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Abstract

Given a set D of n unit disks in the plane and an integer k ≤ n, the maximum area connected
subset problem asks for a set D′ ⊆ D of size k maximizing the area of the union of disks in D′,
under the constraint that this union is connected. This problem is motivated by wireless router
deployment and is a special case of maximizing a submodular function under a connectivity
constraint.

We prove that the problem is NP-hard and analyze a greedy algorithm, proving that it
computes a 1

2 -approximation. We then give a polynomial-time approximation scheme (PTAS)
for this problem with resource augmentation, i.e., allowing an additional set of εk unit disks that
are not drawn from the input. Additionally, for two special cases of the problem we design a
PTAS without resource augmentation.

1 Introduction

Maximizing a submodular function1 under constraints is a classical problem in computer science
and operations research [29, 33]. The most commonly studied constraints are cardinality, knapsack
and matroids constraints. A natural constraint that has received little attention is the connectivity
constraint. In this paper, we study the following problem. Given a set D of n unit disks in the
plane and an integer k ≤ n, compute a set D′ ⊆ D of size k that maximizes the area of the union of
disks in D′, under the constraint that this union is connected. We call this problem Maximum Area
Connected Subset problem (MACS). Notice that the area covered by the union of a set of disks is a
monotone submodular function.
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The problem is motivated by wireless router deployment, first introduced in [23]: the goal is to
install a certain number of routers to maximize the number of clients covered while also ensuring
that these routers are connected to each other. When the clients are spatially uniformly spread, the
number of clients covered is proportional to the area and hence the objective is to maximize the
area covered. We note that another motivation to connectivity constraint for submodular function
maximization come from cancer genome studies (see related work section below).

Our Contributions. We first analyze a variant of the greedy algorithm and prove that it computes
a 1

2 -approximation (Theorem 2); further we show that the analysis of the algorithm is tight. On the
other hand, we show that the naive greedy algorithm that adds disks one at a time to maximize the
area of the union computes, in the worst-case, a solution that is a Ω (k)-factor smaller than the
optimal one.

To improve upon the 1
2 -approximation ratio, we turn to the resource augmentation setting

in which the algorithm is allowed to add a few additional disks that are not drawn from the
input. We design a PTAS for the resource augmentation version of the problem (Theorem 3)
using the m-guillotine method of Mitchell [28]. (In the conference version of this paper [18] we
give a randomized PTAS using Arora’s shifted dissection technique [1].) The correctness proof
hinges on a structural statement which shows the existence of a near-optimal solution with O (εk)
additional disks, and with additional structure that allows it to be computed efficiently by dynamic
programming.

For two special cases of the MACS we obtain a PTAS without resource augmentation: (i) when
the Euclidean distances between the input disk centers are well-approximated by shortest paths in
the intersection graph (Theorem 4), and (ii) when every point in the convex-hull of the input disk
centers is covered by at least one input disk (Corollary 1).

On the negative side, via a reduction from the Rectilinear Steiner Tree problem, we show that
MACS is NP-hard (Theorem 1). We further show that if the goal is to compute MACS for a set of
arbitrary quadrilaterals instead of disks, the problem is APX-hard (Theorem 5). We leave open the
question of whether MACS is APX-hard or admits a PTAS without resource augmentation.

Related work. Maximizing a monotone submodular function under constraint(s) is a subject
that has received a large amount of attention over the years. Kulik et al. [22] designed an
approximation algorithm for maximizing a submodular function under multiple linear constraints
with an approximation ratio that (almost) matches the bound of 1−1/e. The greedy algorithm gives
a 1/(k+ 1)-approximation where the objective function is subject to k matroid constraints [29]. Lee
et al. [25] later improved the approximation arbitrarily close to k when k > 2 using a local-search
approach. When a monotone submodular function is subject to only one matroid constraint, there
is a randomized (1− 1/e)-approximation algorithm [3].

Our problem can be regarded as maximizing a submodular function under a cardinality (knapsack)
constraint and a connectivity constraint. Notice that the connectivity constraint is central to the
difficulty of our problem: without connectivity constraints, MACS admits a PTAS even for the
more general case of convex pseudodisks [6].

Another motivation for studying the connectivity constraint is related to cancer genome studies.
Suppose that a vertex represents an individual protein (and associated gene), an edge represents
pairwise interactions, and each vertex has an associated set. Finding the connected subgraph of k
genes that is mutated in the largest number of samples is equivalent to the problem of finding the
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connected subgraph with k nodes that maximizes the cardinality of the union of of the associated
sets (see [32]).

In the general (non-geometric) setting where a general monotone submodular function is given
and the connectivity constraint is that a feasible solution must induce a connected subgraph of a

given input graph, a Ω
(

1√
k

)
-approximation algorithm is given in Kuo et al. [23]. This approximation

is obtained by computing, for each vertex in the graph, a set of
√
k vertices in the

√
k-neighborhood

around this root vertex that are then connected by shortest paths. The output is then the solution,
among all root vertices, with maximum value. Our results show that when the submodular function
and the connectivity are induced by a geometric configuration, the approximation ratio can be
significantly improved.

We next discuss several related problems where the connectivity constraint is involved. An
example is the node-cost budget problem introduced by Rabani and Scalosub [30], where the goal is
to find a connected set of vertices in a general graph to collect the maximum profit on the vertices
while guaranteeing that the total cost does not exceed a certain budget. Notice that in this setting
the submodular function is a simple additive function of the profits.

Khuller et al. [21] study the budgeted connected dominating set problem, where given a general
undirected graph, there is a budget k on the number of vertices that can be selected, and the goal is
to induce a connected subgraph that dominates as many vertices as possible. It was pointed out to
us that via a reduction, their algorithm gives a 1

13

(
1− 1

e

)
-approximate solution for MACS2. The

approximation of the budgeted connected dominating set problem was very recently improved to
1
11(1− e−7/8) [24]. Hochbaum and Pathria [17] consider the problem of selecting k nodes of an input
node-weighted graph to form a connected subgraph, with the aim of maximizing or minimizing the
selected weight.

We now turn to the geometric setting. For the connected sensor coverage problem introduced by
Gupta et al. [15], a logarithmic-factor approximation algorithm is known. In this problem, one selects
at most k sensors in the plane forming a connected communication network and covering the desired
region. Here the region covered by each sensor is not necessarily a disk but may be a convex region
of the plane (see [13, 20]). Our resource augmentation PTAS relies on ideas used for Euclidean TSP
and other geometric problems [1, 28]. Another related problem introduced by Chambers et al. [4],
is to assign radii to a given set of points in the plane so that the union of the resulting disks is
connected, the objective being to minimize the sum of radii. A (1− ε)-approximation algorithm in
time nO(1/ε) for the maximum independent set problem on unit disk graphs is known [27]. Marathe
et al. [26] present a constant-factor approximation algorithm for several problems on unit disk
graphs, including maximum independent set. The maximum independent set problem is NP-hard
even for unit disk graphs in the plane [7]. When the goal is to cover a specified set of clients (instead
of the maximum area) with the minimum number of disks (instead of constraining the number of
disks to at most k), and there is no connectivity constraint, the problem is NP-hard [7] but there
exists a polynomial-time approximation scheme [19].

2Here is a brief outline of the reduction: given an instance of n unit disks in the plane, add a sufficiently large
number of “client” points in the plane and edges between a disk x and any client that is covered by x so that the area
covered corresponds to the number of client points dominated up to a fixed constant factor.
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general case unit-disks

without connectivity
(
1− 1

e

)
-approximation [29] PTAS [6]

with connectivity Ω
(

1√
k

)
-approximation [23] 1

2 -approximation (Theorem 2)

Figure 1: Previous approximation bounds for maximizing a positive monotone submodular function
with and without the connectivity constraint.

2 Formal definitions and summary of results

Let dG(x, y) denote the distance between two vertices x and y in an edge-weighted graph G that
defines a discrete metric (edge weights satisfy the triangle inequality). The Euclidean distance
between two points x and y is denoted by |xy|. When there is no confusion, we will refer to a point
x in the plane and the unit disk centered at x interchangeably.

Definition 1. Given a finite set S in the plane, the unit disk intersection graph UDG(S) is an
undirected graph on S where there is an edge, {x, y}, for x, y ∈ S if and only if |xy| ≤ 2.

A set S of points in the plane is said to be connected if UDG(S) is a connected graph. We now
formally define the Maximum Area Connected Subset (MACS) problem:

Definition 2. Given a finite set of points X ⊆ R2 such that UDG(X) is connected and a non-
negative integer k (k ≤ |X|), the Maximum Area Connected Subset ( MACS) problem is to find a
subset S ⊆ X of size at most k such that UDG(S) is connected and so that the area of union of the
unit disks centered at points of S is maximized.

