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Abstract

How can we reconfigure a given set of n segments with fixed endpoints in the plane into
a crossing-free set? We remove a pair of crossing segments and insert one of the two
pairs of non-crossing segments with the same four endpoints in an operation called a
flip. If we restrict ourselves to sets of segments with a given property, say forming one
polygon, the inserted pair must preserve this property. Untangling a set of segments
amounts to iteratively flip the set of segments until no crossing remains.

Why are flips useful? A flip shortens the total length of the segments. Hence, to
efficiently compute approximations of the shortest tour through n given cities, many
well known algorithms are supplemented with flips.

How many flips are needed? At most n3 flips may be performed in a sequence,
but the longest sequence known uses only roughly n2 flips. In general, no strategy
for choosing which pairs of crossing segments to remove is known to untangle a set of
segments using fewer than n3 flips. Yet, when the endpoints form a convex polygon,
the problem is well understood: the longest sequences use roughly n2 flips, while the
best strategies use roughly n flips.

In this dissertation, we devise strategies to untangle segments for several versions of
flips: the flips with nothing to preserve (the segments form a multigraph or a matching),
the flips preserving a bipartite matching, the flips preserving a polygon (i.e., a tour),
and the flips preserving a tree. We study the performance of each strategy in terms
of their number of flips. Our results are organized by the type of choice the strategy
uses, as follows. We first study the performance of the strategy choosing nothing, i.e.,
we improve the bounds on the number of flips in the longest flip sequences (in special
cases). We then devise strategies for choosing which pairs of segments to remove to
untangle segments using as few flips as possible. We also devise strategies for choosing
which pairs of segments to insert, and strategies for choosing both removed and inserted
pairs. Many of our results use a parameter measuring how far from a convex polygon
the set of endpoints is. Furthermore, we prove the NP-hardness of the shortest flip
sequence to untangle a bipartite matching.
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Résumé

Comment reconfigurer n segments avec un ensemble fixé d’extrémités pour qu’ils ne se
croisent pas ? Nommons décroisement l’opération qui consiste à retirer une paire de
segments qui se croisent pour en insérer une autre parmi les deux paires de segments non
croisés partageant les mêmes quatre extrémités. Si nous nous restreignons à des ensembles
de segments ayant une propriété donnée, à des polygones par exemple, l’insertion de
la paire doit préserver cette propriété. Décroiser totalement un ensemble de segments
consiste à itérer les décroisements jusqu’à ce qu’il ne reste plus de croisement.

À quoi sert de décroiser des segments ? Un décroisement raccourcit la longueur
totale des segments. Pour calculer efficacement des approximations du plus court trajet
passant par n villes données et revenant à son point de départ, de nombreux algorithmes
bien connus font recours à des décroisements pour cette vertu.

Combien de décroisements sont nécessaires pour un décroisement total ? Un dé-
croisement total est toujours atteint en au plus n3 décroisements, pourtant, la plus
longue séquence connue ne comporte qu’environ n2 décroisements. En général, nous
ne savons pas comment choisir stratégiquement quelles paires de segments retirer pour
décroiser totalement les ensembles de segments en utilisant moins de n3 décroisements.
Le problème est cependant bien compris lorsque les extrémités des segments forment un
polygone convexe : les séquences les plus longues comportent environ n2 décroisements,
tandis que les meilleures stratégies utilisent environ n décroisements.

Dans cette thèse, nous élaborons des stratégies pour décroiser totalement des
segments, et ce pour plusieurs versions de décroisements : les décroisements n’ayant
rien à préserver (les segments forment par exemple un multigraphe ou un couplage),
les décroisements préservant un couplage bipartite, les décroisements préservant un
polygone (c’est-à-dire un trajet revenant à son point de départ), et les décroisements
préservant un arbre. Nous étudions les performances de chaque stratégie en termes de
nombre de décroisements utilisés. Nos résultats sont organisés suivant le type de choix
autorisé pour les stratégies. Nous étudions d’abord les performances de la stratégie qui
ne choisit rien, c’est-à-dire que nous améliorons les bornes connues sur le nombre de
décroisements dans les séquences de décroisements les plus longues (dans certains cas
particuliers). Nous élaborons ensuite des stratégies pour choisir les paires de segments à
retirer pour décroiser totalement des segments en utilisant le moins de décroisements
possible. Nous élaborons également des stratégies pour choisir les paires de segments à
insérer, ainsi que des stratégies pour choisir à la fois les paires à retirer et les paires
à insérer. Beaucoup de nos résultats utilisent un paramètre mesurant à quel point
l’ensemble des extrémités des segments est proche d’un polygone convexe. D’autre part,
nous prouvons qu’il est NP-dur de calculer la plus courte séquence de décroisements
pour décroiser totalement un couplage bipartite donné.
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Chapter 1

Introduction

Motivation. Imagine1 that we have to visit n given cities and come back to the city
we first visited (Figure 1.1(a) shows n = 5 cities and the roads between). Assuming that
there is a flat and straight road between any two cities, what tour should we choose
to minimize our total travel distance? This is perhaps the most natural version of the
famous Traveling Salesperson Problem (TSP). Computing the exact shortest tour may
require an exponential time,2 which is not practical for several applications (Figure 1.1(b)
shows the shortest tour on five cities). To still compute a short tour when the exact
shortest tour is not affordable, many powerful heuristics and approximation algorithms
have been developed.3 Many of them might produce self-intersecting tours like the tour
in Figure 1.1(c).4 Yet, a self-intersecting tour is not optimal as it can be reconfigured
into a shorter tour by replacing a pair of crossing segments by a non-crossing pair in
an operation called a flip (a flip reconfigures the tour in Figure 1.1(c) into the tour in
Figure 1.1(d) which is shorter as shown in Figure 1.1(e)).5

cities and roads

(a)
125.6 km

(b)
157.2 km

(c)

a flip

136.2 km

(d) (e)

Figure 1.1: (a) Five cities and the roads between. (b) The shortest tour (of 125.6 km).
(c) A tour (of 159.3 km) with a crossing. (d) The tour (of 136.2 km) after a flip. (e) In
the highlighted triangle, the dashed segment is shorter than the path formed by the
two plain segments. The same holds in the other triangle, thus a flip shortens the tour.

1The author believes that doing mathematics consists in imagining anything as long as it helps
understand something.

2The 2-dimension Euclidean TSP is NP-hard [58, 74]. The fastest known algorithm has a worst-case
time complexity of 2O(

√
n) [35]. A 2o(

√
n) time algorithm does not exist unless ETH fails [35, 36].

3See for example [9, 34, 51].
4A non-exhaustive list of algorithms that might produce self-intersecting tours is: Nearest Neighbor,

Greedy, Cheapest Insertion, Nearest Insertion, Farthest Insertion, Random Insertion, Minimum
Spanning Tree, Christofides–Serdyukov 3

2 -approximation algorithm [26, 80], all the PTAS [10, 69, 76],
and the probabilistic 3

2 − ϵ-approximation algorithm [62, 78].
5This folklore theorem, “Perhaps the oldest theorem concerning the TSP” [29], is true except if the

cities are all colinear, as proved in [82]. If general position is assumed, applying the triangle inequality
in the two triangles formed by the removed and inserted segments is enough (Figure 1.1(e)).

7



8 CHAPTER 1. INTRODUCTION

A reconfiguration problem. This flip operation falls in the range of reconfiguration
problems, where some typical questions are “Is it possible to reconfigure a chair into a
stool while preserving the fact that we can sit on it at every reconfiguration step?” and
“What are the minimum number and maximum number of reconfiguration steps if the
chair and the stool are chosen to be as different as possible?”. We present some related
reconfiguration problems in Section 1.4.

(a) (b) (c) (d) (e)

Figure 1.2: The valid insertion choice(s) to preserve (a) nothing special, (b) nothing
special (but each point is the end point of exactly one segment), (c) segments with one
red endpoint and one blue endpoint, (d) one tour (e) one tree. Small black discs are
points, solid squares are red points and hollow circles are blue points, removed and
inserted segments are bold (to be inserted segments are dashed in other figures).

From tours to segments. Flips are not specific to tours: a flip may apply to any
set6 of n segments in the plane. In fact, all the results known for tours are essentially
more general. In this generalized setting, performing a flip involves choosing which pair
of crossing segments to remove and which of the two pairs of non-crossing segments
with the same four endpoints to insert. When flipping a set of segments that has
some property, for instance the property of being a tour, we additionally require the
resulting set of segments to preserve this property (the same way we required each
reconfiguration step of a chair to preserve the property of holding a sitting person).
This requirement may impose which of the two possible pairs of non-crossing segments
to insert (Figure 1.2(a) shows the two possible insertion choice in an arbitrary (multi)set
of segments, Figure 1.2(b) shows the two possible insertion choice in a matching, i.e., a
set of segments where each point is the endpoint of exactly one segment, Figure 1.2(c)
shows the only insertion choice to preserve a bipartite matching, i.e., a matching where
each segment has one red endpoint and one blue endpoint, Figure 1.2(c) shows the
only insertion choice to preserve a tour, i.e., a polygon, Figure 1.2(d) shows the only
insertion choice to preserve a tree, i.e., a set of roads connecting all the cities but
with no cycle). Using the same example of tours, note that one of the two pairs of
non-crossing segments with the same four endpoints would transform the tour into two

6In fact, multisets of segments must be considered as a flip may insert another copy of an existing
segment (Figure 1.2(a)).
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tours, which is not wanted. We therefore insert the other pair in order to preserve the
property of being one tour (Figure 1.2(d)).

Untangling segments. A flip may counter-intuitively increase (or leave unchanged)
the total number of crossings; this occurs when some segments of our set cross one
of the inserted segments without crossing any of the removed segments (the smallest
horizontal segment in Figure 1.2). It is thus unclear whether performing flips as long as
there remain crossings eventually terminates. To show that such a process terminates
nonetheless with a set of crossing-free segments using at most an exponential number
of flips, recall that each flip shortens the total length of the segments (Figure 1.1(e)). It
therefore impossible to reach twice the same set of segments in the process. As there
is an exponential number of ways n segments can connect the same set of endpoints
(Figure 1.3), the claim holds. This untangling process is used in practice to supplement
heuristics and approximation algorithms for the TSP.7

167.8 km 157.2 km 157.2 km 157.2 km 157.2 km 149.6 km

143.8 km 136.2 km 134.1 km 133.4 km 132.6 km 125.6 km

Figure 1.3: All the (n−1)!
2

= 12 possible tours on the n = 5 cities of Figure 1.1(a) sorted
by decreasing length. A flip shortens a tour, thus a flip always moves forward in this
list.

A historical bound. In 1980, Jan van Leeuwen and Anneke A. Schoone showed that
untangling segments uses at most n3 flips [82],8 which is much less than an exponential
number. This n3 upper bound is still the state of the art, yet the longest untangling
process known only uses roughly n2 flips9 which corresponds to the maximum number of
crossings in a set of n segments. It is even more surprising that, in general, no strategy
guiding the removal choices is known to use fewer flips than n3 when no set of segments
is known to require more than roughly n flips to be untangled, leaving an even wider
gap.

Nevertheless, these two gap problems are solved in the very special case where the
endpoints of the segments (the cities, in the TSP context) form a convex polygon:10

the longest untangling process uses roughly n2 flips11 and the best removal strategy
7Untangling is the only known way to get a crossing-free tour shorter than the initial tour in

polynomial time [82]. In some situation a crossing-free solution is necessary [22].
8This n3 upper bound, shown for tours, easily generalizes to any multiset of segments.
9This n(n−1)

2 = O(n2) lower bound is known for matchings with endpoints forming a convex
polygon [19]; the reductions in Theorem 4.1.1 extend it to tours, trees, bipartite matchings, and to
general multisets of segments.

10In this case, computing the convex-hull of the point set yields the optimal tour in n log n time [12, 24],
so the untangling process seems somewhat useless.

11In the case of general multisets of segments, the exact number of flips is n(n−1)
2 , the number of

pairs of segments.



10 CHAPTER 1. INTRODUCTION

uses roughly n flips. Whether these two bounds also hold for general point sets is an
open conjecture12 from which stems the following problematic.

1.1 Problematic

The problematic of this dissertation is to devise strategies (for various choices) to untan-
gle segments (while preserving various properties) and to establish their performance
(mostly in terms of number of flips).

1.2 Contribution

In this section, we present the contributions of this dissertation. These contributions
appear in [30, 31, 32, 33] (except Theorem 5.3.1). We start by explaining a notation
that we use extensively to present the results. This notation is defined more formally
in Chapter 2.

The unknown of this dissertation. Let d denote the performance of the optimal
strategy;13 it is the unknown of this dissertation. To specify the choice the optimal
strategy has, we use symbols in the exponent, as explained in the following.

• In d∅, the optimal strategy has no choice at all, it amounts to choose nothing.
The quantity d∅ is thus the maximum number of flips used in an untangling
process, and the state of the art is n2 ≼ d∅ ≼ n3 as we have seen in a previous
paragraph.14

• In dR, the optimal strategy is a strategy for all the removal choices. The state of
the art is n ≼ dR ≼ n3 as we have seen.

• In dI, the optimal strategy is a strategy for all the insertion choices.

• In dRI, the optimal strategy is a strategy for both removal and insertion choices.

We additionally specify the property to be preserve by the flips in the index. For
example, in dR

Cycle, all the sets of segments considered form a cycle (i.e., a tour) and
all the flips considered preserve this property. The extensive list of the properties
considered in this dissertation is in Chapter 2. We classify these properties into the
following three types, and we often combine them.

1. The point set properties are the properties about the position of the endpoints
that are preserved by any insertion choice at every flip such as Convex where the
endpoints form a convex polygon (Figure 1.4(a)). We also consider seven different
relaxations of this Convex property (Figure 1.4(b)-(h), (k)).

12The conjecture that the longest untangling process for matchings uses Θ(n2) flips appears in [19].
13The worst case flip complexity of the problem of untangling segments.
14We use Hardy’s notation f(n) ≼ g(n) instead of the Bachmann-Landau notation f(n) = O(g(n))

in this chapter to ease the understanding of the non-specialist reader.
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2. The degree properties are the properties about the segments that are preserved by
any insertion choice at every flip.15 We consider only one such property: Matching
where each endpoint is matched (via a segment) to exactly one other endpoint
(Figure 1.2(b) show flips on a matching).

3. The insertion properties are the properties that impose which pair is inserted at
every16 flip. We consider three such properties: Bipartite where the endpoints
are colored red or blue and the segments must match a red point to a blue point
(Figure 1.2(c)), Cycle where the segments form a tour (Figure 1.2(d)), and Tree

where the segments form a tree (Figure 1.2(e)). We use Multigraph to explicitly
say that the insertion choice is not impose by a property (Figure 1.2(a)).

(a) (b) (c) (d) (e) (f)

(g) (h) (i) (j) (k) (l)

Figure 1.4: The different types of point sets considered in this dissertation. In the nine
first figures, the point set P is partitioned into P = C ∪ T with C forming a convex
polygon (shaded) and the points of T (highlighted) positioned in various ways.
(a) A point set P = C forming a convex polygon (i.e., satisfying the Convex property).
(b) & (c) A point set with only one point in T (i.e., satisfying the |T| = 1 property).
(d) A point set with two points in T both lying inside C (i.e., satisfying the Inin

property).
(e) A point set with two points in T both lying outside C (i.e., satisfying the Outout

property).
(f) A point set with two points in T , one inside and one outside C (i.e., satisfying the
Inout property).
(g) A point set where the points of T are separated from C by two parallel lines (i.e.,
satisfying the Separated property).
(h) A point set where the points of T all lie outside C (i.e., satisfying the Allout

property).
(i) & (j) A general point set (in (i), the point set is viewed as a P = C ∪ T ).
(k) A point set with n red points (solid squares) on a line and n blue points (hollow
circles) above the line (i.e., satisfying the Redonaline property).
(l) A point set with n red points on a line and n blue points on a parallel line (i.e.,
satisfying the Permutation property).

15They are constrains on the degree of each point.
16In particular, we do not consider properties such as “admitting a given coloring” where the given

coloring has more than two colors.
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1.2.1 Upper Bounds

Note that devising a new strategy to untangle segments and measuring its performance
upper bounds the corresponding version of d.

Red-on-a-line point sets. The version of the problem where half of the points
are red and lie on a line while the other half is blue and lie on a parallel line, and
where a segment must match a red point to a blue point (the Bipartite Matching

version) is fully solved as a set of segments is essentially a drawing of a permutation
(Figure 1.4(l)).17 An intermediate setting where all the red points lie on the same
horizontal line and where all the blue points lie above this line (the Redonaline version,
Figure 1.4(k)) has been studied in [17]. The following two results prolong this study.

In Theorem 4.4.1 [33], we prove that18

d∅
Redonaline Matching(n) ≤

n(n− 1)

2

n+ 4

6
≼ n3,

which only betters the state of the art general historic n3 upper bound [82] by a factor
1
6
. The potential involved in this proof takes advantage of the connections bipartite

matchings and permutations, and significantly differs form the potential used to prove
the n3 upper bound.

In Theorem 5.8.1 [33], we provide a simple removal strategy proving that

dR
Redonaline Matching(n) ≤

n(n− 1)

2
≼ n2.

This bound is only slightly better than the one in [17], but the removal strategy is simpler
and, most importantly, the proof introduces a new approach called state tracking which
sheds a new light on the untangling problem in general. For instance, state tracking
provides a new level of understanding for Theorem 3.2.2 [17] and Theorem 4.2.1 [33].

Convex position point sets. The case where the endpoints of the segments form a
convex polygon (Figure 1.4(a)) has a very rigid structure19 and is thus well understood
through a collection bounds, most of which are tight, in the literature. The following
three results add to this collection.

In Theorem 5.2.1 [31], we use removal choice and the notion of crossing depth of a
segment to prove that any n segments with endpoints C forming a convex polygon may
be untangled with roughly n log n flips. Stated as an upper bound, we have20

dR
Convex Multigraph(n) ≼ n log |C| ≼ n log n.

17Crossings correspond to inversions, flips to inversion swaps, and untangling to sorting.
18We purposely factor the bounds by n(n−1)

2 =
(
n
2

)
, the number of pairs of segments, as this quantity

is closely related to the problem.
19The geometry of such a convex position is fully encoded in the cyclic order in which the points

appear on the convex polygon.
20Our bounds often have terms like O(tn) and O(n log |C|) that would incorrectly become 0 if t

or log |C| is 0. In order to avoid this problem, factors in the O notation should be made at least
1. For example, the aforementioned bounds should be respectively interpreted as O((1 + t)n) and
O(n log(2 + |C|)).
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This bound was already known for n segments forming a tree [17]; this new proof is
both simpler and more general.

In Theorem 5.3.1, we use removal choice and the notion of crossing depth again to
prove that

dR
Convex Tree(n) ≤ 3n− 8 ≼ n for n ≥ 3,

thereby improving the aforementioned n log n upper bound [17].
In Theorem 6.1.1 [31], we use insertion choice to prove that

dI
Convex Multigraph(n) ≼ n log |P | ≼ n log n.

The proof relies on a multiplicative potential instead of a classic additive potential. This
bound improves on the general quadratic upper bound concerning insertion choice [19].

Near convex position point sets. As mentioned, endpoints forming a convex
polygon admit a special treatment, but so far no work has been done to take advantage
of situations where almost all the endpoints of the segments form a convex polygon
(Figure 1.4(b)-(i)). The following eight upper bounds address this situation using the
same notations described next. The set of endpoints is denoted P and is partitioned
into two subsets: the subset C forming a convex polygon and the subset T of all the
remaining endpoints. We introduce the parameter t defined as the number of segments
which have at least an endpoint in T , counting twice a segment having its two endpoints
in T . This parameter t is a measure of how “far” the point set P is from being in
convex position with C. The proofs often involve a preprocessing of the segments
whose endpoints are both in C invoking one of the corresponding theorems for convex
position. The proofs also involve splitting the segments to untangle them separately
(see Lemma 2.6.1 [19, 31]).

In Theorem 4.3.1 [30], we prove that

d∅
Multigraph(n, t) ≼ tn2.

This bound consists in a continuous transition between the quadratic bound from
Theorem 3.2.2 [17] when t = 0 and the cubic bound from Theorem 3.1.3 [82] when
t = n. The proof indeed combines the potentials from both proof.

In Theorem 5.4.2 [31], we provide a removal strategy for the case where there is
only one point in T to prove that

dR
|T|=1 Multigraph(n, t) ≼ n log |C|+ tn ≼ n log n+ tn.

In Theorem 5.5.2 [31], we provide a removal strategy for the case where there are
two points in T , one inside and one outside the convex polygon formed by C, to prove
that

dR
Inout Multigraph(n, t) ≼ t2n+ n log n.

In Theorem 5.6.1 [31], we provide a removal strategy for the case where there are
two points in T , both lying inside the convex polygon formed by C, to prove that

dR
Inin Multigraph(n, t) ≼ tn+ n log n.
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In Theorem 5.7.1 [31], we provide a removal strategy for the case where there are
two points in T , both lying outside the convex polygon formed by C, to prove that

dR
Outout Multigraph(n, t) ≼ 2tn log n.

In Theorem 6.2.1 [31], we provide an insertion strategy for the case where the points
of C lie in between two parallel lines while the points of T lie outside this strip is only
one point in T to prove that

dI
Separated Multigraph(n, t) ≼ t |P | log |C|+ n log |C| ≼ tn log n.

In Theorem 7.1.1 [31], we provide a strategy for both removal and insertion choices
for the same case as Theorem 6.2.1 [31] (described in the previous paragraph) to prove
that

dRI
Separated Multigraph(n, t) ≼ n+ t |P | ≼ tn.

In Theorem 7.2.3 [31], we provide a strategy for both removal and insertion choices
for the case where all the points of T lie outside the convex polygon formed by C and
where no endpoint is shared by more than one segment, to prove that

dRI
Allout Matching(n, t) ≼ t3n.

Counting flips without multiplicity. In all the previous upper bounds, using
many times the same flip had to be counted accordingly in the performance. In
Theorem 4.5.1 [30], we prove the sub-cubic n8/3 upper bound on the number of distinct
flips, that is, the number of flips where a flip used many times only count for one. This
upper bound may become useful if combined with a strategy avoiding to use twice the
same flip.

1.2.2 Lower Bounds

Lower bounds are very important as they are the only hint of how far our strategies may
be from being optimal. In this dissertation, we show the following two lower bounds.

In Theorem 4.2.1 [33], we show that

n2 ≼
3

2

n(n− 1)

2
− n

4
≤ d∅

Redonaline Matching(n).

Previously to this result, the longest untangling process known used n(n−1)
2

flips and
had the endpoints of the segments forming a convex polygon. This new lower bound,
even though roughly similar, disproves the intuition that the longest untangling process
occurs when the endpoints of the segments form a convex polygon.

In Theorem 5.1.1 [33], we show that

n ≼
3

2
n− 2 ≤ dR

Convex Bipartite Matching(n).

It is the first lower bound on dR that is greater than n.
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1.2.3 Reductions

All these bounds may seem very specialized to a specific version of d at first sight, but
most of them carry over to a number of other version of d using the following four
reduction results. Lemma 2.3.1 essentially states that the more choice we have, the
shorter the untangling process. Lemma 2.3.2 essentially states that the stronger the
property to be preserved, the shorter the untangling process. Lemma 2.3.3 roughly
states that preserving a weaker property in exchange of more choice may lead to shorter
untangling processes. Theorem 4.1.1 [30] implies that essentially all the versions of d∅

are roughly the same. We highlight our contributions and summarize all the upper
and lower bounds on all the versions of d, including all the bounds derived thanks
to reductions (the original theorems are marked in bold), in Table 1.1 and Table 1.2
for the Multigraph versions, in Table 1.3 and Table 1.4 for the Matching versions, in
Table 1.5 for the Bipartite Matching versions, in Table 1.6 for the Cycle versions,
and in Table 1.7 for the Tree versions. All these tables are in Section 1.6 at the end of
this chapter.

1.2.4 Intractability

All the contributions presented so far are related to d, i.e. to counting flips. In contrast,
this last contribution is about counting time. In the version of the problem where half
of the points are red and the other half is blue, and where a segment must match a red
point to a blue point, we show in Theorem 8.0.1 that it is not possible (unless P = NP)
to compute the shortest possible untangle process of a given set of segments within a
reasonable (i.e., polynomial) time.

1.3 Organization

This dissertation is organized into nine chapters.
Chapter 1 is the present introduction, where we first introduce the problematic, men-

tion the contributions, describe the organization, then we present related reconfiguration
problems.

Chapter 2 states the assumptions and provides definitions and lemmas used inten-
sively throughout the dissertation.

Chapter 3 presents the literature results falling in the problematic of this dissertation,
providing proofs and generalisations for most of them. In contrast with the general
organization by choice, the sections of Chapter 3 are organized by point set property,
highlighting the fact that choice did not benefit from a systematic treatment until now.

The rest of the chapters presents the contributions of this dissertation.
Chapter 4 is dedicated to untangle sequences with no choice. We first prove that

all the versions of d∅ have the same asymptotic behaviour. Then we prove one lower
bound and two upper bounds on various versions of d∅. Finally, we prove a sub-cubic
upper bound on the number of distinct flips in an untangle sequence.

Chapter 5 is dedicated to untangle sequences with removal choice. We prove one
lower bound and seven upper bounds on various versions of dR.
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Chapter 6 is dedicated to untangle sequences with insertion choice. We prove two
upper bounds on two different versions of dI.

Chapter 7 is dedicated to untangle sequences with both removal and insertion choices.
We prove two upper bounds on two different versions of dRI.

Chapter 8 is dedicated to proving that any constant factor approximation of the
length of the shortest untangle sequence in the Bipartite Matching version is NP-hard.

Chapter 9 contains some elements of discussion about the open problems raised by
the problematic of the dissertation. In particular, we give some insight on the difficulties
to extend known results, we provide counter-examples to some ideas, and we discuss
about what we believe to be interesting ideas to tackle some of the open problems.

1.4 Related Reconfiguration Problems

Untangling segments is one of a wide range of problems which share a common setting:
the reconfiguration problems. A reconfiguration problem always comes with a graph,
called the reconfiguration graph, where the vertices are combinatorial or geometrical
objects called the configurations (in our case, the multisets of segments satisfying a given
property on a given point set), and where there is a directed edge from a configuration
to another if there exists a reconfiguration (in our case, a flip) transforming the first into
the second (Figure 1.5). Some typical questions are to find whether this reconfiguration
graph is connected, to find its diameter and the length of the longest path (for an
overview on reconfiguration see for example [20, 60, 81]). Reconfiguration may be
used to progressively improve the quality of a solution to a given problem (like in this
dissertation, to shorten the length of a tour) or to enumerate efficiently all the solutions
of a problem (see for example [54] for an enumeration of crossing-free tours with special
visibility properties). In this section, we present some reconfiguration problems related
to ours.

Figure 1.5: The reconfiguration graph of the point set from Figure 1.1(a) for flips in
the Cycle version. The tours displayed in the same column have the same number of
crossings, and are sorted by decreasing length.
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Opt reconfiguration. One could wonder about also allowing a non-crossing pair of
segments to be replaced as long as the total length of the segments is shortened. This
relaxed operation, called a 2-opt change, is used in a class of approximation algorithms
for the TSP. Note that both flips and 2-opt changes are special cases of 2-changes. A
2-change has the same definition as a flip except that the condition that the removed
segments cross is dropped (no geometry is involved anymore).

The apparent similarity with flips is misleading. A striking contrast is that there
exist sequences with an exponential number of 2-opt changes [42].

Moreover, 2-opt changes depend only on the order of the pairs of segments with
endpoints in P sorted by increasing total length (induced by the metric on P ) whereas
flips depend only on the set of crossing pairs of segments with endpoint in P (called the
crossing type or the x-type of P in the literature [73], the crossing type of P is induced
by the order type of P ). In more concrete terms, a perturbation of the coordinates may
turn a 2-opt change into a 2-change which is not a 2-opt change while preserving the
set of crossing pairs of segments with endpoint in P (and the order type of P ). We
discuss about crossing types in Section 1.5.

As it is a fortiori the case with flips, it is not enough to find an optimal tour ( [61],
page 18).

The length of a 2-optimal tour in a metric TSP instance with n cities is at most√
n/2 times the length of a shortest tour and this bound is tight. The approximation

ratio of the 2-Opt Heuristic for the metric TSP is
√
n/2 [56].

Triangulation reconfiguration. Reconfiguration problems in the context of tri-
angulations are widely studied [71]. A reconfiguration consists of removing one edge
and adding another one while preserving a triangulation. It is known that Θ(n2)
reconfigurations are sufficient and sometimes necessary to obtain a Delaunay triangula-
tion [57, 64]. Determining the reconfiguration distance between two triangulations of
a point set [68, 75] and between two triangulations of a simple polygon [6] are both
NP-hard.

Planar tree reconfiguration. The planar tree reconfigurations are similarly to
triangulation reconfigurations. A reconfiguration consists of removing one edge and
adding another one while preserving a tree [3].

