$, by implicitly representing the underlying graph.

Curve simplification using the Fréchet error measure was first proposed by Godau [God91], who showed that $\kappa_F(\varepsilon)$ is smaller than the size of the optimal weak $\varepsilon/7$ -simplification. Alt and Godau [AG95] also proposed the first algorithm to compute Fréchet distance between two polygonal curves in \mathbb{R}^d in time O(mn), where m and n are the complexity of the two curves.

Since the problem of developing a near-linear time algorithm for computing an optimal ε -simplification remains elusive, several heuristics have been proposed over the years. The most widely used heuristic is the Douglas-Peucker method [DP73] (together with its variants), originally proposed for simplifying curves under the Hausdorff error measure. Its worst case running time is $O(n^2)$ in \mathbb{R}^d . In \mathbb{R}^2 , the running time was improved to $O(n \log n)$ by Snoeyink et al. [HS94]. However, the Douglas-Peucker heuristic does not offer any guarantee on the size of the simplified curve.

The second class of simplification algorithms compute a weak ε -simplification of the polygonal curve P. Imai and Iri [II86] give an optimal O(n) time algorithm for finding an optimal weak ε -simplification of a given monotone curve under Hausdorff error measure. For weak ε -simplification of curves in \mathbb{R}^2 under Fréchet distance, Guibas et al. [GHMS93] proposed a factor 2 approximation algorithm with $O(n \log n)$ running time, and an $O(n^2)$ exact algorithm using dynamic programming.

1.3Our results

In this paper, we study the curve-simplification problem under both the Fréchet and Hausdorff error measures. We present simple near-linear time algorithms for computing an ε -simplification of size at most $\kappa(\varepsilon/c)$, where c > 1 is a constant. In particular, our contributions are:

Hausdorff Error Measure. Define the Hausdorff error of a line segment $p_i p_j$ w.r.t. P, where $p_i, p_j \in P$, i < j, to be

$$\delta_H(p_i p_j, P) = \max_{i \le k \le j} d(p_k, p_i p_j)$$

We prove the following theorem in Section 2

Theorem 1. Given a monotone polygonal curve P and a parameter $\varepsilon > 0$, one can compute an ε -simplification with size at most $\kappa_H(\varepsilon/2, P)$ in:

- (i) O(n) time and space, under the L_1, L_2, L_∞ or uniform metrics in \mathbb{R}^2 ; (ii) $O(n \log n)$ time and O(n) space, under L_1 or L_∞ metrics in \mathbb{R}^3 .

We have implemented the algorithm in \mathbb{R}^2 and present experimental results.

Fréchet Error Measure. Given two curves $f:[a,a']\to\mathbb{R}^d$, and $g:[b,b']\to$ \mathbb{R}^d , the Fréchet distance $\mathcal{F}_{D}(f,g)$ between them is defined as:,

$$\mathcal{F}_{\mathrm{D}}(f,g) = \inf_{ \begin{subarray}{c} \alpha: [0,1] \rightarrow [a,a'] \\ \beta: [0,1] \rightarrow [b,b'] \end{subarray}} \max_{t \in [0,1]} d(f(\alpha(t)),g(\beta(t)))$$

where α and β range over continuous and increasing functions with $\alpha(0)$ $a, \alpha(1) = a', \beta(0) = b$ and $\beta(1) = b'$. The Fréchet error of a line segment $p_i p_j$ where $p_i, p_i \in P$, i < j, is defined to be

$$\delta_F(p_i p_j, P) = \mathcal{F}_D(\pi(p_i, p_j), p_i p_j),$$

where $\pi(p,q)$ denotes the subcurve of P from p to q. We prove the following result in Section 3:

Theorem 2. Given a polygonal curve P in \mathbb{R}^d and a parameter $\varepsilon \geq 0$, an ε -simplification of P with size at most $\kappa_F(\varepsilon/2, P)$ can be constructed in $O(n \log n)$ time and O(n) space.

