
CHAPTER 1

A Probabilistic Averaging Technique

This chapter presents a powerful probabilistic proof technique which will be used,
in combination with additional ideas, throughout this book. For a simple first
application, consider the following problem.

Let P = {p1, . . . , pn} be a set of n points in the plane and let k ≥ 0 be an integer.
The k-Delaunay graph of P , denoted by Gk (P ) = (P, Ek), is defined as follows:

{pi, pj} ∈ Ek if and only if there exists a closed disk in the plane con-
taining {pi, pj} and at most k points of P \ {pi, pj}.
For each {pi, pj} ∈ Ek fix any one such disk and denote it by Dij .

Note that E0 ⊆ E1 ⊆ · · · ⊆ En−2 =
(
P
2

)
.

Our goal is to upper bound the number of edges in the k-Delaunay graph of P as
a function of n and k. We will prove that |Ek| = O (n (k + 1))1.

First, observe that the 0-Delaunay graph of P is simply the Delaunay graph, which
is planar and thus E0 has size at most 3n. Next, we upper bound |Ek|, for any
integer k ≥ 1, by the following argument.

Let S be a random sample constructed by picking each point of P in-
dependently with probability p = 1

k+1 and let G0 (S) be the 0-Delaunay

graph of S. We count the expected number of edges in G0 (S) in two
ways.

Upper bound: As any 0-Delaunay graph on t vertices has at most 3t
edges, the expected number of edges in G0 (S) is

E
[
3|S|

]
= 3E

[
|S|
]
= 3np =

3n

k + 1
.

Lower bound: For any {pi, pj} ∈ Ek, if both pi and pj are picked in S
and none of the at most k other points of P lying in Dij are picked in
S, then {pi, pj} is an edge in G0 (S). As each point of P was picked
independently, the probability that {pi, pj} is an edge in G0 (S) is at
least

p2 · (1− p)
k
=

1

(k + 1)2
·
(
1− 1

k + 1

)k

≥ 1

(k + 1)2
· 1
e
,(1.1)

where the last step uses the fact that
(
1 + 1

k

)k ≤ e, and thus 1
e ≤(

k
k+1

)k
=
(
1− 1

k+1

)k
.

1The ‘+1’ term is there just to take care of the case k = 0.
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2 1. A PROBABILISTIC AVERAGING TECHNIQUE

Using linearity of expectation, Equation (1.1) implies that the expected
number of edges of Ek that are present in G0 (S) is at least |Ek|· 1

(k+1)2 e
.

Combining the upper and lower bounds, we get

|Ek| ·
1

(k + 1)2 e
≤ expected number of edges in G0 (S) =

3n

k + 1
,

implying that |Ek| = O (n (k + 1)).

Before we move on to other applications of this technique, we make a few remarks.

• The use of random sampling in the above proof is a way to ‘implement’ a
double-counting argument. Essentially we are summing up, over all edges
e in Gk (P ), the number of subsets S ⊆ P of size n

k+1 for which e is an

edge in G0 (S)
2. We counted this sum in two ways: iterating over edges

of Gk (P ) gave a lower bound while iterating over subsets of P gave an
upper bound. More precisely, define the set of pairs

I =
{
(e, S) : e ∈ Ek, |S| = �n/(k + 1)�, e is in G0 (S)

}
.

Then the above double-counting argument gives

|Ek| ·
(

n − 2− k

�n/(k + 1)� − 2

)
≤ |I| ≤

(
n

�n/(k + 1)�

)
· 3�n/(k + 1)�.

Solving this for |Ek| gives |Ek| = O (n (k + 1)), as before.
• The utility of framing the argument probabilistically is that it beautifully
captures the intuition behind the key idea: if there are ‘too many’ edges
in Gk (P ), then in expectation more than 3|S| of these edges will ‘filter
through’ to G0 (S), for a random sample S. This contradicts the fact that
for any S, G0 (S) has at most 3|S| edges.

• The lower bound follows by considering, for each edge {pi, pj} of Gk (P ),
a specific event whose occurrence implies that {pi, pj} appears as an edge
in G0 (S). This need not be the only event that could cause {pi, pj} to be
an edge in G0 (S)—e.g., there could be a disk other than Dij containing
pi and pj that happens to not contain any other point of S. Thus our
lower bound is not necessarily tight.

In fact, what we actually want to compute is a lower bound on the
probability that there exists some disk containing {pi, pj} and no other
point of S. However the events for all possible disks containing {pi, pj}
are not independent, which makes computing this probability difficult.
Fortunately, we do not lose much by considering any one such disk, and
in fact the lower bound is optimal up to constant factors for certain point
sets. In particular, the bound |Ek| = O (n (k + 1)) is tight for the instance
of n points lying on a line.

• The calculation, when carried out with probability p ∈ (0, 1) as a parame-

ter, gives |Ek| = O
(

n
p (1−p)k

)
. The value of p is then set to maximize the

denominator. Roughly speaking, as the term (1− p)k = e−Θ(pk) decreases
exponentially with p, it is best to set p so that e−Θ(pk) is a constant—that
is, p = Θ

(
1
k

)
.

2A minor technical difference is that in the probabilistic version, the expected size is n
k+1

.
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As for the precise value of p that maximizes the denominator, since

the derivative of p (1− p)k with respect to p is (1− kp − p) (1− p)k−1, it

can be verified that p (1− p)
k
is maximized at p = 1

k+1 .

