
CHAPTER 15

Epsilon-Approximations: Functional Case

Given a set P of n points in R
d and a parameter ε > 0, let A be an ε-approximation

of the primal set system induced on P by balls in R
d. Then clearly A can be used

to approximate P ‘combinatorially’ with respect to balls:

Let Pq,r = Ball (q, r) ∩ P be the set of points of P contained in the ball
of radius r centered at q; similarly set Aq,r = Ball (q, r) ∩ A.

Then for any q ∈ R
d and r > 0, |Pq,r| can be approximated by |Aq,r| · |P |

|A| ,

since by the definition of ε-approximations,

|Aq,r| =
|Pq,r| |A|

|P | ± ε|A| or equivalently,

|Pq,r| = |Aq,r| ·
|P |
|A| ± ε|P |.(15.1)

The new idea in this chapter is the observation that since for any q ∈ R
d, Equa-

tion (15.1) holds for every radius r, the set A can also be used to approximate the
sum of distances from q to the points of P . In particular, here is another property
that holds for A: for any q ∈ R

d and r > 0,∣∣∣∣∣
∑

p∈Pq,r
dist (p, q)

n
−
∑

p∈Aq,r
dist (p, q)

|A|

∣∣∣∣∣ ≤ 3εr.(15.2)

To see the intuition for Equation (15.2), we sketch the proof for a weaker bound of
3
√

εr.

q

Pi

(1−√
)i+1r

(1−√
)ir

P0

r

Recall that we say A is an ε-approximation of a set P ′ ⊆ P if |P ′∩A| = |P ′| |A|
|P | ±ε|A|.
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214 15. EPSILON-APPROXIMATIONS: FUNCTIONAL CASE

Partition Pq,r into disjoint sets P0, P1, . . ., where p ∈ Pi if and only if

dist (p, q) ∈
((

1−
√
ε
)i+1

r,
(
1−

√
ε
)i

r
]
.

That is, Pi is the set of points of P lying in the region

Ball
(
q,
(
1−

√
ε
)i

r
) ∖

Ball
(
q,
(
1−

√
ε
)i+1

r
)
.

Now the sum of distances of the points of A to q can be approximated by summing
up over the Pi’s:( ∞∑

i=0

(
1−

√
ε
)i+1

r · |Pi ∩A|
)

<
∑

p∈Aq,r

dist (p, q) ≤
( ∞∑

i=0

(
1−

√
ε
)i

r · |Pi ∩ A|
)

.

We remark that we only need to do the above sum till index i = 1√
ε
ln 1

ε
, as after

that the average sum of distances is most εr in any case. Using the fact that A is a
2ε-approximation of each Pi (by Claim 13.6),( ∞∑

i=0

(
1−

√
ε
)i+1

r

( |Pi| |A|
n

− 2ε|A|
))

<
∑

p∈Aq,r

dist (p, q) ≤

( ∞∑
i=0

(
1−

√
ε
)i

r

( |Pi| |A|
n

+ 2ε|A|
))

(
1−

√
ε
) ( ∞∑

i=0

(
1−

√
ε
)i ( |Pi|

n
− 2ε

))
<

∑
p∈Aq,r

dist (p, q)

r |A|
≤

( ∞∑
i=0

(
1−

√
ε
)i ( |Pi|

n
+ 2ε

))
.

Using the fact that 2ε
∑∞

i=0

(
1−

√
ε
)i

= 2ε · 1
1−(1−

√
ε)

= 2
√
ε,

(
1−

√
ε
) ((

1

n

∞∑
i=0

(
1−

√
ε
)i |Pi|

)
− 2

√
ε

)
<

∑
p∈Aq,r

dist (p, q)

r |A|
≤

(
1

n

∞∑
i=0

(
1−

√
ε
)i |Pi|

)
+ 2

√
ε.

Similarly approximating
∑

p∈Pq,r
dist (p, q) over the Pi’s gives

(
1−

√
ε
) ( ∞∑

i=0

(
1−

√
ε
)i

r |Pi|
)

<
∑

p∈Pq,r

dist (p, q) ≤

( ∞∑
i=0

(
1−

√
ε
)i

r |Pi|
)

.