The algorithm is independent of any monotonicity properties. To our knowledge, it is the first efficient, simple approximation algorithm for curve simplification in dimension higher than two under the Fréchet error measure. We provide experimental results for polygonal chains in \mathbb{R}^3 to demonstrate the efficiency and quality of our approximation algorithm.

Relations between simplifications. We further analyze the relations between simplification under Hausdorff and Fréchet error measures, and Fréchet and weak Fréchet ε -simplification in Section 4.

2 Hausdorff simplification

Let $P = \langle p_1, \ldots, p_n \rangle$ be a monotone polygonal curve in \mathbb{R}^2 or \mathbb{R}^3 . For a given distance function $d(\cdot, \cdot)$, let $D(p, r) = \{q \mid (p, q) \leq r\}$ be the disk of radius r centered at p. Let D_i denote $D(p_i, \varepsilon)$. Then $p_i p_j$ is a valid segment, i.e. $\delta_H(p_i p_j) \leq \varepsilon$, if and only if $p_i p_j$ intersects D_{i+1}, \ldots, D_{j-1} in order. We now define a general problem, and use it to compute ε -simplification of polygonal curves under different distance metrics.

2.1 Segment cover

Let $E = \langle e_1, e_2, \dots, e_m \rangle$ be a sequence of segments. E is called an ε -segment cover of P if there exists a subsequence of vertices $p_{i_1} = p_1, p_{i_2}, \dots, p_{i_{m+1}} = p_n,$ $i_1 < i_2 < \dots < i_{m+1}$, such that e_j intersects $D_{i_j}, D_{i_j+1}, \dots, D_{i_{j+1}}$ in order, and the endpoints of e_j lie in D_{i_j} and $D_{i_{j+1}}$ respectively. An ε -segment cover is optimal if its size is minimum among all ε -segment covers. The following lemma is straightforward.

Lemma 1. Let $\mu_{\varepsilon}(P)$ denote the size of an optimal ε -segment cover. For a monotone curve P, $\mu_{\varepsilon}(P) \leq \kappa_H(\varepsilon, P)$.

Lemma 2. Let $E = \langle e_1, e_2, \ldots, e_m \rangle$ be an $\varepsilon/2$ -segment cover of size m of a monotone polygonal curve P. Then an ε -simplification of size at most m can be computed in O(m) time.

PROOF. By the definition of an $\varepsilon/2$ -segment cover, there exists a subsequence of vertices $p_{i_1} = p_1, p_{i_2}, \ldots, p_{i_{m+1}} = p_n$ such that e_j intersects $D(p_{i_j}, \varepsilon/2)$, $D(p_{i_j+1}, \varepsilon/2), \ldots, D(p_{i_{j+1}}, \varepsilon/2)$, and the endpoints of e_j lie in $D(p_{i_j}, \varepsilon/2)$ and $D(p_{i_{j+1}}, \varepsilon/2)$. See Figure 1 for an example of an optimal ε -segment cover under uniform metric. Define the polygonal curve $P' = \langle p_{i_1} = p_1, \ldots, p_{i_m}, p_{i_{m+1}} = p_n \rangle$.

Using the triangle inequality one can easily verify that the segment $p_{i_j}p_{i_{j+1}}$ intersects all the disks $D(p_{i_j},\varepsilon), D(p_{i_j+1},\varepsilon), \ldots, D(p_{i_{j+1}},\varepsilon)$ in order. Hence $p_{i_j}p_{i_{j+1}}$ is a valid segment. Therefore, the polygonal curve P' is an ε -simplification of P, and it can be constructed in O(m) time.

2.2 An approximation algorithm

In this section, we present near-linear approximation algorithms for computing an ε -simplification of a monotone polygonal curve P in \mathbb{R}^2 and \mathbb{R}^3 under the Hausdorff error measure.

Algorithm. The approximation algorithm to compute an ε -simplification for a monotone curve P, denoted HausdorffSimp, in fact computes an optimal $\varepsilon/2$ -segment cover of P. It then follows from Lemma 2 that the vertex set of an optimal $\varepsilon/2$ -segment cover also forms an ε -simplification P' of P. The size of P' is at most $\kappa_H(\varepsilon/2, P)$ by Lemma 1.