Planar path, a special class of planar trees, have also been studied. It is possible to
reconfigure any two non-crossing paths if the points are in convex position [8, 23] or if
there is one point inside the convex hull [4].

Multigraph reconfiguration. It is possible to relax the flip definition to all opera-
tions that replace two segments by two others with the same four endpoints, whether
they cross or not, and generalize the configurations to multigraphs with the same degree
sequence [52, 53, 60]. In this context, finding the shortest path from a given configuration
to another in the reconfiguration graph is NP-hard, yet 1.5-approximable [14, 15, 45, 84].
If we additionally require the configurations to be connected graphs, the same problem
is NP-hard and 2.5-approximable [21].

Considering perfect matchings of an arbitrary graph (instead of the complete graph),
a flip amounts to exchanging the edges in an alternating cycle of length four. It is
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then PSPACE-complete to decide whether there exists a path from a configuration to
another [18]. There is, actually, a wide variety of reconfiguration contexts derived from
NP-complete problems where this same accessibility problem is PSPACE-complete [59].

1.5 Contextual Problems

In this section, we gather some pieces of answer to some relevant questions about
untangling segments.

Searching for crossings. Before performing a flip on a multiset S of n segments,
we have to search for crossing pairs of segments. The time taken by this search is not
taken into account in our flip count; it is nonetheless important to mention the time
(and space) complexity of this search.

To find all the crossings of a multiset of segments, we may use Ivan J. Balaban’s
algorithm [11] asymptotically optimal both in time, O(k+n log n) where k is the number
of intersecting pairs of segments, and space, O(n).21 In practice, the Bentley–Ottmann
sweep line algorithm [13] is often preferred because it is easier to implement and its
space complexity is O(n), even though its time complexity O((k + n) log n) is not
asymptotically optimal.22

If we are not interested in choosing a crossing pair, but only in finding one, then
the Shamos–Hoey algorithm [77] running in O(n log n) time is enough.23

However, if O(nm) = O(n2) space is not too much to ask (m being the maximum
number of crossings appearing on the same segment of S during the untangling process),
then we may maintain for each segment s ∈ S a list of all the segments crossing s. This
list is initialized, say, using Ivan J. Balaban’s algorithm. Then, at each flip, we remove
two segments together with their list of crossings, and we insert two segments and build
their list of crossings in O(n). This process only adds a O(n) time overhead at each flip
and a preprocessing time of O(k+ n log n) = O(n2) (where k is the number of crossings
in the initial multiset S).

This considerations about the time (and space) overhead induced by the search for
crossings does not include the time (and space) overhead induced by the computation
of removal and insertion choices which depends on the strategy used. All the insertion
strategies presented in this dissertation run in constant time and space per flip. All the
removal strategies and all the strategies for both removal and insertion presented in
this dissertation run in at most quadratic time (to search for the right crossing pair
to remove among the crossings we have computed) and constant space per flip. This
rough upper bound may be improved by analyzing each strategy.

21Other algorithms are asymptotically optimal in time, but not in space: the randomized ones
are [28, 70], and the deterministic one is [25].

22Two other radomized algorithms, both based on the Bentley–Ottmann algorithm, additionaly
require the segments to form a connected graph: one runs in O(k + n log∗ n) expected time [27], the
other runs in O(n+ k log(i) n) expected time for any constant i [43]. In our context, this requirement
is fulfilled for cycles and trees.

23This algorithm is in fact the precursor of the Bentley–Ottmann algorithm.
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Computing crossing-free segments without flips. We mentioned that untangling
a tour remains the only known way to compute in polynomial time a crossing-free
tour of shorter length. However, it is not the case for matchings, bipartite matchings,
and trees where faster algorithms are available. Next, we mention several of these
computational geometry algorithms (for an introduction to computational geometry,
see for instance [16]).

A simple sweep line algorithm is enough to compute a crossing-free matching on
2n points24 in O(n log n) time: sort the points by increasing x coordinates and connect
every other point to the next one. Notice that the minimal-weight perfect matching
computed in O(n3) time [47] by Edmonds’ blossom algorithm [40, 41] is also crossing
free.25

Given a bipartite point set of 2n points,24 Edmonds’ blossom algorithm (in the
bipartite complete graph instead of the complete graph) also yields a crossing-free
bipartite matching in O(n3) time. Yet, such a crossing-free bipartite matching can
be computed in optimal O(n log n) time and optimal O(n) space [55]. The algorithm
is based on semi-dynamic convex hull data structures and does not use flips. Note
that recursively computing a ham-sandwich cut of a bipartite point set of 2n points in
optimal O(n) time [66, 67] also yields an optimal O(n log n) time algorithm to compute
a crossing-free bipartite matching.26

The 2-dimension Euclidean minimum spanning tree of n+ 1 points24 can also be
computed in optimal O(n log n) time: compute the Delaunay triangulation in O(n log n)
time [38, 50, 65], then run a graph minimum spanning tree algorithm, say Kruskal’s
algorithm in O(m log n) time (where m is the number of edges) [63], on this Delaunay
triangulation graph with its O(n) edges weighted with their length. However, we do
not have control on the degree of each point of the minimum spanning tree. In fact,
computing the spanning tree of minimum total distance with the degree of each point
imposed is NP-hard (by reduction of the Hamiltonian path problem). To compute a
crossing-free spanning tree on a point set where the degree of each point is imposed,
the untangling process may be a good option.

From point sets to crossing types. We have presented the set P of endpoints of the
segments as a part of the input of the untangling problem, but the actual coordinates of
the points of P are not required if the set of all the crossing pairs of segments between
any two points of P is provided. More precisely, we say that two sets of labeled points
P1 and P2 have the same labeled crossing type if their set of crossing pairs of segments
both corresponds to the same set of unordered pairs of unordered pairs of labels27.
We say that two sets of points P1 and P2 have the same crossing type28 if there exist
labels for each of P1 and P2 such that P1 and P2 have the same labeled crossing type.

24The variable n always refers to the number of segments.
25This algorithm is used as a subroutine in Christofides–Serdyukov approximation algorithm for the

metric TSP.
26The problem of computing crossing-free matchings has also been considered in higher dimensions [7].

The problem of computing minimal-weight perfect matching has been considered on arbitrary bipartite
graphs instead of the complete bipartite graph [1].

27This repetition is not a typographic error, a segment being represented by an unordered pair of
labels.

28Crossing types are also called x-types in the literature.
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The untangling problem depends only on the crossing type of the point set. Therefore,
properties such as having endpoints in convex position should be thought of as having
endpoints with the same crossing type as a point set in convex position.

The crossing type of a point set P may be derived from the order type of P , which
is defined similarly to the crossing type, replacing “the set of all the crossing pairs
of segments between any two points of P ” by “the set of all the orientations of any
three points of P ” (three labeled points have three possible orientations: clockwise,
counterclockwise, and colinear but this last is excluded by our general position assump-
tion). Crossing types and order types benefit a wide range of applications but raise
difficult problems such as counting, enumerating, sampling, finding (integer) coordinate
representations, characterizing. They are actively studied (for example see [5] for a
reconstruction of all the order types of a given list of cyclic orders, see [73] for an
algorithm reconstructing the crossing type of a point set from its planar spanning trees
organised in a reconfiguration graph). Order types have been enumerated up to 11
points [2]. However, it does not seem practical to test conjectures from our untangling
problem using these first enumerated order types.

1.6 Summary Tables

This section contains tables summarizing all the bounds on all the versions of d. Each
cell in the tables contains an asymptotic lower or upper bound on dChoices

Π1 Π (n) for
Choices ∈ {∅, R, I, RI} specified in the column, for Π1 specified in the line, and for Π

specified in the title of the table, with a reference to the corresponding theorem just
bellow. Sometimes an asymptotic bound follows from more than one theorems, in which
case they are all mentioned.

We use normal font for the bounds which are only a corollary of the theorems specified
via some reductions (Lemma 2.3.1, Lemma 2.3.2, Lemma 2.3.3, and Theorem 4.1.1 [30]).
We use bold font for the theorem bounds themselves. When an asymptotic bound is
both a theorem and a corollary of another theorem, both theorems are mentioned but
only the former is bold. A cell is highlighted when a contribution is involved (i.e., when
the theorem proving the cell bound with the best constants is a contribution).

The reductions often transfer the upper bound of a given cell to the upper bound
cells on its left, to the upper bound cells bellow, and to the corresponding upper bound
cell in a table bellow. Conversely, the reductions often transfer the lower bound of a
given cell to the lower bound cells on its right, to the lower bound cells above, and to
the corresponding lower bound cell in a table above.

We recall the notation for the different types of choice.

∅: No choice, which means the longest untangle sequence.

R: Removal choice.

I: Insertion choice.

RI: Both removal and insertion choices.
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We also recall the notation for the different types of point sets.

General: The endpoints may be anywhere.

C ∪ T: The endpoints are partitioned into a set C in convex position and a

general set T .

Allout: The endpoints are partitioned into a set C in convex position and

a set T outside the convex hull of C.

Separated: The endpoints are partitioned into a set C in convex position

and a set T outside the convex hull of C such that T and C are separated by two
parallel lines.

Outout: The endpoints are partitioned into a set C in convex position and

a set T containing two points outside the convex hull of C.

Inout: The endpoints are partitioned into a set C in convex position and a

set T with one point inside and one point outside the convex hull of C.

Inin: The endpoints are partitioned into a set C in convex position and a set

T containing two points inside the convex hull of C.

|T| = 1: The endpoints are partitioned into a set C in convex position

and a set T containing one point.

Convex: The endpoints are in convex position.

Redonaline: The red endpoints are on a line and the blue points are above

this line.

Permutation: The endpoints are on two parallel lines, one containing red

points and the other blue points.
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1.6.1 Multigraph

Multigraph Version with Both Choices and Insertion Choice

Table 1.1: Asymptotic lower and upper bounds on dChoices
Π Multigraph for the property Π of

the point set P = C ∪ T specified in each line and for the Choices is specified in each
column.

RI I

Lower Upper Lower Upper

General
n n2 and nσ(P ) n n2 and nσ(P )

3.2.12 [19] 3.1.4 [19] and 3.1.5 [17] 3.2.12 [19] 3.1.4 [19] and 3.1.5 [17]

C ∪ T
n n2 and nσ(P ) n n2 and nσ(P )

3.2.12 [19] 3.1.4 [19] and 3.1.5 [17] 3.2.12 [19] 3.1.4 [19] and 3.1.5 [17]

Allout
n n2 and nσ(P ) n n2 and nσ(P )

3.2.12 [19] 3.1.4 [19] and 3.1.5 [17] 3.2.12 [19] 3.1.4 [19] and 3.1.5 [17]

Separated
n tn n tn logn

3.2.12 [19] 7.1.1 [31] 3.2.12 [19] 6.2.1 [31]

Outout
n tn n tn log n

3.2.12 [19] 7.1.1 [31] 3.2.12 [19] 6.2.1 [31]

Inout
n t2n n n2 and nσ(P )

3.2.12 [19] 5.5.2 [31] using 3.2.13 [17] 3.2.12 [19] 3.1.4 [19] and 3.1.5 [17]

Inin
n tn n n2 and nσ(P )

3.2.12 [19] 5.6.1 [31] using 3.2.13 [17] 3.2.12 [19] 3.1.4 [19] and 3.1.5 [17]

|T| = 1
n tn n n2 and nσ(P )

3.2.12 [19] 5.4.2 [31] using 3.2.13 [17] 3.2.12 [19] 3.1.4 [19] and 3.1.5 [17]

Convex
n n n n logn

3.2.12 [19] 3.2.13 [17] 3.2.12 [19] 6.1.1 [31]
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Multigraph Version with Removal Choice and No Choice

Table 1.2: Asymptotic lower and upper bounds on dChoices
Π Multigraph for the property Π of

the point set P = C ∪ T specified in each line and for the Choices is specified in each
column.

R ∅

Lower Upper Lower Upper

General
n n3 n2 n3

3.2.12 [19], 5.1.1 [33] 3.1.3 [19, 82] 3.2.1 [19], 4.2.1 [33] 3.1.3 [19, 82]

C ∪ T
n tn2 n2 tn2

3.2.12 [19], 5.1.1 [33] 4.3.1 [30] 3.2.1 [19], 4.2.1 [33] 4.3.1 [30]

Allout
n tn2 n2 tn2

3.2.12 [19], 5.1.1 [33] 4.3.1 [30] 3.2.1 [19] 4.3.1 [30]

Separated
n tn2 n2 tn2

3.2.12 [19], 5.1.1 [33] 4.3.1 [30] 3.2.1 [19] 4.3.1 [30]

Outout
n 2tn logn n2 tn2

3.2.12 [19], 5.1.1 [33] 5.7.1 [31] using 5.2.1 [31] 3.2.1 [19] 4.3.1 [30]

Inout
n t2n + n logn n2 tn2

3.2.12 [19], 5.1.1 [33] 5.5.2 [31] using 5.2.1 [31] 3.2.1 [19] 4.3.1 [30]

Inin
n tn + n logn n2 tn2

3.2.12 [19], 5.1.1 [33] 5.6.1 [31] using 5.2.1 [31] 3.2.1 [19] 4.3.1 [30]

|T| = 1
n tn + n logn n2 tn2

3.2.12 [19], 5.1.1 [33] 5.4.2 [31] using 5.2.1 [31] 3.2.1 [19] 4.3.1 [30]

Convex
n n logn n2 n2

3.2.12 [19], 5.1.1 [33] 5.2.1 [31] 3.2.1 [19] 3.2.2 [17]



24 CHAPTER 1. INTRODUCTION

1.6.2 Matching

Matching Version with Both Choices and Insertion Choice

Table 1.3: Asymptotic lower and upper bounds on dChoices
Π Matching for the property Π of

the point set P = C ∪ T specified in each line and for the Choices is specified in each
column.

RI I

Lower Upper Lower Upper

General
n n2 and nσ(P ) n n2 and nσ(P )

3.2.12 [19] 3.1.4 [19] and 3.1.5 [17] 3.2.12 [19] 3.1.4 [19] and 3.1.5 [17]

C ∪ T
n n2 and nσ(P ) n n2 and nσ(P )

3.2.12 [19] 3.1.4 [19] and 3.1.5 [17] 3.2.12 [19] 3.1.4 [19] and 3.1.5 [17]

Allout
n t3n n n2 and nσ(P )

3.2.12 [19] 7.1.1 [31] 3.2.12 [19] 3.1.4 [19] and 3.1.5 [17]

Separated
n tn n tn log n

3.2.12 [19] 7.1.1 [31] 3.2.12 [19] 6.2.1 [31]

Outout
n n n n log n

3.2.12 [19] 7.1.1 [31] 3.2.12 [19] 6.2.1 [31]

Inout
n n n n2 and nσ(P )

3.2.12 [19] 5.5.2 [31] using 3.2.13 [17] 3.2.12 [19] 3.1.4 [19] and 3.1.5 [17]

Inin
n n n n2 and nσ(P )

3.2.12 [19] 5.6.1 [31] using 3.2.13 [17] 3.2.12 [19] 3.1.4 [19] and 3.1.5 [17]

|T| = 1
n n n n2 and nσ(P )

3.2.12 [19] 5.4.2 [31] using 3.2.13 [17] 3.2.12 [19] 3.1.4 [19] and 3.1.5 [17]

Convex
n n n n log n

3.2.12 [19] 3.2.13 [17] 3.2.12 [19] 6.1.1 [31]
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Matching Version with Removal Choices and No Choice

Table 1.4: Asymptotic lower and upper bounds on dChoices
Π Matching for the property Π of

the point set P = C ∪ T specified in each line and for the Choices is specified in each
column.

R ∅

Lower Upper Lower Upper

General
n n3 n2 n3

3.2.12 [19], 5.1.1 [33] 3.1.3 [19, 82] 3.2.1 [19], 4.2.1 [33] 3.1.3 [19, 82]

C ∪ T
n tn2 n2 tn2

3.2.12 [19], 5.1.1 [33] 4.3.1 [30] 3.2.1 [19], 4.2.1 [33] 4.3.1 [30]

Allout
n tn2 n2 tn2

3.2.12 [19], 5.1.1 [33] 4.3.1 [30] 3.2.1 [19] 4.3.1 [30]

Separated
n tn2 n2 tn2

3.2.12 [19], 5.1.1 [33] 4.3.1 [30] 3.2.1 [19] 4.3.1 [30]

Outout
n n log n n2 tn2

3.2.12 [19], 5.1.1 [33] 5.7.1 [31] using 5.2.1 [31] 3.2.1 [19] 4.3.1 [30]

Inout
n n log n n2 tn2

3.2.12 [19], 5.1.1 [33] 5.5.2 [31] using 5.2.1 [31] 3.2.1 [19] 4.3.1 [30]

Inin
n n log n n2 tn2

3.2.12 [19], 5.1.1 [33] 5.6.1 [31] using 5.2.1 [31] 3.2.1 [19] 4.3.1 [30]

|T| = 1
n n log n n2 tn2

3.2.12 [19], 5.1.1 [33] 5.4.2 [31] using 5.2.1 [31] 3.2.1 [19] 4.3.1 [30]

Convex
n n log n n2 n2

3.2.12 [19], 5.1.1 [33] 5.2.1 [31] 3.2.1 [19] 3.2.2 [17]
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1.6.3 Bipartite Matching

Table 1.5: Asymptotic lower and upper bounds on dChoices
Π Bipartite Matching for the property

Π of the point set P = C ∪ T specified in each line and for the Choices is specified in
each column.

R ∅

Lower Upper Lower Upper

General
n n3 n2 n3

3.2.12 [19], 3.1.3 [19, 82] 3.2.1 [19], 3.1.3 [19, 82]

5.1.1 [33] 4.2.1 [33]

Redonaline
n n2 n2 n3

3.2.12 [19], 3.3.1 [17], 3.2.1 [19], 3.1.3 [19, 82],

5.1.1 [33] 5.8.1 [33] 4.2.1 [33] 4.4.1 [33]

C ∪ T
n tn2 n2 tn2

3.2.12 [19], 4.3.1 [30] 3.2.1 [19], 4.3.1 [30]

5.1.1 [33] 4.2.1 [33]

Allout
n tn2 n2 tn2

3.2.12 [19], 4.3.1 [30] 3.2.1 [19] 4.3.1 [30]

5.1.1 [33]

Separated
n tn2 n2 tn2

3.2.12 [19], 4.3.1 [30] 3.2.1 [19] 4.3.1 [30]

5.1.1 [33]

Outout
n n n2 tn2

3.2.12 [19], 5.7.1 [31] using 3.2.10 [17] 3.2.1 [19] 4.3.1 [30]

5.1.1 [33]

Inout
n n n2 tn2

3.2.12 [19], 5.5.2 [31] using 3.2.10 [17] 3.2.1 [19] 4.3.1 [30]

5.1.1 [33]

Inin
n n n2 tn2

3.2.12 [19], 5.6.1 [31] using 3.2.10 [17] 3.2.1 [19] 4.3.1 [30]

5.1.1 [33]

|T| = 1
n n n2 tn2

3.2.12 [19], 5.4.2 [31] using 3.2.10 [17] 3.2.1 [19] 4.3.1 [30]

5.1.1 [33]

Convex
n n n2 n2

3.2.12 [19], 3.2.10 [17] 3.2.1 [19] 3.2.2 [17]

5.1.1 [33]

Permutation
n n n2 n2

3.2.12 [19] 3.2.10 [17] 3.2.1 [19] 3.2.2 [17]
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1.6.4 Cycle

Table 1.6: Asymptotic lower and upper bounds on dChoices
Π Cycle for the property Π of the

point set P = C ∪ T specified in each line and for the Choices is specified in each
column.

R ∅

Lower Upper Lower Upper

General
n n3 n2 n3

3.2.12 [19] 3.1.3 [19, 82] 3.2.1 [19], 4.2.1 [33] 3.1.3 [82]

C ∪ T
n tn2 n2 tn2

3.2.12 [19] 4.3.1 [30] 3.2.1 [19], 4.2.1 [33] 4.3.1 [30]

Allout
n tn2 n2 tn2

3.2.12 [19] 4.3.1 [30] 3.2.1 [19] 4.3.1 [30]

Separated
n tn2 n2 tn2

3.2.12 [19] 4.3.1 [30] 3.2.1 [19] 4.3.1 [30]

Outout
n n n2 tn2

3.2.12 [19] 5.7.1 [31] using 3.2.7 [72], 3.2.9 [85] 3.2.1 [19] 4.3.1 [30]

Inout
n n n2 tn2

3.2.12 [19] 5.5.2 [31] using 3.2.7 [72], 3.2.9 [85] 3.2.1 [19] 4.3.1 [30]

Inin
n n n2 tn2

3.2.12 [19] 5.6.1 [31] using 3.2.7 [72], 3.2.9 [85] 3.2.1 [19] 4.3.1 [30]

|T| = 1
n n n2 tn2

3.2.12 [19] 5.4.2 [31] using 3.2.7 [72], 3.2.9 [85] 3.2.1 [19] 4.3.1 [30]

Convex
n n n2 n2

3.2.12 [19] 3.2.7 [72], 3.2.9 [85] 3.2.1 [19] 3.2.2 [17]
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1.6.5 Tree

Table 1.7: Asymptotic lower and upper bounds on dChoices
Π Tree for the property Π of the

point set P = C ∪ T specified in each line and for the Choices is specified in each
column.

R ∅

Lower Upper Lower Upper

General
n n3 n2 n3

3.2.12 [19] 3.1.3 [19, 82] 3.2.1 [19], 4.2.1 [33] 3.1.3 [82]

C ∪ T
n tn2 n2 tn2

3.2.12 [19] 4.3.1 [30] 3.2.1 [19], 4.2.1 [33] 4.3.1 [30]

Allout
n tn2 n2 tn2

3.2.12 [19] 4.3.1 [30] 3.2.1 [19] 4.3.1 [30]

Separated
n tn2 n2 tn2

3.2.12 [19] 4.3.1 [30] 3.2.1 [19] 4.3.1 [30]

Outout
n 2tn n2 tn2

3.2.12 [19] 5.7.1 [31] using 5.3.1 [31] 3.2.1 [19] 4.3.1 [30]

Inin
n tn n2 tn2

3.2.12 [19] 5.6.1 [31] using 5.3.1 [31] 3.2.1 [19] 4.3.1 [30]

Inout
n t2n n2 tn2

3.2.12 [19] 5.5.2 [31] using 5.3.1 [31] 3.2.1 [19] 4.3.1 [30]

|T| = 1
n tn n2 tn2

3.2.12 [19] 5.4.2 [31] using 5.3.1 [31] 3.2.1 [19] 4.3.1 [30]

Convex
n n n2 n2

3.2.12 [19] 5.3.1 3.2.1 [19] 3.2.2 [17]



Chapter 2

Preliminaries

This chapter is a collection of assumptions, definitions, and lemmas used throughout
this dissertation.

2.1 Assumptions

In the following, we summarize the assumptions implicitly used throughout this disser-
tation.

Notation abuses. We often omit the braces around sets defined extensively, especially
for pairs of segments which are to be understood as unordered pairs, i.e., sets of exactly
two segments.

Asymptotic bounds incorrectly fading to zero. Our bounds often have terms
like O(tn) and O(n log |C|) that would incorrectly become 0 if t or log |C| is 0. In
order to avoid this problem, factors in the O notation should be made at least 1. For
example, the aforementioned bounds should be respectively interpreted as O((1 + t)n)
and O(n log(2 + |C|)).

General position. Throughout this dissertation, and unless mentioned otherwise, we
assume general position of the endpoints of the segments we consider, meaning that any
three endpoints are assumed to not be colinear. We also assume that the two endpoints
of a segment are distinct. The only time we drop these two assumptions is in the proof
of Theorem 3.1.3 [19, 82]. In the proofs of Theorem 3.1.4 [19], Theorem 5.8.1 [33],
Theorem 6.2.1 [31], and of Theorem 7.1.1 [31], we extend our standard general position
assumptions to also exclude pairs of endpoints with the same y-coordinate.

2.2 Definitions

In the following, we summarize important definitions used throughout this dissertation.

29
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Segment types. Given a multiset of segments S and two (possibly equal) sets P1, P2

of endpoints, we say that a segment is a P1P2-segment if it belongs to S, if one endpoint
is in P1, and if the other is in P2.

Crossings. We say that two segments cross if they intersect at a single point which
is not an endpoint of either segment. A pair of crossing segments is called a crossing.
We also say that a line and a segment cross if they intersect at a single point which is
not an endpoint of the segment.

If h is a segment or a line (respectively a set of two lines) we say that h separates a
set of points P if P can be partitioned into two non-empty sets P1, P2 such that every
segment p1p2 with p1 ∈ P1, p2 ∈ P2 crosses h (respectively crosses at least one of the
lines in h).

General position implies that two intersecting segments may either cross or share
at least one endpoint. To fully remove any self-intersection of a tour without any
assumption, other types of intersecting pairs of segments have been considered in [82].
We discuss this matter in Section 3.1.1.

Flips. A flip f in the Π version removing the crossing segments s1, s2 and inserting
the non-crossing segments s′1, s′2 with the same four endpoints is defined as the function
that maps any set of segments S satisfying Π, containing s1 and s2, and such that
S ∪ {s′1, s′2} \ {s1, s2} also satisfies Π, to f(S) = S ∪ {s′1, s′2} \ {s1, s2}.

Parameters. The main parameter in all the bounds in this dissertation is n, defined
as |S|, the number of segments (counted with multiplicity) in the multiset of segments S
to be untangled. In the following, we define another parameter used in this dissertation.

Any point set P may be partitioned into P = C ∪ T where C is in convex position
even if it means that C or T is empty. In this context, we define the parameter t as the
number of segments with at least one endpoint in T (the segments with two endpoints
in T are counted twice). The parameter t may equivalently be defined as the sum of the
degrees of the points in T . In this dissertation, the bounds involving t get better when
t is small. It is therefore best to choose the partition P = C ∪ T so as to minimize t
(this choice may be different from choosing C to be the points defining the convex hull
of P ).

We also provide fine grain parameterized bounds using the following parameters:
|P |, |C|, |T |.

Properties. We freely interpret a multiset S of n segments with endpoints P in the
plane as the multigraph (P, S) where the set of vertices is the set of endpoints and
where the multiset of edges is the multiset of segments. Next, we give names to the
properties Π which are considered in this dissertation. We classify these properties into
the following three types.

1. The point set properties are the properties about the position of the endpoints
(note that they are also preserved by any insertion choice at every flip).

2. The degree properties are constraints on the degree of each point (note that they
are preserved by any insertion choice at every flip).
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3. The insertion properties consist of the empty (i.e., always true) property and of
the properties that impose which pair is inserted at every1 flip.

The point set properties (also preserved by any insertion choice) considered is
this dissertation are the following (see Figure 1.4 or the beginning of Section 1.6):

• General: the empty property, i.e., the property which is always true (having a
general point set is a given). This notation is only used in the tables of Section 1.6.

• C ∪ T: the empty property (any point set P may be partitioned into P = C ∪ T
where C is in convex position even if it means that C or T is empty). This
notation is only used in the tables of Section 1.6 to indicate that the bounds are
parameterized by t, the sum of the degrees of the points in T .

• Convex: having a point set in convex position.

• Permutation: having a bipartite point set in convex position such that the red
points are separated from the blue points by a line.

• Redonaline: having a bipartite point set with red points on the x-axis and blue
points above.

• |T| = k: having a point set partitioned as P = C ∪ T with C in convex position
and |T | = k.

• Inout: having a |T| = 2 point set with the one point of T inside the convex hull
of C, and the other point of T outside.

• Inin: having a |T| = 2 point set with the two points of T inside the convex hull
of C.

• Outout: having a |T| = 2 point set with the two points of T outside the convex
hull of C.

• Allout: having a point set partitioned as P = C ∪ T with C in convex position
and all the points of T outside the convex hull of C.

• Separated: having an Allout point set partitioned as P = C ∪ T with C in
convex position and separated from T by two parallel lines.

The only degree property (preserved by any insertion choice) considered is this
dissertation is the following:

• Matching: being a matching.

The insertion properties defining which pair of segments to insert for every flip
considered is this dissertation are the following:

• Multigraph: the empty property (being a multigraph is a given).
1In particular, we do not consider properties such as “admitting a given coloring” where the given

coloring has more than two colors.
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• Bipartite: being bipartite for a given partition of the point set.

• Cycle: being a cycle, i.e., being a tour.

• Tree: being a tree.

All these properties may be combined as in Convex Bipartite Matching; spaces
stands for conjunctions and we may omit the empty property or a property that is
inferred by the rest.