Dividing by rn,

(
1−

√
ε
) (

1

n

∞∑
i=0

(
1−

√
ε
)i |Pi|

)
<

∑
p∈Pq,r

dist (p, q)

rn
≤

(
1

n

∞∑
i=0

(
1−

√
ε
)i |Pi|

)
.

These together imply the desired bound:∣∣∣∣∣
∑

p∈Pq,r
dist (p, q)

r n
−

∑
p∈Aq,r

dist (p, q)

r |A|

∣∣∣∣∣ ≤ 2
√
ε+

√
ε

(
1

n

∞∑
i=0

(
1−

√
ε
)i |Pi|

)

< 2
√
ε+

√
ε

(
1

n

∞∑
i=0

|Pi|
)

≤ 3
√
ε.
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As we will see later, the improvement to 3εr presented later in this chapter follows

with more precise calculations.

Consider now another application of the same idea on a slightly more complicated
distance function where the point q is replaced by a set of k points. For any set X
of k points in R

d and p ∈ P , define

dist (p, X) = min
q∈X

dist (p, q) .(15.3)

Further let
PX,r = {p ∈ P : dist (p, X) ≤ r} .

Observe that PX,r is the set of points of P that lie in the union of the k balls of
radius r centered at the points of X. Denote this union by Ball (X, r).

As earlier, our goal is to estimate, for any given X ∈
(
R

d
)k

and r ≥ 0, the expression∑
p∈PX,r

dist(p, X).

Not surprisingly, if A is an ε-approximation of the set system induced on P by the
union of k balls, then one can show that∣∣∣∣∣

∑
p∈PX,r

dist (p, X)

n
−
∑

p∈AX,r
dist (p, X)

|A|

∣∣∣∣∣ ≤ 3εr.

The first result of this chapter is a more general statement which implies both the
above two instances.

The second result is its application to an algorithmic problem central to several
domains: the k-median clustering problem, where given a set P of points in R

d and
an integer parameter k > 0, the goal is to partition the points of P into k clusters
based on certain geometric criteria.
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1. A Functional View of Approximations

A common error of judgment among mathematicians is the confusion
between telling the truth and giving a logically correct presentation. The
two objectives are antithetical and hard to reconcile. Most presentations
obeying the current Diktats of linear rigor are a long way from telling
the truth; any reader of such a presentation is forced to start writing on
the margin, or deciphering on a separate sheet of paper.

The truth of any piece of mathematical writing consists of realiz-
ing what the author is “up to”; it is the tradition of mathematics to do
whatever it takes to avoid giving away this secret.

Gian-Carlo Rota

Recall the following statement.

Let P be a set of n points in R
d. Each p ∈ P defines the function

dist (p, X) = min
q∈X

dist (p, q) ,

where X is a finite set of points in R
d.

Then for any positive integer k and ε > 0, there exists an ε-approximation
A ⊆ P such that for any set X of k points in R

d and r ∈ R
+,∣∣∣∣∣

∑
p∈PX,r

dist (p, X)

n
−
∑

p∈AX,r
dist (p, X)

|A|

∣∣∣∣∣ ≤ 3εr,(15.4)

where PX,r = {p ∈ P : dist (p, X) ≤ r} and AX,r = A ∩ PX,r.

Note that the role of each p ∈ P is captured by the function dist (p, ·). We now prove
Equation (15.4) in an abstract setting where dist (p, ·) is replaced by an arbitrary
function gp : X → R

+, where X is a given domain. That is,

set of all k-tuples of points in R
d −→ a domain X ,

set of n functions dist (p, ·), p ∈ P −→ set G of n functions from X to R
+,

PX,r = {p ∈ P : dist(p, X) ≤ r} −→ GX,r =
{
g ∈ G : g (X) ≤ r

}
.

The main theorem of this section states and proves the analog of Equation (15.4)
in this abstract setting for a set G of n functions.

Theorem 15.5. Let G = {g1, . . . , gn} be a set of n functions over a domain X 1,
where gi : X → R

+. Define the set system (G,F), with

F =
{
GX,r : X ∈ X and r ∈ R

+
}

, where GX,r =
{
g ∈ G : g (X) ≤ r

}
.