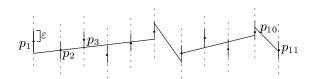


Fig. 1. Covering the vertical segments of length 2ε with maximal set of stabbing lines.

An ordered set of disks \mathcal{D} has a line transversal if there exists a line intersecting all the disks $D_i \in \mathcal{D}$ in order. We use the greedy method of Guibas $et\ al.\ [\text{GHMS93}]$ to compute an optimal ε -segment cover: start with the set $\mathcal{D} = \langle D_1 \rangle$. Now iteratively add each disk D_k , $k=2,3,\ldots$ to \mathcal{D} . If there does not exist a line transversal for \mathcal{D} after adding disk D_k , then add the vertex $p_{i_1} = p_k$ to our segment-cover, set $\mathcal{D} = \emptyset$, and continue. Let $S = \langle p_{i_1}, \ldots, p_{i_m} \rangle$ be the polygonal curve computed by algorithm HausdorffSimp. Clearly, the segments $\mathcal{C}(S) = \langle e_j = p_{i_j} p_{i_{j+1}}, j = 1, \ldots, (m-1) \rangle$ form a $\varepsilon/2$ -segment cover. It can be shown that the resulting set $\mathcal{C}(S)$ computed is an optimal $\varepsilon/2$ -cover.

Analysis. Given a set of i disks $\mathcal{D} = \langle D_1, \ldots, D_i \rangle$, it takes linear time to compute a line that stabs \mathcal{D} in order in \mathbb{R}^2 under $L_1, L_2, L\infty$, and uniform metrics [Ame92,GHMS93]. The algorithm is incremental, and we can use a data structure so that it only takes constant time to update the data structure while adding a new disk. Thus our greedy approach uses O(n) time and space overall in \mathbb{R}^2 . In \mathbb{R}^3 , the line transversal under L_1 and L_∞ metrics can be computed in O(i) time using linear programming, and one needs to update it efficiently when a new disk is added. (Of course, we can use techniques for dynamic linear programming [Ram00], but we describe a faster and simpler approach.) Therefore, we use an exponential-binary search method using the linear programming algorithm as a

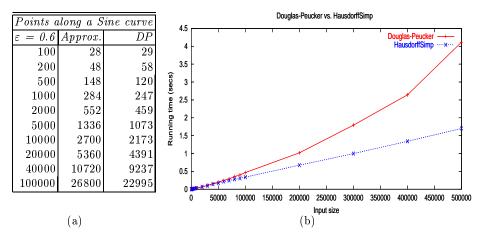


Fig. 2. (a) Sizes of ε -simplifications computed by HausdorffSimp and Douglas-Peucker, (b) comparing running times of HausdorffSimp and Douglas-Peucker for $\varepsilon = 0.6$.

black-box, and obtain an $O(n \log n)$ running time. The exponential-binary search method will be described in more detail in the next section. Putting everything together proves Theorem 1.

Remark. It can be shown that for monotone curves, the size of the Hausdorff simplification is in fact equal to the size of the Fréchet simplification. In the next section, we extend this approach (with an extra logarithmic overhead) to work for simplifying arbitrary curves under the Fréchet error measure.

2.3 Experiments

In this section, we compare the results of our approximation algorithm for curve simplification under the Hausdorff error measure with the Douglas-Peucker heuristic. For our experiments, there are two input parameters — the size of the input polygonal curve, and the error threshold ε for simplification. Similarly, there are two output parameters — the size of the simplified curve for a particular ε , and the time for the simplification algorithm. All our experiments were run on a Sun Blade-100 machine running SunOS 5.8 with 256MB RAM.

