
CHAPTER 6

Epsilon-Nets: Combinatorial Bounds

The initial study of ε-nets in the field of computational geometry started in the 1980s
with the work of Clarkson who showed the existence of ε-nets of size O

(
1
ε log

1
ε

)
for specific geometric set systems. He was mainly interested in their algorithmic
applications, such as nearest-neighbor queries for a set of points in Euclidean space.
Chapter 2 is largely based on his work.

Independently, Haussler and Welzl showed similar bounds in a purely abstract
setting, needing just that the given set system has bounded VC-dimension. In fact,
what was needed, given a set system (X,F), was the property that there exist an
absolute constant d such that

for all Y ⊆ X, |F|Y | = O
(
|Y |d

)
(see Lemma 4.3).

They showed, surprisingly, that this is already a sufficient condition for the existence
of small ε-nets; the following will be the first theorem of this chapter.

Theorem 6.1. Let (X,F) be a finite set system, d ≥ 1 an integer such that
VC-dim(F) ≤ d, and ε ∈

(
0, 1

2

)
a given parameter. Let N be a uniform ran-

dom sample of X of size t =
⌈
56 d
ε ln 1

ε

⌉
. Then N is an ε-net of F with probability

at least 1
2 .

It was later shown that the above bound is optimal within constant factors; that is,
for every positive integer n, integer d ≥ 2 and small-enough parameter ε > 0, there
is a set system (X,F) with |X| = n and VC-dim (F) ≤ d, such that any ε-net of F
has size Ω

(
d
ε log

1
ε

)
. This lower bound will be presented in Chapters 10 and 11.

Over the past thirty years, it has been observed that improvements to the Clarkson
and Haussler–Welzl bounds are possible for a variety of geometric set systems.
We have already seen an example in Chapter 3: O

(
1
ε

)
-sized ε-nets exist for set

systems induced by disks in the plane. Early work towards o
(
1
ε log

1
ε

)
upper bounds

was fundamentally geometric, involving spatial partitioning along the ideas seen in
Chapter 3.

Over the next twenty years, through the work of Aronov, Chan, Clarkson, Ezra,
Ray, Sharir, Varadarajan and others, it was realized that geometry is not really
needed. In fact, somewhat surprisingly, an entire suite of optimal bounds can
be obtained entirely combinatorially, with the shallow-cell complexity being a key
parameter of a set system that dictates the size of ε-nets.

The reason that the shallow-cell complexity of a set system comes into
play is the following. Given a set system (X,F), the probability that
a set F ∈ F is not hit by a uniform random sample N ⊆ X decreases
exponentially with the size of F . On the other hand, the number of sets
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90 6. EPSILON-NETS: COMBINATORIAL BOUNDS

of F of size at most k is an increasing function of k whose growth is
upper bounded by the shallow-cell complexity of the set system. It turns
out that the interplay between these two dictates the sizes of ε-nets.

The second main theorem of this chapter will be the following.

Theorem 6.2. Let (X,F) be a finite set system with shallow-cell complexity ϕF (·, ·)
and with VC-dim (F) ≤ d. Then for any ε ∈

(
0, 1

2

)
there exists an ε-net of F of

size

O

(
d

ε
+

1

ε
logϕF

(
16d

ε
, 48d

))
.

Consider the primal set system R induced by disks in the plane: as ϕR (m, k) =
O
(
k2
)
(Lemma 1.2) and VC-dim (R) ≤ 3, Theorem 6.2 implies the existence of

ε-nets of size O
(
1
ε

)
. Thus we recover Theorem 3.3 from just the shallow-cell com-

plexity of R!
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1. A First Bound using Ghost Sampling

Mathematics is one of a few fields in which one can do top-level work
without a lot of life experience, something that might be key in the arts
or humanities. One does not have to have experience raising children
through school, dealing with family tragedies, and so forth, to be able to
find three numbers whose fourth powers add up to another one.

Noam Elkies

We prove the following.

Theorem 6.1. Let (X,F) be a finite set system, d ≥ 1 an integer such that
VC-dim(F) ≤ d, and ε ∈

(
0, 1

2

)
a given parameter. Let N be a uniform ran-

dom sample of X of size t =
⌈
56 d
ε ln 1

ε

⌉
. Then N is an ε-net of F with probability

at least 1
2 .

Set n = |X|. We can assume that each set in F has size at least εn.