For an input (X, k), an optimal solution (subset S ⊆ X) for MACS is denoted by OPT (X, k);
when the context is clear, we refer to OPT (X, k) as OPT, which is also used to denote the area
covered by the optimal solution. (Observe that OPT is trivially upper-bounded by πk.) Any S ⊆ X
with |S| 6 k for which UDG(S) is connected is called a feasible solution for MACS. We distinguish
between the decision version of MACS, in which we are to decide for a given q > 0 if there exists a
feasible solution of area at least q (i.e., if OPT (X, k) ≥ q), and the optimization version of MACS,
in which we are to determine OPT (X, k).

Note that we have assumed in the definition of MACS that X is a connected set. This is without
loss of generality since, for a set X that is not connected (i.e., for which UDG(X) has two or more
connected components), the MACS on X can be solved separately on each connected component of
UDG(X) that has cardinality at least k, and then the best solution among these can be taken as
the solution to MACS on X.

Hardness and a constant-factor approximation for MACS are established in our first two
theorems:

Theorem 1 (Hardness). The decision version of MACS is NP-hard.

Theorem 2 (Approximation). The optimization version of MACS has a polynomial time algorithm
(Algorithm 1) that achieves a (1/2)-approximation.

In the resource augmentation version of MACS, we are to compute a subset S ⊆ X of at most
k points, together with a small subset Sadd of additional points that augment the set of allowed

4



disk centers, such that UDG(S ∪ Sadd) is connected and so that the area of the union of the unit
disks centered at points of S is maximized. The following theorem3 states our main result for the
resource augmentation version of MACS, for which we obtain a (1− ε)-approximation, using a set
Sadd of at most εk additional points:

Theorem 3 (Resource augmentation). Let ε > 0 be a given parameter. Given a connected set
X ⊆ R2 of n points and a positive integer k, let OPT(X, k) be the maximum possible area of a
connected union of a set of k unit disks centered at a subset of k points of X. Then, there is a
deterministic algorithm that computes, in time nO(ε−1), a subset S ⊆ X of size at most k and a set
Sadd ⊆ R2 of at most εk points, such that UDG(S ∪ Sadd) is connected, and the area covered by the
unit disks centered at S is at least (1− ε)OPT(X, k).

While it remains open whether or not MACS, without resource augmentation, has a PTAS
(Theorem 2 gives a (1/2)-approximation), we are able to obtain a PTAS under certain assumptions
about the set X, namely if X is “α-well-distributed” in the Euclidean plane.

Definition 3. Given α ≥ 1, a finite set X of points in the plane is called α-well-distributed if for
all x, y ∈ X, dUDG(X) (x, y) 6 dα · |xy|e, where the distance dUDG(X) is based on Euclidean edge
weights in UDG(X).

In Section 5.6 we prove that MACS has a PTAS if the input points X are α-well-distributed.

Theorem 4 (α-well-distributed). The MACS on α-well-distributed inputs (for a constant α) has a
polynomial-time approximation scheme.

A sufficient condition on the input X that implies that it is α-well-distributed is the property of
being “pseudo-convex”, which we define in this context as follows:

Definition 4. A set X is called pseudo-convex if the convex-hull of X is covered by the union of
the unit disks centered at points of X.

Lemma 1. A pseudo-convex set X ⊆ R2 is 3.82-well-distributed.

The exact constant is 12/π < 3.82 and is obtained by simple geometric observations and a disk
packing argument (see Section 5). An immediate corollary of Theorem 4 is the following.

Corollary 1. MACS on pseudo-convex inputs admits a polynomial-time approximation scheme.

In contrast, by a reduction from 3-set-cover, we show that a similar problem stated with
quadrilaterals instead of disks is hard to approximate.

Definition 5. Given a finite set T of convex quadrilaterals in the plane, and an integer k (k ≤ |T |),
the quad-connected-cover problem is to find a subset T ⊆ T of size at most k such that the
intersection graph4 of T is connected and so that the area covered by the union of the quadrilaterals
in T is maximized.

Theorem 5. Quad-connected-cover is APX-hard.
3In the earlier conference version of this paper [18], we provide an alternative PTAS for the augmentation version

of MACS, with a slightly worse running time, based on the (randomized) shifted quadtree approach of Arora [1].
4The intersection graph has vertex set T , and two quadrilaterals are adjacent in this graph if and only if they

intersect.
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3 NP-Hardness of MACS

We present a reduction from the NP-hard Rectilinear Steiner Tree (RST) problem to prove
that the decision version of MACS is NP-hard.

Rectilinear Steiner Tree problem: Given n terminals in the Euclidean plane and
a number L, decide whether there exists a tree to connect all the n terminals using
horizontal and vertical line segments of total length at most L.

The problem is NP-complete [14], even if all terminals have integer coordinates bounded by
V = poly(n). In the following, we assume that n is sufficiently large (n ≥ 8 suffices).

Given an instance of MACS and a real q > 0, we show that it is NP-hard to decide whether
there is a feasible solution to MACS that covers an area at least q (however, notice that in our
reductions, the given set of points X do not necessarily have integer coordinates). We start from an
instance of RST and construct an instance of MACS as follows.

• For all integers 0 ≤ i, j ≤ V , place one disk with center at (in, jn). We call them cardinal
disks.

• For all integers 0 ≤ i, j ≤ V , place n − 4 disks centered at
(
in+ 2 +

(
1 + 1

n−5

)
· t, jn

)
where t ∈ {0, . . . , n − 5} and n − 4 disks centered at

(
in, jn+ 2 + t

(
1 + 1

n−5

))
where t ∈

{0, . . . , n− 5}. We call them path disks.

• For each terminal (i, j) in the RST instance, we place n2/10 bonus disks: the first one
centered at

(
in+

√
2, jn+

√
2
)

and the remaining centers forming a connected group in
[in+ 2, (i+ 1)n− 2]× [jn+ 2, (j + 1)n− 2] in such a way that each bonus disk is tangent5 to
other bonus disks, and can be connected to the first bonus disk. Notice that except the first
one, no bonus disk intersects path disks. This defines the set of disks.

• Set k = 1 + L(n− 3) + n3/10.

This defines the MACS instance. See Figure 2 for an illustration. Note that the interior of a
cardinal disk is disjoint from all other disks of the instance.

Notice that as the RST instance has all terminals inside a rectangle of size polynomial in n, the
above reduction can be done in polynomial time.

Let Z denote the set of the cardinal disk at (0, 0) and the n−4 path disks at
(

2 + t
(

1 + 1
n−5

)
, 0
)

where t ∈ {0, . . . , n− 5} and let A(Z) denote the area covered by Z.

Lemma 2. The original RST instance has a feasible solution of total length at most L if and only

if the derived MACS instance has a feasible solution of area of at least π + L · A(Z) +
(
n3

10 −
n
3

)
π.

Proof. First, consider the “only if” direction: Assume that the original RST instance has a feasible
solution of total length at most L. We call a set of disks a segment if it consists of a cardinal disk
and all the n− 4 path disks between it and one of its four adjacent cardinal disks. Thus, the area
covered by a segment is exactly A(Z). Consider a feasible solution for the RST instance, of length
exactly L, without loss of generality. We root it at an arbitrary integral point, direct it outwards

5their centers are at distance exactly 2.

6



Figure 2: Filled (grey), hatched (orange) and empty (red) disks respectively represent path, bonus
and cardinal disks. The hatched cardinal disk is associated with a terminal node.

from the root, and view it as a collection of horizontal or vertical directed edges of unit length. In
the MACS instance, we take all bonus disks, the cardinal disk associated to the root of the RST
solution, and, for each directed edge of the RST solution, all disks of the corresponding segment.
The total number of disks is exactly k, and the area covered is at least π + L · A(Z) + n3π

10 − 2nγ,
where γ is the area of the intersection of the first bonus disk associated with a terminal and the path
disk just tangent to the corresponding cardinal disk of the latter. (Recall that the first bonus disk

can overlap with up to two path disks). The distance between two such centers is h =
√

8− 4
√

2.
Furthermore, the area of the intersection can be expressed as

γ = 2 arccos
h

2
− 2

(
h

2

)√
1−

(
h

2

)2

(1)

which is upper-bounded by 0.45. Therefore 2nγ ≤ 0.9n ≤ nπ/3. This gives the proof of one
direction.

For the converse (the “if” direction), assume that a solution S for the MACS instance is given

with area at least π+L ·A(Z)+
(
n3

10 −
n
3

)
π. By our construction, we can modify S, while conserving

its connectivity and without diminishing covered area, so that the following properties hold.

(i) If any bonus disk corresponding to a terminal is part of S, so is the cardinal disk corresponding
to this terminal.

(ii) The path and cardinal disks in S form a tree; furthermore, such a tree consists of a cardinal
disk, a set of segments, and at most one sub-segment. (A sub-segment is a subset of a segment,
so that it induces a connected component.)

Indeed, if (i) does not hold, then we add in S the missing terminal disk and remove any bonus disk
that does not disconnect the solution. Such a bonus disk exists since bonus disks do not contribute
to connect the terminals. After this step, the solution remains connected and since the interior
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of any cardinal disk is disjoint from any other disks, the area covered the new solution has not
decreased.