The flip graph and the choice graph. Consider a property Π = Π1 Π2 Π3 being the
conjunction of a point set property Π1, a degree property Π2, and an insertion property
Π3. Given a point set P satisfying Π1 and a function d◦ : P → N∗ satisfying Π2, the flip
graph of (P, d◦, Π3) is the directed simple graph defined as follows. The set of vertices
V R consists of all the multigraphs satisfying Π3 with vertices P and a degree function
equal to d◦. There is a directed arc from a multigraph S1 ∈ V R to a multigraph S2 ∈ V R

if there exists a flip in the Π3 version transforming S1 into S2.
The choice graph of (P, d◦, Π3) is the directed simple graph constructed from the

flip graph of (P, d◦, Π3) by decomposing each arc into two arcs with an extra vertex
representing a multigraph after removal and before insertion. Specifically, given a class
K of multigraphs satisfying Π, let K̂ be the class of all the multigraphs obtained from
the multigraphs of K by applying only the removal part of the flips in the Π3 version.
The vertices of the choice graph are V R ∪ V I where V I = V̂ R. For each directed arc
from a multigraph S1 ∈ V R to a multigraph S2 ∈ V R in the flip graph, there are two
directed arcs in the choice graph: the directed arc from S1 to S ′

1 ∈ V I where S ′
1 is the

multigraph obtained from S1 by applying only the removal part of the flip, and the
directed arc from S ′

1 to S2.
The flip graphs (respectively the choice graphs) in the Π version are the flip graphs

(respectively the choice graphs) of (P, d◦, Π3) for all possible P satisfying Π1 and all
possible d◦ satisfying Π2.

Strategies. We define a removal strategy in the Π version to reach a class K of
multigraphs as a function mapping each choice graph in the Π version and each vertex
S in V R \K of this choice graph to one of the arcs from S.

We define an insertion strategy in the Π version to reach a class K of multigraphs as
a function mapping each choice graph in the Π version and each vertex S in V I \ K̂ of
this choice graph to one of the arcs from S. Note that there exists exactly one insertion
strategy if Π3 is not empty.

A strategy for both removal and insertion choices in the Π version to reach a class
K consists of a removal strategy and an insertion strategy in the Π version to reach a
class K.

The class K always includes the class of crossing-free multigraphs satisfying Π; it is
most of the time taken to be equal.

Untangle sequences. A sequence of multisets S0, . . . , Sk is called a flip sequence (in
the Π version) and k is called its length if S0 satisfies Π and if for each i ∈ {1, . . . , k},
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there exists a flip fi (in the Π version) such that Si = fi(Si−1). In other words, a flip
sequence is a path in the flip graph.

A flip sequence (in the Π version) S0, . . . , Sk is called an untangle sequence (in the Π

version) if Sk is crossing free.
Note that a multiset S0 satisfying Π, a removal strategy in the Π version to reach a

class K of multigraphs, and, if Π is preserved by any the insertion choices, an insertion
strategy in the Π version to reach a class K of multigraphs determine a unique flip
sequence, and the final multigraph is in K.

The unknown of this dissertation. Consider a property Π = Π1 Π2 Π3 being the
conjunction of a point set property Π1, a degree property Π2, and an insertion property
Π3. Let n be a non-negative integer. In the following four definitions, k(S, r, i) denotes
the length of the untangle sequence starting at the multiset S of n segments (satisfying
Π) and determined by the removal strategy r (in the Π version to reach the class of
crossing-free multigraphs) and by the insertion strategy i (in the Π version to reach the
class of crossing-free multigraphs).

d∅
Π(n) = max

S
max

r
max

i
k(S, r, i)

dR
Π(n) = max

S
min
r

max
i

k(S, r, i)

dI
Π(n) = max

S
max

r
min
i

k(S, r, i) (defined only if Π3 is empty)

dRI
Π (n) = max

S
min
r

min
i

k(S, r, i) (defined only if Π3 is empty)

It is convenient to imagine that two clever players, let us call them the oracle
and the adversary, are playing the following game using the choice graph as a board.
The adversary chooses the starting vertex in V R. A game builds a path in the choice
graph arc by arc until a crossing-free vertex is reached. The oracle aims at minimizing
the length of the path while the adversary aims at maximizing this length. The four
definitions corresponds to the length of this resulting path with different choices for
the oracle (specified in the exponent). This length is d∅ if the adversary performs all
the choices to be done, it is dR if the oracle performs all the removal choices while the
adversary performs all the remaining choices, it is dI if the oracle performs all the
insertion choices while the adversary performs all the remaining choices, it is dRI if the
oracle performs all the removal and all the insertion choices (the adversary only get to
choose the starting vertex).

Notice that we define dI
Π and dRI

Π only if Π3 is empty. Indeed, it is important for the
proof of Lemma 2.3.2 that all the occurrences of the choices specified in the exponent
are performed by the oracle. This is also the reason why we do not consider properties
such as “admitting a given coloring” where the given coloring has more than two colors
(preserving such a property sets the insertion choice of only certain flips).

2.3 Reductions
In this section, we prove general inequalities between the different versions of d.
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Lemma 2.3.1 (choice reduction). The following inequalities hold for any non-negative
integer n, and for any property Π.

dRI
Π (n) ≤

{
dR
Π(n)

dI
Π(n)

}
≤ d∅

Π(n)

Proof. The more choice untangle sequences have, the shorter, hence the inequalities.

Lemma 2.3.2 (property reduction). The following inequality holds for any non-negative
integer n, for any two properties Π, Π′ such that Π =⇒ Π′, and for any Choices ∈
{∅, R, I, RI}.

dChoices
Π (n) ≤ dChoices

Π′ (n)

Proof. First notice that any untangle sequence in the Π version is also a untangle
sequence in the Π′ version.

We show that going from dChoices
Π (n) to dChoices

Π′ (n) gives more choice to the adversary
while leaving the oracle with essentially the same choice. The adversary may prevent
the oracle to benefit from the untangle sequences in the Π′ version which are no in the Π

version by choosing the starting multiset of segment. In the case where Choices ∈ {∅, R},
some insertion choices which were set to preserve property Π may not be set to preserve
property Π′ anymore. Let us call this phenomenon insertion choice relaxation. Therefore,
the adversary may also gains choice from insertion choice relaxation. Note that, by
definition of dChoices and in contrast with the adversary, the oracle does not gain any
choice because of insertion choice relaxation.

Thus, the inequality holds for any Choices ∈ {∅, R, I, RI}.

Lemma 2.3.3 (transfer reduction). The following inequalities hold for any non-negative
integer n, and for any property Π such that preserving Π does not set insertion choice.

dRI
Π Matching(n) ≤ dR

Π Bipartite Matching(n)

dI
Π Matching(n) ≤ d∅

Π Bipartite Matching(n)

Proof. Going from dRI
Π Matching(n) (respectively dI

Π Matching(n)) to dR
Π Bipartite Matching(n)

(respectively d∅
Π Bipartite Matching(n)), we transfer insertion choice from the oracle to

preserving the Bipartite property. Any matching being 2-colorable, the adversary
keeps the same choice in the starting matching (respectively in the starting matching
and in removal choices), yielding the two inequalities.

2.4 Triangle Argument
The following simple fact, first stated informally then as a lemma without proof, is used
in many of the proofs presented in this dissertation. We refer to it (or its contraposition)
as the triangle argument or implicitly use it.

“If a line enters a triangle through one edge, then it must leave through another edge.”

Lemma 2.4.1 (triangle argument). If a line ℓ crosses the edge pq of a (possibly flat)
triangle pqo, then ℓ intersects (po∪qo)\{p, q}, the union of the two other edges excluding
p and q, at exactly one point.
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2.5 Potential Argument

In this section, we state another simple lemma which is also used in many proofs
throughout this dissertation.

Lemma 2.5.1 (potential argument). Let φ : I → J be a function. If J is a finite set
and if, for all j ∈ J , φ−1({j}) is a finite set, then I is a finite set and we have the
following identity.

|I| =
∑
j∈J

∣∣φ−1({j})
∣∣

In this context, we call the function φ a potential. Our most frequent use of
Lemma 2.5.1 is when J is an integer interval and φ is decreasing to upper bound the
length |I| of a sequence (e.g., a flip sequence) (Si)i∈I by |J |. Intuitively, the potential
of a step of a process intend to measure how far this step is from the end of the process
(e.g., from being crossing free), and a decrease of potential intend to measure the
progress made by each step of the process (e.g., each flip).

2.6 Splitting Lemma

The notion of splitting first appears in [19] (see the proof of Theorem 3.2.12 [19]), then
in [33], and in [31] where the notion is generalized. In the following, we first give this
generalized definition of splitting, then state the corresponding lemma, and finally give
some examples.

Consider a finite point set P decomposed into P =
⋃k

i=1 Pi (this decomposition is
not necessarily a partition). We say that the decomposition

⋃k
i=1 Pi splits the point set

P if no segment of
(
Pi

2

)
crosses a segment of

(
Pj

2

)
for all i ̸= j. Now, consider a finite

multiset S of segments partitioned into S =
⋃k

i=1 Si and let P be the set of endpoints
of S and Pi be the set of endpoints of Si. We say that the partition

⋃k
i=1 Si splits

the multiset S if the decomposition
⋃k

i=1 Pi splits the point set P (Figure 2.1). In the
Bipartite version where the point set is partitioned into red and blue points, we refine
these definitions as follows. We say that the decomposition

⋃k
i=1 Pi splits the point set

P if no segment of
(
Pi

2

)
with one red endpoint and one blue endpoint crosses a segment

of
(
Pj

2

)
with one red endpoint and one blue endpoint for all i ̸= j (Figure 2.1(e)).2

The following two facts imply Lemma 2.6.1 sated next.

• The four endpoints of the removed and inserted segments of any flip of S all
belong to the same Pi for some i.

• If fi is a flip of Si and fj is a flip of Sj, then they commute, i.e., fi(fj(S)) =
fj(fi(S)).

Lemma 2.6.1 (splitting; [19, 31]). Consider a partition S =
⋃k

i=1 Si splitting a finite
multiset S of segments.

2The splitting definition may be refine even further in any version by considering in each
(
Pi

2

)
only

the segments which are inserted in at least one flip sequence of S.
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A sequence of flips applied to S is partitioned into k subsequences, the i-th subsequence
consisting of all the flips which apply to Si, and these subsequences commute in the
sens that any flip in one subsequence commutes with a flip in another subsequence.

ℓ

s

(a) (b) (c)

s

(d) (e)

Figure 2.1: Examples of splitting partitions of multisets of segments where each partition
is shaded and where the segments inserted in some flip sequence are dashed. Each
occurrence of the segment s is uncrossable. (a) The line ℓ splits the segments in three
partitions, one of which consisting of the segment s alone. (b) A partition which is not
induced by any line splitting the segments in three. (c) Crossing-free segments, each
of them forming its own partition for splitting. (d) A partition splitting the segments
in two. One partition consists of the segment s alone (e) A partition segments in the
Bipartite version.

Splitting (Lemma 2.6.1 [19, 31]) is used throughout this dissertation for inductive
arguments. Some important examples of splitting follow.

• If a line ℓ does not cross any segment of a finite multiset of segment S, then the
partition S = S0 ∪S1 ∪S2 where S0 are the segments of S which lie are contained
in ℓ, where S1 are the segments of S which lie on one side of ℓ, and where S2 are
the segments of S which lie on the other side of ℓ splits S. In this case, we say
that ℓ splits S (Figure 2.1(a)).

• More generally, if there exists a decomposition P =
⋃k

i=1 Pi of the point set P

induced by a partition S =
⋃k

i=1 Si of the multiset of segments S such that the
convex hulls of the Pi have pairwise disjoint interiors, then the partition splits S.
In this case, we say that the splitting is convex (Figure 2.1(b)).

• In particular, in such a convex splitting, some of the convex hulls may consist of
only one segment, as it is the case if S is crossing free (Figure 2.1(c)).

• However, some splitting partitions are not convex; Figure 2.1(d) shows a multiset
of segments S and a segment s ∈ S such that the partition {s} ∪ S \ {s} splits S
while not being convex.

• If a singleton {s} is one of the partitions in a splitting partition, then we say that
the segment s is uncrossable (the segment s is uncrossable in Figure 2.1(a) and
Figure 2.1(d), and also all the three segments of Figure 2.1(c)).3

3This definition of uncrossable generalizes the one in [31].



Chapter 3

Literature Review

In this chapter, we present the results from the literature falling in problematic of this
dissertation, namely from [17, 19, 72, 82, 85]. We omit the proof of Theorem 3.2.9 and
give only a structure for the proofs of Theorem 3.2.4 and Theorem 3.1.5. We adapt and
generalize the presentation of the rest of the proofs. First, we give a short review of
each of these five articles.

Untangling a Traveling Salesman Tour in the Plane by Jan Van Leeuwen
and Anneke A. Schoone in 1980 [82, 83] This article1 is the seminal work of all
the following articles and of the present dissertation. First, they provide a formal proof
of the folklore theorem which asserts that the shortest tours have no self intersection if
the cities are not all colinear. Last but not least, they prove that any untangle sequence
is of length at most n3 (n being the number of segments in the tours), more formally
that:

• d∅
Cycle(n) ≤ n3 (Theorem 3.1.3).

This proof is written for the Cycle version (and do not assume general position for
the point set) but it is straightforward to adapt to the Matching version [19]2, or to
generalize it to the Multigraph version (we present this generalisation in Theorem 3.1.3).
In this proof, they introduce a potential function (the function mapping a tour to the
number of intersections between a set of lines and the set of segments of the tour). This
idea is at the core of many results in [17, 19, 30, 31, 33] and therefore in the present
dissertation.

The Number of Flips Required to Obtain Non-crossing Convex Cycles by
Yoshiaki Oda and Mamoru Watanabe in 2007 [72]. This article provides the
following upper and lower bounds:

• dR
Convex Cycle(n) ≤ 2n− 7 for n ≥ 4 (Theorem 3.2.7),

• n− 2 ≤ dR
Convex Cycle(n) for n = 5 and for n ≥ 7.

1The technical report [82] also appeared in a workshop [83].
2However, the paper [82] is not cited in [19], hinting that they perhaps rediscovered the result

independently.

37
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The article also studies dR
Convex Cycle restricted to some specific classes of convex polygons.

The last section conjectures that dR
Convex Cycle(n) = n−2 for n ≥ 7, then computationally

checks this conjecture for 7 ≤ n ≤ 11. A list of convex polygons satisfying the conjecture
is also provided.

On the Maximum Switching Number to Obtain Non-crossing Convex Cycles
by Ro–Yu Wu, Jou–Ming Chang, and Jia–Huei Lin in 2009 [85]. This article
proves the conjecture of [72], namely:

• dR
Convex Cycle(n) ≤ n− 2 for n ≥ 7 (Theorem 3.2.9).

Flip Distance to a Non-crossing Perfect Matching by Édouard Bonnet and
Tillmann Miltzow in 2016 [19]. This article proves the following bounds:

• d∅
Matching(n) ≤ n3 (Theorem 3.1.3),

•
(
n
2

)
≤ d∅

Convex Permutation Matching(n) (Theorem 3.2.1),

• n− 1 ≤ d∅
Matching(n) (Theorem 3.2.12),

• dI
Matching(n) ≤ n2

2
(Theorem 3.1.4).

The proof provided for the third bound is in fact a proof of the following stronger
result: n− 1 ≤ dRI

Matching(n). The article additionally contains the following conjecture:
d∅
Matching = O(n2), which we generalize to the Multigraph version in Conjecture 1. This

conjecture remains open.

Flip Distance to some Plane Configurations by Ahmad Biniaz, Anil Ma-
heshwari, and Michiel Smid in 2019 [17]. This article is the most recent of the
five. The following bounds are proven:

• dI
Matching(n) = O(nσ(P )) where σ(P ) is the spread of the point set P (Theo-

rem 3.1.5),

• d∅
Convex Matching(n) ≤

(
n
2

)
(Theorem 3.2.2),

• dRI
Convex Matching(n) ≤ n− 1 (Theorem 3.2.13),

• dR
Convex Bipartite Matching(n) ≤ 2n− 2 (Theorem 3.2.10),

• dR
Convex Tree(n) = O(n log n) (Theorem 3.2.11),

• dR
Redonaline Matching(n) ≤ n(n− 1) (Theorem 3.3.1).

The proofs of the two first bounds in fact holds for the Convex Multigraph version.
The proofs in [17] of second and the third bounds are both very similar to the proof
of the upper bound on dR

Convex Cycle in [72], and all use the same notion of depth of a
segment. We present proofs based on a similar but distinct notion, which we call the
crossing depth of a segment.
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3.1 General Point Sets
In this section, we prove the literature results concerning general point sets.

3.1.1 Untangling with No Choice

In this section, we prove the only literature bound on tho length of untangle sequences
with no choice: the unchallenged 1980 cubic upper bound on d∅

Multigraph. The literature
contains no lower bound specific to untangle sequences with no choice, the best lower
bound known on d∅

Π for any Π is discussed next.

Lower Bound

To our knowledge, the longest untangle sequences contained in the literature are all
with point sets in convex position and their length is Θ(n2) (Theorem 3.2.1). This could
lead to conjecture that some of the longest untangle sequences are indeed attained with
point sets in convex position. We disprove this conjecture in Theorem 4.2.1. However,
the following conjecture, formulated for the Matching version in [19], is not disproved
and matches our current belief.

Conjecture 1 ([19]). In the Multigraph version, any untangle sequence is of length
at most O(n2).

In other words, we have the following upper bound: d∅
Multigraph = O(n2).

Upper Bound

In the 1980 technical report [82] and the year after in the workshop [83], Jan van
Leeuwen and Anneke A. Schoone proved Theorem 3.1.3 in the Cycle version. It is the
seminal result of the present dissertation. An adaptation of the proof to the Bipartite

Matching version has been presented in [19]. We present here a generalization to the
Multigraph version.

It is notable that, in [82], general position is not assumed. In the following, we also
present the proof of Theorem 3.1.3 without any assumption on the point set. This leads
to consider a generalization of flips defined as follows. A general flip in the Π version
is an operation removing two intersecting segments from a multiset of segments and
inserting two non-intersecting segments with the same four endpoints while preserving
a property Π of the multiset of segments. In this setting, segments degenerated to a
point are allowed; they are modeled by loops in the corresponding multigraph. There
are seven types of general flips depending on the type of intersection of the removed
segments (Figure 3.1).

• Type I : the removed segments are crossing (the general flips of type I are the
flips).

• Type II : the removed segments intersect at exactly one point which is one of the
endpoints of exactly one of the removed segments.

• Type III : the removed segments intersect at exactly one point which is one of the
endpoints of both removed segments.
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• Type IV : the removed segments intersect at infinitely many points, their four
endpoints are distinct, and one removed segment contains the other.

• Type V : the removed segments intersect at infinitely many points, their four
endpoints are distinct, and none of the removed segments contains the other.

• Type VI : the removed segments intersect at infinitely many points, and they share
exactly one endpoint.

• Type VII : the removed segments intersect at infinitely many points, and their are
identical.

Note that in the general flips of type III to VII, the insertion choice is set by the
condition that the inserted segments do not intersect. If, for a given pair of segments,
this insertion choice does not preserves the property Π, then the pair of segments cannot
be flipped.

We prove Theorem 3.1.3 using Lemma 3.1.1 and Lemma 3.1.2 which we state and
prove next. Lemma 3.1.1 relies on a third elementary lemma (Lemma 2.4.1). The
following definitions are used.

We define Λℓ(S) as the number of segments of the multiset S crossing the line ℓ
(counted with their multiplicity). If L is a set (or a multiset) of lines, we define ΛL(S)
as the sum of the Λℓ(S) for ℓ ∈ L.

Lemma 3.1.1. Consider a line ℓ and a multiset of segments S. A general flip of S
does not increase Λℓ(S).

Proof. Let p1p2 and p3p4 be the two segments removed by the general flip, let o be one
of their intersection points, and let p1p3 and p2p4 be the two segments inserted by the
general flip. We show that any crossing pair consisting of ℓ and an inserted segment is
reflected by a crossing pair consisting of ℓ and a removed segment.

If both removed segments cross ℓ, or if none of the inserted segments cross ℓ, then
the lemma holds. The only remaining case is when ℓ crosses only one inserted segment,
say p1p3. Then, ℓ intersects the (possibly flat) triangle p1p3o. Thus by the triangle
argument (Lemma 2.4.1), ℓ also intersects p1o ∪ p3o at exactly one point o′ (which is
not p1 or p3). This intersection o′ is not o either, as we have assumed that at least one
of the removed segments does not cross ℓ. Therefore, o′ is not p2 or p4 and the lemma
holds.

Before we state and prove Lemma 3.1.2, we need the following additional definitions.
Given two distinct points p1, p2 of a point set P , let p1p+2 and p1p

−
2 by two lines crossing

the segment p1p2 and being as close to the line p1p2 as necessary to satisfy the following
properties for all segments s with endpoints in P 3.

• If the endpoints of s do not lie on the line p1p2, then p1p
+
2 (respectively p1p

−
2 )

intersects s if and only if the line p1p2 intersects s.

• If exactly one of the endpoints of s lies on the line p1p2, then exactly one of p1p+2
or p1p

−
2 intersects s.

3In [19], lines parallel to p1p2 are used instead. This choice does not work well if general position is
not assumed.
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In other words, the two partitions of P \ p1p2 induced by the lines p1p
+
2 and p1p

−
2 are

the same as the partition induced by p1p2 and are different from each other. We say
that p1p+2 and p1p

−
2 are the witnesses of the segment p1p2. Let L be the multiset of the

lines p1p
+
2 and p1p

−
2 for all pairs of points p1, p2 ∈ P 4.

(I) (II) (III) (IV) (V) (VI) (VII)

Figure 3.1: The seven types of general flips (removed segments are plain bold, inserted
segments are dashed) with the two witness lines (doted and highlighted) in L decreasing
Λℓ.

Lemma 3.1.2. For any general flip, there exists at least two lines ℓ ∈ L such that Λℓ

decreases by 2.

Proof. An exhaustive case analysis of the seven types of general flips yields that each
removed segment has a witness ℓ ∈ L such that Λℓ decreases by 2 (Figure 3.1).

Theorem 3.1.3 ([19, 82]). Consider a multiset S of n segments with endpoints P .
In the Multigraph version, any untangle sequence of S is of length at most 1

2
n
(|P |

2

)
=

O(n |P |2) = O(n3).
In other words, we have the following upper bound:

d∅
Multigraph(n) ≤

1

2
n

(
|P |
2

)
= O(n |P |2) = O(n3).

Proof. A consequence of Lemma 3.1.1 and Lemma 3.1.2 is that Λℓ decreases by at
least 4 at each general flip. Moreover, each of the 2

(|P |
2

)
lines in L crosses at most n

segments. Thus, the function Λℓ takes integer values between 0 and 2n
(|P |

2

)
, hence the

theorem.

3.1.2 Untangling with Insertion Choice

In this section, we present the two upper bounds on dI
Multigraph from the literature: a

general upper bound and an upper bound parameterized by the spread of the point set
(defined next). These results do not carry over to the Cycle version where insertions
are set to preserve the Cycle property.

The literature contains no lower bound specific to insertion choice, the best lower
bound known on dI is a corollary of Theorem 3.2.12.

4In [82], the set of the lines p1p2 for all pairs of points p1, p2 ∈ P is used instead. This choice
leads to a more tedious analysis if general position is not assumed. However, if general position is
assumed, the analysis is smooth and the upper bound slightly improves to 1

2n
((|P |

2

)
− 2 |P | − 3

)
(a

given segment does not cross the 2 |P | − 3 lines containing at least one of its endpoints). Moreover,
in the Bipartite Matching version, the lines defined by a red point and a blue point suffice, further
improving the upper bound to

(
n
2

)
(n− 1).
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General Upper Bound

The following theorem provides a quadratic upper bound and relies on insertion choice.
We extend our standard general position assumptions to also exclude pairs of endpoints
with the same y-coordinate.

Theorem 3.1.4 ([19]). Consider a multiset S of n segments with endpoints P .
In the Multigraph version, there exists an insertion strategy such that for any

removal strategy, the resulting untangle sequence of S is of length at most n
2
(|P | − 2) =

O(n |P |) = O(n2).
In other words, we have the following upper bound:

dI
Multigraph(n) ≤

n

2
(|P | − 2) = O(n |P |) = O(n2).

Proof. Let p1, . . . , p|P | be the points of P sorted vertically from top to bottom. Consider
a flip involving the points pa, pb, pc, pd with a < b < c < d. There are two cases whether
the removed pair of segments is papc, pbpd or papd, pbpc. In both cases, we choose to
insert the pair of segments papb, pcpd.

We now prove that this insertion choice leads to the claimed upper bound. We
define the potential η of a segment pipj as η(pipj) = |i− j|. Notice that η is an integer
between 1 and |P | − 1. We define η(S) as the sum of η(pipj) for pipj ∈ S. The function
η is equal to ΛL where L is a set of |P | − 1 horizontal lines that partition the plane
with one point of P per partition.

Notice that n ≤ η(S) ≤ n(|P | − 1). It is easy to verify that, in both cases for the
removed pair of segments, a flip decreases η(S) by at least 2. Hence, the number of
flips is n

2
(|P | − 2) = O(n |P |).

Parameterized Upper Bound

Next, we state Theorem 3.1.5; the statement is identical to Theorem 3.1.4 except that
the upper bound is O(nσ(P )) instead of O(n2). This calls for the following definition.
If P is a set of points, let σ(P ) be the spread of the point set P , that is, the ratio
between the maximum and minimum distances among pairs of points in P .

Note that the spread σ(P ) is not invariant by affine transformation, and thus is not
an invariant of the problem. Recall that the problem of untangling a multigraph only
depends on the the order type of the point set5. Therefore, Theorem 3.1.5 still holds
when replacing σ(P ) by the minimum of σ(P ′) P ′ varies over all the point sets of the
same order type as P .

Also note that Theorem 3.1.5 improves on Theorem 3.1.4 only when σ(P ) = o(n).
As the spread σ(P ) of a point set P is always lower bounded by Ω(

√
n)(see e.g., [79]),

the best improvement is attained for dense point sets P , where σ(P ) = Θ(
√
n). Dense

point sets appear in practical situations and have been studied in several contexts (see
e.g., [39]).

5An alternative would be the intrinsic spread defined as the ratio between the maximum and the
minimum area among triplets of points in P proposed in [48]. The intrinsic spread is invariant by
affine transformation, but is still not an invariant of the problem.
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Theorem 3.1.5 ([17]). Consider a multiset S of n segments with endpoints P .
In the Multigraph version, there exists an insertion strategy such that for any

removal strategy, the resulting untangle sequence of S is of length O(nσ(P )).
In other words, we have the following upper bound:

dI
Multigraph(n) = O(nσ(P )).

The proof of Theorem 3.1.5 relies on Lemma 3.1.8, itself relying on Lemma 3.1.6
and Lemma 3.1.7. As the three lemmas are only technical lemmas, we only prove
Theorem 3.1.5 assuming Lemma 3.1.8.

Lemma 3.1.6 ([17]). Let p1p2 and p3p4 be two crossing segments. Let o be their crossing
point. Let µ be the minimum distance between any pair of points in {p1, p2, p3, p4}. If
the angle ∠p3op2 ≤ π

3
, then µ ≤ (p1p2 + p3p4)− (p2p4 + p3p2).

Lemma 3.1.7 ([17]). Let p1p2 and p3p4 be two crossing segments. Let o be their crossing
point. Let µ be the minimum distance between any pair of points in {p1, p2, p3, p4}. If
the angle ∠p3op2 = π

2
, then 2−

√
2

2
µ ≤ (p1p2 + p3p4)− (p2p4 + p3p2).

Lemma 3.1.8 ([17]). Let p1p2 and p3p4 be two crossing segments. Let o be their crossing
point. Let µ be the minimum distance between any pair of points in {p1, p2, p3, p4}. If the
angle ∠p3op2 ≤ π

2
, then 2−

√
2

4
µ ≤ (p1p2+p3p4)− (p2p4+p3p2). In other words, inserting

the pair of segments facing the two smallest angles among the four angles defined by the
removed segments decreases the total length by at least 2−

√
2

4
µ (the constant 2−

√
2

4
is not

optimized).

The idea of the proof of Theorem 3.1.5 is to use insertion choice to systematically
insert a pair of segments such that the sum of the lengths of all the segments in S
decreases by a constant factor.

Proof of Theorem 3.1.5. Let µ(P ) be the minimal distance between two points of P . Let
Γ(S) be the sum of the lengths of all the segments in S. We have Γ(S) = O(nµ(P )σ(P )).
We systematically insert the pair of segments facing the two smallest angles among the
four angles defined by the removed segments. By Lemma 3.1.8, this insertion strategy
decreases Γ(S) by at least 2−

√
2

4
µ(P ), yielding Theorem 3.1.5.

3.2 Convex Position Point Sets

In this section, we prove the literature results concerning point sets in convex position.
In this convex case, the geometry of the point set is fully encoded by the cyclic order of
the points on the convex hull boundary, leading to fully combinatorial proofs.

3.2.1 Untangling with No Choice

In this section, we prove that
(
n
2

)
is both a lower bound on d∅

Convex Permutation Matching

and an upper bound on d∅
Convex Multigraph.
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These two bounds together lead to the following identities.

∀Π ∈ {Multigraph,
Bipartite Multigraph,

Matching,

Bipartite Matching,

Redonaline Matching,

Permutation Matching} d∅
Convex Π(n) =

(
n

2

)
Note that the proof of the lower bound (Theorem 3.2.1) presented next does not

hold in the Cycle version or in the Tree version. However, the reductions presented in
Theorem 4.1.1 extend this lower bound asymptotically, yielding d∅

Convex Π = Θ(n2) for
Π ∈ {Cycle, Tree}.