For ease of calculations, we will allow an element to be picked into N
multiple times. That is, N will be a sequence of size t =

⌈
56d
ε ln 1

ε

⌉
,

where each element in this sequence is chosen uniformly at random from
X. In a natural way, a sequence Y is an ε-net of F if Y contains at least
one element from each set of F .

Throughout this section we will work with sequences instead of sets.
Moreover, the size of the intersection of any set R ∈ F with a sequence
will count multiplicities.

Overview of ideas. Let T = Xt denote the set of all t-sized sequences of elements
of X, and let Tb ⊆ T be the sequences which are not an ε-net of F . Our goal is

to upper bound |Tb|. In particular, we will show that |Tb| < |T |
2 , implying that

N—constructed by picking t elements uniformly at random, with replacement—is
an ε-net of F with probability at least 1

2 . This implies the same property for a
uniform random sample of X of size t, proving Theorem 6.1.

Fix an ordering of the sets of F and

for each Y ∈ Tb, let RY ∈ F be the first set in the ordering for which Y
fails—that is, for which RY ∩ Y = ∅.

We will use the probabilistic averaging technique from Chapter 1. That is, we
take a uniform random sequence S of X of a certain size s—with replacement, so
S ∈ Xs—and examine the relationship between Tb and S. Specifically,

we count the expected number of sequences Y ∈ Tb s.t. |RY ∩S| ≥ εs
2
.

Lower bound: On one hand, for any Y ∈ Tb,

(6.3) E
[
|RY ∩ S|

]
=

s∑
i=1

|RY |
n

≥
s∑

i=1

ε = εs,

keeping in mind that each element of RY is counted with multiplicity in |RY ∩S|.
A tail bound will then imply that the expected number of sets Y ∈ Tb for which

|RY ∩ S| ≥ εs
2 is at least |Tb|

2 .
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Upper bound: On the other hand, this expectation can be calculated exactly:

1

ns

∑
Z∈Xs

∣∣∣{Y ∈ Tb : |RY ∩ Z| ≥ εs

2

}∣∣∣
=

1

ns

∣∣∣{(Z, Y ) : Z ∈ Xs, Y ∈ Tb ⊆ Xt, |RY ∩ Z| ≥ εs

2

}∣∣∣ .(6.4)

Call each of the above (Z, Y ) a satisfying pair. That is,

Z ∈ Xs, Y ∈ Tb ⊆ Xt, |RY ∩ Y | = 0 while |RY ∩ Z| ≥ εs
2 .

We will show that these constraints together force an upper bound on the total
number of satisfying pairs.

Combining the lower and upper bounds will then give the desired bound on |Tb|.

Proof of Theorem 6.1. For Z ∈ Xs, define

TZ =
{
Y ∈ Tb : |RY ∩ Z| ≥ εs

2

}
.

Set s = t and let S be an element chosen uniformly at random from Xs.

We count the expected size of TS in two ways.

Lemma 6.5 (Lower bound).

E
[
|TS |

]
=
∑
Y ∈Tb

Pr
[
|RY ∩ S| ≥ εs

2

]
≥ 1

2
· |Tb|.

Proof. The proof follows from linearity of expectation and the next claim.

Claim 6.6. For any R ∈ F , Pr
[
|R ∩ S| ≤ εs

2

]
< 1

2 .

Proof. For i = 1, . . . , s, let Yi be an indicator random variable that is 1 if and
only if the i-th element of S is in R. Then

|R ∩ S| =
s∑

i=1

Yi, where Pr [Yi = 1] =
|R|
n

≥ ε.

Then Chernoff’s bound (Theorem 1.20) applied to the s variables {Y1, . . . , Ys} with
δ = 1

2 implies that

Pr

[
|R ∩ S| ≤

(
1− 1

2

)
εs

]
≤ exp

(
−εs

8

)
≤ exp

(
−
56d ln 1

ε

8

)
<

1

2
,

recalling that s = t =
⌈
56d
ε ln 1

ε

⌉
. �

The upper bound of 1
2 in Claim 6.6 can be replaced by o (1) but it doesn’t matter

for us as this only changes the multiplicative constant factor in the final bound (see
discussion). �

The upper bound on E [|TS |] is implied by the following combinatorial statement.