To guarantee (ii), remark that a sub-segment does not contribute to connect terminals. Then, if
there are at least two sub-segments, we can remove some disks in the shortest sub-segment and
replace them by disks in another sub-segment until it is complete or the shortest sub-segment is
empty. After this step, the number of sub-segments decreased by at least one. We repeat this
operation until the solution has only one sub-segment. Now, suppose that the path and cardinal
disks have a cycle. We can replace one segment of this cycle by any set of disks without disconnecting
the solution or creating new cycles. For instance, one can create a new segment incident to exactly
one terminal disk of the solution (such a segment always exists). Notice that during this step, no
new sub-segments are created. We have established the existence of a solution S for the MACS

instance with area at least π + L · A(Z) +
(
n3

10 −
n
3

)
π that satisfies properties (i) and (ii).

We claim that the number B of bonus disks in S is at least n3

10 −
9n
10 . Suppose not. Using

properties (i) and (ii), we observe that the covered area of S can be upper-bounded as

A(S) 6 Bπ + π +
L|Z|+ n3

10 −B
|Z|

A(Z). (2)

(Here we ignore the possible intersection of a bonus disk with the path disks. The first term is
the area covered by bonus disks; the second term is the area covered by a cardinal disk; the third
term is the maximum area that can be covered by segments, and possibly the single sub-segment in
S). Now, by assumption, the area covered by S is at least

A(S) > π + L · A(Z) +

(
n3

10
− n

3

)
π. (3)

The difference between the lower bound (3) and the upper bound (2) is(
n3

10
−B

)(
π − A(Z)

|Z|

)
− nπ

3
≥ 9n

10

(
π − A(Z)

|Z|

)
− nπ

3
.

Here, in order to reach a contradiction (making the last term greater than 0), we need to
calculate A(Z), which is (n− 3)π − (n− 5)γ′, where γ′ is the area of the intersection of two disks
whose centers have distance 1 + 1

n−5 . Area γ′ is easily shown to be at most 1.25. Therefore,

0.9n

(
π − A(Z)

|Z|

)
− nπ

3
≥ 0.9n

(
π − (n− 3)π − (n− 5)1.25

n− 3

)
− nπ

3

=
(

0.9 ∗ 1.25− π

3

)
n− 2 ∗ 1.25

n− 3
> 0.07n− 2.5

n− 3
≥ 0,

which can be verified when n ≥ 8 by the simple study of a quadratic polynomial.
So we know that S has at least n3

10 − δ bonus disks, where δ ≤ n/10. Ignoring the possible

sub-segment of S, S includes a cardinal disk, L′ segments and n3

10 − δ bonus disks. As a result,

k = 1 + L|Z|+ n3

10
≥ 1 + L′|Z|+ n3

10
− δ ≥ 1 + L′|Z|+ n3

10
− n

10
,

implying that n/10 ≥ (L′ − L)|Z| = (L′ − L)(n − 3). Thus L′ = L and the cardinal disks and
path disks of S correspond to a tree of length L in the RST instance. This concludes the proof of
Lemma 2.
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4 Proof of Theorem 2: The two-by-two algorithm

In this section we present a simple (1/2)-approximation for MACS based on a greedy approach,
by iteratively adding two unit disks that maximize the additional area covered while maintaining
feasibility. Interestingly, the algorithm that adds disks one at a time is not a constant approximation
algorithm. See Figure 4 and the remark at the end of the section for an example. Moreover, trying
all possible sets of s disks, for any s ≥ 3, in the neighborhood of the current solution does not
improve the approximation ratio. This can be seen on Figure 3 where the first disk chosen by the
algorithm is not x, but xs. Finally, optimizing the choice of the first disk(s) chosen in the solution
does not improve the approximation ratio; see the first remark at the end of the section for details.

Let Bx denote the unit disk centered at x ∈ R2 and B(S) =
⋃
x∈S Bx denote the set of points

at distance at most one from at least one point in a finite set S ⊂ R2 of points. The area covered
by a set C ⊂ R2 is denoted by A(C). When C = B(S), its area is simply written as A(S). Given
a graph G, G [S] denotes the subgraph induced by a subset S of vertices. A subset of the ver-
tices of a graph is a dominating set if every vertex belongs to the set or is adjacent to some vertex of it.

Algorithm 1: The Two-by-two algorithm for MACS.

Input: X ⊆ R2, k ≥ 0, where X is finite and k ≤ |X|.
Output: a connected set of size k.

1 if k is even then
2 S ← any two intersecting disks of X;

3 else
4 S ← any one disk of X;

5 while |S| 6 k − 2 do
6 {x, x′} ← arg max {A(S ∪ {x, x′}) : x, x′ ∈ X, S ∪ {x, x′} is feasible };
7 S ← S ∪ {x, x′};
8 return S;

Theorem 2 (Approximation). The optimization version of MACS has a polynomial time algorithm
(Algorithm 1) that achieves a (1/2)-approximation.

We assume here that the input set X is connected. Otherwise, one may consider the largest
solution over all connected components. For the analysis, we divide the execution of Algorithm 1
in two phases. An iteration belongs to the first phase as long as the current solution S is not a
dominating set in the graph UDG(X).

During the first phase, in each iteration, the area covered increases by at least π. During the
second phase, since the current solution is a dominating set, any disk can be added while keeping
the solution feasible. Therefore, the algorithm is then a standard greedy algorithm to maximize
a submodular function, and the analysis is similar to the proof that Nemhauser’s algorithm is a(
1− 1

e

)
-approximation for classic submodular functions, showing that the approximation ratio of

Algorithm 1 stays greater than 1/2 during the second phase.

Proof. We first analyze the even case where k = 2κ, and then we reduce the odd case to the even
one. Let Sκ = {x1, x2, . . . , x2κ} be the solution returned by the algorithm. Let Si = {x1, . . . , x2i}
denote the set S right after |S| = 2i, and let d be the smallest integer such that Sd is a dominating
set in UDG(X). If such an integer does not exist, i.e., Sκ is not a dominating set, then set d = κ.
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Claim 1. The area A(Sd) is at least πd.

Proof. For i < d, Si is not a dominating set. Then there exist two disks y, y′ such that B(Si)∩By = ∅
and S ∪ {y, y′} is connected. Adding such a pair increases the area covered by at least A (By) = π.
Since (x2i+1, x2i+2) is chosen to maximize A(Si ∪ {x, x′}) among all feasible pairs, A(Si+1) >
A(Si ∪ {y, y′}) > A(Si) + π. By induction, A(Sd) > πd.

Note that when d = κ, Claim 1 immediately implies that A(Sκ) > OPT
2 . Also remark that,

regardless of the initial choice, the area covered by the first two disks is at least π. This observation
will be useful when we consider the case where k is odd.

Claim 2. For all d 6 i < κ, A(OPT) 6 A(Si) + κ · (A(Si+1)−A(Si)) .

Proof. It is easy to check that the function A(·) satisfies the following properties for all H ⊆ H ′ ⊆ X:

(1) positivity : A(H) > 0.

(2) monotonicity : A(H) 6 A(H ′).

(3) submodularity : ∀H ′′ ⊆ X, A(H ′ ∪H ′′) 6 A(H ∪H ′′)−A(H) +A(H ′).

Let OPT = {y1, . . . , y2κ}. We have for all d 6 i 6 κ :

A(OPT) 6 A(Si ∪OPT)

= A(Si) + (A(Si ∪ {y1, y2})−A(Si)) + . . .

+ (A(Si ∪ {y1, . . . , y2κ})−A(Si ∪ {y1, . . . , y2κ−2}))
6 A(Si) + (A(Si ∪ {y1, y2})−A(Si)) + · · ·+ (A(Si ∪ {y2κ−1, y2κ})−A(Si))

6 A(Si) + κ · (A(Si ∪ {x2i+1, x2i+2})−A(Si))

= A(Si) + κ · (A(Si+1)−A(Si)) .

The first and the second inequality respectively come from monotonicity and submodularity, while
the third one follows from the fact that for i ≥ d (x2i+1, x2i+2) is the pair of disks maximizing
A(Si ∪ {x, x′}) among all pairs (x, x′) in X. As Sd is a connected dominating set in X, all pairs
(y2j−1, y2j) for 1 6 i 6 κ are considered.

We can now re-write Claim 2 as

For all d 6 i < κ : A(Si+1) >

(
1− 1

κ

)
A(Si) +

OPT

κ
.