Lower Bound

In this section, we prove the following lower bound.

Theorem 3.2.1 ([19]). There exists a set S of n segments forming a bipartite matching
with red points on a line ℓ1 and blue points on a line ℓ2 parallel to ℓ1 such that there exist
(in the Convex Permutation Matching version) an untangle sequence of S of length(
n
2

)
.
In other words, we have the following lower bound:

d∅
Convex Permutation Matching(n) ≥

(
n

2

)
= Ω(n2).
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Figure 3.2: A lower-bounding bubble sort untangle sequence used in the proof of
Theorem 3.2.1.

Proof. Let R = {r1, . . . , rn} be a set of n red points. Let B = {b1, . . . , bn} be a set
of n blue points. There exists a canonical bijection between Sn, the permutations of
{1, . . . , n}, and the bipartite matchings on R,B.
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Moreover, if the red and blue points are on the boundary of a convex body, the red
points being on one side of a horizontal line and the blue points being on the other side,
with red and blue points order from left to right, then the only crossing-free bipartite
matching on R,B corresponds to the identity in Sn, and the crossing pairs of segments
in a matching corresponds to the inversions. This hypothesis is satisfied as the red
points lie on a line ℓ1 and the blue points lie on a line ℓ2 parallel to ℓ1.

Therefore, a bubble sort of the permutation mapping any i ∈ {1, . . . , n} to n+ 1− i
corresponds to an untangle sequence with

(
n
2

)
flips (Figure 3.2)).

Upper Bound

In this section, we prove the following upper bound.

Theorem 3.2.2 ([17]). Consider a multiset S of n segments with endpoints P in convex
position and with m crossing pairs of segments. In the Convex Multigraph version, all
untangle sequences of S have length at most m.

In other words, we have the following upper bound:

d∅
Convex Multigraph(n) ≤

(
n

2

)
= O(n2).

s

s

s

s
s

Figure 3.3: The five convex positions of s with respect to the removed and inserted
pairs. This is used in the proof of Lemma 3.2.3.

Lemma 3.2.3. Consider three segments with endpoints in convex position. In the
Convex Multigraph version, flipping two segments does not increase the number of
crossing pairs involving the third segment.

The proof we present hereafter is syntactically identical to the proof of Theo-
rem 3.1.3 (up to replacing the line ℓ by the segment s) which uses a triangle argument
(Lemma 2.4.1). The triangle argument normally applies to a line, but a segment behaves
like a line if it is long enough, which is the case with a convex point set. In fact, the
triangle argument with a long segment instead of a line translates into a combinatorial
argument if the endpoints involved are in convex position.

Note that Lemma 3.2.3 also admits a proof by exhaustive case analysis as shown in
Figure 3.3. Not only is this exhaustion informative, but it is also used in the proof of
Lemma 5.1.4.

Proof of Lemma 3.2.3. Let p1p2 and p3p4 be the two segments removed by the flip, let
o be their intersection point, and let p1p3 and p2p4 be the two segments inserted by the
flip. Let s be the third segment. We show that any crossing pair involving s and an
inserted segment is reflected by a crossing pair involving s and a removed segment.



46 CHAPTER 3. LITERATURE REVIEW

If both removed segments cross s, or if none of the inserted segments cross s, then
the lemma holds. The only remaining case is when s crosses only one inserted segment,
say p1p3. Then, s intersects the (possibly flat) triangle p1p3o. Thus by the triangle
argument (Lemma 2.4.1), s also intersects p1o ∪ p3o at exactly one point o′ (which is
not p1 or p3). This intersection o′ is not o either, as we have assumed that at least one
of the removed segments does not cross s. Therefore, o′ is not p2 or p4 and the lemma
holds.

(a) (b) (c)

Figure 3.4: (a) A polygon maximizing the number of crossing pairs of segments with
an odd number of segments. (b) A polygon maximizing the number of crossing pairs
of segments with an even number of segments. (c) A tree maximizing the number of
crossing pairs of segments.

Proof of Theorem 3.2.2. Let χ(S) be the number of crossing pairs of segments of S.
Notice that χ(S) takes integer values between 0 and

(
n
2

)
. Lemma 3.2.3 ensures that χ

decreases by at least 1 at a flip; Theorem 3.2.2 follows.

Note that this upper bound can be refined in the Convex Cycle version using the fact
that the maximum number of crossing pair of segments in a polygon with n segments
is

(
n
2

)
− n if n is odd and

(
n
2

)
− 3

2
n + 1 if n is even [46]. The case where n is odd is

attained with a polygon where each segment crosses all the other segments except its
neighbors (Figure 3.4(a)). The case where n is even is less obvious (Figure 3.4(b)).
Similarly, in the Convex Tree version, the maximum number of crossings

(
n
2

)
− n+ 1

is attained for a path where each segment crosses all the other segments except its
neighbors (Figure 3.4(c)).

3.2.2 Untangling with Removal Choice

In this section, we prove linear lower and upper bounds on dR
Convex Cycle (settling even

the exact value) and an O(n log n) upper bound on dR
Convex Tree(n) from the literature.

Lower Bound

In this section, we prove the following lower bound.

Theorem 3.2.4 ([72]). There exists polygons with n segments and endpoints in convex
position such that (in the Convex Cycle version) any untangle sequence is of length at
least n− 3 if n ∈ {3, 4, 6} and at least n− 2 = Ω(n) if n = 5 or n ≥ 7.

In other words, we have the following lower bound:

dR
Convex Cycle(n) ≥

{
n− 3 for n ∈ {3, 4, 6}
n− 2 = Ω(n) for n = 5 and n ≥ 7.
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The proof of relies on the next two lemmas whose statement use the following
definitions. The proofs of these two lemmas are omitted.

For odd n, we define Cn,2 as the polygon on n points in convex position with edges
defining a cycle skipping every other point in cyclic order on the convex hull.

For even n, we define Dn as the polygon on n points in convex position with
edges defining the following cycle described with the indices of the points sorted in
counterclockwise order on the convex hull.

(1, 3, 5, . . . , n− 5, n− 2, n, n− 3, n− 1, 2, 4, 6, . . . , n− 4)

Lemma 3.2.5. Let n be a positive odd integer at least 5. In the Convex Cycle version,
any untangle sequence of the polygon Cn,2 is of length at least n− 2.

Lemma 3.2.6. Let n be a positive even integer at least 8. In the Convex Cycle version,
any untangle sequence of the polygon Dn is of length at least n− 2.

We now provide a short proof of Theorem 3.2.4 assuming Lemma 3.2.5 and
Lemma 3.2.6.

Proof of Theorem 3.2.4. It is easy to check that dR
Convex Cycle(3) = 0, dR

Convex Cycle(4) = 1,
dR
Convex Cycle(5) = 3, and dR

Convex Cycle(6) = 3. Lemma 3.2.5 and Lemma 3.2.6 yield
Theorem 3.2.4 for n ≥ 7.

Upper Bounds

In this section, first we define the crossing depth (used in the proofs of Theorem 3.2.7,
Theorem 3.2.10, Theorem 3.2.13, and Theorem 5.2.1) of a segment. All the proofs using
these definition are very similar.

Then, we state four theorems providing linear or quasilinear upper bounds on
dR
Convex: two for the Cycle version, one for the Bipartite Matching version, and one

for the Tree version. We provide proofs for only two of them. We omit the proof of
Theorem 3.2.9 which improves the constants of the upper bound of Theorem 3.2.7 to
reach exact tightness. We delay the proof of Theorem 3.2.11 to the proof of the more
general Theorem 5.2.1.

Crossing depth. Consider a multiset S of n segments with endpoints P in convex
position. Let p1, . . . , p|P | be the points of P sorted in counterclockwise order along the
convex hull boundary. Consider a segment papb, assuming without loss of generality
that a < b.

We define the crossing depth [31]6 δ×(papb) as the number of points in pa+1, . . . , pb−1

that are an endpoint of a segment in S that crosses any segment in S (not necessarily
papb).

Note that the crossing depth of a segment is a non-negative integer at most |P | − 2.
Also note that, by splitting (Lemma 2.6.1 [19, 31]), the segments of crossing depth 0
are uncrossable and can no longer participate in a flip.

The following theorem provides a linear upper bound in the Convex Cycle version.
6This definition is inspired by the definition of depth in [17, 72] where the depth of the segment

papb is the minimum number of points of P \ {pa, pb} on either side of the line papb.
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Theorem 3.2.7 ([72]). Any polygon S with n segments and endpoints P in convex
position admits (in the Convex Cycle version) an untangle sequence of length at most
2n− 7 = O(n) for n ≥ 4.

In other words, we have the following upper bound:

dR
Convex Cycle(n) ≤ 2n− 7 = O(n) for n ≥ 4.

The proof of Theorem 3.2.7 relies on the following lemma.

Lemma 3.2.8 ([72]). Any polygon S with n segments and endpoints P in convex
position admits an uncrossable segment s ∈ S after at most 1 flip (in the Convex Cycle

version).

Proof. Note that, in the case of polygons with endpoints in convex position, the
uncrossable segments are the segments contained in the boundary of the convex hull
of P which are the segments of null crossing depth. We assume that S contains no
uncrossable segment. Let p1, . . . , p|P | be the points of P sorted in counterclockwise
order along the convex hull boundary.

Let papb ∈ S (a < b) be a segment with crossings (hence, of crossing depth at least
one) minimizing δ×(papb). Let q1, . . . , qδ×(papb) be the points defining δ×(papb) sorted in
counterclockwise order along the convex hull boundary.

Since papb has minimum positive crossing depth, and since we assume that S contains
no uncrossable segment, the point q1 is the endpoint of two segments s, s′, each of them
either crossing papb. It is easy to see that, by definition of a flip in the Cycle version,
flipping one of these two segments, say s, with the segment papb inserts the segment
q1pa while flipping s′ with the segment papb does not insert the segment q1pa. We choose
to remove the segments s and papb, because, being of null crossing depth, the inserted
segment q1pa is uncrossable.

Proof of Theorem 3.2.7. We now prove Theorem 3.2.7 by induction on n.
If n = 4, then dR

Convex Cycle(n) = 1.
If n ≥ 5, and if dR

Convex Cycle(n − 1) ≤ 2(n − 1) − 7, then, by Lemma 3.2.8, using
at most 1 flip ensures that there exists at least one uncrossable segment s in S. We
invoke the induction hypothesis on the polygon with n− 1 segments obtained from S
by contracting the segment s to a point. The resulting flip sequence also transforms
S into a polygon where only the two segments adjacent to s may cross. A final flip
is enough to fully untangle S. The total number of flips use to untangle S is at most
2 + 2(n− 1)− 7 = 2n− 7, concluding the induction.

The following theorem refines Theorem 3.2.7 with a tight bound.

Theorem 3.2.9 ([85]). Any polygon with n ≥ 7 segments and endpoints in convex
position admits (in the Convex Cycle version) an untangle sequence of length at most
n− 2 = O(n).

In other words, we have the following upper bound:

dR
Convex Cycle(n) ≤ n− 2 = O(n) for n ≥ 7.
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The article [85] is entirely dedicated to the proof of Theorem 3.2.9; we omit this
proof here.

The following theorem also provides a linear upper bound, but in the Convex

Bipartite Matching version.7

Theorem 3.2.10 ([17]). Consider a set S of n segments with endpoints P in convex
position partitioned into n red points and n blue points such that (P, S) forms a bipartite
matching.

In the Convex Bipartite Matching version, there exists an untangle sequence of S
of length at most 2n− 3 = O(n).

In other words, we have the following upper bound:

dR
Convex Bipartite Matching(n) ≤ 2n− 3 = O(n).

To prove Theorem 3.2.10, we use removal choice to iteratively remove a segment of
minimal positive crossing depth and insert a segment of null collapsed crossing depth
using two flips.

Proof of Theorem 3.2.10. Consider a multiset S of n segments with endpoints P in
convex position. Let p1, . . . , p|P | be the points of P sorted in counterclockwise order
along the convex hull boundary.

We repeat the following procedure until there are no more crossings. Let papb ∈ S
(a < b) be a segment with crossings (hence, of crossing depth at least one) minimizing
δ×(papb). Without loss of generality, assume that pa is red and that pb is blue. Let
q1, . . . , qδ×(papb) be the points defining δ×(papb) sorted in counterclockwise order along
the convex hull boundary.

We have the following two cases.

Case 1: using one flip. In Case 1, q1 is blue or qδ×(papb) is red. We assume without
loss of generality that q1 is red. Since papb has minimum positive crossing depth, the
point q1 is the endpoint of a segment q1pc ∈ S that crosses papb. In this case, we chose
to remove the segments q1pc and papb. By definition of q1, the crossing depth of the
inserted segment q1pa is 0.

Case 2: using two flips. In Case 2, q1 is red and qδ×(papb) is blue. Let i be the
smallest index such that qi is blue. Thus, qi−1 is red. Again, since papb has minimum
positive crossing depth, the point qi−1 is the endpoint of a segment qi−1pc ∈ S that
crosses papb. We chose to remove the segments qi−1pc and papb. The inserted segments
are qi−1pb and papc.

At this point, the segment qi−1pb crosses a segment qipd incident to qi (in fact, any
such segment). We chose to remove these two segments, i.e., qi−1pb and qipd. The
inserted segments are qi−1pb and papc. The crossing depth of the inserted segment qiqi−1

is 0, by definition of i.
In both cases, we have used at most 2 flips to remove segments with positive crossing

depths and insert at least one segment with null crossing depth. Thus, the number of
segments with positive crossing depth decreases by at least 1 every two flips. Using

7The upper bound proved in [17] is 2n− 2.
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at most 2(n − 2) flips is enough to reach n − 2 segments of crossing depth 0 (which
no longer participate in a flip by Lemma 2.6.1 [19, 31]). The last two segments with
positive crossing depths are crossing, and flipping them necessarily inserts two segments
of crossing depth 0. The claimed bound follows.

The following theorem provides a quasilinear upper bound in the Convex Tree

version.

Theorem 3.2.11 ([17]). Consider a set S of n segments with endpoints P in convex
position such that (P, S) forms a tree.

In the Convex Tree version, there exists an untangle sequence of S of length
O(n log n).

In other words, we have the following upper bound:

dR
Convex Tree(n) = O(n log n).

As we prove the more general Theorem 5.2.1 in the contribution part of this
dissertation using some simpler arguments than the proof in [19], we do not provide a
proof of Theorem 3.2.11 here.

3.2.3 Untangling with Both Choices

In this section, we prove a linear lower bound on dRI
Convex Matching and a linear upper

bound on dRI
Convex Multigraph from the literature.

Lower Bound

In this section, we prove the following lower bound.

Theorem 3.2.12 ([19]). There exists a set S of n segments with endpoints P in
convex position such that (P, S) forms a matching (respectively a bipartite matching,
a cycle, a tree), and such that (in the Convex Matching version, respectively in the
Convex Bipartite Matching version, in the Convex Cycle version, in the Convex

Tree version) any untangle sequence of S is of length at least n− 1 = Ω(n) (respectively
n− 1 = Ω(n), n

2
− 1 = Ω(n) for even n, n−1

2
= Ω(n) for odd n).

In other words, we have the following lower bounds:

dRI
Convex Matching(n) ≥ n− 1 = Ω(n),

dR
Convex Bipartite Matching(n) ≥ n− 1 = Ω(n),

dR
Convex Cycle(n) ≥

n

2
− 1 = Ω(n) for even n,

dR
Convex Tree(n) ≥

n− 1

2
= Ω(n) for odd n.

In the following, first we define a class of sets of segments called combs, then we
prove Theorem 3.2.12 by proving that any untangle sequence of an n-comb is of length
exactly n− 1 using splitting to invoke induction.
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Combs. We say that a set S of n segments with endpoints P in convex position such
that (P, S) forms a bipartite matching is an n-comb if there exists a segment s ∈ S
such that s crosses all the segments in S \ {s} and such that S \ {s} is crossing free.

Proof of Theorem 3.2.12. Let S be an n-comb. We prove by induction on n that the
length f(n) of any untangle sequence of S is exactly n− 1.

If n = 1, then S contains only s and the claim f(1) = 0 is trivial.
If n ≥ 2, then any flip removes s and some other segment s′ ∈ S \{s}. Independently

of which pair of segments is inserted, the line ℓ containing s′ does not cross any segment
of S after the flip. Thus, ℓ splits S into an n1-comb S1 and an n2-comb S2, for some
n1 ≥ 1 and n2 ≥ 1 such that n1 + n2 = n. This yields the following recurrence relation

f(n) = 1 + f(n1) + f(n2),

which easily solves using induction hypothesis to

f(n) = n− 1,

concluding the induction.
This exact same upper bound holds on to dR

Convex Bipartite Matching(n) by the transfer
reduction (Lemma 2.3.3). It is easy to transform an n-comb into a cycle by adding
n segments on the convex hull boundary of P . These new segments are uncrossable
(Lemma 2.6.1) thus do not interfere. The insertion choice is now set to preserve the
Cycle property, but the induction above makes no assumption about insertion choice.
Therefore, the proof holds in the Convex Cycle version too. Similarly, it easy to remove
one of these extra segments to get a path (which is a tree), and to extend the same
proof to the Convex Tree version.

Upper Bound

In this section, we prove the following upper bound. It is originally proven in [17] for
the Convex Matching version.

Theorem 3.2.13 ([17]). Consider a multiset S of n segments with endpoints P in
convex position.

In the Convex Multigraph version, there exists an untangle sequence of S of length
at most n− 1 = O(n).

In other words, we have the following upper bound:

dRI
Convex Multigraph(n) ≤ n− 1 = O(n).

In the following, we prove Theorem 3.2.13 using removal and insertion choices
to iteratively remove a segment of minimal positive crossing depth (defined before
Theorem 3.2.7) and insert a segment of null collapsed crossing depth using one flip.

Proof of Theorem 3.2.13. Consider a multiset S of n segments with endpoints P in
convex position. Let p1, . . . , p|P | be the points of P sorted in counterclockwise order
along the convex hull boundary.

We repeat the following procedure until there are no more crossings. Let papb ∈ S
(a < b) be a segment with crossings (hence, of crossing depth at least one) minimizing
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δ×(papb). Let q1, . . . , qδ×(papb) be the points defining δ×(papb) sorted in counterclockwise
order along the convex hull boundary.

Since papb has minimum positive crossing depth, the point q1 is the endpoint of a
segment q1pc ∈ S that crosses papb. We chose to remove the segments q1pc and papb,
and to insert the segments q1pa and pbpc.

By definition of q1, the crossing depth of the inserted segment q1pa is 0. We have
thereby removed two segments with positive crossing depths and inserted at least one
segment with null crossing depth. Thus, the number of segments with positive crossing
depth decreases by at least 1 at each flip.

Using at most n − 2 flips is enough to reach n − 2 segments of crossing depth 0
(which no longer participate in a flip by Lemma 2.6.1 [19, 31]). The last two segments
with positive crossing depths are crossing, and flipping them necessarily inserts two
segments of crossing depth 0. The claimed bound follows.

3.3 Red-on-a-Line Point Sets
In this section, we present bounds on the length of untangle sequences in the Redonaline
Matching version, i.e., in the Bipartite Matching version in the special case where
the bipartite point set has all the points of one of its partitions, say the red points, on
a common line defining the x-axis.

The x-axis splits any bipartite matching on such a point set. The splitting lemma
(Lemma 2.6.1 [19, 31]) allows to study flips above the x-axis and flips below separately.
We thus assume that all the blue points lie above the x-axis. We call such a point set a
red-on-a-line point set.

This special type of point set may be viewed as a transition between the well
understood convex bipartite point sets where the red points are on one line ℓ1 and
the blue points are on an other line ℓ2 parallel to ℓ1 (this case is fully encoded by
permutations and inversions; see Theorem 3.2.1) and the general bipartite point sets.

However, only the upper bound on the length of untangle sequences with removal
choice is specific to general red-on-a-line point sets.

3.3.1 Untangling with Removal Choice

In this section, we prove a quadratic upper bound on dR
Redonaline Matching from the

literature.

Upper Bound

In this section, we prove the following upper bound.
Theorem 3.3.1 ([17]). Consider a set S of n segments with endpoints P partitioned
into n red points and n blue points such that the red points lie on the x-axis, such that
the blue points lie above the x-axis, and such that (P, S) forms a bipartite matching.

In the Redonaline Matching version, there exists an untangle sequence of S of
length at most n(n− 1) = O(n2).

In other words, we have the following upper bound:

dR
Redonaline Matching(n) ≤ n(n− 1) = O(n2).
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The proof of Theorem 3.3.1 invoke the following lemma as a subroutine.

Lemma 3.3.2. Consider a set S of n segments with endpoints P partitioned into n red
points and n blue points such that the red points lie on the x-axis, such that all the blue
points lie above the x-axis, and such that (P, S) forms a bipartite matching.

If the highest blue point b is matched to the left most red point r in S, and if all the
crossings of S are on the segment rb, then (in the Redonaline Matching version) there
exists an untangle sequence of S of length at most n− 1 = O(n).

Proof. We prove Lemma 3.3.2 by induction on n. If n = 1, then Lemma 3.3.2 holds.
If n > 1, then we show that one flip is enough to define a line partitioning the

segments into two subsets S1 and S ′
1 such that S ′

1 is not empty and has no crossing.
Let b′ be the first blue point in counterclockwise order around the point r (the ray

from r including in the x-axis going right is the origin of the angles). Let r′ be the
red point matched to b′ in S. We perform the flip removing the segments rb, r′b′ and
inserting rb′, r′b.

After this flip (modifying S in place), the line r′b′ does not cross any segment of S
therefore partitioning the segments into two subsets. Let S1 be the segments of S lying
on the left of the line r′b′ and let S ′

1 be the segments of S lying on the right of the line
r′b′. The set of segments S2 is not empty since it contains at least the segment r′b. By
construction of the point b′, the segment r′b is crossing free. Thus, the segments in S2

are all crossing free.
By induction hypothesis, we untangle S1 using n− 2 flips, concluding the proof of

Lemma 3.3.2.

Note that the bound of Lemma 3.3.2 is tight. Indeed, there exists a red-on-a-line
matching with n segments such that any removal strategy leads to the same untangle
sequence of length n− 1. In fact, any removal strategy is futile as there is exactly one
crossing pair of segments before each flip of the only possible untangle sequence (see
Figure 3.5 [19]). An alternative proof of this tightness (also holding for convex position)
is given by Theorem 3.2.12.

Figure 3.5: A lower-bounding untangle sequence of a red-on-a-line matching where only
one pair of segments is crossing at each step, thus imposing removal choice. This figure
appears in [19].

We are now ready to prove Theorem 3.3.1.

Proof of Theorem 3.3.1. We describe an iterative algorithm to untangle S. We label
the red points from left to right as follows: r1, . . . , rn.

For i from 1 to n, we perform Phase 1 then Phase 2 described next.
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Loop invariant. Entering the i-th loop, all the segments incident to the red points
on the left of ri are crossing free.

Phase 1: find a blue point b and insert the segment rib (using at most
n− i flips) such that b is the highest blue point, r is the leftmost red point of
a subset S ′ of S. We define b as the blue point we reach at the end of the following
path u. We start the path at ri and we follow the segment incident to ri until we
encounter a segment of S. We turn left and continue the path on this new segment. We
repeat, systematically turning left at every crossing point until we reach a blue point,
which we name b.

Let s and s′ be the last two segments we visited in the path u. Repeatedly flipping
s, s′ insert the segment rib after at most n− i flips.

We now define S ′. Let r0 and b0 be dummy red and blue points such that r0 lies on
the x-axis on the left of all the other red points, such that b0 becomes the highest blue
point, and such that the segment r0b0 is crossing-free. We shoot a horizontal ray from b
heading leftwards. Let rj be the red endpoint of the first segment of S ∪ {r0b0} hit by
this ray, and let q be the hitting point. We finally define S ′ the segments of S which
are in the interior of the quadrilateral qrjrib.

Phase 2: invoke Lemma 3.3.2 on S ′ (using at most i − 1 flips). The
quadrilateral qrjrib is convex and is not intersected by any segment of S. Therefore,
after having applied Lemma 3.3.2, the segments of S ′ are not only not crossing each
other but also not crossing other segments of S \S ′. This ensures that the loop invariant
holds.

To conclude the proof of Theorem 3.3.1, an upper bound to the total number of
flips used by the algorithm is given by the following sum.

n∑
i=1

(n− i) + (i− 1) = n(n− 1)



Chapter 4

Untangling with No Choice

In this chapter, we study d∅ , the length of the longest untangle sequences in several
versions. First, we prove reductions between several versions of d∅. Then, we prove a
lower bound, an upper bound parameterized by t (the sum of the degrees of the points
which are not in convex position with the rest), and an upper bound in the Redonaline
version. Finally, we prove a sub-cubic upper bound on the number of distinct flips in
an untangle sequence. This number is not the length of an untangle sequence where
the same flip may appear several times (up to a linear number of times) and is counted
with its multiplicity.

4.1 Reductions
In this section, we provide a series of inequalities relating the different versions of d∅.
In particular, we show that all the different versions of d∅ have the same asymptotic
behavior.

Theorem 4.1.1 ([30]). For all positive integer n and for Π being either the empty
property or the Convex property, we have the following relations:

d∅
Π Matching(n) = d∅

Π Multigraph(n), (4.1)

2d∅
Π Matching(n) ≤ d∅

Π Bipartite Matching(2n) ≤ d∅
Π Matching(2n), (4.2)

2d∅
Π Bipartite Matching(n) ≤ d∅

Π Cycle(3n) ≤ d∅
Π Matching(3n), (4.3)

2d∅
Π Bipartite Matching(n) ≤ d∅

Π Tree(3n) ≤ d∅
Π Matching(3n). (4.4)

Proof. Equality (4.1) can be rewritten d∅
Π Multigraph(n) ≤ d∅

Π Matching(n) ≤ d∅
Π Multigraph(n).

Hence, we have to prove eight inequalities. The right-side inequalities follow from
Lemma 2.3.2, since the left-side property is stronger than the right-side property (using
the equality (4.1) for inequalities (4.3) and (4.4)).

The proofs of the remaining inequalities follow the same structure: given a flip
sequence of the left-side version, we build a flip sequence of the right-side version, having
similar length and number of points.

We first prove all the inequalities assuming that Π is the empty property. Preserving
the Convex property follows from the fact that the extra copy a point added by the
following reductions is placed in convex position while still being close enough to its
original location (Figure 4.1(a)).

55
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Proving d∅
Π Multigraph(n) ≤ d∅

Π Matching(n) (4.1). We prove the left inequality of (4.1).
A point of degree d◦ larger than 1 can be replicated as d◦ points that are arbitrarily close
to each other in order to produce a matching of 2n points. This replication preserves
the crossing pairs of segments, possibly creating new crossings (Figure 4.1(a)). Thus,
for any flip sequence in the Multigraph version, there exists a flip sequence in the
Matching version of equal length, yielding d∅

Π Multigraph(n) ≤ d∅
Π Matching(n).

(a) (b)

ri r′i
rj r′j

bibj

(c)

ri r′i
rj r′j

bibj

(d)

Figure 4.1: (a) A crossing-free multigraph transformed into a matching by replacing
multi-degree points by clusters of points. This transformation (like the next ones)
preserves the property that a set of points is in convex position (their convex hull
boundary is dashed-dotted). (b) Two flips in the Bipartite Matching version simulating
one flip in the Matching version. (c) Two flips in the Cycle version simulating one flip
in the Bipartite Matching version. (d) Two flips in the Tree version simulating one
flip in the Bipartite Matching version.

Proving 2d∅
Π Matching(n) ≤ d∅

Π Bipartite Matching(2n) (4.2). The left inequality of (4.2) is
obtained by duplicating the monochromatic points of the matching S into two arbitrarily
close points, one red and the other blue. Then each segment of S is also duplicated into
two red-blue segments. We obtain a bipartite matching S ′ with 2n segments. A crossing
in S corresponds to four crossings in S ′. Flipping this crossing in S amounts to choose
which of the two possible pairs of segments replaces the crossing pair. It is simulated
by flipping the two crossings in S ′ such that the resulting pair of double segments
corresponds to the resulting pair of segments of the initial flip. These two crossings
always exist and it is always possible to flip them one after the other as they involve
disjoint pairs of segments. Figure 4.1(b) shows this construction. A sequence of k flips on
S provides a sequence of 2k flips on S ′. Hence, 2d∅

Π Matching(n) ≤ d∅
Π Bipartite Matching(2n).

Proving 2d∅
Π Bipartite Matching(n) ≤ d∅

Π Cycle(3n) (4.3). To prove the left inequality
of (4.3), we start from a bipartite matching S with 2n points and n segments and
build a cycle S ′ with 3n points and 3n segments. We then show that the flip sequence
of length k on S provides a flip sequence of length 2k on S ′. We build S ′ in the
following way. Given a red-blue segment rb ∈ S, the red point r is duplicated in
two arbitrarily close points r and r′ which are adjacent to b in S ′. We still need to
connect the points r and r′ in order to obtain a cycle S ′. We define S ′ as the cycle
r1, b1, r

′
1, . . . , ri, bi, r

′
i, . . . , rn, bn, r

′
n . . . where ri is matched to bi in S (Figure 4.1(c)).