Lemma 6.7 (Upper bound).∑
Z∈Xs

|TZ | =
∣∣∣{(Z, Y ) : Z ∈ Xs, Y ∈ Tb ⊆ Xt, |RY ∩ Z| ≥ εs

2

}∣∣∣ <
n2t

4
.(6.8)
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Proof. The trick to showing Equation (6.8) is to use averaging again.

For each U ∈ Xs+t and R ∈ F , let Ψ (U, R) be the number of ways of
partitioning U into two subsequences Z ∈ Xs and Y ∈ Xt such that
(Z, Y ) is a satisfying pair, with RY = R.

As each satisfying pair (Z, Y ) can be combined into a sequence of size s+ t in
(
s+t
t

)
ways, we have (

s + t

t

) ∑
Z∈Xs

|TZ | =
∑

U∈Xs+t

∑
R∈F

Ψ(U, R) .(6.9)

We make two observations:

(1) For each fixed U ∈ Xs+t, let F ′ ⊆ F be such that all the sets in F ′ have
the same intersection with U . Then all R ∈ F ′ have the same intersection
with any (Z, Y ) derived from U , implying that Ψ (U, R) is (possibly) non-
zero only for the first set, according to our initial ordering, of F ′. As there
are |F|U | distinct intersections of sets of F with U , there are at most |F|U |
sets R ∈ F for which Ψ (U, R) is non-zero.

(2) For a fixed R ∈ F with |R ∩ U | ≥ εs
2 , there are at most

(
s+t− εs

2
t

)
ways to

select Y from U such that Y does not contain any element of R. This is
an upper bound on Ψ (U, R) for any fixed U and R.

The above two observations together with Equation (6.9) imply that
∑

Z∈Xs |TZ |
can be upper bounded by

1(
s+t
t

) · ∑
U∈Xs+t

|F|U | ·
(

s + t − εs
2

t

)
≤

∑
U∈Xs+t

·
(

e (s + t)

d

)d

·
(
s+t− εs

2
t

)(
s+t
t

) ,

where the second step follows from Lemma 4.3. It remains to simplify this upper
bound:

= n2t ·
(
2et

d

)d

·
2t − εt

2

2t

2t − εt
2 − 1

2t − 1
· · ·

t − εt
2 + 1

t + 1

(
recalling that s = t

)

= n2t ·
(
2et

d

)d

·
(
1−

εt
2

2t

)
· · ·

(
1−

εt
2

t + 1

)
≤ n2t ·

(
2et

d

)d

·
(
1−

εt
2

2t

)t

≤ n2t ·
(
2et

d

)d

· e− εt
4 ≤ n2t ·

(
112 e

ε
ln

1

ε

)d

· e−14d ln 1
ε

= n2t ·
(
112 e

ε
ln

1

ε

)d

· ε14d < n2t ·
(
112 e

ε2

)d

· ε14d

< n2t · (112 e)d · ε12d <
n2t

4
,

as (112e)d · ε12d ≤ (112e)d ·
(
1
2

)12d
< 1

4 . �

Combining the upper and lower bounds,

1

2
· |Tb| ≤ E [|TS |] =

1

ns

∑
Z∈Xs

|TZ | <
nt

4
,

gives |Tb| < nt

2 = |T |
2 , as required. �
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A remark: the upper bound used in the proof, that

|F|U | ≤
(
e|U |
d

)d

,

is a consequence of the fact that VC-dim (F) ≤ d. If instead we only used

|F|U | = O (|U |)d, the final bound would come out to be O
(
d
ε
log d

ε

)
.

We conclude with two remarks.

Ghost sampling: A clever double-counting trick in the proof is to upper bound
the number of satisfying pairs (Z, Y )—where Z ∈ Xs and Y ∈ Xt—by enumer-
ating over all (s + t)-sized subsets of X. This trick was also used in the proof of
Theorem 5.1, though in that case we had t = 1.
In statistics and learning theory literature, this instance of double-counting is
called ghost sampling , and it is a useful technique to avoid discretization when
the base set X is infinite. For the case when the set system (X,F) is finite, there
are simpler proofs (see Chapter 12).
In the proof that we presented, we only wanted the probability that the random
sample N succeeds to be an ε-net of F to be non-zero, which is sufficient to
guarantee the existence of an ε-net of the required size. By introducing this
probability as a parameter in the sample size and re-working the above proof, we
arrive at the following statement (a proof is presented in Chapter 12).