This also makes sense intuitively: for each edge {pi, pj} ∈ Ek, the disk
Dij contains at most k other points of P and so picking each point with
probability less than 1

k implies that, in expectation, Dij will not contain
any of these points.

• Other applications of this technique follow the same ‘template’—pick a
random sample and calculate the probability of some event due to it in
two ways. The main technical work consists in finding good estimates for
certain events; this is typically where a variety of other combinatorial and
geometric ideas come into play.



4 1. A PROBABILISTIC AVERAGING TECHNIQUE

1. Level Sets

Counting pairs is the oldest trick in combinatorics . . . every time we
count pairs, we learn something from it.

Gil Kalai

Our first application is a variant of the k-Delaunay graph problem. Given a finite
set P of points in R

d and an integer k ≥ 1, the objective is to upper bound the
number of subsets of P of size at most k that are ‘realizable’ by geometric objects
in R

d. We first explain the problem for the case of disks in R
2.

For a set P of n points in R
2, define the set system

R (P ) =
{
D ∩ P : D is a disk in R

2
}
.

We call R (P ) the primal set system induced on P by disks. For any integer k ≥ 1,
let R=k (P ) be the sets of R (P ) of size exactly k and let R≤k (P ) be the sets of
R (P ) of size at most k. That is,

R=k (P ) =
{
R ∈ R (P ) : |R| = k

}
and R≤k (P ) =

{
R ∈ R (P ) : |R| ≤ k

}
.

The sets of R≤k (P ) are called the (≤k)-level sets, or simply (≤k)-sets, of R (P ).

Observe that R≤2 (P )—the subsets of P of size at most two that are
induced by disks—consists of O(n) sets: the sets of size 1 in R≤2 (P )
are the points of P and the sets of size 2 are precisely the edges of the
Delaunay graph of P . At the other end, R≤n (P ) is just R (P ), with size
O
(
n3
)
.

Our first main result of this section implies both of the above two cases.

Lemma 1.2. Let P be a set of n points in R
2 and let R (P ) be the primal set system

induced on P by disks in the plane. Then for any integer k ≥ 1,

|R≤k (P )| = O
(
nk2

)
.

To simplify the presentation, we will assume that |P | ≥ 3, and that P is in general
position; in particular, no three points lie on a line and no four points lie on a circle.

To prove Lemma 1.2, we will first count a slightly different structure called canonical
disks, which are disks that are ‘fixed’ by points of P on their boundary.

Definition 1.3. A canonical disk spanned by Q ⊆ R
2 is a disk whose boundary

contains three points of Q.

Furthermore, a canonical disk D spanned by Q is called an empty canonical disk if
the interior of D contains no point of Q.

Let T (P ) be the set of all
(
n
3

)
unordered triples of points of P . For a triple {p, q, r} ∈

T (P ), let Dpqr be the unique open disk whose boundary contains {p, q, r}; we say
that Dpqr is spanned by {p, q, r}. For an integer k ≥ 0, define the level sets

T≤k (P ) =
{
{p, q, r} ∈ T (P ) : |Dpqr ∩ P | ≤ k

}
.
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We first observe that the size of R≤k (P ) is bounded, within a constant factor, by
that of T≤k (P ).

Claim 1.4. For any integer k ≥ 1, |R≤k (P ) | ≤ 8 · |T≤(k−1) (P ) |.

Proof. Take any R ∈ R≤k (P ) and let D be a disk realizing R; that is,
R = D ∩ P .

Now D can be scaled and translated—without any point of P ‘crossing’ the bound-
ary of D—such that it contains three points of P , say {p, q, r}, on its boundary.
Furthermore at least one of p, q or r belongs to R. See figure.

The interior of Dpqr contains at most k−1 points of P and so {p, q, r} ∈ T≤(k−1) (P ).
By slightly shifting and scaling Dpqr, for each of the 8 possible subsets of {p, q, r},
one can get a disk containing precisely that subset and all the points of P in the
interior of Dpqr. One of these subsets is R, implying the claim.

D

p

q

rDpqr

�

We remark here that the constant 8 can be improved with a more careful argument
(see discussion).

Now the proof of Lemma 1.2 follows from Claim 1.4 and the following statement.

Lemma 1.5. Let P be a set of n points in R
2 and let k ≥ 0 be an integer. Then

|T≤k (P ) | = O
(
n (k + 1)

2
)

.

Proof. First we establish the case k = 0.

Claim 1.6. For any S ⊆ P , |T≤0 (S) | ≤ 2 |S|.

Proof. T≤0 (S) consists of unordered triples of S whose corresponding open
disks do not contain any point of S in their interior. If the disk Dpqr, spanned by
p, q, r ∈ S, contains no point of S in its interior, then by slightly shifting Dpqr, it
follows that each of the three edges {p, q}, {q, r} and {p, r} belong to the Delaunay
graph of S. In particular, the triangle with vertices {p, q, r} is a face of the Delaunay
graph of S. Thus |T≤0 (S) | is upper bounded by the number of faces in a planar
graph on |S| vertices, which is 2|S| − 4. �

Now consider the case k ≥ 1. Construct a random sample S by picking each point
of P independently with probability p = 1

k+1 .

We count the expected size of T≤0 (S) in two ways.



6 1. A PROBABILISTIC AVERAGING TECHNIQUE

Upper bound: From Claim 1.6,

E
[
|T≤0 (S)|

]
≤ E

[
2 |S|

]
= 2np.