Let A ⊆ G be an ε-approximation of F , for a given parameter ε > 0. Then for any
X ∈ X and r ∈ R

+, setting AX,r = A ∩ GX,r, we have∣∣∣∣∣
∑

g∈GX,r
g (X)

|G| −
∑

g∈AX,r
g (X)

|A|

∣∣∣∣∣ ≤ 3εr.

To visualize Theorem 15.5, consider the case when X = R. The figure illustrates
an example of five functions g1, . . . , g5. In this example, the set GX,r is simply the
set of functions lying below the point (X, r).

1X need not be finite. In the previous example, X was the set of all k-tuples of points in R
d.
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X

g1

g2

g3

g4

g5

{g1, g2, g3, g4}

{g3, g4}

Before we proceed to the proof, we illustrate the versatility of Theorem 15.5 by
showing a specific consequence.

Let P be a set of n points in R
d and X the set of all k-tuples of points in

R
d. Additionally, for each p ∈ P we are given a function fp : X → R

+.
Set

G = {fp : p ∈ P} .

For each X ∈ X , let rX be the smallest value for which GX,r = G. That
is,

rX = max
p∈P

fp(X).

Applying Theorem 15.5 to P and G, we arrive at the following.

Corollary 15.6. Let P be a set of n points in R
d and k a positive

integer. Further each p ∈ P has an associated function

fp :
(
R

d
)k → R

+.

These functions define a set system (P,R), with

R =
{

PX,r : X ∈
(
R

d
)k

and r ∈ R
+
}

,

where PX,r =
{
p ∈ P : fp (X) ≤ r

}
.

Let A be an ε-approximation of R. Then for any X ⊆ R
d with |X| = k,

we have∣∣∣∣
∑

p∈P fp (X)

|P | −
∑

p∈A fp (X)

|A|

∣∣∣∣ ≤ 3εrX = 3εmax
p∈P

fp(X).

Note that for the case where fp(X) = dist(p, X), R is precisely the
primal set system induced on P by the union of k equal-radius balls in
R

d.

Overview of ideas. For a fixed X ∈ X and r ∈ R
+, we need to relate the

quantities ∑
g∈GX,r

g(X) and
∑

g∈AX,r

g(X).
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As earlier, one way to proceed is to partition GX,r into disjoint sets G0, G1, . . .,
where

Gi =

{
g ∈ G : g (X) ∈

(
(1− ε)i+1 r, (1− ε)i r

]}
.

Then all the functions in Gi have approximately the same value on X, and so one
can approximately bound the summation of functions in Gi in terms of |Gi|, and
the summation of functions in A ∩ Gi in terms of |A ∩ Gi|.
However, we present a different proof based on an elegant trick: we sort the func-
tions in GX,r by increasing g (X) values, and rewrite each of the above two sum-
mations as sums of the interval lengths between two consecutive function values in
the sorted order. Concretely,

let GX,r = {g1, . . . , gt}, sorted by increasing g (X) values.

Then any interval

Ci = gi (X)− gi−1 (X)

is ‘contributed’ in
∑

g∈GX,r
g(X) by precisely the functions {gi, . . . , gt} (see fig-

X

r

g0 = 0

g1

g3{
g2

g4

g5

g3(X) − g2(X)

ure). Summing over all consecutive intervals, and using the fact that A is an
2ε-approximation of each {gi, . . . , gt}, we get the required bound.

In the formal proof one has to be a little careful though, as multiple functions might
have the same value on X.

Proof of Theorem 15.5. Fix any X ∈ X and r ∈ R
+. Sort the functions in

GX,r by increasing g (X) values, and partition GX,r into groups along this order:

GX,r = G1 ∪ · · · ∪ Gm,

where all the functions in Gi, i ∈ [m], have the same value on X. Note that
m ≤ |GX,r|. Set

G≥i = Gi ∪ · · · ∪ Gm.

As A is an ε-approximation of the sets G1 ∪ · · · ∪ Gi for all i ∈ [m],
Claim 13.6 (2) implies the following.