Combined with Claim 1, simple algebra yields that, for d < i 6 κ, we have

A(Si) >

(
1− 1

κ

)i−d
A(Sd) +

OPT

κ

(
1 +

(
1− 1

κ

)
+ · · ·+

(
1− 1

κ

)i−d−1)

>

(
1− 1

κ

)i−d
πd+

OPT

κ
· 1− (1− 1/κ))i−d

1− (1− 1/κ)

>

(
1− 1

κ

)i−d
OPT · d

2κ
+ OPT

(
1−

(
1− 1

κ

)i−d)

>

[
1−

(
1− d

2κ

)(
1− 1

κ

)i−d]
OPT.
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Therefore, for i = κ we have

A(S) = A(Sκ) >

[
1−

(
1− d

2κ

)(
1− 1

κ

)κ−d]
OPT =

[
1− 1

2
(1 + t)

(
1− 1

κ

)κt]
OPT,

where t =
κ− d
κ
∈ [0, 1]. As 1 + x 6 ex for all x ∈ R, we get

A(S) >

(
1− 1

2
(1 + t)e−t

)
OPT >

(
1− 1

2
ete−t

)
OPT =

1

2
OPT,

concluding the proof of the case in which k is an even number.
For the case in which k is an odd number, k = 2κ− 1, in the first iteration, instead of adding

two disks to S1, we add a single disk of X to S1. This is equivalent to adding two copies of the
same disk. This iteration belongs to the first phase, and the only properties we used in the first
phase is that each iteration adds an area of π, and keeps the solution feasible; these are clearly true
for the first iteration even with one disk.

Since two disks are guessed at each step, Algorithm 1 has a running time O(n3), where n is the
number of input disks.

Remark. The analysis of Algorithm 1 is tight. For any ε > 0, we construct an input set X as
follows. See Figure 3. X contains x = (0, 0) (stripe-shaded disk in Figure 3), xi = (2(i− 1) + iε, 0)
and x′i = ((2 + ε)i, 0) for 1 6 i 6 k (blue disks) and yi = (−2i− ε/2, 0) for 0 6 i 6 k (orange disks).
Suppose that k = 1 + 2κ is odd and the algorithm starts with S0 := {x, x}. Then the algorithm will
add {xi, x′i} in iteration i since it covers more additional area than {y0, y1}. The solution returned
(blue disks) covers an area of π + κ(π + f(ε)) ≈ k

2π, for some function f(·) with limε→0 f(ε) = 0,
while OPT (orange disks) covers an area kπ.

Using similar ideas, one can show that optimizing the choice of the first initial disk(s) does not
improve the approximation ratio. To see this, consider several chains of b1/εc orange disks each,
as in Figure 3, and connect them together in such a way that the last disk of one chain almost
coincides with the first disk of the next chain. Then, attached to these two disks, add a chain of
blue disks as in the figure. Wherever starts the greedy 2-by-2 greedy algorithm on this instance, it
will branch to the blue disks as soon as it meets one.

Figure 3: A tight example for Algorithm 1.

Remark. The similar greedy algorithm that adds disks one at a time is not a constant
approximation algorithm. See Figure 4. For any k > 0 and ε > 0, consider the input where
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O = (0, 0), and yi = (2(i− 1) + ε, 0) for all i. Then, put all x1, . . . , xk evenly spaced (by an angle α)
on a circle of radius 2 around O so that none of them intersect y2. Each light grey region is covered
by only one disk xi so the marginal gain of adding xi to any solution is at least the area of one of
these regions, say a > 0. If ε is chosen such that A(By1 \BO) < a, then if the algorithm starts by
picking disk O, it will then choose all xj , so that the area covered by the solution is upper-bounded
by the area of a radius 3 disk, 9π, while the optimal solution (disks yi) has area πk.

Figure 4: The greedy algorithm that adds only one connected disk maximising the marginal area
covered is not a constant factor approximation algorithm.

5 Proof of Theorem 3: PTAS with resource augmentation

In this section we prove our main result.

Theorem 3 (Resource augmentation). Let ε > 0 be a given parameter. Given a connected set
X ⊆ R2 of n points and a positive integer k, let OPT(X, k) be the maximum possible area of a
connected union of a set of k unit disks centered at a subset of k points of X. Then, there is a
deterministic algorithm that computes, in time nO(ε−1), a subset S ⊆ X of size at most k and a set
Sadd ⊆ R2 of at most εk points, such that UDG(S ∪ Sadd) is connected, and the area covered by the
unit disks centered at S is at least (1− ε)OPT(X, k).

5.1 Overview of the Method

Our approach is outlined as follows:

• We define the notion of a set of disks having a special recursive property, the “m-guillotine prop-
erty”, which closely follows the notion of m-guillotine subdivisions, introduced by Mitchell [28],
and utilized in several geometric approximation results. For completeness here, we begin by
defining and reviewing m-guillotine subdivisions.

• We prove a structural result (Lemma 4), showing that for any set of k unit disks whose union
is connected, there is a set of at most εk “augmentation disks”, so that the augmentation
disks, together with a subset of the original set of k disks, have a connected union covering at
least as much as the original disks, and have the “m-guillotine property”.

12



• We give a dynamic programming algorithm to compute a maximum-area m-guillotine set of
at most k input disks, utilizing at most k′ = dεke augmentation disks.

5.2 Review of m-guillotine subdivisions

We review some definitions and facts from [28]. Let G be a straight-edge embedding of a planar
graph, and let L denote the total Euclidean length of its edge set, E. We can assume (without loss
of generality) that G is restricted to the unit square, U (i.e., E ⊂ int(U)).

Consider an axis-parallel rectangle, a window, W ⊆ U . An axis-parallel line ` that intersects the
interior of W is called a cut. The intersection, ` ∩ (E ∩ int(W )), of a cut ` with the restriction of E
to the window W consists of a (possibly empty) set of subsegments (possibly singleton points) of
`. We let p1, . . . , pξ ⊂ ` denote the ξ endpoints of such subsegments, in order along `. For integer
m ≥ 1, the m-span, σm(`), of ` with respect to W is defined as follows: If ξ ≤ 2(m − 1), then
σm(`) = ∅; otherwise, σm(`) is defined to be the line segment, pmpξ−m+1, joining the mth endpoint,
pm, with the mth-from-the-last endpoint, pξ−m+1. (It may be that σm(`) is the single point pm,
if ξ = 2m − 1.) We say that the line ` is an m-good cut with respect to W and E if σm(`) ⊆ E.
(Note that ` is trivially m-good if ξ ≤ 2(m− 1).) The edge set E is said to satisfy the m-guillotine
property with respect to rectangle W if either (1) no edge of E lies (completely) interior to W ; or (2)
there exists a cut `, that is m-good with respect to W and E, such that ` splits W into W1 and W2,
and, recursively, E satisfies the m-guillotine property with respect to both W1 and W2.

The structural result of [28] states that any set E of edges is “very nearly m-guillotine” in a
precise sense: One can augment the edge set E with a set of new (axis-parallel) segments (“m-spans”),
of total length O(1/m) times the total length of E, such that the augmented edge set is m-guillotine.
Proof of this fact is based on a charging argument that utilizes the notion of “m-darkness”: a point
p ∈W is m-dark with respect to horizontal cuts of W if the vertical rays going upwards/downwards
from p each cross at least m edges of E before reaching the boundary of W . As in [28], the length
of the m-dark portion of a cut is the “chargeable” length of the cut, in that one can charge the
m-dark portion of the cut to the m levels of E on each side of the cut that become “exposed” after
making cut `: After a vertical cut along a line `, the left side of a portion, e, of a vertical edge of E
that lies to the right of ` becomes exposed after the cut along ` if a leftward horizontal ray with
endpoint on e crosses fewer than m (vertical) edges before crossing `. (Once a portion of an edge of
E is charged, because of a cut, on one of its two sides (an amount equal to 1/2m of the portion’s
length), and that portion becomes exposed by the cut, that side of that portion is never charged
again, by a cut deeper in the recursive partitioning, since once it is exposed to the boundary of a
window, it remains exposed.)

Given an edge set E of a connected planar graph G, if E is not already satisfying the m-guillotine
property with respect to W , then the following lemma of [28] (reproduced here, with proof, for
completeness) shows that there exists a “favorable cut” for which we can afford to charge off (to
the edges of E) the construction of any m-span that must be added to E in order to make the cut
m-good with respect to W and E. To be precise, a cut ` is said to be favorable if the length of its
m-dark portion (its chargeable length) is at least as large as the length |σm(`)| of the m-span (the
cost of making cut `).

Lemma 3. ([28]) For any edge set E and any (rectangle) window W , there is a favorable cut. If E
consists of a set of axis-parallel line segments, then there is a favorable cut (horizontal or vertical)
that passes through an endpoint of a segment of E.
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Figure 5: Example of an m-guillotine subdivision, with m = 3. The bold (red) segments are m-spans
that are added to the edge set to make it m-guillotine. The first 4 levels of cuts are shown. Numbers
“1”, “2”, etc by dashed (purple) cut lines indicate the level of the cut, with level “1” being the root
(first cut).