Lower bound: The key is the following observation:

a triple {p, q, r} ∈ T (P ) is present in T≤0 (S) if and only if {p, q, r} ⊆ S
and none of the points in Dpqr ∩ P are picked in S.

As each point of P was picked independently, for any {p, q, r} ∈ T (P ), we have

Pr
[
{p, q, r} ∈ T≤0 (S)

]
= p3 · (1− p)

|Dpqr∩P |
.

Therefore, by linearity of expectation,

E
[
|T≤0 (S)|

]
=

∑
{p,q,r}∈T (P )

Pr
[
{p, q, r} ∈ T≤0 (S)

]
≥

∑
{p,q,r}∈T≤k(P )

Pr
[
{p, q, r} ∈ T≤0 (S)

]
=

∑
{p,q,r}∈T≤k(P )

p3 · (1− p)
|Dpqr∩P |

≥
∑

{p,q,r}∈T≤k(P )

p3 · (1− p)k = |T≤k (P )| · p3 · (1− p)k .

Combining the upper and lower bounds,

|T≤k (P )| · p3 · (1− p)k ≤ E
[
|T≤0 (S)|

]
≤ 2np,

and hence |T≤k (P )| ≤ 2n

p2 · (1− p)k
=

2n (k + 1)
2(

1− 1
k+1

)k ≤ 2e n (k + 1)2 ,

where the last step follows from the fact that
(
1− 1

k+1

)k
≥ 1

e . �

We next prove a similar statement for set systems where the elements are geometric
objects in R

d and the sets are induced by points in R
d. We consider the case of

disks in the plane.

Given a set D = {D1, . . . , Dn} of n distinct closed disks in R
2, define the set system

R (D) =
{
Dp : p ∈ R

2
}
, where Dp =

{
D ∈ D : D � p

}
.

We call R (D) the dual set system induced on D by R
2. Visually, each cell in

the arrangement of D corresponds to a set in R (D) (note that different cells may
correspond to the same subset).

For simplicity we will assume that D is in general position—in particular, the
intersection of the boundaries of every pair of disks of D is either empty or consists
of two distinct points and the intersection of the boundaries of any three disks of
D is empty.

Our goal is to upper bound, for any integer k ≥ 1, the size of R≤k (D). Our main
result is the following.
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Lemma 1.7. Let D be a set of n closed disks in R
2 and let R (D) be the dual set

system induced on D. Then for any integer k ≥ 1,

|R≤k (D) | = O (nk) .

As earlier, it suffices to consider canonical sets, defined as follows. Let V (D) be
the set of at most 2

(
n
2

)
points in R

2 that are the intersections of boundaries of the
disks of D. For any integer k ≥ 0, define

V≤k (D) =
{
v ∈ V (D) : v is contained in the interior of at most k disks of D

}
.

Similarly one can define V=k (D). See figure.

V=0(D)

V=1(D)

V=2(D)

D

The proof of the following claim is easy and left to the reader.

Claim 1.8. For any integer k ≥ 1, |R≤k (D) | ≤ 4 · |V≤(k−1) (D) |+ |D|.

Now the proof of Lemma 1.7 follows from Claim 1.8 and the following statement.

Lemma 1.9. For any integer k ≥ 0, |V≤k (D) | = O (n (k + 1)).

Proof. As before, we first upper bound the size of V≤0 (D) and then use the
averaging technique to upper bound the size of V≤k (D) for k ≥ 1.

Claim 1.10. For any S ⊆ D, |V≤0 (S)| ≤ 6 |S|.

Proof. Any v ∈ V≤0 (S) is an intersection point between the boundary of two
disks of S and is not contained in the interior of any disk of S. Let G = (S, E)
be a graph where there is an edge between two disks of S if and only if a common
intersection point of their boundaries belongs to V≤0 (S). We now show that G is
planar, and so |V≤0 (S) | ≤ 2|E| ≤ 2 (3|S| − 6) ≤ 6|S|.
We claim that the following is a plane drawing of G: draw each edge {Di, Dj} ∈ E
as a line segment between the centers of Di and Dj . Consider any two edges
{Di, Dj}, {Dk, Dl} and let qij , qkl be the two corresponding points in V≤0 (S). Let
l be the bisector of qij and qkl. As both Di, Dj contain qij and do not contain
qkl, their centers lie on the side of l containing qij . Similarly the centers of Dk and
Dl lie on the side of l containing qkl. Thus the line segments corresponding to the
edges {Di, Dj} and {Dk, Dl} cannot intersect. �
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Now consider the case k ≥ 1. Construct a random sample S by picking each disk
of D independently with probability p = 1

k+1 .

We will count the expected size of V≤0 (S) in two ways.

Upper bound: From Claim 1.10,

E
[
|V≤0 (S) |

]
≤ E [6 |S|] = 6E [|S|] = 6np.

Lower bound: This follows by considering the probability of each vertex in
V≤k (D) ending up as a vertex of V≤0 (S). Let v ∈ V≤k (D) and let Di, Dj ∈ D
be the two disks such that v is an intersection point of the boundaries of Di and
Dj . Then

v ∈ V≤0 (S) if and only if {Di, Dj} ⊆ S and every disk of D containing
v in its interior is not present in S.