We now show that a flip sequence of S with length k provides a flip sequence of S ′

with length 2k. For a flip on S removing the pair of segments ribi, rjbj and inserting
the pair of segments ribj, rjbi, we perform the following two successive flips on S ′.
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• The first flip removes ribi, r
′
jbj and inserts ribj, r

′
jbi.

• The second flip removes r′ibi, rjbj and inserts r′ibj, rjbi.

The cycle then becomes r1, b1, r′1, . . . , ri, bj, r′i, . . . , rj, bi, r′j, . . . , rn, bn, r′n, . . . on which
we can apply the next flips in the same way. Hence, 2d∅

Π Matching(n) ≤ d∅
Π Cycle(3n).

Proving 2d∅
Π Bipartite Matching(n) ≤ d∅

Π Tree(3n) (4.4). The proof of the left inequality
of (4.4) follows the exact same construction as in the proof of the left inequality of (4.3).
The only difference is that, in order for S ′ to form a tree and not a cycle, we omit the
segment r′nr1, yielding a polygonal line which is a tree (Figure 4.1(d)).

4.2 Lower Bound for Red-on-a-Line Matchings
In this section, we prove the following quadratic lower bound. Although this lower bound
only improves the state of the art by a constant factor, its proof nonetheless exhibits
the longest untangle sequence ever know. This untangle sequence is 1.5 times longer
than the longest untangle sequence in the Convex Bipartite Multigraph version. To
achieve this 1.5 factor, we take advantage of the non-convex aspect in a non-intuitive
fashion.

Theorem 4.2.1 ([33]). In the Redonaline Matching version for even n, there exists a
set S of n segments with endpoints P partitioned into n red points and n blue points
such that the red points lie on the x-axis, such that the blue points lie above the x-axis,
such that (P, S) forms a bipartite matching, and such that there exists an untangle
sequence of S of length 3

2

(
n
2

)
− n

4
= Ω(n2).

In other words, for even n, we have the following lower bound:

d∅
Redonaline Matching(n) ≥

3

2

(
n

2

)
− n

4
= Ω(n2).

To prove Theorem 4.2.1, it suffices to present a long untangle sequence. The initial
matching of the sequence is represented in Figure 4.2(a).

or′3 r′2 r′1 r1 r2 r3

b′3

b′2

b′1b1

b2

b3

Figure 4.2: A 3-butterfly to lower bound d∅(6).

We provide a 2m-segment red-on-a-line matching which we call an m-butterfly.
There exists an untangle sequence starting at an m-butterfly of length 3

2

(
2m
2

)
− m

2
. Next,

we give the precise definition of an m-butterfly and some of its important properties.
Then, we give some intuition of how to come up with an untangle sequence longer
than the number of pairs of segments. Finally, we prove that there exists an untangle
sequence starting at an m-butterfly of length 3

2

(
2m
2

)
− m

2
with two lemmas.
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Butterfly. For an integer m, we define an m-butterfly as the following matching
with n = 2m segments. For i from 1 to m we have red points ri = (i/(m + 1), 0)
and r′i = (−i/(m + 1), 0) as well as blue points bi = (i − (m + 1), (m + 1) − i) and
b′i = ((m+1)− i, (m+1)− i). We match ri to bi and r′i to b′i. Next, we discuss important
properties of an m-butterfly.

We call a red-on-a-line convex matching an n-star if all the
(
n
2

)
pairs of segments

cross. We say that an n-star looks at a point p if the blue points are all on a common
line, and if p is the intersection of this line with the line of the red points. We also say
that two red-blue point sets R,B and R′, B′ are fully crossing if all the pairs of segments
of the form {rb, r′b′} cross, where (r, b, r′, b′) ∈ R × B × R′ × B′. Two matchings are
fully crossing if their underlying red-blue point sets are fully crossing. An m-butterfly
is a red-on-a-line matching consisting of two fully crossing m-stars both looking at the
same point o = (0, 0) (Figure 4.2(a) represents these properties but it is not drawn to
scale).

Intuition. In the following, we use the state tracking framework from Section 5.8 to
describe how to come up with an untangle sequence starting at an m-butterfly with more
than

(
2m
2

)
flips. We consider a sequence of tracking choices with no H → X transition

(Lemma 5.8.2) for the long untangle sequence we build. We take advantage of the
non-convex position of the blue points to create flip situations such as in Figure 5.11(a),
where an H-pair is turned into a T-pair.

For instance, let us consider an X-pair of one of the m-stars composing the m-
butterfly. At some point of the untangle sequence, we flip this X-pair, turning it into an
H-pair. Later on, we turn this H-pair into a T-pair, as in Figure 5.11(a). Still later on,
we turn this T-pair into an X-pair again, similarly to the pairs involving the smallest
horizontal segment in Figure 1.2. This X-pair will be flipped again.

We manage to carry out this whole process to flip twice all the 2
(
m
2

)
pairs of the

two m-stars composing the m-butterfly while still having one flip for every other pair.
In total, we reach 3

2

(
2m
2

)
− m

2
flips.

Proof of Theorem 4.2.1. We exhibit an untangle sequence starting at any m-butterfly
of length 3

2

(
2m
2

)
− m

2
(Figure 4.3 and Figure 4.4). The untangle sequence can be divided

into two phases.
The first phase consists of (i)

(
m
2

)
flips applied to the m-star submatching defined

by the m leftmost red points (see the proof of Theorem 3.2.1 [19], and Figure 4.3, steps
0 to 3), and of (ii)

(
m
2

)
more flips applied to the m rightmost red points (Figure 4.3,

steps 3 to 6). At this point, we have two sets of m crossing-free segments, each set fully
crossing the other.

The second phase repeats m times the following routine.

1. Flip the segments defined by the innermost red points r1 and r′1 (Figure 4.3
and 4.4, steps 6 to 7, 11 to 12, and 16 to 17). After this flip, the submatching
defined by the m leftmost red points and their matched points consists of m− 1
crossing-free segments intersected by the segment from r′1. A similar statement
holds for the submatching defined by the m rightmost red points.

2. Untangle the submatching defined by the m leftmost red points with m− 1 flips
in the following manner (Figure 4.3 and 4.4, steps 7 to 9, 12 to 14, and 17 to
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19). Flip of the two crossing segments with the rightmost red points, say r′k and
r′k+1 with k ∈ {1, . . . ,m− 1}, and repeat. Such a flip produces a segment from
r′k+1 crossing the segments whose red points are on the left of rk+1, and an other
segment from r′k crossing none of segments of the submatching. The number of
crossings in the submatching decreases by 1 at each flip.

3. Similarly, untangle the m rightmost red points with m− 1 more flips (Figure 4.3
and 4.4, steps 9 to 11, 14 to 16, and 19 to 21).

Each loop decreases the number of “long” segments (i.e., segments joining one of the
leftmost red points to one of the rightmost blue points, or vice-versa) by 2. At the end
of the process, the left submatching is crossing-free; so is the right one; and the two of
them do not intersect anymore.

Summing up, the total length of the untangle sequence is 2
(
m
2

)
+ 2m(m− 1) +m.

Simple calculation yields the lemma.

4.3 Upper Bound for Near Convex Position

In this section, we bridge the gap between the O(n2) bound on the length of untangle
sequences for a set P of points in convex position and the O(n3) bound for P in general
position. We prove the following theorem in the Matching version; the translations to
the other versions follows from the reductions in Theorem 4.1.1.

Theorem 4.3.1 ([30]). Consider a multiset S of n segments with endpoints P partitioned
into P = C ∪ T where C is in convex position. We define the parameter t as the sum
of the degrees of the points in T .

In the Multigraph version, any untangle sequence of S is of length O(tn2).
In other words, we have the following upper bound:

d∅
Multigraph(n, t) = O(tn2).

Proof. The proof strategy is to combine the potential χ used in the proof of Theo-
rem 3.2.2 [17] with the potential ΛL used in the proof of Theorem 3.1.3 [82]. Given a
matching S, the potential χ(S) is defined as the number of crossing pairs of segments in
S. Since there are n segments in S, χ(S) ≤

(
n
2

)
= O(n2). Unfortunately, with points in

non-convex position, a flip f might increase (or leave unchanged) χ, i.e. χ(f(S)) ≥ χ(S)
(as shown in Figure 1.2).

The potential ΛL is derived from the line potential introduced in [83] but instead
of using the set of all the O(n2) lines through two points of P , we use a subset of
O(tn) lines in order to take into account that only t points are in non-convex position.
More precisely, let the potential Λℓ(S) of a line ℓ be the number of segments of S
crossing ℓ. Note that Λℓ(S) ≤ n. The potential ΛL(S) is then defined as follows:
ΛL(S) =

∑
ℓ∈L Λℓ(S).

We now define the set of lines L as the union of L1 and L2, defined hereafter. Let C
be the subset containing the 2n− t points of P which are in convex position. Let L1 be
the set of the O(tn) lines through two points of P , at least one of which is not in C.
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Step 0

r′3 r′2 r′1 r1 r2 r3

Step 1

r′3 r′2 r′1 r1 r2 r3

Step 2

r′3 r′2 r′1 r1 r2 r3 r′3 r′2 r′1 r1 r2 r3

Step 3

Step 3

r′3 r′2 r′1 r1 r2 r3

Step 4

r′3 r′2 r′1 r1 r2 r3

Step 5

r′3 r′2 r′1 r1 r2 r3 r′3 r′2 r′1 r1 r2 r3

Step 6

Step 6

r′3 r′2 r′1 r1 r2 r3 r′3 r′2 r′1 r1 r2 r3

Step 7

Step 7

r′3 r′2 r′1 r1 r2 r3

Step 8

r′3 r′2 r′1 r1 r2 r3 r′3 r′2 r′1 r1 r2 r3

Step 9

Step 9

r′3 r′2 r′1 r1 r2 r3

Step 10

r′3 r′2 r′1 r1 r2 r3 r′3 r′2 r′1 r1 r2 r3

Step 11

Step 11

r′3 r′2 r′1 r1 r2 r3 r′3 r′2 r′1 r1 r2 r3

Step 12

Figure 4.3: First part of an untangle sequence starting at a 3-butterfly of length 21
illustrating Theorem 4.2.1 and its proof. Each line corresponds to a portion of the
proof, with repetitions added for clarity.
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Step 12

r′3 r′2 r′1 r1 r2 r3

Step 13

r′3 r′2 r′1 r1 r2 r3 r′3 r′2 r′1 r1 r2 r3

Step 14

Step 14

r′3 r′2 r′1 r1 r2 r3

Step 15

r′3 r′2 r′1 r1 r2 r3

Step 16

r′3 r′2 r′1 r1 r2 r3

Step 16

r′3 r′2 r′1 r1 r2 r3

Step 17

r′3 r′2 r′1 r1 r2 r3

Step 17

r′3 r′2 r′1 r1 r2 r3

Step 18

r′3 r′2 r′1 r1 r2 r3

Step 19

r′3 r′2 r′1 r1 r2 r3

Step 19

r′3 r′2 r′1 r1 r2 r3

Step 20

r′3 r′2 r′1 r1 r2 r3

Step 21

r′3 r′2 r′1 r1 r2 r3

Figure 4.4: Second part of an untangle sequence starting at a 3-butterfly of length 21
illustrating Theorem 4.2.1 and its proof. Each line corresponds to a portion of the
proof, with repetitions added for clarity.
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Let L2 be the set of the O(n) lines through two points of C which are consecutive on
the convex hull boundary of C.

Let the potential Φ(S) = χ(S)+ΛL(S). We have the following bounds: 0 ≤ Φ(S) ≤
O(tn2). To complete the proof of Theorem 4.3.1, we show that any flip decreases Φ by
at least 1.

We consider an arbitrary flip f removing the pair of segments p1p3, p2p4 and inserting
the pair of segments p1p4, p2p3. Let o be the point of intersection of p1p3 and p2p4. It is
shown in Lemma 3.1.1 [83] that f never increases the potential Λℓ of a line ℓ. More
precisely, we have the following three cases:

• The potential Λℓ decreases by 1 if the line ℓ separates the final segments p1p4 and
p2p3 and exactly one of the four flipped points belongs to ℓ. We call these lines
f -critical (Figure 4.5(a)).

• The potential Λℓ decreases by 2 if the line ℓ strictly separates the final segments
p1p4 and p2p3. We call these lines f -dropping (Figure 4.5(b)).

• The potential Λℓ remains stable in the remaining cases.

Notice that, if a point q lies in the triangle p1op4, then the two lines qp1 and qp4 are
f -critical (Figure 4.5(a)).

p1
p2

p4 p3

q

ℓ ∈ L1

o

(a)

p1
p2

p4 p3

q o

C

ℓ ∈ L2

(b)

Figure 4.5: (a) An f -critical line ℓ for a flip f removing p1p3, p2p4 and inserting p1p4, p2p3.
This situation corresponds to case (2a) with ℓ ∈ L1. (b) An f -dropping line ℓ. This
situation corresponds to case (2b) with ℓ ∈ L2.

To prove that Φ decreases, we have the following two cases.
Case 1. If χ decreases, as the other term ΛL does not increase, then their sum Φ

decreases as desired.
Case 2. If not, then χ increases by an integer k with 0 ≤ k ≤ n − 1, and we

know that there are k + 1 new crossings after the flip f . Each new crossing involves a
distinct segment with one endpoint, say qi (0 ≤ i ≤ k), inside the non-simple polygon
p1, p4, p2, p3 (Figure 4.5). Next, we show that each point q ∈ {q0, . . . , qk} maps to a
distinct line in L which is either f -dropping or f -critical, thus proving that the potential
ΛL decreases by at least k + 1.

We assume without loss of generality that q lies in the triangle p1op4. We consider
the two following cases.

Case 2a. If at least one among the points q, p1, p4 is not in C, then either qp1 or
qp4 is an f -critical line ℓ ∈ L1 (Figure 4.5(a)).

Case 2b. If not, then q, p1, p4 are all in C, and the two lines through q in L2

are both either f -dropping (the line ℓ in Figure 4.5(b)) or f -critical (the line qp4 in
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Figure 4.5(b)). Consequently, there are more lines ℓ ∈ L2 that are either f -dropping
or f -critical than there are such points q ∈ C in the triangle p1op4, and the theorem
follows.

4.4 Upper Bound for Red-on-a-Line Matchings
In this section we prove the following theorem.

Theorem 4.4.1 ([33]). Consider a set S of n segments with endpoints P partitioned
into n red points and n blue points such that the red points lie on the x-axis, such that
the blue points lie above the x-axis, and such that (P, S) forms a bipartite matching.

In the Redonaline Matching version, any untangle sequence of S is of length at
most

(
n
2

)
n+4
6

= O(n3).
In other words, we have the following upper bound:

d∅
Redonaline Matching(n) ≤

(
n

2

)
n+ 4

6
= O(n3).

To prove Theorem 4.4.1, we define a potential function Φ that maps a red-on-a-line
matching to an integer from 0 to

(
n
2

)
n+4
3

. Since Φ decreases by at least 2 at each flip,
the theorem follows. We first give the definitions needed to present Φ. Then, we prove
four lemmas yielding Theorem 4.4.1.

Let S be a red-on-a-line matching. Let r1, . . . , rn be the red points, from left to
right. Let ℓ be a line, parallel to the line of the red points and above all the points. For
each k in {1, . . . , n}, we project the blue points onto ℓ, using rk as a focal point. More
precisely, each blue point b maps to a point tk(b), the intersection between the ray rkb
and the line ℓ (Figure 4.6(a)). We also define the function tk of a red-blue segment rb
as the segment tk(rb) = rtk(b) (Figure 4.6(b)).

ℓ

r1 r2 r3 r4 r5 r6

b

t3(b)

s

(a)

ℓ

r1 r2 r3 r4 r5 r6

t3(b)

t3(s)

↘ ↙ ↘ ↘↙ ↓w =

(b)

Figure 4.6: (a) The projection tk for k = 3. (b) The segments t3(·). The three 3-observed
crossing 3-pairs are circled.

We may abbreviate a pair of segments rib, rjb′ as ⟨i, j⟩ when the points b and b′ can
be deduced from the underlying matching. Let k be an integer in {1, . . . , n}. We say
that two segments are k-observed crossing if the extended projection tk(·) maps them
to crossing segments (Figure 4.6(b)). A pair of segments ⟨i, j⟩ is a k-pair if i ≤ k ≤ j.
A k-flip is then a flip of a k-pair. We have the following lemma.
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Lemma 4.4.2. A crossing k-pair is necessarily k-observed crossing.

Proof. Let rib, rjb
′ be a crossing k-pair. We suppose, without loss of generality, that

i < j (e.g. i = 2, k = 3, and j = 5 in Figure 4.6).
The fact that the k-pair rib, rjb′ is crossing means that the four points are in convex

position, and that they appear as ri, rj, b, b
′ on their convex hull in counter-clockwise

order. Since i ≤ k ≤ j, the point rk is also on the boundary of the convex hull of the
four points. Therefore, the projection tk(·) will not change the convex-hull order and
the segments ritk(b) and rjtk(b

′) will cross.

We define Φk(S), the k-th potential of S, as the number of k-observed crossing
k-pairs (Figure 4.6(b)). Lemma 4.4.3 shows that the k-th potential Φk is at most
(k− 1)(n− k) + n− 1. Lemma 4.4.4 shows that Φk never increases, and decreases by at
least 1 at each k-flip.

Lemma 4.4.3. The k-th potential Φk takes integer values from 0 to k(n+ 1)− k2 − 1.

Proof. The k-th potential Φk(S) is at most the number of k-pairs in S, crossing or not.
There are exactly (k − 1)(n− k) k-pairs of the form ⟨i, j⟩ with i < k < j. There are
exactly k − 1 k-pairs of the form ⟨i, k⟩ with i < k. There are exactly n− k k-pairs of
the form ⟨k, j⟩ with k < j. In total, there are k(n+ 1)− k2 − 1 k-pairs in S.

Lemma 4.4.4. The k-th potential Φk never increases, and decreases by at least 1 at
each k-flip.

Proof. We order the projected blue points on ℓ from left to right. We then map each
projected blue point tk(b) to an element in {↙, ↓,↘}:

• tk(b) is mapped to ↙ if b is matched to a red point on the left of rk,

• tk(b) is mapped to ↓ if b is matched to rk,

• tk(b) is mapped to ↘ if b is matched to a red point on the right of rk.

Let w = w1 . . . wn be the word on the alphabet {↙, ↓,↘} induced by the order of
the projected blue points and the map. For instance, in Figure 4.6 with k = 3,
w =↘↙↙↘↓↘.

Let the total order of the symbols be ↙ ≺ ↓ ≺ ↘. An inversion in w is a pair
wi, wj with i < j and wj ≺ wi. The inversions in w are in bijection with the k-observed
crossing k-pairs in S. Thus, by definition, Φk(S) is the number of inversions in w.
Lemma 4.4.4 follows from the following two observations.

(i) Any flip which is not a k-flip swaps two ↙ or two ↘ in w, resulting in word w′

identical to w.
(ii) Lemma 4.4.2 ensures that a crossing k-pair corresponds to an inversion in w.

Thus, a k-flip exchanges the two symbols of an inversion in w, resulting in word w′ with
at least one inversion less than in w.

We now define Φ(S), the potential of S, as the sum of Φk(S), for k in {1, . . . , n}.
The following lemma presents the key properties of Φ.
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Lemma 4.4.5. The potential Φ takes integer values from 0 to
(
n
2

)
n+4
3

, and decreases
by at least 2 at each flip.

Proof. We know that Φ takes non-negative integer values by definition. By Lemma 4.4.3,
an upper bound on Φ is

n∑
k=1

(
k(n+ 1)− k2 − 1

)
= (n+ 1)

n∑
k=1

k −
n∑

k=1

k2 − n

= (n+ 1)
n(n+ 1)

2
− n(n+ 1)(2n+ 1)

6
− n

=
n

6
(n2 + 3n− 4)

=

(
n

2

)
n+ 4

3
.

Finally, Lemma 4.4.4 ensures that Φ decreases by at least 2 at each flip. Indeed, a
flip of a pair ⟨i, j⟩ is counted at least twice: once in Φi as an i-flip, and once in Φj as a
j-flip.

Theorem 4.4.1 follows from Lemma 4.4.5.

4.5 Upper Bound without Multiplicity

In this section, we prove the following theorem in the Matching version, yet, the proof
can easily be adapted to the other versions. We recall that two flips are distinct if the
set of the two removed and the two inserted segments of one flip is distinct from the set
with the same definition of the other flip. Note that there exist flip sequences (even in
the Permutation version) using the same flip a linear number of time (Figure 4.7 [19]).

r1 r2 r3

b3b2b1

r2

b2

r1 r2 r3

b3b2b1

r2

b2

r1 r2 r3

b3b2b1

r2

b2

r1 r2 r3

b3b2b1

Figure 4.7: A flip sequence in the Permutation version where the highlighted segment
r2b2 is removed than reinserted using 3 flips and two other segments. A similar sequence
using 3 more flips and 2 more segments (not drawn) also reinsert the segment r1b3. It
is possible to iterate this n−1

4
times, thus removing the segments r2b2, r1b3 using the

same flip n−1
4

+ 1 times. This figure appears in [19].

Theorem 4.5.1 ([30]). Consider a multiset S of n segments with endpoints P .
In the Multigraph version, any untangle sequence of S has at most O(n8/3) distinct

flips.
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The proof of Theorem 4.5.1 is based on a balancing argument from [44] and is
decomposed into two lemmas that consider a flip f and two matchings S and S ′ = f(S).
Similarly to the proof of Theorem 3.1.3 [83], let L be the set of lines defined by all pairs
of points in

(
P
2

)
. For a line ℓ ∈ L, let Λℓ(S) be the number of segments of S crossed

by ℓ and ΛL(S) =
∑

ℓ∈L Λℓ(S). Notice that ΛL(S)− ΛL(S
′) depends only on the flip f

and not on S or S ′. The following lemma follows immediately from the fact that ΛL(S)
takes integer values between 0 and O(n3).

Lemma 4.5.2. For any integer k, the number of flips f in a flip sequence with
ΛL(S)− ΛL(S

′) ≥ k is O(n3/k).

Lemma 4.5.2 bounds the number of flips (distinct or not) that produce a large
potential drop in a flip sequence. Next, we bound the number of distinct flips that
produce a small potential drop. The bound considers all possible flips on a fixed set of
points and does not depend on a particular flip sequence.

Lemma 4.5.3. For any integer k, the number of distinct flips f with ΛL(S)−ΛL(S
′) < k

is O(n2k2).

Proof. Let F be the set of flips with ΛL(S)− ΛL(S
′) < k where S ′ = f(S). We need

to show that |F | = O(n2k2). Consider a flip f ∈ F removing the pair of segments
p1p3, p2p4 and inserting the pair of segments p1p4, p2p3. Next, we show that there are
at most 4k2 such flips with a fixed final segment p1p4. Since there are O(n2) possible
values for p1p4, the lemma follows. We show only that there are at most 2k possible
values for p3. The proof that there are at most 2k possible values for p2 is analogous.

p1

p4
q1

q2

qk

q−1

q−2
q−k

qk−1

q−k+1

...

...

/∈ Q

/∈ Q /∈ Q
/∈ Q

Figure 4.8: Illustration for the proof of Lemma 4.5.3.

We sweep the points in P \ {p4} by angle from the ray p1p4. As shown in Figure 4.8,
let q1, . . . , qk be the first k points produced by this sweep in one direction, q−1 . . . , q−k

in the other direction and Q = {q−k . . . , q−1, q1, . . . , qk}. To conclude the proof, we
show that p3 must be in Q. Suppose p3 /∈ Q for the sake of a contradiction and assume
without loss of generality that p3 is on the side of qi with positive i. Then, consider the
lines L′ = {p1q1, . . . , p1qk}. Notice that L′ ⊆ L, |L′| = k, and for each ℓ ∈ L′ we have
Λℓ(S) > Λℓ(S

′), which contradicts the hypothesis that ΛL(S)− ΛL(S
′) < k.

Theorem 4.5.1 is a consequence of Lemmas 4.5.2 and 4.5.3 with k = n1/3. S



Chapter 5

Untangling with Removal Choice

In this chapter, we first exhibit a bipartite matching on a point set in convex position
such that every of its untangle sequences is long, therefore improving the lower bound
on dR

Convex by a constant factor.
Then, we devise strategies for removal choice to untangle multisets of segments

with endpoints P = C ∪ T (where C is in convex position), therefore providing upper
bounds for several point set versions of dR

Multigraph. Recall that such insertion strategies
choose which pair of crossing segments is removed, but not which pair of segments
with the same endpoints is subsequently inserted. We start with a point set in convex
position (the Convex version), followed by 1 point inside or outside the convex (the
|T| = 1 version), then 1 point inside and 1 outside the convex (the Inout version), 2
points inside the convex (the Inin version), and 2 points outside the convex (the Outout
version). The last three proofs are somewhat similar but the proof of the Inout version
is quite less tedious. As only removal choice is used, all results also apply to all the flip
versions.

5.1 Lower Bound for Convex Bipartite Matchings

In this section, we prove the following linear lower bound on dR
Convex Bipartite Matching.

Theorem 5.1.1. Let n be an even non-negative integer. There exist a set S of n
segments with endpoints P in convex position partitioned into n red points and n blue
points, such that (P, S) forms a bipartite matching, and such that (in the Convex

Bipartite Matching version) any untangle sequence of S is of length 3
2
n− 2.

In particular, we have the following lower bound (for even n):

dR
Convex Bipartite Matching(n) ≥

3

2
n− 2 = Ω(n).

To prove Theorem 5.1.1, we need to show that every untangle sequence starting at
a given configuration (represented in Figure 5.1) is long enough. We do so by showing
that every flip reduces the number of crossings by exactly 1.

We provide a convex bipartite matching which we call an m-fence, with 2m segments
and 3m− 2 crossings (Figure 5.1). Next, we give the precise definition of an m-fence,
together with some useful terminology. Then, we prove Theorem 5.1.1 with three

67
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q1

p1
p3p4 p5p6 p7p8
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q5 q6 q7 q8 q9 q10

q12

Figure 5.1: A 5-fence to lower bound dR(10).

lemmas inferring that all untangle sequences starting at an m-fence have length 3m− 2,
that is, each flip reduces the number of crossings by exactly 1.

Fence. Let q2m+2, q2m, q2m−1, . . . , q4, q3, q1, p1, p3, p4, . . . , p2m−1, p2m, p2m+2 be 4m
points in convex position, ordered counter-clockwise, and with colors alternating every
two points (Figure 5.1). More precisely, points pi, qi are red if i ≡ 1, 2 mod 4 and
blue otherwise. We deliberately avoid using the indices 2 and 2m+ 1 to simplify the
description. The segments of an m-fence are the piqi+3 and the qipi+3 where i is odd
and varies between 1 and 2m− 1.

For 1 ≤ k ≤ m+ 1, the k-th column consists of the at most 4 points with indices
2k − 1 and 2k. We say that a convex bipartite matching with the same point set as
an m-fence is a derived m-fence if, for all k ∈ {2, . . . ,m}, for all w ∈ {p, q}, one of the
following statements holds:

1. w2k−1 is matched to a point of the (k − 1)-th column, and w2k is matched to a
point of the (k + 1)-th column, or

2. w2k−1 is matched to a point of the (k + 1)-th column, and w2k is matched to a
point of the (k − 1)-th column.

Five examples of derived m-fences are presented in Figure 5.2. Note that an m-fence
is in particular a derived m-fence.

When statement 2 holds, the two segments cross. We call such a crossing an end
crossing. Similarly, a middle crossing is a crossing of the form {piqj, qi′pj′}, where i
and i′ are of the same column, and j and j′ are of the same column.

Proof of Theorem 5.1.1. To prove Theorem 5.1.1, we first show with two lemmas
that a flip changes a derived m-fence into another derived m-fence. Finally, we show
that a flip of a derived m-fence reduces its number of crossings by exactly 1.

Lemma 5.1.2. A crossing in a derived m-fence is either an end crossing or a middle
crossing.

Proof. The definition of a derived m-fence implies that a crossing must involve two or
three consecutive columns. If exactly three columns are involved, the same definition
excludes any crossing aside from the end crossings. If exactly two columns are involved,
the definition again excludes any crossing aside from the middle crossings.
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Figure 5.2: The beginning of an untangle sequence starting at a 5-fence. It is composed
of derived 5-fences.

Lemma 5.1.3. A flip changes a derived m-fence into another derived m-fence. In
other words, the class of derived m-fences is closed under flip operations.

Proof. Lemma 5.1.2 ensures that we only have the following two cases. (i) The flip
of an end crossing on the w0 side (w0 ∈ {p, q}) of the k0-th column only changes
statement 2 of the definition of a derived m-fence into statement 1 for k, r = k0, r0. The
statements for the other k, r are unchanged. (ii) The flip of a middle crossing simply
leaves unchanged the statements for all k, r.