Theorem 6.10. Let (X,F) be a finite set system, d ∈ N a positive integer such
that VC-dim(F) ≤ d, and ε ∈

(
0, 1

2

)
a given parameter. Then there exists an

absolute constant C6 > 0 such that a random sample N constructed by picking
each point of X independently with probability C6

ε|X| ln
1

εdγ
is an ε-net of F with

probability at least 1− γ.

Iterative View: As is often the case with double-counting proofs, one can ‘unroll’
the proof of Theorem 6.1 to an iterative version, as follows1. Let (X0,F0) be a
set system with |X0| = n and ε > 0 a parameter such that each set of F0 has size
at least εn. A straightforward application of Chernoff’s bound implies that there
exists a X1 ⊆ X0 such that each S ∈ F0 contains at least εn

2 elements of X1 and
further

|X1| ≤ |X0| ·
(
1

2
+

√
10 log |F0|

εn

)
.

Now one can repeat this step for the set system (X1,F1 = F|X1
) to get a set

X2 ⊆ X1 and so on. After the i-th iteration we have a set Xi such that each
S ∈ F0 contains at least εn

2i elements of Xi and furthermore,

|Xi| ≤ |Xi−1| ·
(
1

2
+

√
10 log |Fi−1|

εn
2i−1

)
≤ · · · ≤ n ·

i−1∏
j=0

(
1

2
+

√
10 log |Fj |

εn
2j

)
.

1Also this can be done by an inductive argument, though that somewhat obscures the ideas.
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We continue the iterations as long as iteration i satisfies

√
10 log |Fi|

εn

2i
≤ 1

2 . Say the

above procedure runs for t iterations. Now a calculation shows that for all i ≤ t,

|Xi| ≤ n ·
i−1∏
j=0

(
1

2
+

√
10 log |Fj |

εn
2j

)
≤ c1 ·

n

2i
,(6.11)

where c1 is a sufficiently large constant. We set t =
⌊
log εn

c′ d log 1
ε

⌋
for a sufficiently

large constant c′ depending only on c1. Then it can be verified that for all i ≤ t,√
10 log |Fi|

εn
2i

≤
√

10 log |Ft|
εn
2t

≤

√√√√10 log
(
ec1n
2td

)d
εn
2t

≤

√√√√10 log
(

ec1c′ log
1
ε

ε

)
c′ log 1

ε

≤ 1

2
,

where the second step follows from Equation (6.11) and Lemma 4.3.
Finally, each S ∈ F0 contains at least εn

2t ≥ c′d log 1
ε ≥ 1 points of Xt. Thus Xt

is an ε-net of F0, with

|Xt| ≤ c1 ·
n

2t
= c1 ·

n
εn

c′ d log 1
ε

= O

(
d

ε
log

1

ε

)
.

An elegant strengthened form of this idea is the basis of Chapter 8.
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2. Optimal ε-Nets using Packings

The question you raise, ‘how can such a formulation lead to computa-
tions?’ doesn’t bother me in the least! Throughout my whole life as a
mathematician, the possibility of making explicit, elegant computations
has always come out by itself, as a byproduct of a thorough conceptual un-
derstanding of what was going on. Thus I never bothered about whether
what would come out would be suitable for this or that, but just tried to
understand—and it always turned out that understanding was all that
mattered.

Alexandre Grothendieck

Given a set system (X,F), we now show the existence of small ε-nets of F as a
function of its shallow-cell complexity, which we first recall.

Definition 4.4. A set system (X,F) has shallow-cell complexity ϕF (·, ·) if for
any positive integer k and any finite Y ⊆ X, the number of sets in F|Y of size
at most k is upper bounded by |Y | · ϕF

(
|Y |, k

)
.

For a family R of geometric objects in R
d—e.g., the family of all half-spaces—

the shallow-cell complexity of R is defined to be the shallow-cell complexity of
the primal set system

(
R

d,R
)
.

The main theorem we will prove in this section is the following.

Theorem 6.2. Let (X,F) be a finite set system with shallow-cell complexity ϕF (·, ·)
and with VC-dim (F) ≤ d. Then for any ε ∈

(
0, 1

2

)
there exists an ε-net of F of

size

O

(
d

ε
+

1

ε
logϕF

(
16d

ε
, 48d

))
.

Overview of ideas. The proof requires three ideas. For the moment assume that
each set in F has size exactly εn.