As there are at most k such disks and each disk of D was picked independently,

Pr
[
v ∈ V≤0 (S)

]
≥ p2 (1− p)

k
.

Therefore,

E
[
|V≤0 (S) |

]
=

∑
v∈V(D)

Pr
[
v ∈ V≤0 (S)

]
≥

∑
v∈V≤k(D)

Pr
[
v ∈ V≤0 (S)

]
≥ |V≤k (D) | · p2 (1− p)k .

Combining the upper and lower bounds,

|V≤k (D) | · p2 (1− p)
k ≤ E

[
|V≤0 (S) |

]
≤ 6np,

and hence |V≤k (D) | ≤ 6n

p (1− p)k
=

6n (k + 1)(
1− 1

k+1

)k ≤ 6e n (k + 1) ,

where the last step used the fact that
(
1− 1

k+1

)k
≥ 1

e . �

Primal and dual set systems can be defined more generally:

Definition 1.11. Given a set P of points in R
d and a (possibly infinite) family R

of geometric objects in R
d, the primal set system induced on P by R is{

O ∩ P : O ∈ R
}
.

Definition 1.12. Given a set R of geometric objects in R
d, the dual set system

induced on R by R
d is defined as{
Rp : p ∈ R

d
}
, where Rp =

{
R ∈ R : R � p

}
.

We now conclude with the case of primal and dual set systems induced by half-
spaces in R

d.

Let P be a set of n points in general position in R
d and R (P ) the primal set system

induced on P by downward-facing half-spaces—that is, considering the xd-axis as
vertical, the half-spaces which contain the point that is the ‘minus infinity’ of the xd
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axis. It can be shown that |R (P ) | = O
(
nd
)
. In fact for points in general position

there is a precise bound independent of the structure of P (stated without proof):

(1.13) |R (P ) | =
d∑

i=0

(
n

i

)
.

Now let T (P ) be all the
(
n
d

)
subsets of P of size d. For each e ∈ T (P ), let h+

e be
the unique downward-facing open half-space whose bounding hyperplane contains
e. For an integer k ≥ 0, define the level sets

T≤k (P ) =
{
e ∈ T (P ) :

∣∣h+
e ∩ P

∣∣ ≤ k
}
.

As earlier, the size ofR≤k (P ) can be upper bounded, within a multiplicative factor,
by that of T≤k (P ).

To bound |T≤k (P ) | we again first need a bound on |T≤0 (P ) |. Observe that
|T≤0 (P ) | is simply the number of facets on the lower convex-hull of P . It is well-
known, to those who know it, that the Upper Bound Theorem for convex polytopes

implies that this is at most 2
∑� d

2 	
i=0

(
n
i

)
(see discussion). Now the probabilistic av-

eraging technique of this chapter together with this 0-th level bound implies the
following (stated without proof).

Theorem 1.14. Given a set P of n points in R
d and an integer k ≥ 0,

|T≤k (P ) | ≤ 2

(
e

�d/2�

)� d
2 �( n⌊

d
2

⌋)(k +

⌈
d

2

⌉)� d
2 �

.

The above is O
(
n�d/2	 (k + 1)
d/2�

)
when the dimension d is considered a constant.

For d = 3, Theorem 1.14 gives a bound of O
(
nk2
)
—the same bound, within

a multiplicative constant, as the one of Lemma 1.5. This is not a coincidence:

there exists a mapping of points in R
2 to R

3, the so-called ‘paraboloid lift’,

with the property that subsets realized by intersection with disks in R
2 can be

realized by intersection with half-spaces in R
3. Thus Theorem 1.14 for d = 3

implies Lemma 1.5.

For later use, it will be convenient to state Theorem 1.14 in the dual setting.

Definition 1.15. The level of a point q ∈ R
d with respect to a set H of hyperplanes

in R
d is the number of hyperplanes of H lying strictly below q in the negative xd

direction; that is, the number of hyperplanes intersecting the ray{
q + λ (0, . . . , 0,−1) : λ > 0

}
.

Given a set H of hyperplanes in R
d in general position, a vertex in the arrangement

of H is a point lying in the intersection of some d hyperplanes of H. Let V≤k (H)
be the set of vertices of H of level at most k. Then by duality, Theorem 1.14 is
equivalent to the following statement.

Theorem 1.16. Given a set H of n hyperplanes in R
d and an integer k ≥ 0,

|V≤k (H)| ≤ 2

(
e

�d/2�

)� d
2 �( n⌊

d
2

⌋)(k +

⌈
d

2

⌉)� d
2 �

.
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2. Concentration Bounds for Sums of Bernoulli Variables

I thought it was a rather trivial lemma, but many things are only trivial
once you know them.

Herman Chernoff

We present an application of the probabilistic technique to computing tail bounds
of some common probability distributions. That is, we would like to upper bound
the probability that a random variable gets a value far from its expectation. This
is a basic technical ingredient in nearly all the constructions and methods that will
be seen later.

The setting is the following.

Let I = {1, 2, . . . , n} be a set of n elements from which we will pick a
random sample. We aim to pick np elements of I, for a given parameter
p ∈ [0, 1].

The 0-1 valued random variable Xi will be used to indicate whether i ∈ I is picked
in our random sample. Our goal is to estimate the probability that the sum of these
n variables, X =

∑n
i=1 Xi, falls far from its expectation E [X]. More precisely, for

any δ ≥ 0, we are interested in bounding Pr
[
X ≥ (1 + δ) E [X]

]
and Pr

[
X ≤

(1− δ) E [X]
]
.