We implemented algorithm HausdorffSimp for planar x-monotone curves under uniform metric. We compare HausdorffSimp with Douglas-Peucker on inputs that are most favorable for Douglas-Peucker, where the curve is always partitioned at the middle vertex, and then recursively simplified. Figure 2(b) compares the running time of the two algorithms, where the curve consists of point sets of varying sizes sampled from a sinusoidal curve. As expected, HausdorffSimp exhibits empirically linear running time, outperforming

the Douglas-Peucker heuristic. Figure 2(a) shows the sizes of ε -simplifications produced when $\varepsilon = 0.6$, and the curves again consist of points sampled from a sinusoidal curve.

3 Fréchet simplification

We now present algorithms for simplification under the Fréchet error measure. It is easy to verify that $\delta_F(\varepsilon)$ can be computed exactly in $O(n^3)$ time following the approach of Imai and Iri [II88]. Therefore we focus on approximation algorithms below.

Lemma 3. Given two directed segments uv and xy in \mathbb{R}^d ,

$$\mathcal{F}_{D}(uv, xy) = \max\{d(u, x), d(v, y)\},\$$

where $d(\cdot,\cdot)$ represents the L_1 , L_2 or L_{∞} norm.

PROOF. Let δ denote the maximum of d(u,x) and d(v,y). Note that $\mathcal{F}_{D}(uv,xy) \geq \delta$, since u (resp. v) has to be matched to x (resp. y). Assume the natural parameterization for segment uv, $A(t):[0,1] \to uv$, such that A(t)=u+t(v-u). Similarly, define $B(t):[0,1] \to xy$ for segment xy, such that B(t)=x+t(y-x). For any two matched points A(t) and B(t), let C(t)=A(t)-B(t)=(1-t)(u-x)+t(v-y). Since C(t) is a convex function, $||C(t)|| \leq \delta$ for any $t \in [0,1]$. Therefore $\mathcal{F}_{D}(uv,xy) \leq \delta$.

Lemma 4. Given a polygonal curve P and two directed line segments uv and xy,

$$\mid \mathcal{F}_{\mathrm{D}}(P, uv) - \mathcal{F}_{\mathrm{D}}(P, xy) \mid \leq \mathcal{F}_{\mathrm{D}}(uv, xy).$$

Lemma 5. Let $P = \langle p_1, p_2, \dots, p_n \rangle$ be a polygonal curve. For $l \leq i \leq j \leq m$, $\delta_F(p_i p_j, P) \leq 2 \cdot \delta_F(p_l p_m, P)$.

PROOF. Let $\delta^* = \delta_F(p_l p_m)$. Suppose under the optimal matching between $\pi(p_l, p_m)$ and $p_l p_m$, p_i and p_j are matched to $\hat{p_i}$ and $\hat{p_j} \in p_l p_m$ respectively (see Figure 3 for an illustration). Then obviously, $\mathcal{F}_D(\pi(p_i, p_j), \hat{p_i}\hat{p_j}) \leq \delta^*$. In particular, we have that $d(p_i, \hat{p_i}) \leq \delta^*$, and $d(p_j, \hat{p_j}) \leq \delta^*$. Now by Lemma 3, $\mathcal{F}_D(p_i p_j, \hat{p_i}\hat{p_j}) \leq \delta^*$. It then follows from Lemma 4 that

$$\delta_F(p_i p_j) = \mathcal{F}_{\mathcal{D}}(\pi(p_i, p_j), p_i p_j) \le \mathcal{F}_{\mathcal{D}}(\pi(p_i, p_j), \hat{p_i} \hat{p_j}) + \delta^* \le 2\delta^*.$$

回

3.1 An $O(n \log n)$ Algorithm

The algorithm (denoted FrechetSimp) will compute an ε -simplification P' of P in a greedy manner: set the initial simplification as $P' = \langle p_{i_1} = p_1 \rangle$, and iteratively add vertices to P' as follows. Assume $P' = \langle p_{i_1}, \ldots, p_{i_j} \rangle$. The algorithm finds an index $k > i_j$ such that (i) $\delta_F(p_{i_j}, p_k) \leq \varepsilon$ and (ii) $\delta_F(p_{i_j}, p_{k+1}) > \varepsilon$. Set $i_{j+1} = k$, and repeat the above procedure till the last vertex of P.