(1) Fix any maximal subset P ⊆ F such that every pair of sets of P have
symmetric difference at least εn

2 . In other words, P is a maximal
(
εn, εn

2

)
-

packing of F (see Definition 5.9). Setting δ = εn
2 , k = εn and applying

Theorem 5.10, we have

|P| ≤ 48dn

δ
· ϕF

(
8dn

δ
,
24dk

δ

)
= O

(
d

ε
· ϕF

(
O

(
d

ε

)
, O (d)

))
.

The key point here is that for each F ∈ F \P, the maximality of P implies
that there exists a set S ∈ P such that the size of the symmetric difference
between F and S is at most εn

2 . In other words, F contains at least εn
2

points from S, where |S| = εn by assumption. Thus a 1
2 -net NS for the

set system (S,F|S) must hit F and consequently
⋃

S∈P NS is an ε-net of
F . Here the sets of P play the role of canonical objects of Chapter 2.

Simply picking a 1
2 -net NS separately for each (S,F|S), S ∈ P, where

each NS is of constant size by Theorem 6.10, will give an ε-net of F of
total size∑

S∈P

|NS | = O
(
|P|
)
= O

(
d

ε
· ϕF

(
O

(
d

ε

)
, O (d)

))
.

This is too big.
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(2) The next idea is to ‘amortize’ the size of the 1
2 -nets by first picking a

random sample R ⊆ X.

For a fixed S ∈ P and (S,F|S), Theorem 6.10 states that a
random sample of S constructed by picking each point of S
independently with probability

p = Θ

(
1

(1/2) |S| log
1

γ
+

d

(1/2) |S| log
1

(1/2)

)

= Θ

(
1

εn
log

1

γ
+

d

εn

)
.

is a 1
2 -net of F|S with probability at least 1− γ.

Instead of sampling points separately from each S ∈ P, we will construct
a ‘global’ random sample R by picking each point of X independently
with the above probability p.

For a fixed S ∈ P, R fails to be a 1
2 -net of F|S with probability at

most γ. By the union bound, the probability that there exists a S ∈ P
such that R fails to be a 1

2 -net of F|S is at most |P| ·γ. Setting γ = 1
|P|+1

implies that, with non-zero probability, R is a 1
2 -net for all F|S , S ∈ P.

Then

E [|R|] = np = O

(
1

ε
log

1

γ
+

d

ε

)

= O

(
1

ε
log

(
d

ε
· ϕF

(
O

(
d

ε

)
, O (d)

))
+

d

ε

)

= O

(
1

ε
log

d

ε

)
+ O

(
1

ε
logϕF

(
O

(
d

ε

)
, O (d)

))
+ O

(
d

ε

)
.

The large additional term O
(
1
ε log

d
ε

)
still remains.

(3) Since the expected number of sets in P for which R fails is at most |P| ·γ,
we had set γ < 1

|P| to ensure the existence of a set R with no failures.

Instead, we will set γ such that the expected number of F|S , S ∈ P, for
which R fails to be a 1

2 -net is O
(
1
ε

)
. The key point is that for each of

these failed sets of P, we can afford to separately add a O (d)-sized 1
2 -net

for a total of O
(
d
ε

)
additional points. In other words, we set γ so that

|P| · γ = Θ
(
1
ε

)
. Then the size of the initial random sample R is

O

(
1

ε
log

1

γ
+

d

ε

)
= O

(
1

ε
log
(
ε |P|

)
+

d

ε

)

= O

(
1

ε
logϕF

(
O

(
d

ε

)
, O (d)

)
+

d

ε

)
,

as desired.

We now turn to the formal proof with complete calculations.

Proof of Theorem 6.2. For an integer j ≥ 0, set

εj = 2j · ε and δj =
εjn

2
.
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For each j = 1, . . . ,
⌈
log 1

ε

⌉
, define

Fj =
{
S ∈ F : εj−1n ≤ |S| < εjn

}
.

Further let Pj be a maximal subset of Fj satisfying the property that

for all S, S′ ∈ Pj , |Δ(S, S′)| ≥ δj .

As each set in Fj has size less than εjn, Theorem 5.10 implies that

|Pj | ≤
48 dn

δj
· ϕF

(
8 dn

δj
,
24 dεjn

δj

)
=

96 dn

εjn
· ϕF

(
16 dn

εjn
,
48 dεjn

εjn

)

=
96 d

εj
· ϕF

(
16 d

εj
, 48 d

)
.(6.12)

Claim 6.13. Let j ∈
{
1, . . . , �log 1

ε �
}
. Suppose the set Nj ⊆ X is a 1

2 -net simulta-
neously for all these set systems:{(

S,Fj |S
)
: S ∈ Pj

}
.