Figure 5.2 is actually a sequence of flips starting at an m-fence and it contains
essentially all the possible cases (symmetries aside).

Lemma 5.1.4. A flip of a derived m-fence reduces its number of crossings by exactly 1.

Proof. Let S be a derived m-fence. Let s1 and s2 be two crossing segments of S. Let
s be any other segment of S. Let s′1 and s′2 be the two segments replacing s1 and s2
after they have been flipped, changing S into S ′. We show that the number of crossings
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between s and s1, s2 is the same as between s and s′1, s
′
2, ensuring that S ′ has exactly 1

crossing less than S.
Let us recall that, as for any convex matching, the number of crossings cannot

increase (Lemma 3.2.3 [17]). The proof of this result consists of the analysis of the
five possible typical convex matchings (symmetries aside) of the three segments s1, s2, s
(Figure 5.3). It is notable that only one of these five matchings, the one where each
endpoint of s lies in between two endpoints of s1, s2 of the same color, corresponds
to an actual decrease in the number of crossings involving s (the rightmost case in
Figure 5.3).

s1 s2
s′2s′1

s

s1 s2
s′2s′1

s

s1 s2
s′2s′1

s

s1 s2
s′2s′1

s

s1 s2
s′2s′1

s

Figure 5.3: The five convex positions of s with respect to the flipping pair s1, s2 in the
Bipartite version (the endpoints of the segment s may be either red or blue). This is
used in the proof of Lemma 5.1.4.

This crossing-destructive case cannot occur if two endpoints of s1, s2 of the same
color are adjacent on the convex hull. Thus, Lemma 5.1.4 holds for flips of end crossings.

If s1, s2 is a middle crossing, then, by definition of a derived m-fence, no segment
s intersects both s1 and s2. Thus, the crossing-destructive case cannot occur, and
Lemma 5.1.4 holds for flips of middle crossings.

Theorem 5.1.1 follows from Lemma 5.1.3 and Lemma 5.1.4.

5.2 Upper Bound for Convex Position

Let P = C = {p1, . . . , p|C|} be a set of points in convex position sorted in counter-
clockwise order along the convex hull boundary and consider a set of segments S with
endpoints P . Given a segment papb and assuming without loss of generality that a < b,
we define the crossing depth δ×(papb) as the number of points in pa+1, . . . , pb−1 that are
an endpoint of a segment in S that crosses any other segment in S (not necessarily
papb). This definition is also in Chapter 3. We use the crossing depth to prove an
O(n log n) bound in the Convex Multigraph version.

Theorem 5.2.1 ([31]). Consider a multiset S of n segments with endpoints P = C in
convex position.

In the Convex Multigraph version, there exists a removal strategy such that for
any insertion strategy, the resulting untangle sequence of S is of length O(n log |C|) =
O(n log n).

In other words, we have the following upper bound:

dR
Convex Multigraph(n) = O(n log |C|) = O(n log n).
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Figure 5.4: Proof of Theorem 5.2.1. (a) The segments of a convex multigraph are
labeled with the crossing depth. (b,c) Two possible pairs of inserted segments, with one
segment of the pair having crossing depth
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Proof. We repeat the following procedure until there are no more crossings. Let papb ∈ S
be a segment with crossings (hence, crossing depth at least one) and a < b minimizing
δ×(papb) (Figure 5.4(a)). Let q1, . . . , qδ×(papb) be the points defining δ×(papb) in order
and let i = ⌈δ×(papb)/2⌉. Since papb has minimum crossing depth, the point qi is the
endpoint of segment qipc that crosses papb. When flipping qipc and papb, we obtain a
segment s (either s = qipa or s = qipb) with δ×(s) at most half of the original value of
δ×(papb) (Figure 5.4(b,c)). Hence, this operation always divides the value of the smallest
positive crossing depth by at least two. As the crossing depth is an integer smaller than
|C|, after performing this operation O(log |C|) times, it produces a segment of crossing
depth 0. As the segments of crossing depth 0 can no longer participate in a flip, the
claimed bound follows.

5.3 Upper Bound for Convex Trees
In this section, we prove the following linear upper bound in the Convex Tree version.

Theorem 5.3.1. Consider a set S of n segments with endpoints P = C in convex
position such that (P, S) forms a tree.

In the Convex Tree version, for n ≥ 3 there exists an untangle sequence of S of
length at most 3n− 8 = O(n).

In other words, we have the following upper bound:

dR
Convex Tree(n) ≤ 3n− 8 = O(n) for n ≥ 3.

The proof of Theorem 5.3.1 has the same structure as the proof of Theorem 3.2.7.
It relies on the following two lemmas.

Lemma 5.3.2. Consider a set S of segments with endpoints P such that (P, S) forms
a tree.

If there exists a segment papb ∈ S and a point q ∈ P of degree at least 2 such that all
the segments of S incident to q cross the segment papb, then there exists a point pc ∈ P
such that qpc ∈ S and such that the flip (in the Tree version) removing the segments
papb, qpc inserts the segment paq.

Proof. Let pd be a point in P such that qpd ∈ S and such that the flip (in the Tree

version) removing the segments papb, qpd does not insert the segment paq. By definition
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of a flip in the Tree version, the unique path uq→pa connecting q to pa in the tree (P, S)
(before the flip) includes either none or both of the segments papb, qpd (to avoid forming
a cycle with the inserted segments).

Case 1: uq→pa includes none. In the case where uq→pa includes none of the segments
papb, qpd, then let qpc be the first segment of uq→pa (starting at the point q). This
segment qpc crosses the segment papb by hypothesis. The path uq→pa includes the
segment qpc but not the segment papb. Thus, by definition of a flip in the Tree version,
the flip removing the segments papb, qpc inserts the segment paq.

Case 2: uq→pa includes both. In the case where uq→pa includes both of the segments
papb, qpd, then let qpc be any other segment adjacent to q. Such a segment exists since
the point q has degree at least 2. The path uq→pa includes the segment papb but not
the segment qpc. Thus, by definition of a flip in the Tree version, the flip removing the
segments papb, qpc inserts the segment paq.

Lemma 5.3.3. Any set S of n segments with endpoints P in convex position such that
(P, S) forms a tree admits an uncrossable segment s ∈ S after at most 2 flips (in the
Convex Tree version).

Proof. We assume that S contains no segment of null crossing depth. Let p1, . . . , p|P |
be the points of P sorted in counterclockwise order along the convex hull boundary.
Let papb ∈ S (a < b) be a segment with crossings (hence, of crossing depth at least
one) minimizing δ×(papb). Let q1, . . . , qδ×(papb) be the points defining δ×(papb) sorted
in counterclockwise order along the convex hull boundary. Since papb has minimum
positive crossing depth, and since we assume that S contains no segment of null crossing
depth, all the segments with at least one endpoint in q1, . . . , qδ×(papb) cross the segment
papb. We use 1 or 2 flips to insert one of the segments q1pa, qδ×(papb)pb.

Case 1: using 1 flip. This case is defined as all the situations where one flip is
enough to insert one of the segments q1pa, qδ×(papb)pb. Formally, there is nothing to
prove. Note that, by Lemma 5.3.2, Case 1 covers all the situations where at least one
of q1, qδ×(papb) has degree more than 1.

Case 2: using 2 flips. This case is defined as the complement of Case 1. Therefore,
both q1 and qδ×(papb) have degree exactly 1. Let pc ∈ P (respectively pd ∈ P ) be the
other endpoint of the segment adjacent to q1 (respectively to qδ×(papb)). We choose to
remove the segments q1pc, papb. By definition of Case 2, this flip inserts the segments
q1pb, papc. We now choose to remove the segments q1pb, qδ×(papb)pd. As the segment
q1qδ×(papb) would not preserve the Tree property if inserted, this flip inserts the segment
qδ×(papb)pb which has null crossing depth.

Proof of Theorem 3.2.7. For induction purpose, let f(n) be the length of the untangle
sequence of S in the statement of Theorem 3.2.7 for n segments.

If n = 3, then f(n) = 1 = 3n− 8.
If n ≥ 4, and if f(n− 1) ≤ 3(n− 1)− 8, then, by Lemma 5.3.3, using at most 2 flips

ensures that there exists at least one segment s in S contained in the boundary of the
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convex hull of P . We invoke the induction hypothesis on the tree with n− 1 segments
obtained from S by contracting the segment s to a point. The resulting flip sequence
also transforms S into a tree where only the two segments adjacent to s may cross. A
final flip is enough to fully untangle S. The total number of flips use to untangle S is

f(n) ≤ 3 + f(n− 1) ≤ 3 + 3(n− 1)− 8 = 3n− 8,

concluding the induction.

5.4 Upper Bound for One Point Inside or Outside a
Convex

In this section, we prove Theorem 5.4.2, in which we assume that the multiset of
segments to be untangled has no crossing pair of CC-segments (the segments with
both endpoints in C where C is a subset of the endpoints which is in convex position),
possibly after having untangled the CC-segments using one of the theorems of the
Convex version. In the Cycle version (Theorem 3.2.7 [72] and Theorem 3.2.9 [85]) and
in the Bipartite Matching version (Theorem 3.2.10 [18]), the preprocessing to untangle
CC-segments takes O(n) flips. However, in the Tree version (Theorem 3.2.11 [18]) and
in general (Theorem 5.2.1 [31]), the best bound known is O(n log n). We first state a
lemma used to prove Theorem 5.4.2.

Lemma 5.4.1 ([31]). Consider a set C of points in convex position, and a multiset S
of n crossing-free segments with endpoints in C. Consider the multiset S ∪ {s} where s
is an extra segment with one endpoint in C and one endpoint q anywhere in the plane.

In the |T| = 1 Multigraph version, there exists a removal strategy such that, for
any insertion strategy, the resulting untangle sequence of S ∪ {s} is of length O(n).

Proof. Iteratively flip the segment qp1 with the segment p2p3 ∈ S crossing qp1 the
farthest from q. This flip inserts a CC-segment p1p2, which is impossible to flip again,
because the line p1p2 is crossing free. The flip does not create any crossing between
CC-segments.

We are now ready to state and prove the theorem.

Theorem 5.4.2 ([31]). Consider a multiset S of n segments with endpoints P partitioned
into P = C ∪ T where C is in convex position, and T = {q}, and such that S has no
crossing pair of CC-segments (the segments with both endpoints in C), possibly after
having untangled the CC-segments using one of the theorems of the Convex version.
We define the parameter t as the sum of the degrees of the points in T .

In the |T| = 1 Multigraph version, there exists a removal strategy such that for any
insertion strategy, the resulting untangle sequence of S is of length O(tn).

In particular (using Theorem 5.2.1 to preprocess CC-segments), we have the following
upper bound:

dR
|T|=1 Multigraph(n, t) = O(n log |C|+ tn) = O(n log n+ tn).
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Proof. For each segment s with endpoint q with crossing, we apply Lemma 5.4.1 to s
and the CC-segments crossing s. Once a segment s incident to q is crossing free, it
is impossible to flip it again as we fall in one of the following cases. Let ℓ be the line
containing s.

Case 1: If ℓ is crossing free, then ℓ splits (see Lemma 2.6.1 [19, 31]) the multigraph
in three partitions: the segments on one side of ℓ, the segments on the other side of ℓ,
and the segment s itself.

Case 2: If ℓ is not crossing free and q is outside the convex hull of C, then s is
uncrossable (see the splitting lemma, i.e., Lemma 2.6.1 [19, 31]).

Case 3: If q is inside the convex hull of C, then introducing a crossing on s would
require that q lies in the interior of the convex quadrilateral whose diagonals are the
two segments removed by a flip. The procedure excludes this possibility by ensuring
that there are no crossing pair of CC-segments, and, therefore, that one of the removed
segment already has q as an endpoint.

Therefore, we need at most n flips for each of the t segments incident to q.

5.5 Upper Bound for One Point Inside and One Point
Outside a Convex

Given an endpoint p, let d◦(p) denote the degree of p, that is, the number of segments
incident to p. The following lemma is used to prove Theorem 5.5.2.

Lemma 5.5.1. Consider a multiset S of n segments with endpoints P partitioned into
P = C ∪ T where C is in convex position, and T = {q, q′} such that q is outside the
convex hull of C and q′ is inside the convex hull of C. Consider that q is the endpoint
of a single segment s in S and that all the crossings of S are on s. We define the
parameter t as the sum of the degrees of the points in T , i.e., t = d◦(q′) + 1.

In the Inout Multigraph version, there exists a removal strategy such that, for any
insertion strategy, the resulting flip sequence starting at S is of length O(tn) and ends
with a multiset of segments where with all crossings (if any) are on the segment qq′ (if
qq′ /∈ S then there are no crossings).

Proof. We proceed as follows, while s has crossings. For induction purpose, let f(n) be
the length of the flip sequence in the lemma statement for n segments. Let s′ be the
segment that crosses s at the point farthest from q. We flip s and s′, arriving at one of
the three cases below (Figure 5.5).

ℓ
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s
q′

s′

Case 1

C
q

s q′

s′

Case 2

C
q

s
q′

p
s′

Case 3

Figure 5.5: The three cases in the proof of Lemma 5.5.1.
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Case 1 (CT×CC). In this case, the segment s′ is a CC-segment. Notice that the
line ℓ containing s′ becomes crossing free after the flip. There are segments on both
sides of ℓ. If ℓ separates q, q′, then we untangle both sides independently (see the
splitting lemma, i.e., Lemma 2.6.1 [19, 31]) using O(n) and O(tn) flips (Theorem 5.4.2).
Otherwise, the segments on one side of ℓ are already crossing free (because of the specific
choice of s′) and we inductively untangle the n′ ≤ n− 1 segments on the other side of ℓ
using f(n′) flips.

Case 2 (CT×CT → CC,TT). If s′ is a CT -segment and one of the inserted
segments is the TT -segment qq′, then the procedure is over as all crossings are on qq′.

Case 3 (CT×CT → CT,CT). In this case two CT -segments are inserted. Let
p ∈ C be an endpoint of s = qp. Since the inserted CT -segment q′p is crossing free,
Case 3 only happens O(t) times before we arrive at Case 1 or Case 2.

Putting the three cases together, we obtain the recurrence

f(n) ≤ O(t) + f(n′), with n′ ≤ n− 1,

which solves to f(n) = O(tn), as claimed.

We are now ready to prove the theorem.

Theorem 5.5.2 ([31]). Consider a multiset S of n segments with endpoints P partitioned
into P = C ∪ T where C is in convex position, and T = {q, q′} such that q is outside
the convex hull of C and q′ is inside the convex hull of C. We define the parameter t as
the sum of the degrees of the points in T , i.e., t = d◦(q) + d◦(q′).

In the Inout Multigraph version, there exists a removal strategy such that for any
insertion strategy, the resulting untangle sequence of S is of length O(d◦(q)d◦(q′)n +
dconv(n)) = O(t2n + dconv(n)), where dconv(n) is the number of flips to untangle any
multiset of at most n segments with endpoints in convex position.

In particular (using Theorem 5.2.1 for dconv(n)), we have the following upper bound:

dR
Inout Multigraph(n, t) = O(d◦(q)d◦(q′)n+ n log n) = O(t2n+ n log n).

Proof. The untangle sequence contains four phases.
Phase 1 (CC×CC). In this phase, we remove all crossings between pairs of

CC-segments using dconv(n) flips. Throughout all the phases, the invariant that no pair
of CC-segments crosses is preserved.

Phase 2 (Cq′ ×CC). In this phase, we remove all crossings between pairs composed
of a CC-segment and a CT -segment incident to q′ (the point inside the convex hull of
C) using O(tn) flips by Theorem 5.4.2.

Phase 3 (Cq). At this point, all crossings involve a segment incident to q. In this
phase, we deal with all remaining crossings except the crossings involving the segment
qq′. The splitting lemma (Lemma 2.6.1 [19, 31]) allows us to remove the crossings in
each CT -segment s incident to q independently, which we do using O(d◦(q′)n) flips
using Lemma 5.5.1. As there are d◦(q) CT -segments adjacent to q, the total number of
flips is O(d◦(q)d◦(q′)n) = O(t2n).



76 CHAPTER 5. UNTANGLING WITH REMOVAL CHOICE

Phase 4 (CC×TT). At this point, all crossings involve the TT -segment qq′. The
endpoints in C that are adjacent to segments with crossings, together with q′, are all in
convex position. Hence, the only endpoint not in convex position is q, and we apply
Theorem 5.4.2 using O(tn) flips.

After the dconv(n) flips in Phase 1, the number of flips is dominated by Phase 3 with
O(d◦(q)d◦(q′)n) = O(t2n) flips.

Notice that, in certain cases (for example in the red-blue case with q, q′ having
different colors) a flip between two CT -segments never produces two CT -segments.
Consequently, Case 3 of the proof of Lemma 5.5.1 never happens, and the bound in
Theorem 5.5.2 decreases to O(dconv(n) + tn).

5.6 Upper Bound for Two Points Inside a Convex

We prove a similar theorem for two points inside the convex hull of C.

Theorem 5.6.1 ([31]). Consider a multiset S of n segments with endpoints P partitioned
into P = C ∪ T where C is in convex position, and T = {q, q′} such that q and q′ are
inside the convex hull of C. We define the parameter t as the sum of the degrees of the
points in T .

In the Inin Multigraph version, there exists a removal strategy such that for any
insertion strategy, the resulting untangle sequence of S is of length O(tn + dconv(n)),
where dconv(n) is the number of flips to untangle any multiset of at most n segments
with endpoints in convex position.

In particular (using Theorem 5.2.1 for dconv(n)), we have the following upper bound:

dR
Inin Multigraph(n, t) = O(tn+ n log n).

Proof. The untangle sequence is decomposed in five phases. At the end of each phase, a
new type of crossings is removed, and types of crossings removed in the previous phases
are not present, even if they may temporarily appear during the phase.

Phase 1 (CT×CT). In this phase, we remove all crossings between pairs of
CT -segments using O(dconv(t)) = O(dconv(n)) flips. We separately solve two convex
sub-problems defined by the CT -segments, one on each side of the line qq′.

Phase 2 (CC×CC). In this phase, we remove all crossings between pairs of
CC-segments using O(dconv(n)) flips. As no CT -segment has been created, there is still
no crossing between a pair of CT segments. Throughout, our removal will preserve the
invariant that no pair of CC-segments crosses.

Phase 3 (CT× non-central CC). We distinguish between a few types of CC-
segments. The central CC-segments cross the segment qq′ (regardless of qq′ being in S
or not), while the non-central do not. The peripheral CC-segments cross the line qq′

but not the segment qq′, while the outermost CC-segments do not cross either. In this
phase, we remove all crossings between CT -segments and non-central CC-segments.

Given a non-central CC-segment pp′, let the out-depth of a segment pp′ be the
number of points of C that are contained inside the halfplane bounded by the line pp′

and not containing T . Also, let χ be the number of crossings between the non-central
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CC-segments and the CT -segments. At the end of each step the two following invariants
are preserved. (i) No pair of CC-segments crosses. (ii) No pair of CT -segments crosses.

At each step, we choose to flip the non-central CC-segment pp′ of minimum out-depth
that crosses a CT -segment. We flip pp′ with the CT -segment q′′p′′ (with q′′ ∈ {q, q′})
that crosses pp′ at the point closest to p (Figure 5.6(a) and Figure 5.7(a)). One of the
possibly inserted pairs may contain a CT -segment s that crosses another CT -segment s′,
violating the invariant (ii) (Figure 5.6(b) and Figure 5.7(b)). If there are multiple such
segments s′, then we consider s′ to be the segment whose crossing with s is closer to q′′.
We flip s and s′ and obtain either two CT -segments (Figure 5.6(c) and Figure 5.7(c))
or a CC-segment and the segment qq′ (Figure 5.6(d) and Figure 5.7(d)). The analysis
is divided in two main cases.
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Figure 5.6: Theorem 5.6.1, Phase 3 when pp′ is an outermost segment.

If pp′ is an outermost CC-segment (see Figure 5.6), then case analysis shows that
the two invariants are preserved and χ decreases.
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Figure 5.7: Theorem 5.6.1, Phase 3 when pp′ is a peripheral segment.

If pp′ is a peripheral CC-segment (see Figure 5.7), then a case analysis shows that
the two invariants are preserved and χ has the following behavior. If no CC-segment is
inserted, then χ decreases. Otherwise a CC-segment and a TT -segment are inserted
and χ may increase by O(t) (Figure 5.7(d)). Notice that the number of times the
TT -segment qq′ is inserted is O(t), which bounds the total increase by O(t2).

As χ = O(tn), the total increase is O(t2), and χ decreases at all but O(t) steps, we
have that the number of flips in Phase 3 is O(tn).

Phase 4 (CT×CCcentral). At this point, each crossing involves a central CC-
segment and either a CT -segment or the TT -segment qq′. In this phase, we remove all
crossings between CT -segments and central CC-segments, ignoring the TT -segments.
This phase ends with crossings only between qq′ and central CC-segments.

Given four endpoints q′′ ∈ T , p, p′′ ∈ C, and x ∈ C ∪ T , we say that a pair of
segments p′′q′′, xp ∈ S crossing at a point o contains an ear p̂p′′ if the interior of the
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Figure 5.8: Theorem 5.6.1, Phase 4. (a) A pair of CT -segments with an ear. (b) A
CC-segment and a CT -segment with an ear. (c) Flipping an ear that produces crossing
pairs of CT -segments. (d) Flipping an ear that inserts a non-central CC-segment with
crossings.

triangle pp′′o intersects no segment of S (see Figure 5.8(a) and 5.8(b)). Every set of
segments with endpoints in C ∪ T with |T | = 2 that has crossings (not involving the
TT -segment) contains an ear (adjacent to the crossing that is farthest from the line
qq′).

At each step, we flip a pair of segments p′′q′′, xp that contains an ear p̂p′′, prioritizing
pairs where both segments are CT -segments. Notice that, even though initially we did
not have crossing pairs of CT -segments, they may be produced in the flip (Figure 5.8(c)).
If the flip inserts a non-central CC-segment which crosses some CT -segments (Fig-
ure 5.8(d)), then, we perform the following while loop. Assume without loss of generality
that qq′ is horizontal and s is closer to q′ than to q. While there exists a non-central
CC-segment s with crossings, we flip s with the CT -segment s′ crossing s that comes
first according to the following order. As a first criterion, a segment incident to q comes
before a segment incident to q′. As a second tie-breaking criterion, a segment whose
crossing point with s that is farther from the line qq′ comes before one that is closer.

Let χ = O(tn) be the number of crossings between central CC-segments and CT -
segments plus the number of crossings between CT -segments. A case analysis shows
that the value of χ decreases at each step. If no non-central CC-segment is inserted,
then the corresponding step consists of a single flip. As χ decreases, there are O(tn)
steps that do not insert a non-central CC-segment.

However, if a non-central CC-segment is inserted, at the end of the step we inserted
a CC-segment that is uncrossable (see the splitting lemma, i.e., Lemma 2.6.1 [19, 31]).
As the number of CC-segments is O(n), we have that the number of times the while
loop is executed is O(n). Since each execution of the while loop performs O(t) flips, we
have a total of O(tn) flips in this phase.

Phase 5 (TT×CCcentral). In this phase, we remove all crossings left, which are
between the possibly multiple copies of the TT -segment qq′ and central CC-segments.
The endpoints of the segments with crossings are in convex position and all other
endpoints are outside their convex hull. Hence, by the splitting lemma (Lemma 2.6.1 [19,
31]), it is possible to obtain a crossing-free multigraph using O(dconv(n)) flips.
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5.7 Upper Bound for Two Points Outside a Convex
In this section, we prove a theorem with a bound that is exponential in t, which makes
it of little interest for large t. Notice, however, that in matchings t ≤ 2, in a TSP tour
t ≤ 4, and in a binary tree t ≤ 6. Also notice that the definition of t is different from
other theorems (here TT -segments are counted twice). Both definitions are equivalent
up to a factor of 2, but since t appears in the exponent, they are not exchangeable.

Theorem 5.7.1 ([31]). Consider a multiset S of n segments with endpoints P partitioned
into P = C ∪ T where C is in convex position, and T = {q, q′} such that q and q′ are
outside the convex hull of C. We define the parameter t as the sum of the degrees of the
points in T .

In the Outout Multigraph version, there exists a removal strategy such that for
any insertion strategy, the resulting untangle sequence of S is of length O(2tdconv(n)),
where dconv(n) is the number of flips to untangle any multiset of at most n segments
with endpoints in convex position.

In particular (using Theorem 5.2.1 for dconv(n)), we have the following upper bound:

dR
Outout Multigraph(n, t) = O(2tn log n).

Proof. Throughout this proof, we partition the TT -segments respectively the CT -
segments into two types: TTin-segment and CTin-segment if it intersects the interior of
the convex hull of C and TTout-segment and CTout-segment otherwise. Let f(t) be the
number of flips to untangle a multiset S as in the statement of the theorem. The proof
proceeds by induction. The base case is t = 0, when f(0) ≤ dconv(n) by definition of
dconv(n).

Next, we show how to bound f(t) for t > 0, but first we need some definitions.
A T -segment is a segment of S with at least one of its endpoints in T . A line ℓ is a
T -splitter if ℓ splits S and either ℓ contains a T -segment or there are T -segments on
both sides of ℓ. We abusively say that a segment s is a T -splitter if the line containing
s is a T -splitter. A T -splitter is useful because we can apply the splitting lemma
(Lemma 2.6.1 [19, 31]) and solve sub-problems with a lower value of t by induction.

Phase 1: untangle all but one segment by induction. We remove an arbitrary
CT -segment or TT -segment s from S. We then use induction to untangle S using
f(t− 1) flips and insert the segment s back in S afterwards. Notice that all crossings
are now on s.

Phase 2.1: apply induction if possible. If S admits a T -splitter ℓ, then we apply
the splitting lemma (Lemma 2.6.1 [19, 31]) to solve each side of ℓ independently using
induction.

If S has a crossing-free TTout-segment qq′ such that the line qq′ is not crossing
free, then qq′ is uncrossable, and we remove qq′ from S and untangle S by induction.
Similarly, in the case where T = {q, q′} and where qq′ is a TTin-segment, if S has a
CTout-segment, say pq, then pq is uncrossable, and we remove pq from S and untangle
S by induction.

In all the three cases of Phase 2.1 we get f(t) ≤ f(t − 1) + f(t1) + f(t2), where
t1 + t2 ≤ t and t1, t2 ≥ 1.
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Phase 2.2: split after one flip. If S contains no T -splitter and if s is a TT -segment,
then there remains no CT -segment in S (as every CT -segment shares an endpoint
with the TT -segment s that contains all crossings), and s crosses a CC-segment s′.
A crossing-free CT -segment would either be a CTin-segment, hence a T -splitter, or a
CTout-segment and, hence uncrossable and removed by one of the induction cases of
Phase 2.1.

The segment s′ becomes a T -splitter after flipping s with s′, and we invoke induction.
By the splitting lemma (Lemma 2.6.1 [19, 31]), we get in this case f(t) ≤ f(t− 1) + 1+
f(t1) + f(t2), where t1 + t2 ≤ t and t1, t2 ≥ 1.

Phase 2.3: split after O(n) flips. In this case, S contains no T -splitter and s is a
CT -segment, say with q as its endpoint in T . While s′, the segment of S that crosses s
the farthest away from q, is a CC-segment, we flip s and s′ and we set s to be the newly
inserted CT -segment incident to q. By Lemma 5.4.1, at most n flips are performed in
this loop.

At the end of the loop, either s is crossing free, or s′ is a CT -segment, say with q′

as its endpoint in T . Then, we also flip s and s′.
Insertion case 1: If two CT -segments are inserted, then, either one of them is

uncrossable (this is the case if s′ is a CTout-segment), or s′ is now a T -splitter (recall that
if qq′ is a TTin-segment, then all the CTout-segments have been removed at Phase 2.1.).

Insertion case 2: If the TT -segment qq′ is inserted, then the inserted CC-segment
is crossing free (as in the proof of Lemma 5.4.1), and, if qq′ is not already crossing free,
we flip qq′ with any segment, say pp′.

Next, we split S as follows. Among the CTin-segments of S which are on the
upper (respectively lower) side of the line qq′, consider the one whose endpoint pupper

(respectively plower) in C is the closest to the line qq′. The segments of S are either
inside or outside the convex quadrilateral qplowerq

′pupper, and we know that only the
segments inside may have crossings. By the splitting lemma (Lemma 2.6.1 [19, 31]), we
remove from S all the segments outside qplowerq

′pupper. Recall that, in our case, qq′ is a
TTin-segment, and all the CTout-segments have been removed at Phase 2.1. The line
pp′ is finally a T -splitter. Again, by the splitting lemma (Lemma 2.6.1 [19, 31]), we get
in this case f(t) ≤ f(t− 1) + n+ 2 + f(t1) + f(t2), where t1 + t2 ≤ t and t1, t2 ≥ 1.

The last bound on f(t) dominates the recurrence. Using that f(t1) + f(t2) ≤
f(t− 1) + f(1) and t < n we get

f(t) ≤ f(t− 1) + n+ 2 + f(t1) + f(t2) ≤ O(n) + 2f(t− 1),

which solves to f(t) = O(2tdconv(n)) as claimed.