In fact, we consider the more general case where for a fixed set J ⊆ I with XJ =∑
j∈J Xj , we are interested in upper bounds on

Pr
[
XJ ≥ (1 + δ) · E [XJ ]

]
and Pr

[
XJ ≤ (1− δ) · E [XJ ]

]
.

There are several natural ways to pick a random sample from I. Two basic ones,
given a parameter p, are the following.

Binomial distribution: Pick each element of I independently with probability p.
That is, let X1, . . . , Xn be n independent 0-1 random variables where

Xi =

{
1 with probability p,

0 otherwise.

For any J ⊆ I, we have

E [XJ ] = E

⎡
⎣∑
j∈J

Xj

⎤
⎦ =

∑
j∈J

E [Xj ] =
∑
j∈J

Pr [Xj = 1] = |J | p.

One can write the exact equation for the tail bounds using the fact that the value
of each Xi was set independently:

Pr
[
XJ ≥ (1 + δ) · |J | p

]
=

|J|∑
i=
(1+δ)·|J|p�

Pr [XJ = i](1.17)

=

|J|∑
i=
(1+δ)·|J|p�

(
|J |
i

)
pi (1− p)

|J|−i
.

As there is no closed-form formula for this, several methods have been proposed
to estimate the right-hand side of the above expression (see discussion).
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The fact that {X1, . . . , Xn} are independent has two advantages: first it makes
calculations easier and second, for any J ⊆ I the induced probability distribution
on XJ remains the same (that is, each element of J is picked independently with
probability p). On the other hand, the number of elements X is not fixed and is
a random variable with expectation np.

Sampling without replacement: A second natural way to sample is to choose,
out of all

(
n
np

)
np-sized subsets of I, one uniformly at random (assume that np

is an integer). This then sets the values of X1, . . . , Xn, with
∑

i Xi being equal
to np. Note that for any J ⊆ I, E [XJ ] = |J | p since for any i,

Pr [Xi = 1] =

(
n−1
np−1

)(
n
np

) =
(n − 1)!

(np − 1)!(n − np)!
· (np)!(n− np)!

n!
=

np

n
= p.

More generally, for any J ⊆ I, letting t = |J |, the probability that Xj = 1 for all
j ∈ J , can be upper bounded as

Pr

⎡
⎣
⎛
⎝∏

j∈J

Xj

⎞
⎠ = 1

⎤
⎦ =

(
n−t
np−t

)(
n
np

) =
(n − t)!

(np − t)!
· (np)!

n!
(1.18)

=
np

n

np − 1

n − 1
· · · np − t + 1

n − t + 1
≤ pt,

since each term np−i
n−i ≤ p for p ≤ 1. Similarly, the probability that Xj = 0 for all

j ∈ J , can be upper bounded as

Pr

⎡
⎣
⎛
⎝∏

j∈J

(1− Xj)

⎞
⎠ = 1

⎤
⎦ =

(
n−t
np

)(
n
np

) =
(n − t)!

(n − t − np)!
· (n − np)!

n!

(1.19)

=
n − np

n

n − np − 1

n − 1
· · · n − np − t + 1

n − t + 1
≤ (1− p)t ,

since each term n−np−i
n−i ≤ (1− p) for i ≥ 0.

We can again write the precise equation for the tail bounds for any J ⊆ I:

Pr
[
XJ ≥ (1 + δ) · |J | p

]
=

|J|∑
i=
(1+δ)·|J|p�

Pr [XJ = i]

=

|J|∑
i=
(1+δ)·|J|p�

(|J|
i

)
·
(
n−|J|
np−i

)(
n
np

) .

The advantage of this distribution is that X = np always; however the variables
{X1, . . . , Xn} are no longer independent. Consequently, for a J ⊆ I, the induced
probability distribution on XJ is not the one where a (|J |p)-sized subset of J is
chosen uniformly at random from the set of all (|J |p)-sized subsets of J .

The variables X1, . . . , Xn are an example of negatively associated random
variables. We note that in this case the tail bounds are even better—that
is, more sharply concentrated around the expectation—than for binomial
distribution. Intuitively, for any i, j ∈ I, the fact that Xi = 1 makes it less
likely that Xj = 1 and the fact that Xi = 0 makes it more likely that Xj = 1.
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Formally, if p ∈ (0, 1),

Pr
[
Xj = 1 | Xi = 1

]
=

(
n−2
np−2

)(
n−1
np−1

) =
np− 1

n− 1
< p, and

Pr
[
Xj = 1 | Xi = 0

]
=

(
n−2
np−1

)(
n−1
np

) =
np

n− 1
> p.

Our main theorem, a multiplicative version of a tail bound for negatively associated
random variables, is the following.

Theorem 1.20. Let X1, . . . , Xn be n indicator random variables and let δ > 0 be
a given parameter. Set X =

∑n
i=1 Xi.

(1) Let p1, . . . , pn be reals in [0, 1], 0 <
∑n

i=1 pi < n, such that

for any I ′ ⊆ [n] Pr

[(∏
i∈I′

Xi

)
= 1

]
≤
∏
i∈I′

pi.