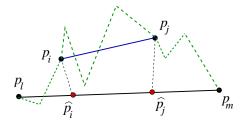


Fig. 3. Bold dashed curve is $\pi(p_l, p_m)$, p_i and p_j are matched to $\hat{p_i}$ and $\hat{p_j}$ respectively.

Lemma 6. FrechetSimp computes P' such that $\delta_F(P',P) \leq \varepsilon$, and $|P'| \leq \kappa_F(\varepsilon/2)$.

PROOF. It is clear that the algorithm computes a curve that is an ε -simplification of P. It remains to show that the size of the curve P' is bounded by $\kappa_F(\varepsilon/2)$.

Let $Q = \langle p_{j_1} = p_1, \dots, p_{j_l} = p_n \rangle$ be the optimal $\varepsilon/2$ -simplification of P, where $1 \leq j_m \leq n$ for $1 \leq m \leq l$. Let $P' = \langle p_{i_1} = p_1, \dots, p_{i_k} = p_n \rangle$, where $1 \leq i_m \leq n$ for $1 \leq m \leq k$.

The proof proceeds by induction. The following invariant will always be true: $i_m \geq j_m$, for all m. This implies that $k \leq l$, and therefore $k \leq \kappa_F(\varepsilon/2)$.

Assume $i_{m-1} \geq j_{m-1}$. Let $i' = i_m + 1$. Then note that $\delta_F(p_{i_{m-1}}, p_{i'}) > \varepsilon$, and $\delta_F(p_{i_{m-1}}, p_{i'-1}) \leq \varepsilon$ By the inductive step, $i' > j_{m-1}$. If $i' > j_m$, we are done. So assume $i' \leq j_m$. Since Q is an $\varepsilon/2$ -simplification, $\delta_F(p_{j_{m-1}}p_{j_m}) \leq \varepsilon/2$. Lemma 5 implies that for all $j_{m-1} \leq i_{m-1} \leq j' \leq j_m$, $\delta_F(p_{i_{m-1}}p_{j'}) \leq \varepsilon$. But since $\delta_F(p_{i_{m-1}}, p_{i'}) > \varepsilon$, $i' > j_m$ and hence $i_m \geq j_m$.

After computing vertex $p_{i_m} \in P'$, find the next vertex $p_{i_{m+1}}$ as follows: let b_{ρ} be a bit that is one if $\delta_F(p_{i_m}p_{i_m+\rho})>\varepsilon$ and zero otherwise. b_{ρ} can be computed in $O(\rho)$ time by the algorithm proposed in [AG95]. Recall our goal: finding two consecutive bits b_{Δ} and $b_{\Delta+1}$ such that $b_{\Delta}=0$ and $b_{\Delta+1}=1$. Clearly, then the index of the next vertex is $i_{m+1}=i+\Delta$. Δ can be computed by performing an exponential search, followed by a binary search. First find the smallest j such that $b_{2^j}=1$ by computing the bits $b_{2^{j'}}, j' \leq j$. The total time can be shown to be $O(i_{m+1}-i_m)$. Next, use binary search to find two consecutive bits in the range $b_{2^{j-1}},\ldots,b_{2^j}$. Note that this is not strictly a binary search, as the bits which are ones are not necessarily consecutive. Nevertheless, it is easy to verify that the same divide and conquer approach works. This requires computing $O(j-1)=O(\log(i_{m+1}-i_m))$ bits in this range, and it takes $O(i_{m+1}-i_m)$ time to compute each of them. Therefore computing $p_{i_{m+1}}$ takes $O(i_{m+1}-i_m)\log(i_{m+1}-i_m)$ time. Summing over all i_j 's yields the running time of $O(n\log n)$, proving Theorem 2.