Claim 15.7. For each i ∈ [m], A is a 2ε-approximation of G≥i.
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Now we sum up the functions in GX,r and AX,r by summing up over the differences
between values of adjacent functions. For each i ∈ [m], fix an arbitrary function
gi ∈ Gi and let g0 = 0. Then∑

g∈GX,r

g (X) =

m∑
i=1

(
gi (X)− gi−1 (X)

)
·
∣∣G≥i

∣∣, and

∑
g∈AX,r

g (X) =

m∑
i=1

(
gi (X)− gi−1 (X)

)
·
∣∣A ∩ G≥i

∣∣.
Thus the required expression∣∣∣∣∣

∑
g∈GX,r

g (X)

n
−
∑

g∈AX,r
g (X)

|A|

∣∣∣∣∣
is upper bounded by∣∣∣∣∣
(

m∑
i=1

(
gi (X)− gi−1 (X)

)
·
∣∣G≥i

∣∣
n

)
−
(

m∑
i=1

(
gi (X)− gi−1 (X)

)
·
∣∣A ∩ G≥i

∣∣
|A|

)∣∣∣∣∣
≤

m∑
i=1

(
gi (X)− gi−1 (X)

)
·
∣∣∣∣ |G≥i|

n
− |A ∩ G≥i|

|A|

∣∣∣∣
≤

m∑
i=1

(
gi (X)− gi−1 (X)

)
· 2ε ≤ 2εr,

where the second-to-last step used Claim 15.7. �
Bibliography and discussion. The material in this section is from
[FL11] (with some simplifications). The size of the ε-approximation in
Theorem 15.5 depends on a parameter called the pseudo-dimension, which
is a generalization of the notion of VC-dimension for general functions
(see [HP11, Chapter 7] for details).

[FL11] D. Feldman and M. Langberg, A unified framework for approximating and clustering
data, STOC’11—Proceedings of the 43rd ACM Symposium on Theory of Computing,
ACM, New York, 2011, pp. 569–578, DOI 10.1145/1993636.1993712. MR2932007

[HP11] S. Har-Peled, Geometric approximation algorithms, Mathematical Surveys and Mono-
graphs, vol. 173, American Mathematical Society, Providence, RI, 2011, DOI
10.1090/surv/173. MR2760023

https://www.ams.org/mathscinet-getitem?mr=2932007
https://www.ams.org/mathscinet-getitem?mr=2760023
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2. Application: Sensitivity and Coresets for Clustering

Elegant algorithms are easy to program correctly, as well as being
efficient. A clever algorithm that is clean and elegant is much more
likely to be used than a messy one. When people understand how an
algorithm works, which is much more likely with an elegant algorithm,
they are more likely to have confidence in the results it produces.

Also, elegant solutions are much easier to generalize, to extend to
other problems. My goal is to find general approaches and solutions,
not ad hoc tricks.

Robert Tarjan

Given a set P of n points in R
d, the k-median problem asks to compute a set X of

k points that minimizes the cost function2

Cost(P, k) = min
X⊆R

d

|X|=k

Cost(P, X), where Cost(P, X) =
∑
p∈P

dist(p, X).

One approach towards solving this problem is to first compute a smaller
set A that ‘approximates’ P with respect to Cost(P, X). That is, for
every set X of k points in R

d we would like Cost(P, X) to be approxi-
mately equal to Cost(A, X) (scaled up appropriately). Then the original
problem on P is reduced to finding an X minimizing Cost(A, X)—an
easier problem if |A| is much smaller than |P |.

This leads to the following definition.

Definition 15.8. Given a set P of n points in R
d and a parameter ε > 0, a set

A ⊆ R
d together with a weight function w : A → R is an ε-coreset for the k-median

problem on P if for every X ⊆ R
d of k points,

(15.9)
∑
p∈A

dist (p, X) · w (p) = (1± ε) ·
∑
p∈P

dist (p, X) .

Our goal then is to construct an ε-coreset for the k-median problem. We will prove
two main theorems, the first of which is the following.

Theorem 15.10. Let P be a set of n points in R
d and k ∈ Z

+, ε > 0 be two given
parameters. Define

S =
∑
p∈P

sup
Y⊆R

d

|Y |=k

dist(p, Y )∑
q∈P dist(q, Y )

.