Let p̃ =
∑

i pi

n . Then

Pr
[
X ≥ (1 + δ)np̃

]
≤

⎛
⎜⎝
(
1− p̃δ

1−p̃

)(1+δ)p̃−1

(1 + δ)(1+δ)p̃

⎞
⎟⎠

n

.(1.21)

The above expression can be simplified to give

Pr [X ≥ (1 + δ)np̃] ≤ e−
δ2

2+δnp̃.

(2) Let r1, . . . , rn be reals in [0, 1], 0 <
∑n

i=1 ri < n, such that

for any I ′ ⊆ [n] Pr

[(∏
i∈I′

(1− Xi)

)
= 1

]
≤
∏
i∈I′

(1− ri) .

Let r̃ =
∑

i ri
n . Then

Pr
[
X ≤ (1− δ)nr̃

]
≤

⎛
⎜⎝
(
1 + δr̃

1−r̃

)−1+r̃−δr̃

(1− δ)
r̃(1−δ)

⎞
⎟⎠

n

.(1.22)

The above expression can be simplified to give

Pr [X ≤ (1− δ)nr̃] ≤ e−
δ2

2 nr̃.

We remark that the two preconditions of the above theorem imply that for any
variable Xi, we have

Pr [Xi = 1] ≤ pi, and

Pr [(1− Xi) = 1] ≤ 1− ri or equivalently, Pr [Xi = 1] ≥ ri.

Thus the variables pi and ri are upper and lower bounds on the probability that
Xi = 1, and therefore nr̃ ≤ E

[∑
i Xi

]
≤ np̃.

The above theorem applies to both the two earlier distributions—binomial and
sampling without replacement—as it avoids using independence of the Xi’s and



14 1. A PROBABILISTIC AVERAGING TECHNIQUE

instead uses an upper bound on Pr
[(∏

i∈J Xi

)
= 1
]
and Pr

[(∏
i∈J (1− Xi)

)
= 1
]

for every J ⊆ I.

Binomial distribution: Theorem 1.20 and independence implies the following.

Corollary 1.23. Let I = {1, . . . , n} and p1, . . . , pn ∈ [0, 1] be given parameters.
Let R ⊆ I be a random sample constructed by picking each i ∈ I independently
with probability pi. Then for a fixed J ⊆ I and δ > 0,

Pr
[
|J ∩ R| ≥ (1 + δ) E [|J ∩ R|]

]
= Pr

[
|J ∩ R| ≥ (1 + δ)

∑
j∈J

pj

]

≤ e−
δ2

2+δ

∑
j∈J pj ,

Pr
[
|J ∩ R| ≤ (1− δ) E [|J ∩ R|]

]
= Pr

[
|J ∩ R| ≤ (1− δ)

∑
j∈J

pj

]

≤ e−
δ2

2

∑
j∈J pj .

In particular,

Pr

[
|J ∩ R| ≥ (1 + δ)

∑
j∈J

pj
⋃

|J ∩ R| ≤ (1− δ)
∑
j∈J

pj

]
≤ 2 e−

δ2

2+δ

∑
j∈J pj .

Sampling without replacement: Theorem 1.20 together with Equations (1.18)
and (1.19) implies the following.

Corollary 1.24. Let I = {1, . . . , n} and t ∈ [n] be a given parameter. Let R ⊆ I
be a random sample of size t chosen uniformly from all

(
n
t

)
t-sized subsets of I.

Then for any fixed J ⊆ I and δ > 0,

Pr

[
|J ∩ R| ≥ (1 + δ) |J | t

n

]
≤ e−

δ2

2+δ |J|
t
n ,

Pr

[
|J ∩ R| ≤ (1− δ) |J | t

n

]
≤ e−

δ2

2 |J| t
n .

In particular,

Pr

[
|J ∩ R| ≥ (1 + δ) |J | t

n

⋃
|J ∩ R| ≤ (1− δ) |J | t

n

]
≤ 2 e−

δ2

2+δ |J|
t
n .

We remark here that these bounds are tight within constant factors in the
exponent for certain ranges of δ. Here is one lower bound (stated without
proof; see discussion).

Theorem 1.25. Let I = {1, . . . , n} and p ∈
(
0, 1

2

]
. Let R ⊆ I be a random

sample constructed by picking each i ∈ I independently with probability p. Then

for δ ∈
[√

3
np

, 1
2

]
,

Pr
[
|R| ≥ (1 + δ)np

]
≥ e−9δ2np,

Pr
[
|R| ≤ (1− δ)np

]
≥ e−9δ2np.
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Overview of ideas. The proof of Theorem 1.20 will use our probabilistic averaging
technique. That is, we will take a random sample of {1, 2, . . . , n} and calculate the
probability of a carefully chosen event due to it in two ways.

At first glance, it might seem odd to estimate the probability of a random event—in
our case the tail bounds on X—by taking another random sample! However it is a
mistake to confuse these two separate probability distributions, with very different
purposes—one is part of the input problem and the other is part of the averaging
proof technique.

Perhaps a more modular way to think about this is to consider the quantity we
are bounding—Pr [X ≥ (1 + δ)np̃]—combinatorially : the support of the probabil-
ity distribution consists of 2n binary strings corresponding to all possible assign-
ments of the 0-1 variables X1, . . . , Xn. Each string s ∈ {0, 1}n has some probability,
say w(s), of being chosen.

Let |s| denote the number of 1’s in s. The precise value of w (s) depends

on the probability distribution. For example, when p1 = · · · = pn = p and

where np is an integer, w (s) = p|s| (1− p)n−|s| for the binomial distribution.