3.2 Experiments

We now present experiments comparing our $O(n \log n)$ algorithm FrechetSimp with (i) the optimal $O(n^3)$ time Fréchet simplification algorithm for quality; and

Ī		Curve 1		Curve 2		Curve 3	
	Size:	327		1998		9777	
	ε	Aprx.	Exact	Aprx.	Exact	Aprx.	Exact
Ī	0.05	327	327	201	201	6786	6431
	0.08	327	327	168	168	4277	3197
	0.12	327	327	134	134	1537	651
	1.20	254	249	42	42	178	168
	1.60	220	214	36	36	140	132
L	2.00	134	124	32	32	115	88

Table 1. Comparing the size of simplifications produced by FrechetSimp with the optimal algorithm.

(ii) with the Douglas-Peucker algorithm under Hausdorff error measure (with L_2 metric) to demonstrate its efficiency. Our experiments were run a Sun Blade-100 machine with 256 RAM.

Recall that the $O(n^3)$ running time of the optimal algorithm is independent of the input curve, or the error measure ε — it is always $\Omega(n^3)$. Therefore, it is orders of magnitude slower than the approximation algorithm, and so we omit its empirical running time. We focus on comparing the quality (size) of simplifications produced by FrechetSimp and the optimal Fréchet simplification algorithm. The results are presented in Table 1. Curve 1 is a protein backbone, Curve 2 is a set of points forming a circle, and Curve 3 is a protein backbone with some artificial noise. As seen from Table 1, the size of the simplifications produced by our approximation algorithm is always close to the optimal sized simplification.

We compare the efficiency of FrechetSimp with the Douglas-Peucker heuristic. Figure 4 compares the running time of our approximation algorithm with Douglas-Peucker for a protein backbone (with artificial noise added) with 49633 vertices. One can make an interesting observation: as ε decreases, Douglas-Peucker's performance decreases. However, as ε decreases, the performance of our approximation algorithms increases or remains nearly the same. This is due to the fact that Douglas-Peucker tries to find a line segment that simplifies a curve, and recurses into subproblems only if that fails. Thus, as ε decreases, it needs to make more recursive calls. Our approximation algorithm, however, proceeds in a linear fashion from the first vertex to the last vertex, and hence it is more stable towards changes in ε .

4 Comparisons

In this section, we compare the output under two different error measures, and we relate two different Fréchet simplifications.

Hausdorff vs. Fréchet. One natural question is to compare the quality of simplifications produced under the Hausdorff and the Fréchet error measures.

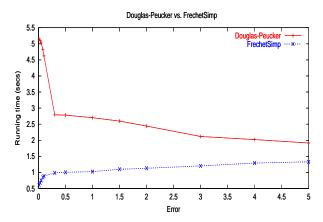


Fig. 4. Comparing running times of FrechetSimp and Douglas-Peucker for varying ε for a curve with 49633 vertices.

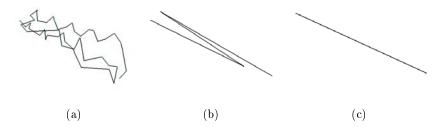


Fig. 5. (a) Polygonal chain composed of three alpha-helices, (b) its Fréchet ε -simplification and (c) its Douglas-Peucker Hausdorff ε -simplification.

Given a curve $P = \langle p_1, \dots, p_n \rangle$, it is not too hard to show that $\delta_H(p_i p_j) \leq \delta_F(p_i p_j)$. The converse however does not hold.

The Fréchet error measure takes the order along the curve into account, and hence is more useful in some cases especially when the order of the curve is important (such as curves derived from protein backbones). Figure 5 illustrates a substructure of a protein backbone, where ε -simplifying under Fréchet error measure preserves the overall structure, while ε -simplifying under Hausdorff error measure is unable to preserve it.