Then there exists an ε-coreset A ⊆ P of size O
(

S2 d k log k
ε2

)
for the k-median prob-

lem on P .

The size of the ε-coreset in Theorem 15.10 relies on the seemingly mysterious quan-
tity S; however its proof will demonstrate that S ‘falls out’ naturally when con-
structing coresets using ε-approximations. There do exist good upper bounds on S
but using techniques and ideas outside the scope of this text (see discussion).

2Recall that dist (p,X) = minq∈X dist (p,X).
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Our second main result shows that the dependency on S can be removed if one is
also given an approximate solution B.

Theorem 15.11. Let P be a set of n points in R
d and k ∈ Z

+, ε > 0 be two given
parameters. Further let B ⊆ R

d be a set of points and C ≥ 1 such that

Cost(P, B) ≤ C · Cost(P, k).

Then there exists an ε-coreset for the k-median problem on P of size

O

(
C2 d k log k

ε2
+ |B|

)
.

Note that |B| could be larger than k. Furthermore B is only a C-approximation to
Cost(P, k), where C can be large, even a function of k and n. Theorem 15.11 shows
that this approximate solution is already sufficient to get a small ε-coreset for P .

Overview of ideas. The proof of Theorems 15.10 and 15.11 rely on the following
two insights. Let X be any set of k points in R

d.

Relation to ε-approximations: Rewrite Equation (15.9) to get∣∣∣∣∣∣
∑
p∈P

dist (p, X)−
∑
p∈A

dist (p, X) · w (p)

∣∣∣∣∣∣ ≤ ε ·
∑
p∈P

dist (p, X) .

This resembles the notion of ε-approximations. Indeed, applying Corollary 15.6 to
P with functions fp (X) = dist (p, X) for each p ∈ P , an ε-approximation A ⊆ P
of the set system induced on P by the union of k balls in R

d satisfies∣∣∣∣∣∣
∑
p∈P

dist(p, X)−
∑
p∈A

dist(p, X)
|P |
|A|

∣∣∣∣∣∣ ≤ 3 ε · |P | ·max
p∈P

dist(p, X).

The set A would be an O (ε)-coreset, with weight function w(p) = |P |
|A| , if for each

X,

|P | ·max
p∈P

dist (p, X) = O

⎛
⎝∑

q∈P

dist (q, X)

⎞
⎠ ,

or equivalently, if for each p and each X,

dist (p, X) = O

(∑
q∈P dist (q, X)

|P |

)
.

This is not the case, of course—each distance cannot be upper bounded by the
average distance for all X ⊆ R

d.

Weighted ε-approximations: The condition dist(p,X)∑
q∈P dist(q,X) = O( 1

|P | ) suggests

that one should construct an ε-approximation according to a weight distribu-
tion, which can then be set depending on the relative values of dist (p, ·). This
idea, sometimes called importance sampling, is thematically very similar to the
idea in Theorem 8.20. Specifically, consider the following weighted version of
Corollary 15.6.
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Lemma 15.12. Let P be a set of n points in R
d and k a positive integer. For each

p ∈ P we are given a rational weight mp and a function fp :
(
R

d
)k → R

+. These
functions define a set system (P,R) with

R =
{
PX,r : X ⊆ R

d, |X| = k and r ∈ R
}

, where PX,r =
{
p ∈ P : fp (X) ≤ r

}
.

Then given ε > 0 there exists a multiset A ⊆ P of size O
(

VC-dim(R)
ε2

)
such that

for any X ∈
(
R

d
)k
,∣∣∣∣∣∣

∑
p∈P fp(X)∑
p∈P mp

−
∑

p∈A
fp(X)
mp

|A|

∣∣∣∣∣∣ ≤ 3ε

(
max
p∈P

fp(X)

mp

)
.(15.13)

Proof. By scaling up, we can assume that each mp is an integer. Let
P ′ be the set constructed by adding mp copies of each p ∈ P to P ′, where

each copy of p is assigned the function
fp(X)

mp
. By applying Corollary 15.6 to

P ′, there exists a set A such that for all X ∈
(
R

d
)k
,∣∣∣∣∣

∑
p′∈P ′ fp′(X)

|P ′| −
∑

p′∈A fp′(X)

|A|

∣∣∣∣∣ ≤ 3ε

(
max
p′∈P ′

fp′(X)