Proof. Let f(x) = |σm(`x)| be the length of the m-span for the vertical cut, `x, along the vertical line
through the point (x, 0). Then, f(x) is the cost of making cut `x, and its integral, Ax =

∫ 1
0 f(x)dx, is

the area of the region, Rmx , of points of U that are m-dark with respect to horizontal cuts. Similarly,
let g(y) be the cost of making horizontal cut `y along the horizontal line through the point (0, y),

and let Ay =
∫ 1
0 g(y)dy be the corresponding area of the region of points in U that are m-dark with

respect to vertical cuts. One of the two areas, Ax or Ay, is larger than the other; assume, without
loss of generality, that Ax ≥ Ay. Now the area Ax of the region Rmx can be computed by integrating

with respect to y: specifically, Ax =
∫ 1
0 h(y), where h(y) is the chargeable length of the horizontal

cut `y through y. By the assumption that Ax ≥ Ay, we get that
∫ 1
0 h(y)dy ≥

∫ 1
0 g(y)dy ≥ 0; thus, it

cannot be that h(y) < g(y) for all values of y ∈ [0, 1], so there must be a value y = y∗ for which
h(y∗) ≥ g(y∗). This shows that there is a horizontal cut `y∗ that is favorable. (If, instead, we had
Ax ≤ Ay, then we would have the existence of a vertical cut that is favorable.) Refer to Figure 6.
Finally, we remark that if the segments E are axis-parallel (as in the example of Figure 6), then
the functions f , g, and h are piecewise-constant, with discontinuities corresponding to the x- and
y-coordinates of the endpoints of the line segments E. This implies the existence of a value y = y∗

for which h(y∗) ≥ g(y∗) at one of these discontinuities.

The charging scheme does the following, in the case of a vertical favorable cut (as in the example
of Figure 6): For each unit of length of the cut within the “blue” region, we assign half of the unit
to the right (distributed evenly over the m levels of edges we know, by m-darkness, to exist to the
right), and similarly assign half of the unit to the left, distributed over m levels. (Here, and in
Figure 6, we consider the case in which edges E are axis-parallel, since they are sides of axis-aligned
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a

b

Figure 6: In this example, the edge set E consists of the line segments bounding a set of squares.
We take m = 3. The region Rmx is shown in red (on the left); the region in blue (on the right)
are those points that are m-dark with respect to vertical cuts. On the left, we show a vertical cut
(dashed, green), with its corresponding m-span highlighted in red; the same cut is shown on the
right, with the m-dark portion highlighted in blue, and the offloading of the length of the blue
chargeable length to the m levels of segments on either side of the cut indicated with magenta
highlight on portions of E charged from the left, and with green highlight on portions of E charged
from the right.

squares; [28] discusses the slightly more general case of arbitrarily oriented edges.) In total, each
unit of length of an edge of E is charged at most 1/2m from each of its two sides, implying that
the total charge overall (i.e., the total length of all m-spans added along favorable cuts) is at most
1/mth of the sum of the lengths of the edges in E. (In Figure 6, the shown vertical cut results in
vertical edge portions that are charged on their left (resp., right) sides, which are highlighted in
magenta (resp., green).) Because we only offload charge along portions of cuts that are m-dark,
and we offload charge to sides of edges of E that lie within m levels of the boundary in the new
subproblems after the cut, no portion of E is ever re-charged. The result is the following structure
theorem.

Theorem 6. ([28]) Let G be an embedded connected planar graph, with edge set E consisting of
line segments of total length L. Then, for any positive integer m, there exists an edge set E′ ⊇ E
that obeys the m-guillotine property with respect to the axis-aligned bounding box of E, and for which
the length of E′ is at most (1 +O(1/m))L.

5.3 Defining the m-guillotine property for a set of disks

We now define what it means for a set of unit disks to have the “m-guillotine property”. The notion
is very similar to that of an edge set E having the m-guillotine property, as defined previously.

Let X∗ ⊆ X be an optimal (for MACS) subset of k = |X∗| centers of unit disks, the union of
which is connected and of maximum possible area OPT(X, k). Let Z = {(x, y) : x = i/2, y = j/2,
for some integers i, j} be the set of points in the plane having half-integral coordinates. Our
approximation algorithm will select augmentation disks centered at a subset of Z.

Let Q = {Q1, . . . , Qk} be the set of k axis-aligned bounding squares of the unit disks centered at
the points X∗. Let E be the set of 4k axis-parallel line segments (each of length 2) that bound the
squares Q. The union of the segments E is connected, since the union of the (equal-size) squares Q

15



is connected. Lemma 4 implies that the edge set E can be made to have the m-guillotine property,
for any positive integer m, with the addition of m-spans (horizontal/vertical line segments, defined
by coordinates of the endpoints of the segments E) whose total length is at most O(k/m); with the
appropriate choice of m = Θ(1/ε), the total length of all added m-spans is thus at most εk.

First, if an m-span has length less than 2, then any square that is contained in the corresponding
window and that is intersected by the m-span is already among the squares that intersect the cut
that are accounted for among the first m or last m edges crossed by the cut. Thus, the total number
of squares intersected by the cut is at most 2m, and we can afford to ignore this short m-span, since
our goal is to have O(m) information specified across a partitioning cut. Thus, we can assume that
all m-span segments are of length at least 2.

Now, associated with each (remaining) horizontal/vertical m-span segment, ab, we define an
m-span rectangle, which is axis-parallel, centered on ab, of width 2; i.e., if ab is vertical, with
a = (xa, ya) and b = (xb = xa, yb), the corresponding m-span rectangle is [xa − 1, xa + 1]× [ya, yb].
It is readily seen that the m-span rectangle associated with ab is covered by a set of O(|ab|) unit
disks with centers at half-integral points Z; thus, the set of all m-span rectangles is covered by a set
of O(εk) augmentation disks, centered at points of Z. Refer to Figure 7. The purpose of the m-span
rectangle is to allow us, in a dynamic program, to decouple the subproblems on each side of a cut:
any unit disk centered at a point of X to the right of a vertical cut contributes nothing to the union
of disks centered at points left of the cut, unless it is one of the O(m) specified disks crossing the
cut, since, if it crosses an m-span segment on the cut, the m-span rectangle fully covers it, so that
the augmentation disks fully cover it as well. Since the augmentation disks fully cover the m-span
rectangle, they connect all disks, centered on points of X, that intersect the m-span rectangle.

Let U be a finite set of unit disks centered at points of X ∪ Z. We now define the notion of a
set of disks satisfying a property that we call the “m-guillotine property”. An axis-parallel cut line
` is m-good with respect to the set U of unit disks and an axis-aligned rectangle window W if (1)
`∩W intersects at most 2m disks of U that are centered at points of X; and (2) U includes all unit
disks centered at points of Z that lie within the m-span rectangle associated with the m-span of `
with respect to the edge set E of segments bounding the axis-aligned bounding squares of unit disks
of U that are centered at points of X. An m-good cut has a succinct specification of those disks
of U that are intersected by the cut: O(m) disks of U centered at points of X, together with at
most one m-span segment (rectangle), which specifies the set of all augmentation disks (centered at
half-integral points Z) within U that intersect the cut.

We say that a set U of unit disks centered at points of X ∪ Z satisfies the m-guillotine property
with respect to (axis-aligned) rectangle W if either (1) no disk of U lies (completely) inside W ; or (2)
there exists an axis-parallel cut line ` that is m-good with respect to U and W , such that ` splits
W into W1 and W2, and, recursively, U satisfies the m-guillotine property with respect to W1 and
with respect to W2. We say that U satisfies the m-guillotine property if U satisfies the m-guillotine
property with respect to the axis-aligned bounding rectangle of U .

5.4 A key structural lemma

The following key structural lemma allows us to prove our main claim, since it shows that an
arbitrary set of input disks (e.g., an optimal set, centered at points X∗ ⊆ X that are an optimal
solution to an instance of MACS) can be converted to a covering set of disks that satisfies the
m-guillotine property, with only a small (factor (1 +O(1/m))) increase in the total number of disks.
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Figure 7: Left: A vertical cut, the m-span segment ab (for m = 5), and the associated m-span
rectangle. Right: The set of augmentation unit disks centered at half-integral points of Z within
the m-span rectangle; the augmentation disks cover the m-span rectangle and thus completely cover
those squares bounding unit disks whose intersection with ab lies interior to ab (the 4 such squares
shown on the left have been removed in the figure on the right).
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Lemma 4. For any positive integer m and finite set U of k unit disks, there exists a set U ′ of unit
disks centered at (half-integral) points of Z, and a subset U ′′ ⊆ U , such that U ′′ ∪ U ′ satisfies the
m-guillotine property, |U ′| = O(k/m), and the union of the disks U ′′ ∪ U ′ covers the union of the
disks U .

Proof. Theorem 6 implies that the edge set E, of edges of the bounding squares of the k unit disks U ,
can be made to be an m-guillotine subdivision through the addition of m-spans (horizontal/vertical
line segments) whose total length is at most O(k/m).