Then Nj hits all the sets of Fj .

Proof. Let F ∈ Fj . If F ∈ Pj , then clearly it is hit by the 1
2 -net of Fj |F .

Otherwise by the maximality of Pj , there exists a S ∈ Pj such that

|Δ(F, S)| = |F \ S|+ |S \ F | < δj and hence |F \ S| < δj − |S \ F |.

As |F | ≥ 2j−1εn = δj , it follows that

|F ∩ S| = |F | − |F \ S| ≥ δj −
(
δj − |S \ F |

)
= |S \ F |.

This implies that |F ∩ S| ≥ |S|
2 and as F ∩ S ∈ Fj |S , F is hit by the 1

2 -net of
Fj |S . �

Thus it suffices to compute, for each j = 1, . . . , �log 1
ε �, a set Nj such that

Nj is a 1
2 -net of all the |Pj | set systems (S,Fj |S), S ∈ Pj .

We can then return
⋃

j Nj as an ε-net of F . We will construct each Nj separately

for each index j ∈
{
1, . . . , �log 1

ε �
}
by computing the following two sets Rj and Mj ,

and setting Nj = Rj ∪ Mj .

Constructing Rj: Let Rj be a sample constructed by picking each point of X
independently with probability

C6 ·
(

d

(1/2) · εj−1n
ln

1

(1/2)
+

1

(1/2) · εj−1n
ln

(
d · ϕF

(
16d

εj
, 48d

)))
.

where C6 is the constant from Theorem 6.10. For each S ∈ Pj , we have |S| ∈
[εj−1n, εjn) and so Theorem 6.10 applied to

the set system (S,F|S) with ε =
1

2
, γ =

1

d · ϕF
(

16d
εj

, 48d
) ,

implies that Rj is a 1
2 -net of F|S with probability at least 1− γ. Furthermore,

E [|Rj |] = O

(
d

εj
+

1

εj
log

(
d · ϕF

(
16d

εj
, 48d

)))
.
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Constructing Mj: Initialize Mj = ∅. For each S ∈ Pj for which Rj fails to be a
1
2 -net, construct a

1
2 -net of (S,Fj |S) of size O (d) (by Theorem 6.10) and add it

to Mj . Then

E
[
|Mj |

]
=
∑
S∈Pj

Pr
[
Rj is not a

1

2
-net of Fj |S

]
·
(
size of

1

2
-net of Fj |S

)

≤
∑
S∈Pj

1

d · ϕF
(

16d
εj

, 48d
) · O (d) = |Pj | ·

1

d · ϕF
(

16d
εj

, 48d
) · O (d)

≤ 96d

εj
· ϕF

(
16d

εj
, 48d

)
· 1

d · ϕF

(
16d
εj

, 48d
) · O (d) = O

(
d

εj

)
,

where the second-to-last step uses the upper bound on |Pj | given in Equation (6.12).

Thus we can conclude with the expected size of the final ε-net N of F :

E[|N |] =

log 1

ε �∑
j=1

E
[
|Rj |+ |Mj |

]
=


log 1
ε �∑

j=1

E
[
|Rj |

]
+


log 1
ε �∑

j=1

E
[
|Mj |

]

=


log 1
ε �∑

j=1

O

(
d

εj
+

1

εj
log

(
d · ϕF

(
16d

εj
, 48d

)))
+


log 1
ε �∑

j=1

O

(
d

εj

)

=


log 1
ε �∑

j=1

O

(
d

2jε
+

1

2jε
log d +

1

2jε
logϕF

(
16d

2jε
, 48d

))
+


log 1
ε �∑

j=1

O

(
d

2jε

)

= O

(
d

ε

)
+ O

(
1

ε

) 
log 1
ε �∑

j=1

1

2j
· logϕF

(
16d

2jε
, 48d

)

≤ O

(
d

ε

)
+ O

(
1

ε

) 
log 1
ε �∑

j=1

1

2j
· logϕF

(
16d

ε
, 48d

)

= O

(
d

ε
+

1

ε
logϕF

(
16d

ε
, 48d

))
.

�
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