Weak Fréchet vs. Fréchet . In the previous section we described a fast approximation algorithm for computing an ε -simplification of P under Fréchet error measure, where we used the Fréchet measure in a local manner: we restrict the curve $\langle p_i, \ldots, p_j \rangle$ to match to the line segment $p_i p_j$. We can remove this restriction to make the measure more global by instead looking at the weak Fréchet ε -simplification. More precisely, given P and $S = \langle s_1, s_2, \ldots, s_m \rangle$, where it is not necessary that $s_i \in P$, S is a weak ε -simplification under Fréchet error

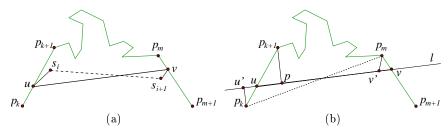


Fig. 6. In (a), u and v are the points that s_i and s_{i+1} are mapped to in the optimal matching between P and S. In (b), $j_i = k$ and $j_{i+1} = m$.

measure if $\mathcal{F}_D(P, S) \leq \varepsilon$. The following lemma shows that the size of the optimal Fréchet simplification can be bounded by the size of the optimal weak Fréchet simplification:

Lemma 7. Given a polygonal curve P, let $\hat{\kappa}_F(\varepsilon)$ denote the size of the minimum weak ε -simplification of P. Then

$$\kappa_F(\varepsilon) \leq \hat{\kappa}_F(\varepsilon/4)$$

PROOF. Assume $S = \langle s_1, \ldots, s_t \rangle$ is an optimal weak $\varepsilon/4$ -simplification of P, i.e., $\mathcal{F}_D(S,P) \leq \varepsilon/4$. For any edge $s_i s_{i+1}$, let $u \in p_k p_{k+1}$ and $v \in p_m p_{m+1}$ denote the points on P that s_i and s_{i+1} are mapped to respectively in the optimal matching between P and S. See Figure 6 (a) for an illustration. Let p_{j_i} (resp. $p_{j_{i+1}}$) denotes the endpoint of $p_k p_{k+1}$ (resp. $p_m p_{m+1}$) that is closer to u (resp. v). In other words, $||p_{j_i} - u|| \leq 1/2 ||p_{k+1} - p_k||$, and $||p_{j_{i+1}} - v|| \leq 1/2 ||p_{m+1} - p_m||$. Set $P' = \langle p_{j_1} = p_1, \ldots, p_{j_t} = p_n \rangle$. It is easy to verify that $j_i \leq j_r$ for any $1 \leq i < r \leq t$.

It remains to show that P' as constructed above is indeed an ε -simplification of P. $\mathcal{F}_{\mathrm{D}}(\pi(u,v),uv) \leq \varepsilon/2$ follows from $\mathcal{F}_{\mathrm{D}}(\pi(u,v),s_is_{i+1}) \leq \varepsilon/4$ and Lemma 4. Let l denote the line containing segment uv. We construct a segment $u'v' \subset l$ such that $\mathcal{F}_{\mathrm{D}}(\pi(p_{j_i},p_{j_{i+1}}),u'v') \leq \varepsilon/2$. We describe how to compute u', and v' can be computed similarly. Let $p \in uv$ denote the point that p_{k+1} is mapped to in the optimal matching between $\pi(u,v)$ and uv. If $j_i = k+1$, i.e. p_{j_i} is the right endpoint of edge $p_k p_{k+1}$, then set u' = p. Otherwise, u' is the point on l such that $p_k u'$ is parallel to $p_{k+1}p$. See Figure 6 (b) for an illustration. Note that in both cases, $||p_{j_i} - u'|| \leq \varepsilon/2$, (resp. $||p_{j_{i+1}} - v'|| \leq \varepsilon/2$) which together with Lemma 3 implies that $\mathcal{F}_{\mathrm{D}}(u'v', p_{j_i}p_{j_{i+1}}) \leq \varepsilon/2$. On the other hand, the original optimal matching between uv and $\pi(u,v)$ can be modified into a matching between u'v' and $\pi(p_{j_i}, p_{j_{i+1}})$ such that $\mathcal{F}_{\mathrm{D}}(u'v', \pi(p_{j_i}, p_{j_{i+1}})) \leq \varepsilon/2$ (proof omitted due to lack of space). It then follows from Lemma 4 that $\mathcal{F}_{\mathrm{D}}(\pi(p_{j_i}, p_{j_{i+1}}), p_{j_i}p_{j_{i+1}}) \leq \varepsilon$ for $i=1\ldots t$, implying that $\delta_F(P',P) \leq \varepsilon$.