5.8 Upper Bound for Red-on-a-Line Matchings
In this section, we prove the following upper bound.

Theorem 5.8.1 ([33]). Consider a set S of n segments with endpoints P partitioned
into n red points and n blue points such that the red points lie on the x-axis, such that
the blue points lie above the x-axis, and such that (P, S) forms a bipartite matching.
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In the Redonaline Matching version, there exists an untangle sequence of S of
length at most

(
n
2

)
= O(n2).

In other words, we have the following upper bound:

dR
Redonaline Matching(n) ≤

(
n

2

)
= O(n2).

The proof consists of the analysis of the number of flips performed by the recursive
algorithm described next. This analysis is based on a novel approach called state
tracking. State tracking is in fact not specific to the red-on-a-line case, which is why
Lemma 5.8.2 is stated and proven in the non-bipartite setting. Lemma 5.8.2 is then
used in the red-on-a-line case to prove Lemma 5.8.3, which in turn is used to prove
Theorem 5.8.1. Lemma 5.8.2 also provides an alternative proof of the well-known
Theorem 3.2.2 [17], which we present at the end of this section.

Throughout, we assume general position (no two blue points with the same y-
coordinate). Let the top segment of a red-on-a-line matching be the segment with the
topmost blue endpoint (Figure 5.9(a)).
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Figure 5.9: (a) A red-on-a-line matching with s1 as the top segment. (b) The matching
just before the first recursive calls of the algorithm, where s1 is uncrossable.

Algorithm. While the top segment s1 of the matching crosses another segment s2,
we flip s1 and s2. If multiple segments cross s1, then we choose s2 as the top segment
among the segments crossing s1.

The previous loop stops when the top segment s1 has no crossings. At this point,
we have that s1 splits (Lemma 2.6.1 [19, 31]) the matching into at most two non-empty
submatchings, one to each side of s1. We recursively call the algorithm on these
submatchings (Figure 5.9(b)).

Flip Complexity. The analysis of the number of flips performed by the algorithm
stems from the following observations. We define three possible states for a pair of
segments (Figure 5.10).

• State X: the segments are crossing.

• State H: the segments are not crossing and their endpoints are in convex position.

• State T: the endpoints are not in convex position.
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X H T

Figure 5.10: The three different states of pairs of segments.

In the convex case, there are no T-states and a flip increases the number of H-pairs
by at least 1, and decreases the number of X-pairs as well. Hence, counting either X or
H-pairs yields the

(
n
2

)
upper bound on d∅

Convex Multigraph(n) (see below the alternative
proof of Theorem 3.2.2 [17]). However, when the points are not in convex position,
counting H and X-pairs is fundamentally different. We will see that counting H-pairs
is more useful to prove the desired bounds.

When the points are not in convex position, a flip may decrease the number of
H-pairs. Figure 5.11 shows two such situations where flipping s1, s2 does not increase
the number of H-pairs. There is one H-pair involving segment s before the flip, and
none after the flip. Notice that, if we added multiple segments close to s, the number
of H-pairs would actually decrease. However, the algorithm avoids these situations by
choosing to flip top segments. The full proof involves state tracking, a novel approach
to analyze flip sequences, which is described next.

s
s1

s2
s′2

s′1
s

s1
s2

s′2

s′1

(a)
s, s1: H
s, s2: X
s1, s2: X

s, s′2: T
s, s′1: X
s′1, s

′
2: H

(b)
s, s1: H
s, s2: T
s1, s2: X

s, s′1: T
s, s′2: T
s′1, s

′
2: H

Figure 5.11: Two cases where flipping s1, s2 does not increase the number of H-pairs.
The upper cone of s1, s′2 is shaded.

State Tracking. We have
(
n
2

)
pairs of segments before and after a flip. Each pair

has an associated state. However, since two segments change in the matchings, there is
no clear correspondence between the state of each pair before and after the flip. State
tracking establishes this correspondence by making choices of which pair of segments in
the initial matching corresponds to which pair of segments in the resulting matching.
These choices are performed deliberately to obtain certain state transitions instead of
others and prove the desired bounds.

The following notations will be used throughout the rest of this section and are
summarized in Figure 5.12. Let r1, r2 be two red points and b1, b2 be two blue points.
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Let s1, s2, s
′
1, s

′
2 be the following four segments respectively: r1b1, r2b2, r1b2, r2b1. We

consider a flip that replaces the pair of segments s1, s2 by s′1, s
′
2. Let S denote the

matching before the flip and S ′ denote the resulting matching after the flip.

s1

s2
s′2s′1
r2

r1
r

b1
b2

s

b

Figure 5.12: Notations for a generic flip and for a variable segment s.

We order the
(
n
2

)
pairs of segments of S in a column vector. There are three types of

pairs of segments in S with respect to the flip: the unaffected pairs (involving neither s1
nor s2), the flipping pair s1, s2, and the affected pairs (involving exactly one of s1 or s2).
We choose the new order of the

(
n
2

)
pairs of segments of S ′ in a way that satisfies the

following properties with respect to the previous vector. The unaffected pairs keep the
same indices. The pair s′1, s

′
2 gets the index of s1, s2. Next, we describe the remaining

indices.
Let s be a segment of S distinct from s1 and s2. Let r and b be the red and blue

endpoints of s. Let i1 and i2 be the indices of s, s1 and s, s2, and let S1 and S2 be their
respective states. Let S′

1 and S′
2 be the respective states of s, s′1 and s, s′2. We restrict

our choice to the following two options:

• index s, s′1 with i1, and s, s′2 with i2, or

• index s, s′1 with i2, and s, s′2 with i1.

We call such a choice a tracking choice. We say that a pair of segments in S turns
into a pair in S ′ when they have the same index. We denote S → S′ to specify that
the pairs of segments with a given index go from the state S to the state S′. In the
following, we use S1S2 → S′

1S
′
2 as a shorthand notation to say that we have the two

following tracking choices: either S1 → S′
1 and S2 → S′

2 or S1 → S′
2 and S2 → S′

1.
There are 32 possible such transitions S → S′. Yet, the next two lemmas ensure that

some transitions can be ruled out by tracking choices. Lemma 5.8.2 actually holds for
any (possibly non-bipartite) matching, while Lemma 5.8.3 is specific to the red-on-a-line
case. Both lemmas are proved analyzing the tracking choices of each possible position
of a segment s relatively to the flipping pair.

Lemma 5.8.2. There always exists a tracking choice avoiding the H → X transition.

Proof. There clearly exists a tracking choice avoiding the H → X transition unless we
have either a transition (i) HH → XS or (ii) HS → XX, where S ∈ {X,H,T}. We
show that these two cases are not possible.

(i) HH → XS: If both the pairs s, s1 and s, s2 are H while at least one of the two
pairs s, s′1 and s, s′2 is X, then the final X state implies that s crosses s1 or s2, which
contradicts the two initial H states.

(ii) HS → XX: If one of the two pairs s, s1 and s, s2 is H while both pairs s, s′1 and
s, s′2 are X, then the two final X states imply that s crosses s′1 and s′2. It follows that s
also crosses s1 and s2, which is again a contradiction.



84 CHAPTER 5. UNTANGLING WITH REMOVAL CHOICE

State Tracking in the Red-on-a-Line Case. Figure 5.13 summarizes the notations
for a generic red-on-a-line flip and an variable segment s. Figures 5.14, 5.15, 5.16, and
5.17 then provide “maps” of essentially all the possible situations of tracking choices in
the red-on-a-line case. These figures are used to prove the next lemma.

s1

s2

s′2

s′1

r1 r2r

b1

b2

b

s

Figure 5.13: Notations used in Figures 5.14, 5.15, 5.16, and 5.17 for a generic red-on-a-
line flip and an variable segment s.

s1

s2

s′2

s′1

o
case 1 case 2 case 3 case 4

r1 r2r r r r

b1

b2

Figure 5.14: The four possible cases for the position of r.

Figures 5.15, 5.16, and 5.17 are generated by a brute force computation of the
states S1,S2,S

′
1,S

′
2 of the four pairs s, s1, s, s2, s, s′1, s, s′2 for each position case for r

(Figure 5.14) and for each position case for b (in Figures 5.15, 5.16, and 5.17, each cell
of the arrangement of lines corresponds to a position case for b). In the following, we
make sure that no case is forgotten.

We assume, without loss of generality, that r1 is on the left of r2, and that b1 is
higher than b2. Let o be the intersection between the line b1b2 and the red-point line.
There are, indeed, four possible open intervals for the position of r on the red-point line:
]−∞, o[, ]o, r1[, ]r1, r2[, and ]r2,∞[ (Figure 5.14). This yields four cases, respectively.
We do not explicitly describe case 4 as it is similar to case 2. Indeed, case 2 and case 4
map to each other by exchanging the labels of r1 and r2, as well as b1 and b2. The fact
that the point o is still on the left of r1 and r2 is not a problem since we are studying
incidence proprieties. Another way to see it, is to consider the projective plane.

As we have assumed the blue points to lie in the upper half-plane, these four
cases branch into further sub-cases. However, no-loss-of-generality assumptions and
symmetries simplify the analysis. Without loss of generality, we first assume that the
lines r1b2 and r2b1 intersect in the upper half-plane, as it will only generate more cells
to the upper part of the arrangement of lines.

Second, we examine case 3. Let o1 be the intersection of the lines rb2 and r2b1 (see
Figure 5.17), and o2 be the intersection of the lines rb1 and r1b2. Case 3 decomposes
into:
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r

HH → HH

HT → HH

HT → TT

XT → TX

XX → XX

TT → TT

HT → HT

TH → HT

TT → TT

TT → HT

HT → TH

TT → TT
XT → TT

TX → XT

TT → XT

XX → XT

XT → XT

Figure 5.15: The case 1 “map” of all the possible red-on-a-line tracking choices. Tracking
choices cannot avoid the transition H → T in the shaded region.

r

HH → HH

TT → TT

HT → HH

HT → TT

HT → TH

HX → XH

XT → XT

XX → XT

HT → TH

XX → XX

TT → TT

TX → XT

HT → XH

HX → XT

TX → XT

TT → XT

HT → HT

Figure 5.16: The case 2 “map” of all the possible red-on-a-line tracking choices. Tracking
choices cannot avoid the transition H → T in the two shaded regions.

r

o1

XH → XH

XT → XH

XX → HT

XX → HH

HT → HT

HX → HT

HX → HX

TT → HH

XT → HH

TX → HX

TX → HH

XX → TH

XT → XT

XX → TT

XH → TH

TH → TH

Figure 5.17: The case 3.1 “map” of all the possible red-on-a-line tracking choices.
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• case 3.1 where o1 lies in the upper half-plane and o2 in the lower,

• case 3.2 where both o1 and o2 lie in the upper half-plane,

• case 3.3 where o1 lies in the lower half-plane and o2 in the upper, and

• case 3.4 where both o1 and o2 lie in the lower half-plane.

Cases 3.1 and 3.3 are similar, while case 3.2 is just a superposition of both of them.
More precisely, when compared to case 3.4, the extra cell of the arrangement generated
by case 3.1 (the cell in the top left corner of Figure 5.17) corresponds to the possible
tracking choices summarized by the notation XT → XT. Similarly, the extra cell
generated by case 3.3 corresponds to TX → TX. The two extra cells generated by
case 3.2 are the same as the two previous ones. We thus assume case 3.1 (as it is easier
to draw in our setting) without loss of generality. All these assumptions made, the
remaining cases now correspond to Figures 5.15, 5.16, and 5.17.

The next lemma is similar to Lemma 5.8.2, but specific to red-on-a-line matchings.
We will use it to additionally avoid the H → T transition. To state Lemma 5.8.3, we
define the upper cone of two segments r3b3, r4b3 as the locus of the points that are
separated from the horizontal line r3r4 by the two lines r3b3 and r4b3 (Figure 5.18(a)).
We also define the upper ray of a segment as the open ray with the blue point as its
origin, the segment as its direction, and going upwards (Figure 5.18(b)).

r3 r4

b3

(a) (b)

Figure 5.18: (a) The upper cone of r3b3 and r4b3 is shaded. (b) The upper ray of the
segment is dotted and highlighted.

Lemma 5.8.3. In the Redonaline version, consider a set of three red-blue segments
{s, s1, s2}, and the flip removing the pair of segments s1, s2 and inserting the pair of
segments s′1, s

′
2.

If the blue endpoint b of s is not in any of the two upper cones of s1, s′2 and s2, s
′
1,

then there always exists a tracking choice that avoids H → T for the pairs s, s1 and
s, s2 while still avoiding H → X.

Proof. First, we check that there are only two possible upper cones defined by two
segments of s1, s2, s′1, s′2. Indeed, only two pairs among them have a common blue point.

Then, we note that, for s, s1 or s, s2 to be in state H, the red point r of s cannot be
between r1 and r2, the red points of s1 and s2. Without loss of generality, we assume r
to lie on the left side of r1 and r2.
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For s, s′1 or s, s′2 to be in state T, s has to cross at least one of the upper rays of s′1
or s′2.

The only two combinations of states for {s, s1, s, s2} and {s, s′1, s, s′2} which do not
leave us the choice to avoid the H → T transition are {H,T} and {T,T}, and {H,X}
and {T,X}. In any case, b must be in the right most of the two upper cones of segments
s1, s2, s

′
1, s

′
2. More precisely, b lies in one of the three shaded regions of Figures 5.15

and 5.16. These three shaded regions also correspond to Figure 5.11 where case 1 is
omitted but similar. The other cases are either not feasible geometrically, or with a
possibility to make tracking choices so as to avoid transition H → T.

Proof of Theorem 5.8.1. We are now ready to prove Theorem 5.8.1.

Proof. Let f(S) be the total number of flips performed by the algorithm on an n-segment
input matching S and let g(S) be the number of flips performed by the algorithm
before the recursive calls. Let Srec denote the matching before the recursive calls.
The recursive calls take two submatchings of Srec that we call S1 and S2, yielding the
following recurrence relation.

f(S) = f(S1) + f(S2) + g(S)

Let h̄(S) be the number of X-pairs plus the number of T-pairs in a matching S,
that is, the number of pairs that are not H-pairs. Lemma 5.8.3 ensures that

g(S) ≤ h̄(S)− h̄(Srec) ≤ h̄(S)− h̄(S1)− h̄(S2).

Clearly, f(∅) = 0. We suppose that, for all S ′ with less than n segments, we have
f(S ′) ≤ h̄(S ′). Then by induction we get

f(S) ≤ h̄(S1) + h̄(S2) + h̄(S)− h̄(S1)− h̄(S2) = h̄(S).

Theorem 5.8.1 follows since h̄(S) ≤
(
n
2

)
.

State Tracking in the Convex Case. State tracking also applies to the widely
studied convex case, providing a more conceptual proof of Theorem 3.2.2 [17].

Alternative proof of Theorem 3.2.2 [17]. In the convex case, the T-state does not exist.
Lemma 5.8.2 thus ensures that the number of H-pairs increases by at least 1 at each
flip.
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Chapter 6

Untangling with Insertion Choice

In this chapter, we devise strategies for insertion choice to untangle multisets of segments,
therefore providing upper bounds on several versions of dI. Recall that such insertion
strategies do not choose which pair of crossing segments is removed, but only which
pair of segments with the same endpoints is subsequently inserted. We start with a
tight bound in Convex version (where the point set is in convex position), followed by
the Separated version (where the point set P = C ∪ T has some points C in convex
position and the other points T outside the convex hull of C and separated from C by
two parallel lines).

6.1 Upper Bound for Convex Position
Let P = C = {p1, . . . , p|C|} be a set of points in convex position sorted in counterclock-
wise order along the convex hull boundary (Figure 6.1(a)). Given a segment papb, we
define the depth δ(papb) = |b− a|.1 We use the depth to prove the following theorem.

C

p1

p2

p3

p4p5p6p7
p8

p9

p10

p11
p12 p13

p14

(a)

C
3

2
6
7

pd = p10 pa = p1

pc = p4

pb = p8

(b)

C

7
7

pb = p8

pa = p1

pc = p7

pd = p14
13

1

(c)

Figure 6.1: (a) A multigraph (C, S) with |C| = 14 points in convex position and n = 9
segments. (b) Insertion choice for Case 1 and 2 of the proof of Theorem 6.1.1. (c)
Insertion choice for Case 3.

Theorem 6.1.1 ([31]). Consider a multiset S of n segments with endpoints P = C in
convex position.

In the Convex Multigraph version, there exists an insertion strategy such that for
any removal strategy, the resulting untangle sequence of S is of length O(n log |C|) =
O(n log n).

1This definition resembles but is not exactly the same as the depth used in [17]. It is also similar to
the crossing depth defined in Chapter 3.

89
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In other words, we have the following upper bound:

dI
Convex Multigraph(n) = O(n log |P |) = O(n log n).

Proof. Let the potential function

ϖ(S) =
∏
s∈S

δ(s).

As δ(s) ∈ {1, . . . , |C| − 1}, we have that ϖ(S) is integer, positive, and at most |C|n.
Next, we show that for any flipped pair of segments papb, pcpd there exists an insertion
choice that multiplies ϖ(S) by a factor of at most 3/4, and the theorem follows.

Consider a flip of a segment papb with a segment pcpd and assume without loss of
generality that a < c < b < d. The contribution of the pair of segments papb, pcpd to
the potential ϖ(S) is the factor f = δ(papb)δ(pcpd). Let f ′ be the factor corresponding
to the pair of inserted segments.

Case 1: If δ(papc) ≤ δ(pcpb), then we insert the segments papc and pbpd and we get
f ′ = δ(papc)δ(pbpd) (Figure 6.1(b)). We notice δ(papb) = δ(papc) + δ(pcpb). It follows
δ(papc) ≤ δ(papb)/2 and we have δ(pbpd) ≤ δ(pcpd) and then f ′ ≤ f/2.

Case 2: If δ(pbpd) ≤ δ(pcpb), then we insert the same segments papc and pbpd as
previously. We have δ(papc) ≤ δ(papb) and δ(pbpd) ≤ δ(pcpd)/2, which gives f ′ ≤ f/2.

Case 3: If (i) δ(papc) > δ(pcpb) and (ii) δ(pbpd) > δ(pcpb), then we insert the
segments papd and pcpb (Figure 6.1(c)). The contribution of the new pair of segments
is f ′ = δ(papd)δ(pcpb). We introduce the coefficients x = δ(papc)

δ(pcpb)
and y = δ(pbpd)

δ(pcpb)
so that

δ(papc) = xδ(pcpb) and δ(pbpd) = yδ(pcpb). It follows that δ(papb) = (1 + x)δ(pcpb),
δ(pcpd) = (1 + y)δ(pcpb) and δ(papd) = (1 + x+ y)δ(pcpb). The ratio f ′/f is equal to
a function g(x, y) = 1+x+y

(1+x)(1+y)
. Due to (i) and (ii), we have that x ≥ 1 and y ≥ 1. In

other words, we can upper bound the ratio f ′/f by the maximum of the function g(x, y)
with x, y ≥ 1. It is easy to show that the function g(x, y) is decreasing with both x and
y. Then its maximum is obtained for x = y = 1 and it is equal to 3/4, showing that
f ′ ≤ 3f/4.

6.2 Upper Bound for Points Separated by Two Parallel
Lines

In this section, we prove the following theorem, which is a generalization of Theorem 6.1.1.
We extend our standard general position assumptions to also exclude pairs of endpoints
with the same y-coordinate.

Theorem 6.2.1 ([31]). Consider a multiset S of n segments with endpoints P partitioned
into P = C ∪ T1 ∪ T2 where C is in convex position and there exist two horizontal lines
ℓ1, ℓ2, with T1 above ℓ1 above C above ℓ2 above T2. We define the parameter t as the
sum of the degrees of the points in T = T1 ∪ T2.

In the Separated Multigraph version, there exists an insertion strategy such that
for any removal strategy, the resulting untangle sequence of S is of length O(t |P | log |C|+
n log |C|) = O(tn log n).



6.2. UPPER BOUND FOR POINTS SEPARATED BY TWO PARALLEL LINES91

ℓ1

ℓ2

C

T1

T2

p1p2
p3

p4

p5

p6

p7 p8
p9

p10

(a) (b)

Figure 6.2: (a) Statement of Theorem 6.2.1. (b) Some insertion choices in the proof of
Theorem 6.2.1.

In other words, we have the following upper bound:

dI
Separated Multigraph(n, t) = O(t |P | log |C|+ n log |C|) = O(tn log n).

Proof. We start by describing the insertion choice for flips involving at least one point in
T . Let p1, . . . , p|P | be the points P sorted vertically from top to bottom. Consider a flip
involving the points pa, pb, pc, pd with a < b < c < d. The insertion choice is to create
the segments papb and pcpd. See Figure 6.2(b). As in the proof of Theorem 3.1.4 [19],
we define the potential η of a segment pipj as

η(pipj) = |i− j| .

Notice that η is an integer between 1 and |P |− 1. We define ηT (S) as the sum of η(pipj)
for pipj ∈ S with pi or pj in T . Notice that 0 < ηT (S) < t |P |. It is easy to verify that
any flip involving a point in T decreases ηT (S) and other flips do not change ηT (S).
Hence, the number of flips involving at least one point in T is O(t |P |).

For the flips involving only points of C, we use the same choice as in the proof of
Theorem 6.1.1. The potential function

ϖ(S) =
∏

pipj∈S : pi∈C and pj∈C

δ(pipj)

is at most |C|n and decreases by a factor of at most 3/4 at every flip that involves only
points of C.

However, ϖ(S) may increase by a factor of O(|C|2) when performing a flip that
involves a point in T . As such flips only happen O(t |P |) times, the total increase is at
most a factor of |C|O(t|P |).

Concluding, the number of flips involving only points in C is at most

log4/3

(
|C|O(n) |C|O(t|P |)

)
= O(n log |C|+ t |P | log |C|).
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Chapter 7

Untangling with Both Choices

In this chapter, we devise strategies for insertion and removal choices to untangle a
multiset of segments, therefore providing upper bounds on several versions of dRI

Allout.
Recall that such strategies choose which pair of crossing segments is removed and which
pair of segments with the same endpoints is subsequently inserted.

Throughout this chapter, we work in the Allout version, i.e., with the following
assumptions. We assume that the point set P is partitioned into P = C ∪ T where C
is in convex position, and we define the parameter t as the sum of the degrees of the
points in T . We additionally assume that the points of T lie outside the convex hull of
C.

We start with the case where T is separated by two parallel lines from C. Afterwards,
we prove an important lemma and apply it to untangle a matching.

7.1 Upper Bound for Points Separated by Two Parallel
Lines

In this section, we prove an upper bound on dRI
Separated Multigraph. Recall that, in the

Separated version, T is separated from C by two parallel lines. In this version,
our bound of O(n + t |P |) interpolates the tight convex bound of O(n) from Theo-
rem 3.2.13 [17, 31] and the O(t |P |) bound from Theorem 3.1.4 [19] for t arbitrary
segments. We extend our standard general position assumptions to also exclude pairs
of endpoints with the same y-coordinate.

Theorem 7.1.1 ([31]). Consider a multiset S of n segments with endpoints P partitioned
into P = C ∪ T1 ∪ T2 where C is in convex position and there exist two horizontal lines
ℓ1, ℓ2, with T1 above ℓ1 above C above ℓ2 above T2. We define the parameter t as the
sum of the degrees of the points in T = T1 ∪ T2.

In the Separated Multigraph version, there exists an untangle sequence of S of
length O(n+ t |P |) = O(tn).

In other words, we have the following upper bound:

dRI
Separated Multigraph(n, t) = O(n+ t |P |) = O(tn).

Proof. The algorithm runs in two phases.

93
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Phase 1. We use removal choice to perform the flips involving a point in T . At the
end of the first phase, there can only be crossings among segments with all endpoints
in C. The insertion choice for the first phase is the following. Let p1, . . . , p|P | be the
points P sorted vertically from top to bottom. Consider a flip involving the points
pa, pb, pc, pd with a < b < c < d. The insertion choice is to create the segments papb and
pcpd. As in the proofs of Theorem 6.1.1 [31] and of Theorem 6.2.1 [31], we define the
potential δ of a segment pipj as δ(pipj) = |i− j|.1 Notice that δ is an integer from 1 to
|P | − 1. We define δ(S) as the sum of δ(pipj) for pipj ∈ S with pi or pj in T . Notice
that 0 < δ(S) < t |P |. It is easy to verify that any flip involving a point in T decreases
δ(S). Hence, the number of flips in Phase 1 is O(t |P |).

Phase 2. Since T is outside the convex hull of C, flips between segments with all
endpoints in C cannot create crossings with the other segments, which are guaranteed
to be crossing free at this point. Hence, it suffices to run an algorithm to untangle
a convex set with removal and insertion choice from Theorem 3.2.13, which performs
O(n) flips.

7.2 Upper Bound for Matchings with Points Outside
a Convex

In this section, we prove an upper bound on dRI
Allout Matching. This upper bound may

not hold for the Multigraph version as the proof uses a lemma specific the Matching

version.

Liberating a Line

In this section, we prove the following key lemma, which we use in the following section.
The lemma only applies to matchings and it is easy to find a counter-example for
multisets (S consisting of n copies of a single segment that crosses pq).

Lemma 7.2.1. Consider a set S of n segments with endpoints C in convex position and
a segment qq′ intersecting the interior of the convex hull of C such that (C ∪{q, q′}, S ∪
{qq′}) forms a matching.

There exists a flip sequence starting at S∪{qq′} of length O(n) which ends with a set
of segments that do not cross the line qq′ (the line qq′ splits the final set of segments).

Proof. For each flip performed in the subroutine described hereafter, at least one of the
inserted segments does not cross the line qq′ and is removed from S (see Figure 7.1).

Preprocessing. First, we remove from S the segments that do not intersect the
line qq′, as they are irrelevant. Second, anytime two segments in S cross, we flip
them choosing to insert the pair of segments not crossing the line qq′. One such flip
removes two segments from S. Let p1p2 (respectively p2n−1p2n) be the segment in S
whose intersection point with qq′ is the closest from q (respectively q′). Without loss of
generality, assume that the points p1 and p2n−1 are on the same side of the line qq′.

1This definition resembles but is not the same as the depth used in [17].
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Figure 7.1: An untangle sequence of the subroutine to liberate the line qq′ (with n = 4).

First flip. Lemma 7.2.2 applied to the segment qq′ and the triangle p1p2p2n−1 shows
that at least one of the segments among qp2n−1, q

′p1, q
′p2 intersects all the segments of

S. Without loss of generality, assume that qp2n−1 is such a segment, i.e., that qp2n−1

crosses all segments of S \ {p2n−1p2n}. We choose to remove the segments qq′ and
p2n−1p2n, and we choose to insert the segments qp2n−1 and q′p2n. As the segment q′p2n
does not cross the line qq′, we remove it from S.

Second flip. We choose to flip the segments qp2n−1 and p1p2. If n is odd, we choose to
insert the pair of segments qp1, p2p2n−1. If n is even, we insert the segments qp2, p1p2n−1.

By convexity, one of the inserted segment (the one with endpoints in C) crosses
all other n − 2 segments. The other inserted segment (the one with q as one of its
endpoints) does not cross the line qq′, so we remove it from S. Note that the condition
on the parity of n is there only to ensure that the last segment p2n−3p2n−2 is dealt with
at the last flip.

Remaining flips. We describe the third flip. The remaining flips are performed
similarly. Let s be the previously inserted segment. Let p3p4 be the segment in S whose
intersection point with qq′ is the closest from q. Without loss of generality, assume that
p3 is on the same side of the line qq′ as p1 and p2n−1.

We choose to flip s with p3p4. If s = p2p2n−1, we choose to insert the pair of segments
p2p4, p3p2n−1. If s = p1p2n−1, we choose to insert the pair of segments p1p3, p4p2n−1.

By convexity, one inserted segment (the one with p2n−1 as an endpoint) crosses all
other n − 3 segments. The other inserted segment does not cross the line qq′, so we
remove it from S. Note that the insertion choice described is the only viable one, as
the alternative would insert a crossing-free segment crossing the line qq′ that cannot be
removed.

Auxiliary Lemma of Section 7.2. In this section, we prove Lemma 7.2.2 used in
the proof of Lemma 7.2.1.

Recall that, in the proof of Lemma 7.2.1, we have a convex quadrilateral p1p2p2np2n−1

and a segment qq′ crossing the segments p1p2 and p2np2n−1 in this order when drawn
from q to q′, and we invoke Lemma 7.2.2 to show that at least one of the segments
among qp2n−1, q

′p1, q
′p2 intersects all the segments of S. Before proving Lemma 7.2.2,

we detail how to apply it to this context.
Lemma 7.2.2 applied to the segment qq′ and the triangle p1p2p2n−1 asserts that

at least one of the following pairs of segments cross: qp2n−1, p1p2, or q′p1, p2p2n−1, or
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q′p2, p1p2n−1. If the segments qp2n−1, p1p2 cross, then we are done. If the segments
q′p1, p2p2n−1 cross, then the segments q′p1, p2np2n−1 also cross and we are done. If the
segments q′p2, p1p2n−1 cross, then the segments q′p2, p2np2n−1 also cross and we are done.