Similarly w (s) = 1/
(

n
np

)
if |s| = np, and 0 otherwise, for the sampling without

replacement distribution.

Then our goal is to upper bound the combinatorial quantity∑
s∈{0,1}n

|s|≥(1+δ)np̃

w (s) .

Seen this way, it is similar to the earlier use of the probabilistic averaging technique
to upper bound the sizes of level sets, with one difference being that earlier we were
bounding the cardinality instead of a weighted sum.

As a warm-up, we first prove the following weaker bound, calledMarkov’s inequality,
under the conditions of Theorem 1.20:

(1.26) Pr
[
X ≥ (1 + δ)np̃

]
≤ 1

1 + δ
.

While Markov’s inequality has an even simpler direct proof (furthermore, Markov’s
inequality holds for any positive random variable X for which E [X] exists, with
E [X] replacing np̃ in the stated bound. That is, X need not be the sum of n indica-
tor variables), the following proof is an easy natural application of the probabilistic
averaging technique and gives insight into the proof of Theorem 1.20.

Let S be a random sample of the index set I = {1, 2, . . . , n} where
each index is picked independently with probability q. Note that S is
independent of the Xi variables.

We count the following quantity in two ways:

E
[
|S1|

]
, where S1 = {i ∈ S : Xi = 1} .

That is, the expected number of indices i ∈ S for which Xi = 1.
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Upper bound: Using linearity of expectation and the fact that we have
Pr [Xi = 1] ≤ pi,

E [|S1|] =
n∑

i=1

Pr [i ∈ S and Xi = 1] ≤
n∑

i=1

piq = np̃ q.

The last step used the fact that S and X are independent.

Lower bound: Consider the elements of the event space for the variable
X = X1+ · · ·+Xn for which X ≥ (1 + δ)np̃. Note that for each event
{X1, . . . , Xn} with X = k, the expected number of indices i ∈ S with
Xi = 1 is precisely kq. Thus we have

E
[
|S1|

∣∣ X ≥ (1 + δ)np̃
]
≥ (1 + δ)np̃ q.

Summing up over all events,

E [|S1|] =E
[
|S1|

∣∣ X ≥ (1 + δ)np̃
]
· Pr[X ≥ (1 + δ)np̃] +

E
[
|S1|

∣∣ X < (1 + δ)np̃
]
· Pr[X < (1 + δ)np̃]

≥E
[
|S1|

∣∣ X ≥ (1 + δ)np̃
]
· Pr[X ≥ (1 + δ)np̃]

≥ (1 + δ)np̃ q · Pr [X ≥ (1 + δ)np̃] .

Putting the upper and lower bounds together,

(1 + δ)np̃ q · Pr [X ≥ (1 + δ)np̃] ≤ E [|S1|] ≤ np̃ q,

and hence Pr [X ≥ (1 + δ)np̃] ≤ 1

1 + δ
.

An astute reader will notice that the proof above is needlessly complicated, as

the parameter q does not play any role: the dependence on q is linear in both

the upper and lower bounds and thus cancels out. Setting S = I (i.e., q = 1)

gives the standard proof of Markov’s inequality. This will not remain the case

for the proof of the main theorem, to which we turn to next.

We now prove our main theorem.

Proof of Theorem 1.20. As before, let S be a random sample where each
element in {1, 2, . . . , n} is picked independently with probability q.

We count the following quantity in two ways:

Pr
[∏

i∈S Xi = 1
]
.

That is, the probability that for each index i ∈ S, Xi = 1.

Note that this probability is over both the choice of S and the choice of X. Fur-
thermore S and X are independent.

Upper bound. It will be instructive to consider it in three, progressively more
general, scenarios:
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• each Xi = 1 independently with probability pi: Then we have

Pr

[∏
i∈S

Xi = 1

]
=

n∏
i=1

(
1− Pr [i ∈ S and Xi = 0]

)

=

n∏
i=1

(1− q (1− pi)) ≤
(∑n

i=1 (1− q (1− pi))

n

)n

=

(
n − nq + q

∑n
i=1 pi

n

)n

= (qp̃ + 1− q)
n

,

where the third step uses the inequality of arithmetic and geometric means, that∏n
i=1 ai ≤

(∑n
i=1 ai

n

)n
for any non-negative reals a1, . . . , an.

• p1 = · · · = pn = p: Then p̃ = p and so

Pr

[∏
i∈S

Xi = 1

]
=
∑

Q⊆[n]

Pr
[
S = Q and

∏
i∈Q

Xi = 1
]

=
∑

Q⊆[n]

Pr [S = Q] · Pr

⎡
⎣∏
i∈Q

Xi = 1

⎤
⎦ (

S, X are independent
)

≤
n∑

i=0

(
n

i

)
qi(1− q)n−i · pi

(
by input assumption

)
= (qp + 1− q)

n
(
by the binomial theorem

)
.