Now, each recursive (axis-parallel) cut, within a rectangular window W , in the associated
m-guillotine hierarchy gives rise, potentially, to an m-span segment ab, which has an associated
m-span rectangle, which is covered completely by the O(|ab|) unit augmentation disks centered at
half-integral points Z within the m-span rectangle (refer to Figure 7); the set U ′ consists of all such
augmentation disks. Every disk of U whose intersection with ab lies interior to ab is fully covered
by the m-span rectangle and, therefore, by the union of the augmentation disks U ′; thus, such disks
of U can be removed (while maintaining the area of coverage and the connectivity), and we define
U ′′ ⊆ U to be the remaining subset of the disks of U . For the set U ′ ∪ U ′′ we have that each cut is
m-good, since (1) it intersects at most 2m of the disks (centered at points of X) of U ′′, and (2) the
augmentation disk set U ′ (centered at points of Z) includes all unit-radius disks centered at points
of Z that lie within the m-span rectangle. Since the total length of all m-spans in the hierarchy is at
most O(k/m), the total number of augmentation disks U ′ is also O(k/m) (recall that the length of
each m-span is at least 2). Furthermore, the set U ′′ ∪ U ′ of disks has the m-guillotine property, as
evidenced by the same set of hierarchical cuts, each of which is m-good, that realize the m-guillotine
subdivision (whose existence comes from Theorem 6) for the edge set E (the axis-parallel segments
bounding the unit disks U).

5.5 The dynamic programming algorithm

Proof. To complete the proof of Theorem 3, we now provide a dynamic programming algorithm to
compute, for given positive integers k, k′, and m, and an input set of points X for which UDG(X) is
connected, a set U of unit disks centered at points of X ∪Z such that (i) U satisfies the m-guillotine
property, (ii) U has at most k disks centered at X and at most k′ centered at points of Z, and (iii)
the union of the disks of U has the maximum possible area among all sets of disks satisfying (i) and
(ii). The application of this algorithm, with k′ = O(k/m), yields the claimed PTAS, since we know,
by Lemma 4 applied to a MACS-optimal set U of k disks, that, among the m-guillotine sets of
disks over which the dynamic program optimizes, there is such a set that includes a MACS-optimal
set of k disks.

The dynamic program proceeds in much the same way that similar algorithms are used to
compute optimal m-guillotine subdivisions for TSP and other problems [2, 5, 8, 9, 10, 11, 12, 28, 31].
Subproblems will be specified by axis-aligned rectangles, W , the coordinates of which come from
the left/right/top/bottom coordinates of the n input disks; specifically, we let x1 ≤ x2 ≤ · · · ≤ x2n
and y1 ≤ y2 ≤ · · · ≤ y2n denote the sorted coordinates. The optimization of a subproblem is to
select an axis-parallel cut, partitioning the rectangular window into two, along with the O(m) data
associated with the cut, including the O(m) unit disks centered at points of X that intersect the
cut, the connection requirements (O(1), for fixed m) for the two new subproblems, and the defining
coordinates of an m-span rectangle (if any), which succinctly encodes the set of augmentation disks
centered at half-integral points of Z within the m-span rectangle. Overall, the approximation to the
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MACS with augmentation will be given by the optimal solution of a subproblem associated with a
root rectangle, W0; there are only O(n4) possible choices of W0, and these include the axis-aligned
bounding box of an (exact) MACS-optimal set of k disks.

A subproblem, (W,B, κ, κ′), is specified by (1) a rectangle W ⊆ W0, with coordinates among
the xi’s and yj ’s, (2) a specification of certain boundary information, B, that gives the information
necessary to describe how the solution inside W interfaces with the solution outside of the window
W , (3) a cardinality κ ≤ k indicating how many unit disks centered at input points X are to lie
fully within the rectangle W (without intersecting its boundary), and (4) a cardinality κ′ = O(k/m)
indicating how many unit (augmentation) disks centered at points Z are to lie fully within W . The
boundary information B includes the following:

(a) For each of the four sides of W , we specify at most 2m unit disks, centered at input points
X, that intersect the side. Additionally, each side can have one segment specified, which
specifies the associated m-span rectangle, with the corresponding set of all unit (augmentation)
disks centered at points of Z that lie within the rectangle. There are nO(m) choices for this
information.

(b) We specify connectivity information by specifying a partition of the set of O(m) boundary
elements (disks centered at points of X, and clusters of augmentation disks covering the
at most four m-span rectangles on the boundary of W ), with each subset of the partition
indicating which boundary elements are connected outside of W . Knowing what is connected
outside of W implies the connectivity requirements within W for the subproblem. (If there
are no boundary elements associated with W (meaning that W = W0 is one of the choices of a
root rectangle), then the connectivity requirement is simply that all disks within W must have
a connected union.) Since the number of different partitions of the O(m) boundary elements is
purely a function of m, considered to be a constant, there are only a constant number, χ(m),
of choices of connectivity information.

b

a

Figure 8: A subproblem in the dynamic program that optimizes over sets of disks that satisfy the
m-guillotine property.

In total, then, the number of different subproblems is the product of the number of different
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choices for W , κ, and κ′ (O(n4k2)) and the number of choices for boundary information (a) and
(b), namely, nO(1/m) · χ(m) = nO(1/m), since m = O(1/ε) is a constant.

Let f(W,B, κ, κ′), with κ ≤ k and κ′ ≤ k′ = O(k/m), denote the value of subproblem, the
maximum area of the intersection of W with the union of the disks in a set U of unit disks that
satisfy the following properties:

(a) U satisfies the m-guillotine property with respect to W ; and,

(b) U satisfies the subproblem (W,B, κ, κ′), obeying the boundary information B, including the
connectivity requirement, and has κ unit disks of U that are centered at input points X and
lie fully within W and κ′ unit disks of U that are centered at points of Z and lie fully within
W .

Note that for a disk that lies only partly within the rectangle W , and thus is specified as part of the
boundary information B, the quantity f(W,B, κ, κ′) counts the area of only that portion of the disk
that lies within the rectangle W , since it is defined to be the area of the intersection of W with the
union of the disks; this accounting assures that in the recursion (below), when W is cut into two
subrectangles, there is no over- or under-counting of area. In order to tabulate values of f , we build
up the solutions bottom-up, as usual, starting with subproblems that are trivial, and tabulating
values corresponding to window W , defined by rectangle [xi, xi′ ]× [yj , yj′ ] with i < i′ and j < j′, in
order of increasing values of (i′ − i) and (j′ − j), with each choice of boundary information, κ, and
κ′. The value f(W,B, κ, κ′) is computed recursively:

f(W,B, κ, κ′) = max
ξ,Bξ
{f(W1,B1, κ1, κ′1) + f(W2,B2, κ2, κ′2)},

where ξ is an axis-parallel cut (at one of the discrete coordinates xi, yj), Bξ is the boundary
information across the cut ξ (including specification of κξ unit disks, centered at points of X ∩W ,
that cross ξ and (possibly) specification of an m-span rectangle that contains κ′ξ half-integral points
of Z ∩W where augmentation disks are centered), W1 and W2 are the subrectangles of W obtained
when making cut ξ, B1 and B2 are boundary information consistent with B and Bξ, κ1 and κ2
satisfy κ = κ1 + κ2 + κξ, and κ′1 and κ′2 satisfy κ′ = κ′1 + κ′2 + κ′ξ. The base cases of the recursion
are the values f(W,B, 0, 0), which are readily found by computing the union of the disks specified
in the boundary information B and then computing the area of intersection of the union with the
rectangle W . (There are at most κ+ κ′ = O(k) disks of U in total, and the union of interest in the
base case consists of O(m) disks centered at points of X and at most 4 sets of augmentation disks
centered at Z, each specified by an m-span segment on one of the four sides of W .) Notice that in
case that if the union of the disks is disconnected (i.e. the subproblem is infeasible), the value of
f(W,B, 0, 0) is set to −∞.

The correctness of the recursion is argued as follows. Assuming we are not in the base case,
for an optimal set U that satisfies the subproblem (W,B, κ, κ′) and achieves the area f(W,B, κ, κ′),
there must be, by definition of being m-guillotine with respect to W , an axis-parallel cut, ξ, that is
m-good with respect to U and W . This cut ξ splits W into two subrectangles, W1 and W2, and
must, by definition of being m-good, intersect a number, κξ ≤ 2m (and κξ ≤ κ), of disks of U
centered at X ∩W and a number, κ′ξ ≤ κ′ of disks of U centered at Z ∩W , corresponding to a set of
augmentation disks that cover an m-span rectangle centered on a subsegment of ξ within W . In order
for U to be optimal for subproblem (W,B, κ, κ′), then U must, recursively, be optimal for the two
new subproblems (W1,B1, κ1, κ′1) and (W2,B2, κ2, κ′2), for κ1, κ′1, κ2, κ′2 satisfying κ = κ1 + κ2 + κξ
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and κ′ = κ′1 + κ′2 + κ′ξ, and for boundary information specifications B1 and B2 that are compatible
with B and with the connectivity requirements that each of the two subproblems inherit across the
cut ξ. Since the main recursion optimizes over all choices of ξ and Bξ, it includes the option to
partition the subproblem into the two subproblems according to the cut that is guaranteed to exist
by the m-guillotine property of the optimal set U with respect to W .