)
.(15.14)

Noting that
∑

p′∈P ′ fp′(X) =
∑

p∈P fp(X), Equation (15.14) is equivalent

to Equation (15.13).
Finally, as the VC-dimension is unchanged by adding duplicate elements,

Theorem 13.2 implies that |A| = O
(

VC-dim(R)

ε2

)
. �

In the proof of Theorems 15.10 and 15.11 we will set the parameters mp, fp (·) and
ε′ such that an ε′-approximation A given by Lemma 15.12 can be used to construct
the required ε-coreset.

Given our preparation, the proof of our first main result is immediate.

Theorem 15.10. Let P be a set of n points in R
d and k ∈ Z

+, ε > 0 be two given
parameters. Define

S =
∑
p∈P

sup
Y⊆R

d

|Y |=k

dist(p, Y )∑
q∈P dist(q, Y )

.

Then there exists an ε-coreset A ⊆ P of size O
(

S2 d k log k
ε2

)
for the k-median prob-

lem on P .

Proof. Set fp(X) = dist(p, X) for each p ∈ P and let mp be the weight of
p ∈ P . These weights will be set later and normalized so that

∑
p∈P mp = 1.

Further let ε′ > 0 be a parameter to be set later.

Let A be an ε′-approximation given by Lemma 15.12 applied to P with weights mp

and functions fp (·). That is, for each set X of k points in R
d, A satisfies∣∣∣∣∣∣

∑
p∈P

dist(p, X)−
∑
p∈A

dist(p, X) · 1

|A|mp

∣∣∣∣∣∣ ≤ 3ε′
(
max
p∈P

dist(p, X)

mp

)
.(15.15)
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For A to be an ε-coreset, the right-hand side of the above inequality must

be upper bounded by ε ·
∑

p∈P dist(p,X). The natural choice is to set mp =
dist(p,X)∑

q∈P dist(q,X)
for each p ∈ P and ε′ = ε

3
. However mp must be independent of

X, as A must work for all choices of X! Considering the worst-case bound for

mp over all choices of X leads to the notion of the sensitivity of a point.

Definition 15.16. The sensitivity of each p ∈ P with respect to {fp : p ∈ P} is
defined to be

s(p) = sup
Y⊆R

d

|Y |=k

fp(Y )∑
q∈P fq(Y )

.

Let S =
∑

p∈P s (p) and set

fp(X) = dist(p, X) and mp =
s (p)

S
3.

From Equation (15.15),∣∣∣∣∣∑
p∈P

dist(p, X)−
∑
p∈A

dist(p, X) · 1

|A|mp

∣∣∣∣∣ ≤ 3ε′ · S ·
(
max
p∈P

dist(p, X)

s(p)

)
The R.H.S., after substituting for s(p) and multiplying/dividing by

∑
q∈P dist (q, X):

3ε′S
∑
q∈P

dist (q, X) ·

⎛
⎜⎜⎝max

p∈P

dist(p,X)∑
q∈P dist(q,X)

supY⊆R
d

|Y |=k

dist(p,Y )∑
q∈P dist(q,Y )

⎞
⎟⎟⎠ ≤ 3ε′S

⎛
⎝∑

q∈P

dist (q, X)

⎞
⎠ .

Setting ε′ = ε
3S implies that A is an ε-coreset where each p ∈ A is assigned the

weight 1
|A|mp

.

Note that A is an ε-approximation of the set system induced on P by the union of
k balls in R

d; that is, the set system induced by the k-fold union of balls in R
d.

Lemma 10.3 and Theorem 11.6 implies that the VC-dimension of this set system is

Θ (dk log k) and thus |A| = O
(

S2dk log k
ε2

)
by Lemma 15.12. �

We remark here that to compute A above, we need to compute the weights

mp for each p ∈ P . This, together with the problem of deriving good upper

bounds on the total sensitivity S, is a non-trivial algorithmic problem by itself

(see discussion).