• the general case:

Pr

[∏
i∈S

Xi = 1

]
=
∑

Q⊆[n]

Pr [S = Q] · Pr

⎡
⎣∏
i∈Q

Xi = 1

⎤
⎦

≤
∑

Q⊆[n]

q|Q|(1− q)n−|Q| ·
∏
i∈Q

pi

(
by input assumption

)

= (1− q)
n
∑

Q⊆[n]

∏
i∈Q

qpi
1− q

= (1− q)
n

n∏
i=1

(
1 +

qpi
1− q

)
,

where the last step uses the fact that
∏n

i=1(1+ ai) =
∑

Q⊆[n]

∏
i∈Q ai (each term

in the L.H.S. of this expression, when opened up, corresponds to a choice of either
1 or a from each of the n product terms). Continuing,

= (1− q)n
n∏

i=1

(
qpi + 1− q

1− q

)
=

n∏
i=1

(qpi + 1− q)

≤ (qp̃ + 1− q)
n

(
as earlier

)
.

Lower bound. Consider the elements of the event space of X = X1+ · · ·+Xn for
which X ≥ (1 + δ)np̃ . Note that for each instance of {X1, . . . , Xn} with X = k,

the probability that for each index i ∈ S we have Xi = 1 is exactly (1− q)n−k. In
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our case k ≥ (1 + δ)np̃ and since (1− q)n−k is mononotically increasing with k, we
have

Pr

[∏
i∈S

Xi = 1
∣∣ X ≥ (1 + δ)np̃

]
≥ (1− q)

n−(1+δ)np̃
.

Summing up over all events,

Pr

[∏
i∈S

Xi = 1

]
=Pr

[∏
i∈S

Xi = 1
∣∣ X ≥ (1 + δ)np̃

]
· Pr[X ≥ (1 + δ)np̃] +

Pr

[∏
i∈S

Xi = 1
∣∣ X < (1 + δ)np̃

]
· Pr[X < (1 + δ)np̃]

≥Pr

[∏
i∈S

Xi = 1
∣∣ X ≥ (1 + δ)np̃

]
· Pr[X ≥ (1 + δ)np̃]

≥ (1− q)n−(1+δ)np̃ · Pr [X ≥ (1 + δ)np̃] .

Combining the upper and lower bounds,

(1− q)
n−(1+δ)np̃ ·Pr [X ≥ (1 + δ)np̃] ≤ Pr

[∏
i∈S

Xi = 1

]
≤ (1− q (1− p̃))

n

=⇒ Pr [X ≥ (1 + δ)np̃] ≤
(

1− q (1− p̃)

(1− q)
1−(1+δ)p̃

)n

.

To minimize the R.H.S. of the above expression3, we set q = δ
(1−p̃)(1+δ) . Then

Pr [X ≥ (1 + δ)np̃] ≤

⎛
⎜⎝ 1− δ

(1−p̃)(1+δ) (1− p̃)(
1− δ

(1−p̃)(1+δ)

)1−(1+δ)p̃

⎞
⎟⎠

n

=

⎛
⎜⎝ 1

1+δ(
1−p̃−p̃δ

(1−p̃)(1+δ)

)1−(1+δ)p̃

⎞
⎟⎠

n

=

⎛
⎜⎝
(

1−p̃−p̃δ
1−p̃

)(1+δ)p̃−1

(1 + δ)(1+δ)p̃

⎞
⎟⎠

n

=

⎛
⎜⎝
(
1− p̃δ

1−p̃

)(1+δ)p̃−1

(1 + δ)(1+δ)p̃

⎞
⎟⎠

n

,

getting the required bound.

The other direction—an upper bound on the probability that the number of 1’s in
X is at most (1 − δ)nr̃—is equivalent to upper bounding the probability that the
number of 0’s in X is at least

n − (1− δ)nr̃ =

(
1− (1− δ) r̃

(1− r̃)

)
n (1− r̃) =

(
1 +

δr̃

1− r̃

)
n (1− r̃) .

3The partial derivative w.r.t. q is

(
np̃

)(
(1+δ)(p̃−1)q+δ

)(
((p̃−1)q+1)(1−q)δp̃+p̃−1

)n
(q−1)((p̃−1)q+1)

.
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Set Yi = 1 − Xi for i = 1, . . . , n, and let Y =
∑

i Yi. That is, Y = n − X is a
random variable denoting the number of 0’s in X. Then

Pr [X ≤ (1− δ)nr̃] = Pr

[
Y ≥

(
1 +

δr̃

1− r̃

)
n (1− r̃)

]
.

Thus we can apply the previous bound on the variable Yi’s, now with probabilities

(1 − ri) instead of pi. We have
∑n

i=1(1−ri)

n = (1− r̃) and so from Equation (1.21)

with δ′ = δr̃
1−r̃ ,

Pr [Y ≥ (1 + δ′)n (1− r̃)] ≤

⎛
⎜⎝
(
1− (1−r̃)δ′

1−(1−r̃)

)(1+δ′)(1−r̃)−1

(1 + δ′)(1+δ′)(1−r̃)

⎞
⎟⎠

n

=

⎛
⎜⎝(1− δr̃

r̃

)(1+ δr̃
1−r̃ )(1−r̃)−1

(
1 + δr̃

1−r̃

)(1+ δr̃
1−r̃ )(1−r̃)

⎞
⎟⎠

n

=

⎛
⎜⎝ (1− δ)−r̃(1−δ)(

1 + δr̃
1−r̃

)1−r̃+δr̃

⎞
⎟⎠

n

=

⎛
⎜⎝
(
1 + δr̃

1−r̃

)−1+r̃−δr̃

(1− δ)
r̃(1−δ)

⎞
⎟⎠

n

,

getting the required bound.

The simplifications of these expressions are covered in many places and we refer
the reader to existing literature on this (see discussion). �
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