The overall solution to the problem is given by f(W0,B0, k, k′) for W0 chosen to be one of
the O(n4) possible root rectangles, B0 specifying no crossed disks or augmentation disks for the
boundary of W0 (so that all disks are interior to W0), k equal to the input parameter of the MACS
instance, k′ = ck/m for a fixed constant c, and connectivity specifying that the union of all disks
interior to W0 must be connected.

The number of subproblems is nO(m), and the evaluation of f(W,B, κ, κ′) for any one subproblem
requires time nO(m) to optimize over all choices of cuts and boundary specifications. Thus, the
overall running time is nO(m), which is nO(1/ε), with the choice of m = O(1/ε). This concludes the
proof of Theorem 3.

Remark. The proof of Theorem 3 can be extended to a slightly more general setting of MACS
than that of unit disks, namely, the case of input regions that have “fat” bounding boxes of
comparable sizes, with the possibility of adding a small number (O(εk)) of augmentation disks of
comparable size (diameter). More precisely, consider a given set R = {R1, . . . , Rn} of n connected
regions in the plane, each having a boundary consisting of a union of a constant number of algebraic
curves, with a connected union

⋃
iRi, and assume that each region Ri has an axis-aligned bounding

box, BB(Ri), whose aspect ratio is at most ρ; i.e., the ratio of the length of the longer side of
BB(Ri) to the length of the shorter side of BB(Ri) is at most ρ. Further, we assume that the
sizes (diameters) of the regions Ri are all about the same, within a constant factor: the ratio
diam(Ri)/diam(Rj) is bounded by a constant. Then, if we allow at most εk augmentation disks
of size Θ(maxi diam(Ri)), then the PTAS we described for regions that are unit disks generalizes
immediately to this case. The structural result holds as before: the set E of edges of bounding
boxes of the regions Ri can be made to be an m-guillotine subdivision with the addition of m-span
segments of lengths totalling O((1/m)

∑
i diam(Ri)) = O((k/m) maxi diam(Ri)). Each of the m-

span segments ab yields an m-span rectangle, of width maxi diam(Ri), centered on it, which can
be covered by O(|ab|/maxi diam(Ri)) augmentation disks of size maxi diam(Ri). Thus, using only
O(εk) augmentation disks, an optimal set of regions, with area-maximizing connected union, can
be made to have an m-guillotine property (defined analogously to the case of input disks). (Note
that the augmentation disks have diameters comparable to the diameters of the regions Ri, but
they may have have much greater areas than the regions Ri, which may have areas far smaller than
the areas of their bounding boxes, unless an assumption is added that the regions Ri themselves
are also “fat” according to common definitions of fatness of convex or nonconvex regions. Note too
that the fatness assumption for the bounding boxes of the regions depends on the orientation of the
coordinate axes, unless the regions are themselves fat.) The dynamic programming algorithm then
optimizes, as before, over sets of regions having the m-guillotine property.

5.6 Cases in which no augmentation is needed

If the input set X is α-well-distributed (Definition 3), then we obtain a PTAS for MACS, even
without resource augmentation; we restate Theorem 4 here, and then give its proof.
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Theorem 4 (α-well-distributed). The MACS on α-well-distributed inputs (for a constant α) has a
polynomial-time approximation scheme.

Proof. We utilize the dynamic programming algorithm that yields the PTAS with augmentation
(Theorem 3). Specifically, we use the algorithm to find an m-guillotine set, U , of at most dCke
input disks, for an appropriate choice of C < 1, and a set, U ′, of k′ = O(εk) augmentation disks,
so that the union of the Ck + O(εk) disks is connected, with the area of the union of all disks,
U ∪ U ′, at least (1−O(ε))OPT(X, dCke). Recall that the augmentation disks are centered at grid
points of Z that fully cover the width-2 rectangle centered on the m-span segment, with at most
one such segment per side of a window W , which interconnect the disks that intersect the m-span
(determined by the bounding boxes of the input disks). We argued that the solution uses in total
only O(εk) augmentation disks to cover the m-span rectangles centered on m-span segments that
arise in the specifications of the subproblems that make up the hierarchical subdivision, since the
total length of all such segments needed to convert an input set of disks into an m-guillotine such
set is O(k/m) = O(εk), for m = d1/εe (see the proof of Lemma 4).

Consider an m-span segment ab on the boundary of a subproblem in the computed solution from
the dynamic programming algorithm. The computed solution includes a set of O(|ab|) augmentation
disks (in the set U ′) that cover the m-span rectangle (of width 2) centered on ab. If we simply
remove these augmentation disks, we may disconnect the overall union of disks. Thus, we consider
the set {u1, u2, . . . , uK} ⊆ U of input disks in the computed solution that intersect the m-span
rectangle (of width 2, centered on ab), with centers on one side of ab (say, left of the oriented line
through ab), indexed in order of the projections of their center points onto the (horizontal/vertical)
line containing segment ab, and, for each consecutive pair, (ui, ui+1), we do the following: If ui and
ui+1 are disjoint (implying that their projected center points are separated by at least some constant
Ω(1)), then we add to U a set, Uui,ui+1 , of input disks that form a path in UDG(X) from the center
of disk ui to the center of disk ui+1. By the α-well-distributed property, the number, |Uui,ui+1 |, of
disks added is at most a constant (depending on α) times the distance between the center points
of ui and ui+1, and thus at most a constant times the distance between the consecutive projected
center points of ui and ui+1; thus, in total, the number of added input disks is O(|ab|). These
added input disks interconnect all of the disks of U that intersect the m-span rectangle (of width 2,
centered on the segment ab) on one of its sides; similarly, we add input disks to interconnected the
disks of U that intersect the m-span rectangle on the other side of ab, and, if there are disks of U
on both sides of ab, we add also a set of (at most O(|ab|)) input disks interconnecting an input disk
on one side to an input disk on the other side. In total, then, we have added enough input disks
to assure that all disks of U that intersect the m-span rectangle centered on the segment ab are
connected in the union of the newly enlarged set of input disks, yet we have added only O(|ab|) such
disks, exploiting the α-well-distributed property of X. This allows the augmentation disks covering
the m-span rectangle to be removed, while maintaining connectivity. In total, then, the number of
original disks U produced by the algorithm, together with the added disks that ensure connectivity,
is (1 +O(ε))Ck, which is at most k, for an appropriate choice of constant C < 1. The union of these
disks is connected and has area is at least (1−O(ε))OPT(X, dCke), which, according to Lemma 5
below, is at least (1−O(ε))(1− εc)OPT(X, k), which is (1−O(ε))OPT(X, k).

The following lemma, utilized in the proof of Theorem 4, shows that, for small values of ε > 0, we
can use slightly less than k input disks (specifically, at most dk/(1+ε)e of the input disks) to achieve
a connected union with area very close to OPT(X, k) (specifically, area at least (1− εc)OPT(X, k),
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for some constant c).

Lemma 5. For any integer k ≤ n and ε > 0, there is a constant c such that OPT(X, dk/(1+ε)e) ≥
(1− εc)OPT(X, k).

Proof. Let X∗ ⊆ X be an optimal (for MACS) subset of k = |X∗| centers of unit disks, the union
of which is connected and of maximum possible area A = OPT(X, k). Then, we will show that, for
any ε > 0, there is a subset X ′ ⊆ X∗ of cardinality at most k′ = dk/(1 + ε)e such that UDG(X ′) is
connected and the area of the union of the unit disks centered at X ′ is at least (1− εc)OPT(X, k),
for some constant c. This will show the claim.

We will obtain X ′ from X∗ by removing from X∗ a subset of k − k′ points; we do so in a way
that keeps the union area “large” while keeping the UDG of the remaining points connected.

Consider a uniform grid that partitions the plane into squares (pixels) of side length 1/2
√

2. A
pixel is said to be occupied if a point of X∗ lies within it; let M be the number of occupied pixels.
By the choice of pixel size, and the fact that UDG(X∗) is connected, we know that the union of
occupied pixels is connected.