3The division by S is just to get
∑

p mp = 1.
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Theorem 15.11. Let P be a set of n points in R
d and k ∈ Z

+, ε > 0 be two given
parameters. Further let B ⊆ R

d be a set of points and C ≥ 1 such that

Cost(P, B) ≤ C · Cost(P, k).

Then there exists an ε-coreset for the k-median problem on P of size

O

(
C2 d k log k

ε2
+ |B|

)
.

Proof. Given B, set the parameters for each p ∈ P as follows:

fp(X) = dist(p, X)− dist(closest(p, B), X) + dist (p, B) ,

mp =
dist(p, B)∑
q∈P dist(q, B)

,

where closest (p, Q) = argminq∈Q dist (p, q) denotes the closest point in Q to p.
Note that fp (X) is non-negative4 due to triangle inequality:

dist(closest(p, B), X) ≤ dist (closest(p, B), p) + dist(p, X).

Applying Lemma 15.12 with fp and mp set above and noting that
∑

p∈P mp = 1,

we get an ε′-approximation A such that for any X ⊆ R
d of k points,∣∣∣∣∣∑

p∈P

(
dist(p, X)− dist(closest(p, B), X) + dist (p, B)

)
−

∑
p∈A

(
dist (p, X)− dist (closest (p, B) , X) + dist (p, B)

)
· 1

|A|mp

∣∣∣∣∣
≤ 3ε′

(
max
p∈P

dist(p, X)− dist(closest(p, B), X) + dist (p, B)

mp

)
.

Using the fact that∑
p∈P

dist(p, B) =
∑
p∈A

(
dist(p, B)

∑
q∈P dist(q, B)

|A| dist(p, B)

)
=
∑
p∈A

dist(p, B)
1

|A|mp
,

we arrive at∣∣∣∣∣
⎛
⎝∑

p∈P

dist(p, X)

⎞
⎠−

⎛
⎝∑

p∈P

dist(closest(p, B), X)

⎞
⎠

−

⎛
⎝∑

p∈A

dist(p, X)
1

|A|mp

⎞
⎠+

⎛
⎝∑

p∈A

dist(closest(p, B), X)
1

|A|mp

⎞
⎠∣∣∣∣∣

≤ 3ε′
(
max
p∈P

dist(p, X)− dist(closest(p, B), X) + dist (p, B)

mp

)
.(15.17)

R.H.S.: Using a consequence of triangle inequality, that

dist(p, X)− dist(closest(p, B), X) ≤ dist(p, closest(p, B)) = dist(p, B),

4Indeed, the additive term dist (p,B) is present in fp(X) just to make fp(X) non-negative
so that one can apply Lemma 15.12. Conceptually we only need fp(X) = dist(p,X) −
dist (closest(p,B), X).
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as well as substituting the value of mp, the R.H.S. of Equation (15.17) is at most

3ε′ max
p∈P

2 dist(p, B)
dist(p,B)∑

q∈P dist(q,B)

= 6ε′
∑
p∈P

dist(p, B)

≤ 6ε′ · C · Cost (P, k) ≤ 6ε′C
∑
p∈P

dist(p, X).

L.H.S.: For each b ∈ B, let Pb be the set of points of P whose closest point in B
is b. Then the L.H.S. of Equation (15.17) becomes∣∣∣∣∣

⎛
⎝∑

p∈P

dist(p, X)

⎞
⎠−

(∑
b∈B

|Pb| · dist(b, X)

)
−

⎛
⎝∑

p∈A

dist(p, X)
1

|A|mp

⎞
⎠(15.18)

+

⎛
⎝∑

b∈B

∑
p∈Pb∩A

dist(b, X)
1

|A|mp

⎞
⎠∣∣∣∣∣.

We’re done—set ε′ = ε
6C and return A ∪ B as our ε-coreset, with weights dictated

by Equation (15.18):

p ∈ A : w(p) =
1

|A|mp
.

b ∈ B : w(b) = |Pb| −
∑

p∈A∩Pb

1

|A|mp
.

�
We remark that to compute the set A one again needs to compute the weights

mp for all p ∈ P . However this time it is easier as we are also given the set B.
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