References

- [AG95] H. Alt and M. Godeau. Computing the frechet distance between two polygonal curves. *International Journal of Computational Geometry*, pages 75–91, 1995.
- [Ame92] N. Amenta. Finding a line transversal of axial objects in three dimensions. In Proc. 3rd ACM-SIAM Symposium on Discrete Algorithms, pages 66-71, 1992.
- [AV00] P.K. Agarwal and K. R. Varadarajan. Efficient algorithms for approximating polygonal chains. *Discrete Comput. Geom.*, 23:273–291, 2000.
- [CC92] W. S. Chan and F. Chin. Approximation of polygonal curves with minimum number of line segments. In Proc. 3rd Annual International Symposium on Algorithms and Computation, pages 378–387, 1992.
- [DP73] D. H. Douglas and T. K. Peucker. Algorithms for the reduction of the number of points required to represent a digitized line or its caricature. Canadian Cartographer, 10(2):112–122, 1973.
- [GHMS93] L. J. Guibas, J. E. Hershberger, J. B. Mitchell, and J.S. Snoeyink. Approximating polygons and subdivisions with minimum link paths. *International Journal of Computational Geometry and Applications*, 3(4):383-415, 1993.
- [God91] M. Godau. A natural metric for curves: Computing the distance for polygonal chains and approximation algorithms. In Proc. of the 8th Annual Symposium on Theoretical Aspects of Computer Science, pages 127-136, 1991.
- [HS94] J. Hershberger and J. Snoeyink. An O(n log n) implementation of the Douglas-Peucker algorithm for line simplification. In Proc. 10th Annual ACM Symposium on Computational Geometry, pages 383-384, 1994.
- [II86] H. Imai and M. Iri. An optimal algorithm for approximating a piecewise linear function. *Information Processing Letters*, 9(3):159–162, 1986.
- [II88] H. Imai and M. Iri. Polygonal approximations of a curve-formulations and algorithms. In G. T. Toussaint, editor, Computational Morphology, pages 71–86. North-Holland, Amsterdam, Netherlands, 1988.
- [MO88] A. Melkman and J. O'Rourke. On polygonal chain approximation. In G. T. Toussaint, editor, Computational Morphology, pages 87–95. North-Holland, Amsterdam, Netherlands, 1988.
- [Ram00] E.A. Ramos. Linear optimization queries revisited. In *Proc. 16th Annual ACM Symposium on Computational Geometry*, pages 176–181, 2000.
- [Wei97] Robert Weibel. Generalization of spatial data: principles and selected algorithms. In Marc van Kreveld, Jürg Nievergelt, Thomas Roos, and Peter Widmayer, editors, Algorithmic Foundations of Geographic Information System. Springer-Verlag Berlin Heidelberg New York, 1997.

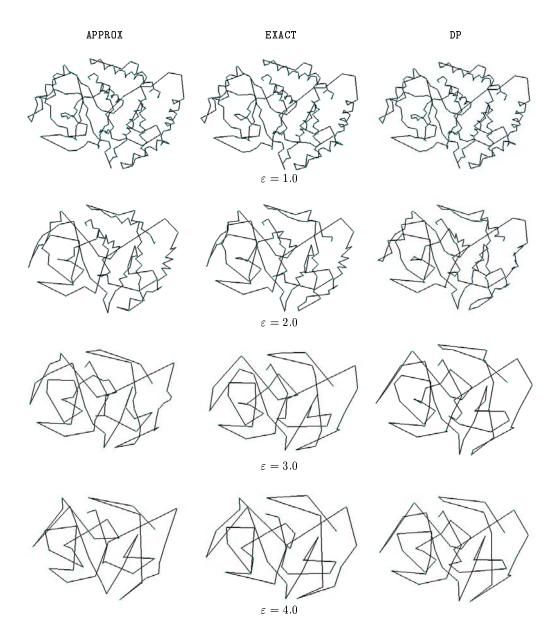


Fig. 7. Simplifications of a protein (1cja) backbone