Case (1). If M ≤ k′, then we “mark” (for retention) one point of X∗ in each of the occupied pixels,
(these marked points will be included in X ′), and then iteratively remove k−k′−M unmarked points,
selecting at each stage an (unmarked) point of X∗ whose deletion minimizes the decrease in area of
the union of disks. The amount by which the area of the union of the unit disks decreases when a
disk D is removed is exactly the area of the set of points in the plane that are “uniquely covered” by
the disk D (i.e., the points of the plane covered by D, but not covered by any other disk centered
on a remaining point of X∗). Initially, among the k−M unmarked points of X∗, there must be one
whose unit disk uniquely covers area at most A/(k −M) (otherwise, the k −M disks collectively
cover area greater than A); then, after its removal, there must be one whose unit disk uniquely covers
area at most A/(k−M−1), etc. Continuing, the total area removed, over the k−k′−M stages, is at
most A(1/(k−M) + 1/(k−M −1) + · · ·+ 1/(k′+ 1)) ≤ A(k−k′−M)/(k′+ 1) ≤ A(k−k′)/k′ ≤ εA.
Thus, the area of the union of the unit disks centered on the remaining k′ points of X∗ is at least
(1− ε)A.

Case (2). If M > k′, then we consider any connected subset of the M occupied pixels, then we
remove points within a leaf pixel (of spanning tree in dual of grid graph), and continue doing this
until there are only k′ occupied pixels. This removes points from M − k′ pixels. The union of unit
disks with centers within any one pixel has area at most β = π +

√
2 + (1/8) ≈ 4.68, as a simple

calculation shows. Thus, the removal of the points results in a decrease in the area of the union
of disks of at most β(M − k′) ≤ β(k − (k/(1 + ε))) ≤ βεk/(1 + ε). Since M > k′ ≥ k/(1 + ε), and
since A ≥M/8 (each pixel has area 1/8, and all occupied pixels are fully covered), we know that
k ≤ 8(1 + ε)A. Thus, the total area of the disks centered at the removed points is at most 8βεA,
and the area of the union of the disks centered at the remaining points, which lie within k′ occupied
pixels, is at least (1− 8βε)A. Since there are now only k′ occupied pixels, we are in case (1), and
can thus further reduce the number of points to at most k′, while keeping the area of the union of
disks at least (1−O(ε))A.

One intuitive view of a well-distributed input is to look at the shape of the “holes” of the input,
that are the different connected components of the complement of the union of the input disks in
the plane. The assumption of well-distribution means that these holes are, in a sense, fat. One
particularly interesting case arises when there are no holes at all in the union of the input disks.
We call these sets pseudo-convex, and we prove that this is a special case of well-distributed inputs.
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Definition 4. A set X is called pseudo-convex if the convex-hull of X is covered by the union of
the unit disks centered at points of X.

Lemma 1. A pseudo-convex set X ⊆ R2 is 3.82-well-distributed.

Proof. (Lemma 1) Let X be a pseudo-convex set with unit-disk-graph G = UDG(X). Let x, y ∈ X
be any two points (disk centers) in X, and let L = |xy|. We show that dG(x, y) 6 dαLe where
α = 12/π < 3.82.

If L < 2 then the two unit disks centered at x and y overlap, so that dG(x, y) = L 6 dαLe.
Now assume that L > 2. Since X is pseudo-convex, the convex hull of X is covered by the set

of unit disks centered at points X; thus, for any x, y ∈ X, each point on the line segment xy is
covered by a disk centered at a point in X. Let S = {z ∈ X | Bz ∩ xy 6= ∅, |xz| > 2 and |yz| > 2}
and let I be any maximal independent set in S ∪ {x, y}. Since S is at distance at least 2 from
x and y, we deduce that x, y ∈ I and that all disks in I \ {x, y} lie within the L × 4 rectangle
centered on xy; thus, |I| 6 4L/π, since the unit disks centered at I are disjoint, each of area π.
Let I = {x, z1, . . . , zK , y}, with the points zi ∈ I indexed according to the ordering along xy of the
projections of the points zi onto xy. Then, by the maximality of the independent set I, for each
i ∈ {1, . . . ,K − 1}, the shortest unweighted path in UDG(S) from zi to zi+1 has at most 3 edges
(otherwise, there would be a point of S that could be added to I while maintaining independence).
Thus, there exists a connected subset D ⊆ X such that I ⊆ D and |D| 6 3|I| − 2 6 12L/π − 2. We
conclude that dG(x, y) 6 (12L/π − 2) + 1 6 dαLe.

Corollary 1 is then a consequence of Theorem 4 and Lemma 1.

6 APX-hardness of Quad-Connected-Cover

Theorem 5. Quad-connected-cover is APX-hard.

The reduction will be from the following problem.
3-set-cover. Given a set X of n elements, and its subsets S = {S1, . . . , Sm} such that |Si| ≤ 3

for i = 1, . . . ,m, compute a minimum size subset of S that covers X. 3-set-cover is APX-hard
(due to the fact that minimum vertex cover on graphs with maximum degree 3 is APX-hard).

Proof. (Theorem 5) The proof is by a reduction from 3-set-cover to quad-connected-cover.
In particular, given a set X = {x1, . . . , xn} and subsets S = {S1, . . . , Sm}, we show how to construct,
in polynomial time and for any parameter ε < 1

6 , a (1 + ε)-approximation to 3-set-cover from a(
1− ε

6

)
-approximation to the quad-connected-cover.

o

xi

T ′
i

C

Map the n points of X to n points placed uniformly on a circle C of unit area centered at the
origin o; we will use the notation xi for these points as well. Our set T will consist of convex
quadrilaterals of two types:
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• center-quads. These are, for each set Sj ∈ S, the quadrilateral Tj = convexhull (Sj ∪ {o}).

• side-quads. For each element xi, let T ′i be the rectangle with width 1
2n , length 4n, containing

xi and tangent to C (see the figure).

Note that every pair of center-quads intersect (namely, at o), no two side-quads intersect, and
a center-quad Tj intersects a side-quad T ′i if and only if xi ∈ Sj . The area of the union of the
center-quads is at most 1, and the area of each side-quad is 2.

Let s be the size of an optimal set-cover for X and S. Let T ′ be a (1− ε
6)-approximate solution

to the quad-connected-cover problem on the set {T1, . . . , Tm, T ′1, . . . , T ′n} with k = n+ s. Observe
that to maintain connectivity of the intersection graph of T ′, if a point xi is covered by a side-quad
of T ′, it must also be covered by some center-quad of T ′, as a side-quad only intersects center-quads.

One possible solution consists of picking the s center-quads of the set-cover, and all the n
side-quads to get the total area of at least 2n; in particular, an optimal solution has value at least
2n. Thus the area of the union of the quadrilaterals in T ′ is at least

(
1− ε

6

)
· 2n. This implies that

T ′ leaves at most εn
6 elements of X uncovered by center-quads; otherwise at least εn

6 + 1 side-quads
are not picked, and so the area covered by T ′ can only be 1 + 2

(
n− εn

6 − 1
)
≤
(
1− ε

6

)
· 2n − 1.

Thus, out of the n + s quadrilaterals in T ′, at least n − εn
6 side-quads are present, and at most

(n+ s)−
(
n− εn

6

)
= s+ εn

6 center-quads are present. Thus one can pick arbitrarily one set for each
uncovered point to construct a set cover for X of size at most

(
s+ εn

6

)
+ εn

6 ≤ s+ 2ε
6 ·3s ≤ (1 + ε) ·s,

where the first inequality follows from the fact that s ≥ n
3 . This completes the proof.

We conjecture that by finding a more specific reduction from APX-hard geometric covering
problems in [16] for instance, the problem quad-connected-cover remains APX-hard even when
the quadrilaterals are replaced by triangles with area arbitrarily close to one.
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function subject to a matroid constraint, SIAM Journal on Computing, 40 (2011), pp. 1740–1766.

[4] E. W. Chambers, S. P. Fekete, H.-F. Hoffmann, D. Marinakis, J. S. Mitchell,
V. Srinivasan, U. Stege, and S. Whitesides, Connecting a set of circles with minimum
sum of radii, Computational Geometry, 68 (1991), pp. 62–76. Special issue in memory of Ferran
Hurtado.

[5] T. H. Chan and S. H. Jiang, Reducing curse of dimensionality: Improved PTAS for TSP
(with neighborhoods) in doubling metrics, in Proceedings of the Twenty-Seventh Annual ACM-
SIAM Symposium on Discrete Algorithms, SODA 2016, Arlington, VA, USA, January 10-12,
2016, R. Krauthgamer, ed., SIAM, 2016, pp. 754–765.

25



[6] S. Chaplick, M. De, A. Ravsky, and J. Spoerhase, Approximation schemes for geomet-
ric coverage problems, in ESA, vol. 112 of LIPIcs, Schloss Dagstuhl - Leibniz-Zentrum fuer
Informatik, 2018, pp. 17:1–17:15.

[7] B. N. Clark, C. J. Colbourn, and D. S. Johnson, Unit disk graphs, Discrete Math., 86
(1991), pp. 165–177.

[8] A. Dumitrescu and J. S. B. Mitchell, Approximation algorithms for TSP with neighbor-
hoods in the plane, Journal of Algorithms, 48 (2003), pp. 135–159. Special issue devoted to
12th ACM-SIAM Symposium on Discrete Algorithms, Washington, DC, January, 2001.
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