Next, we state and prove Lemma 7.2.2.

Lemma 7.2.2. For any triangle p1p2p3, for any segment qq′ intersecting the interior
of the triangle p1p2p3, there exists a segment s ∈ {qp1, qp2, qp3, q′p1, q′p2, q′p3} that
intersects the interior of the triangle p1p2p3.

Proof. If all p1, p2, p3, q, q′ are in convex position, then q and the point among p1, p2, p3
that is not adjacent to q on the convex hull boundary define the segment s. Otherwise,
since q, q′ are not adjacent on the convex hull boundary, assume without loss of generality
that p1 is not a convex hull vertex and q, p2, q

′, p3 are the convex hull vertices in order.
Then, either the segment p1q or the segment p1q

′ intersects the segment p2p3.

Proof of the Upper Bound

We are now ready to prove the following theorem, which only applies to matchings
because it uses Lemma 7.2.1.

Theorem 7.2.3 ([31]). Consider a set S of n segments with endpoints P partitioned
into P = C ∪ T where C is in convex position and T is outside the convex hull of C,
and such that (P, S) forms a matching. We define the parameter t as the sum of the
degrees of the points in T .

In the Allout Matching version, there exists an untangle sequence of length O(t3n).
In other words, we have the following upper bound:

dRI
Allout Matching(n, t) = O(t3n).

Proof. Throughout this proof, we partition the TT -segments into two types: TTin-
segment if it intersects the interior of the convex hull of C and TTout-segment otherwise.
As in the proof of Theorem 3.1.3, we define the potential Λℓ(S) of a line ℓ as the number
of segments of S crossing ℓ.

TT -segments. At any time during the untangle procedure, if there is a TTin-segment
s that crosses more than t segments, we apply Lemma 7.2.1 to liberate s from every
CC-segment using O(n) flips. Let ℓ be the line containing s. Since Λℓ cannot increase
(Lemma 3.1.1), Λℓ < t after Lemma 7.2.1, and there are O(t2) different TTin-segments,
it follows that Lemma 7.2.1 is applied O(t2) times, performing a total O(t2n) flips. As
the number of times s is inserted and removed differ by at most 1 and Λℓ decreases at
each flip that removes s, it follows that s participates in O(t) flips. As there are O(t2)
different TTin-segments, the total number of flips involving TTin-segments is O(t3).

We define a set L of O(t) lines as follows. For each point q ∈ T , we have two lines
ℓ1, ℓ2 ∈ L that are the two tangents of the convex hull of C that pass through q. As the
lines ℓ ∈ L do not intersect the interior of the convex hull of C, the potential Λℓ = O(t).
When flipping a TTout-segment q1q2 with another segment q3p with q3 ∈ T (p may
be in T or in C), we make the insertion choice of creating a TTout-segment q1q3 such
that there exists a line ℓ ∈ L whose potential Λℓ decreases. It is easy to verify that ℓ
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always exist (see Lemma 7.2.4 and Lemma 7.2.5). Hence, the number of flips involving
TTout-segments is O(t2) and the number of flips involving TT -segments in general is
O(t3).

All except pairs of CC-segments. We keep flipping segments that are not both
CC-segments with the following insertion choices. Whenever we flip two CT -segments,
we make the insertion choice of creating a TT -segment. Hence, as the number of flips
involving TT -segments is O(t3), so is the number of flips of two CT -segments.

Whenever we flip a CT -segment p1q with q ∈ T and a CC-segment p3p4, we make the
following insertion choice. Let v(q) be a vector such that the dot product v(q)·q < v(q)·p
for all p ∈ C, that is, v is orthogonal to a line ℓ separating q from C and v is pointing
towards C. We define the potential ρ(piq) of a segment with pi ∈ C and q ∈ T as the
number of points p ∈ C such that v(q) · p < v(q) · pi, that is the number of points in C
before pi in direction v. We choose to insert the segment piq that minimizes ρ(piq) for
i ∈ {3, 4}. Let ρ(S) be the sum of ρ(piq) for all CT -segments piq in S. It is easy to see
that ρ(S) is O(t |C|) and decreases at each flip involving a CT -segment (not counting
the flips inside Lemma 7.2.1).

There are two situation in which ρ(S) may increase. One is when Lemma 7.2.1
is applied, which happens O(t2) times. Another one is when a TT -segment and a
CC-segment flip, creating two CT -segments, which happens O(t3) times. At each
of these two situations, ρ(S) increases by O(|C|). Consequently, the number of flips
between a CT -segment and a CC-segment is O(t3 |C|) = O(t3n).

CC-segments. By removal choice, we choose to flip the pairs of CC-segments last
(except for the ones flipped in Lemma 7.2.1). As T is outside the convex hull of C,
flipping two CC-segments does not create crossings with other segments (by the splitting
lemma, i.e., Lemma 2.6.1 [19, 31]). Hence, we apply Theorem 3.2.13 to untangle the
remaining segments using O(n) flips.

Auxiliary Lemmas of Section 7.2 In this section, we prove Lemma 7.2.5 and
Lemma 7.2.4 used in the proof of Theorem 7.2.3.

Recall that, in the proof of Theorem 7.2.3, we define a set L of lines as follows.
For each point q ∈ T , we have two lines ℓ1, ℓ2 ∈ L that are the two tangents of the
convex hull of C that pass through q. When flipping a TTout-segment q1q2 with another
segment q3p with q3 ∈ T (p may be in T or in C), we make the insertion choice of
creating a TTout-segment q1q3 such that there exists a line ℓ ∈ L whose potential Λℓ

decreases. We invoke Lemma 7.2.4 and Lemma 7.2.5 to show that such a line ℓ always
exist.

Indeed, by Lemma 7.2.4, it is enough to show that there exists a line ℓ ∈ L containing
one of the points q1, q2, q3 that crosses one of the segments q1q2 or q3p. This is precisely
what Lemma 7.2.5 shows.

Next, we state prove Lemma 7.2.4 and Lemma 7.2.5.

Lemma 7.2.4. Consider two crossing segments p1p2, p3p4 and a line ℓ containing p1
and crossing p3p4. Then, one of the two pairs of segments p1p3, p2p4 or p1p4, p2p3 does
not cross ℓ. In other words, there exists an insertion choice for a flip removing p1p2, p3p4
such that the number of segments crossing ℓ decreases.
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Proof. Straightforward.

Lemma 7.2.5. Consider a closed convex body B and two crossing segments q1q3, q2q4
whose endpoints q1, q2, q3 are not in B, and whose endpoint q4 is not in the interior of
B. If the segment q1q3 does not intersect the interior of B, then at least one of the six
lines tangent to B and containing one of the endpoints q1, q2, q3 is crossing one of the
segments q1q3, q2q4. (General position is assumed, meaning that the aforementioned six
lines are distinct, i.e., each line does not contain two of the points q1, q2, q3, q4.)

B

q1

q2
q3

q4

(a)

B

q1

q2

q3

q4
o1

o′1 ℓ1

ℓ′1 ℓ2

ℓ′2

ℓ3

ℓ′3
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Figure 7.2: (a) In the statement of Lemma 7.2.5, we assert the existence of points,
circled in the figure, which are the intersection of a line tangent to B and containing one
of the points q1, q2, q3. (b) In the proof of Lemma 7.2.5 by contraposition, we exhibit a
point, circled in the figure, showing that B intersects one of the segment q1q3.

Proof. For all i ∈ {1, 2, 3}, let ℓi and ℓ′i be the two lines containing qi and tangent to B.
By contraposition, we assume that none of the six lines ℓ1, ℓ′1, ℓ2, ℓ′2, ℓ3, ℓ′3 crosses one of
the segments q1q3, q2q4. In other words, we assume that the six lines are tangent to the
convex quadrilateral q1q2q3q4. It is well known that, if m ≥ 5, then any arrangement of
m lines or more admits at most one face with m edges (see [49] for example). Therefore,
B is contained in the same face of the arrangement of the six lines as the quadrilateral
q1q2q3q4. Let o1 (respectively o′1) be a contact point between the line ℓ1 (respectively ℓ′1)
and the convex body B. The segment o1o′1 crosses the segment q1q3 and is contained in
B by convexity, concluding the proof by contraposition.



Chapter 8

Intractability of the Shortest Bipartite
Untangle Sequence

This chapter is dedicated to the proof of the intractability of the shortest untangle
sequence in the Bipartite Matching version (and of any constant factor approximation
of it). Specifically, we prove the NP-hardness of the following problem. Let d(S) denote
the length of the shortest untangle sequences of S.

Problem 1. Let α ≥ 1 be a constant.
Input: S, a set of segments with rational coordinates forming a bipartite matching.
Output: An untangle sequence starting at S of length at most α times d(S).

We have the following theorem.

Theorem 8.0.1. Problem 1 is NP-hard for all α ≥ 1.

8.1 Reduction Strategy
De Berg and Khosravi [37] showed that the rectilinear planar monotone 3-SAT problem
(RPM 3-SAT ) is NP-hard. The RPM 3-SAT problem is a special case of the classic
3-SAT problem in which the clauses consist only of either all positive or all negative
literals and the layout is planar (Figure 8.1). We reduce RPM 3-SAT to Problem 1.
The key elements of the reduction are described next.

Given a planar embedding of an RPM 3-CNF formula φ (Figure 8.1), we construct
a matching Sφ of polynomial size. The property of this matching Sφ is that its shortest
untangle sequence has a length below a certain constant if φ is satisfiable and above
α times this constant otherwise. Figure 8.2 shows the matching Sφ corresponding to
the formula φ = (x1 ∨ x2 ∨ x3) ∧ (x3 ∨ x4 ∨ x5) ∧ (x3 ∨ x5 ∨ x6) ∧ (x2 ∨ x3 ∨ x4) from
Figure 8.1.

The aforesaid matching Sφ is built using two types of gadgets. The variable rectangles
are replaced by variable gadgets (Figure 8.3). The clause rectangles together with
the corresponding edges are replaced with padded clause gadgets. A padded clause
gadget is represented in Figure 8.7 with plain segments. Throughout all the figures in
this section, the dashed segments represent all the possibly created segments after any
sequence of flips.
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A variable gadget is a three-segment matching with two crossings. It allows for two
possible flips, either of which produces a crossing-free matching, as shown in Figure 8.3.
The flip generating the topmost segment stands for false (x = 0 in Figure 8.3), while
the flip generating the bottom segment stands for true (x = 1).

A clause gadget is an OR gate with three inputs (Figure 8.8). The RPM 3-CNF
clauses are either positive or negative. We describe the gadget for a positive clause, but
the gadget for a negative clause can be defined analogously (by a vertical reflection).
Three variable gadgets are the inputs of a clause gadget. In the crossing-free matching
obtained for the clause gadget, the presence of the topmost segment (r4b7 in Figures 8.5,
8.6, 8.7, and 8.8) stands for a false output.

A padding gadget is a gadget that serves to force an arbitrarily large number k of
flips if a clause is false. It consists of a series of k non-crossing segments (the plain
segments in Figure 8.6, r4b7 aside). A padded clause gadget is a clause gadget coupled
with a padding gadget in such a way that the presence of the output segment triggers k
extra flips (Figure 8.7).

Let c be the number of clauses and v be the number of variables of the formula φ. If
φ is satisfiable, then the shortest untangle sequence of Sφ has at most 5 flips per clause
plus 1 flip per variable. In this case, we have d(Sφ) ≤ 5c+ v. We choose the size of the
padding gadget so that a non-satisfied clause triggers k = α(5c + v) + 1 flips. If the
formula φ is not satisfiable, then at least one of the padding gadgets is triggered and
d(Sφ) > α(5c+ v).

8.2 The Problem to Be Reduced

In RPM 3-SAT, the graph of a conjunctive normal form (CNF) formula is the bipartite
graph with the variables and clauses as vertices, and where there is an edge between a
variable and a clause if and only if the clause contains the variable. A clause is said to
be positive if it contains only positive variables; it is said to be negative if it contains
only negative variables. A CNF formula is monotone if each clause is either positive or
negative.

A rectilinear planar monotone 3-CNF (RPM 3-CNF ) formula is a monotone formula
with 3-variables per clause whose graph can be drawn with the following conventions
(Figure 8.1). (i) The variables and the clauses are represented by axis-parallel non-
overlapping closed rectangles. (ii) The variable rectangle centroids lie on the x-axis.
(iii) The positive clause rectangles are above the x-axis, the negative ones, below. (iv)
The edges connecting a variable to a clause are vertical line segments and do not cross
any other rectangle. We call such a drawing a planar embedding of φ.

8.3 Variable Gadgets

A variable gadget is a three-segment matching built on the four endpoints of an axis-
parallel rectangle as follows (Figure 8.3). The two leftmost endpoints of the rectangle
are colored red, the two rightmost ones are colored blue. One of the segments of the
matching is the diagonal joining the bottom left red point to the top right blue point.
We add one red point on the vertical line cutting the rectangle in two symmetric halves,
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x1 x2 x3 x4 x5 x6

x1 ∨ x2 ∨ x3 x3 ∨ x4 ∨ x5

x3 ∨ x5 ∨ x6

x2 ∨ x3 ∨ x4

Figure 8.1: A planar embedding of an RPM 3-CNF formula φ.

x1 ∨ x2 ∨ x3

x3 ∨ x5 ∨ x6

x1 x2 x3 x4 x5 x6

x2 ∨ x3 ∨ x4

x3 ∨ x4 ∨ x5

Figure 8.2: The matching Sφ of the formula φ from Figure 8.1.

just above the diagonal, in the inside of the rectangle. This red point is connected to
the bottom right blue point. Similarly, we add one blue point on the same vertical, just
below the diagonal. This blue point is connected to the top left red point.

We will refer to the triangle consisting of the three topmost points of a variable
gadget as the top triangle of the variable gadget.

Lemma 8.3.1. A variable gadget is the starting matching of exactly two untangle
sequences of length 1, each untangle sequence ending in a distinct matching.

Proof. It is straightforward to check the two possible cases.

We can therefore represent each variable x of a propositional formula by a variable
gadget. Assigning x to a truth value amounts to choosing one of the two possible
untangle sequences, with the convention that the lower edge of the rectangle is present
in the final matching if x = 1 (i.e., x is “true”), and that the upper edge of the rectangle
is present if x = 0 (Figure 8.3).
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x = 0

x = 1

x

Figure 8.3: A variable gadget and its two untangle sequences.

8.4 OR Gadgets

An OR gadget consists of four three-segment matchings built on a common point set,
say {r1, r2, r′2, r3} for the red points, and {b1, b′1, b2, b3} for the blue points, as follows
(see the first matching in each of Figures 8.4(a), 8.4(b), 8.4(c), and 8.4(d), ignoring
the dashed segments). The 0 ∨ 0 matching consists of the segments r1b

′
1, r

′
2b2, r3b3,

and only the first two are not crossing. The 0 ∨ 1 matching consists of the segments
r1b

′
1, r3b3, r2b2, and only the first two are crossing. The 1 ∨ 0 matching consists of the

segments r′2b2, r3b3, r1b1, and only the first two are crossing. The 1∨1 matching consists
of the segments r1b1, r2b2, r3b3, and is crossing-free. In addition to these constraints,
the point set also satisfies the following ones. The following three matchings are
crossing-free: {r1b2, r′2b3, r3b′1}, {r1b3, r2b2, r3b′1}, and {r1b1, r′2b3, r3b2}. In each of the
following two matchings, only the first two segments are crossing: {r1b3, r′2b2, r3b′1}, and
{r1b′1, r3b2, r′2b3}.

b1

r3 b3

r2

r1 b2

b′1 r′2

b1

r3 b3

r2

r1 b2

b′1 r′2

b1

r3 b3

r2

r1 b2

b′1 r′2

b1

r3 b3

r2

r1 b2

b′1 r′2

(a) 0 ∨ 0

b1

r3 b3

r2

r1 b2

b′1 r′2

(d) 1 ∨ 1

b1

r3 b3

r2

r1 b2

b′1 r′2 b1

r3 b3

r2

r1 b2

b′1 r′2

(b) 0 ∨ 1

b1

r3 b3

r2

r1 b2

b′1 r′2 b1

r3 b3

r2

r1 b2

b′1 r′2

(c) 1 ∨ 0

Figure 8.4: The four matchings of an OR gadget, with their untangle sequences.

Note that, in any of the four matchings of an OR gadget, there is one unused blue
point and one unused red point. If the unused blue point is b1 (respectively b′1), we
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say that the left input of the OR gadget is 0 (respectively 1). Similarly, if the unused
red point is r2 (respectively r′2), we say that the right input of the OR gadget is 0
(respectively 1). To complete the similarity with a logical gate, we also define the output
of the OR gadget as 0 if the segment r1b2 is present in all the final matchings of any
untangle sequence starting at the OR gadget and as 1 if the segment r1b2 is absent of
all the same final matchings. The output is undefined otherwise. The following lemma
states that the truth table of the logical gate associated with an OR gadget is indeed
the one of an OR gate.

We will refer to the smallest of the triangles consisting of the segment r1b2 and
induced by all the other segments we have mentioned in the definition of an OR gadget
as the top triangle of the OR gadget. It is the shaded triangle in Figure 8.4(d).

Lemma 8.4.1. The output of an OR gadget is always well defined, and is 0 if and only
if the two inputs of the OR gadget are both 0. More precisely, we have the following.

1. The 0 ∨ 0 matching is the starting matching of exactly two untangle sequences,
each of length 2, and ending at the same matching containing the upper segment
r1b2 (Figure 8.4(a)).

2. The 0 ∨ 1 matching is the starting matching of a unique untangle sequence of
length 1 ending at a matching excluding the upper segment r1b2 (Figure 8.4(b)).

3. The 1 ∨ 0 matching is the starting matching of a unique untangle sequence of
length 1 ending at a matching excluding the upper segment r1b2 (Figure 8.4(c)).

4. The 1 ∨ 1 matching is already crossing free. It excludes the upper segment r1b2
(Figure 8.4(d)).

Proof. For each of the four x ∨ y matchings with x, y ∈ {0, 1}, we enumerate all the
possible untangling sequences. These sequences are all shown in Figure 8.4. Lemma 8.4.1
then follows.

8.5 Clause Gadgets
A clause gadget consists of two OR gadgets, the output of the first one being “connected”
to the left input of the second one (Figure 8.5). More precisely, a clause gadget is built
on seven red points, say r4, r5, r6, r7, r8, r10, r11, and six blue points, say b4, b5, b6, b7, b8, b9
such that the following maps correspond to two OR gadgets (using the OR gadget
previous notations), and such that r8 lie in the inside of the top triangle of the first OR
gadget and is the only overlap between the two OR gadgets.

First OR gadget: (r4, b4, r5, b5, r6, b6, b9, r10) 7→ (r1, b1, r2, b2, r3, b3, b
′
1, r

′
2).

Second OR gadget: (r4, b6, r7, b7, r8, b8, b5, r11) 7→ (r1, b1, r2, b2, r3, b3, b
′
1, r

′
2),

with the exception that the segment r6b5 may also play the role of r1b1.
Similarly to an OR gadget, a clause gadget consists of 23 matchings, namely the

x ∨ y ∨ z matchings with x, y, z ∈ {0, 1}. We define the left, middle, and right input of
a clause gadget as the left input of the first OR gadget, the right input of the first OR
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gadget, and the right input of the second OR gadget. We define the output of a clause
gadget as the output of the second OR gadget.

Note that the middle input segment, i.e., the vertical segment lying in between the
two other vertical segments (r5b5 in Figure 8.5), need not be evenly placed between the
left input segment and the right input segment. This feature is used to build clause
gadgets with non-consecutive variables, such as the topmost clause gadget in Figure 8.2.

The idea is to have a 0 ∨ 0 ∨ 0 clause gadget in Sφ for each clause in φ. As we will
see next, in the beginning of an untangling sequence starting at Sφ, each input may
be set to 1 or may be kept as 0, changing the 0 ∨ 0 ∨ 0 clause gadget into one of the
x ∨ y ∨ z matchings with x, y, z ∈ {0, 1}.

The following lemma states that the truth table of the logical gate associated with
a clause gadget is indeed the expected one.

b4

r4

r6 b6
b5

r5

r8 b8

b7

r7b9 r10 r11

Figure 8.5: A clause gadget. The 0 ∨ 0 ∨ 0 matching is drawn with plain segments.

Lemma 8.5.1. The output of a clause gadget is always well defined, and is 0 if and only
if the three inputs of the clause gadget are all 0. More precisely, we have the following.

1. All the untangle sequences starting at the 0 ∨ 0 ∨ 0 matching are of length 4, and
they end at the same matching containing the upper segment r4b7.

2. All the untangle sequences starting at each of the x ∨ y ∨ z matchings, where
exactly one of x, y, or z is 1, are of length 2, and they end at matchings excluding
the upper segment r4b7.

3. The unique untangle sequence starting at each of the x ∨ y ∨ z matchings, where
exactly two of x, y, and z are 1, is of length 1, and it ends at a matching excluding
the upper segment r4b7.

4. The 1 ∨ 1 ∨ 1 matching is already crossing free, and it excludes the upper segment
r4b7.

Proof. It is a consequence of Lemmas 8.4 and of the fact that the OR gadgets are
connected so as to not interfere. Indeed, by construction, r8 lies in the inside of the top
triangle of the first OR gadget, and is the only overlap between the two OR gadgets.
This ensures that all untangle sequences never give rise to an extra crossing that does
not already belong to one of the two OR gadgets. In Figure 8.5, we have drawn with
dashed line segments all the possible created segments during any possible untangle
sequence.
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8.6 Padding Gadgets

Let k be a non-negative integer. A k-padding gadget triggered by the segment s consists
of two matchings built by induction as follows.

The first matching, denoted Sk, contains s (s = r4b7 in Figure 8.6) and is called the
triggered matching of the padding gadget (s creates a crossing). The second matching
is called the non-triggered matching, and is deduced from the triggered one by removing
s (it is crossing free).

...

r4
b7

...

Figure 8.6: The triggered matching of a padding gadget.

If k = 0, then the triggered matching of a k-padding gadget consists of only the
segment s. If k ≥ 1, then the triggered matching of a k-padding gadget consists of Sk−1,
the triggered matching of a (k − 1)-padding gadget, to which we add one new segment
crossing only the last created segment of the only untangle sequence starting at Sk−1

(Figure 8.6, the dashed segments are all the possible created segments in the unique
untangle sequence).

Lemma 8.6.1. Let k be a non-negative integer. There exists a unique untangle sequence
starting at the triggered matching of a padding gadget, and its length is k. The non-
triggered matching of a padding gadget is already crossing free.

Proof. The definition of a k-padding gadget yields Lemma 8.6.1.

We complete each clause gadget with a padding gadget in order to penalize a
non-satisfied clause by an arbitrary long untangle sequence (Figure 8.7). Notice that
a padded clause gadget can be arbitrarily scaled and that the position of a clause
rectangle is only constrained by the planar embedding of φ.

...

b4

r4

r6 b6
b5

r5

r8 b8

b7

r7b9 r10 r11

...

Figure 8.7: A clause gadget connected to a padding gadget.
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8.7 Matching Computation

We now describe, given a planar embedding of φ, the construction steps of the matching
Sφ. Without loss of generality, we only specify the construction of the positive clauses,
the construction of the negative clauses being similar.

We need the following definitions for the description. The top vertical points
of a positive clause gadget are the topmost endpoints of the vertical segments (e.g.
b14, r4, r12, b5, b7 in Figure 8.8). Similarly, the bottom vertical points are the bottom
endpoints of the same vertical segments (e.g. r14, b4, b12, r5, r7 in Figure 8.8). Let p be
a top vertical point. The horizontal segment of p is the horizontal segment lying below
p which is the closest to p. Finally, we define the substitute point of p as the endpoint
of the horizontal segment of p which is the closest to p (e.g. r6 is the substitute point
of r4 in Figure 8.8).

The construction steps of the matching Sφ are the following.

1. Place a clause gadget connected to a k-padding gadget in each clause rectangle,
and a variable gadget in each variable rectangle, with appropriate scaling.

2. Connect each clause gadget to its corresponding three variable gadgets with the
three vertical segments of the clause gadget aligned with the corresponding vertical
edges of the planar embedding of φ.

3. Adjust the x-coordinates of the vertical segments of each variable gadget to have
the top vertical points and the two topmost points of the variable gadget, all in
convex position (e.g. in Figure 8.8, r12 is on the right of the segment r4b9).

4. Adjust the y-coordinates of the bottom vertical points in the top triangle of each
variable gadget so as to place them and the two topmost points of the variable
gadget in convex position.

5. Let p be a top vertical point which is not the highest of a variable gadget (e.g.
p = r12 in Figure 8.8). Let p be the corresponding bottom vertical point (e.g.
p = b12). Let q be the top vertical point immediately above p (e.g. q = r4). Let
q′ be the point immediately above p, taken among the bottom vertical points
together with the two topmost points of the variable gadget (e.g. q = b9). Adjust
the x-coordinate of p̃, the substitute point of p (e.g. p̃ = r13), so that p̃ lies in the
triangle pqq (e.g. a shaded triangle in Figure 8.8; segment r13b13 must not cross
r4b9, but it has to cross r12b9).

We have the following lemma.

Lemma 8.7.1. Let φ be an instance of RPM 3-SAT with c clauses and v variables. Let
k be a non-negative integer, polynomial in c and v. The matching Sφ with k-padding
gadgets is computed in polynomial time in c and v.

Proof. The number of operations in any execution of these construction steps is linear
in c and v. The coordinates of the points of Sφ are rational numbers with O(log n)
bits.
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...

. . . . . .

. . .. . .

x y z

b4

r4

r6 b6
b5

r5

r8 b8

b7

r7b9 r10 r11

b12

r9

r12

b13
r13

r15

r14

b14

b15

...

Figure 8.8: A padded clause gadget connected to x, y, z, with branching on x.

8.8 Branching

The following lemma ensures that the connection of multiple vertical segments to a
same variable gadget always triggers all the corresponding clause gadgets. We start
with some definitions.

The set consisting of the top segment of a variable gadget set to true, together with
the vertical segments crossing it, and their horizontal segment is called a branching
matching (such as drawn in Figure 8.9(b) with plain segments). The bottom vertical
points of a branching matching, listed from left to right, always consist of a certain
number, say a, of red points followed by a certain number, say b, of blue points. We
say that such a branching matching has parameters a, b. These matchings have the
following property.

Lemma 8.8.1. All the untangle sequences starting at a branching matching with
parameters a, b have length 2(a+ b) and end at the same crossing-free matching (e.g.
the segments r15b14, r9b15, r14b4, r4b6, r6b12, r12b13, r13b9 in Figure 8.9(b)).

Proof. First note that a simplified version of this result has been proven in Theo-
rem 3.2.12 [19]. This simplified version amounts to forget all the horizontal segments,
except the top segment of the variable gadget (Figure 8.9(c)).

It is useful to start by proving this simplified version before Lemma 8.8.1. We do
an induction on a+ b. The base case is trivial, but it provides the possible positions
of created segments in the untangle sequences (the dashed segments in Figure 8.9(c)).
The inductive case relies on the fact that the points are in convex position. Indeed,
after any flip, the two created segments play the role of the initial horizontal segment
because convex position ensures that any of the non-flipped vertical segments will cross
exactly one of the two created segments, and that no extra crossing is created. The
induction hypothesis then applies on both right and left submatching whose convex
hulls are now disjoint.
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. . .. . .
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Figure 8.9: Three views of a branching matching.

We now address the issue where each vertical segment is paired with its horizontal
segment. Recall that at step 5 of the construction of Sφ, we have adjusted the x-
coordinate of p̃, the substitute point of each top vertical point p, so that p̃ lies in
the triangle pqq. This ensures that each substitute point can play the role of its
corresponding top vertical point from whenever the corresponding horizontal segment
has been flipped in an untangle sequence.

8.9 Result

The RPM 3-SAT instance being encoded in the matching Sφ, we have the property
that the shortest untangling sequence of Sφ is short if the instance φ is satisfiable, and
long otherwise.

Lemma 8.9.1. We have the following case distinction.

• φ is satisfiable if and only if there exist untangle sequences starting at Sφ which
do not trigger any padding gadget, in which case d(Sφ) is at most v + 5c.

• φ is not satisfiable if and only if all untangle sequences starting at Sφ trigger at
least one padding gadget, in which case d(Sφ) is at least v + 7 + k where k is
arbitrarily large.

Proof. It is consequence of Lemmas 8.3.1, 8.5.1, 8.6.1 and 8.8.1, as we examine the
longest possible untangle sequences of Sφ which do not trigger any padding gadget,
and the shortest possible untangle sequences of Sφ which trigger at least one padding
gadget. In any case, v flips will be performed, one per variable (Lemma 8.3.1).

In the case where no padding gadget is triggered, the length of the longest possible
untangle sequences starting at a clause gadget connected to three variable gadgets is
5, and is obtained by adding 3, the length of the untangle sequences of a 0 ∨ 0 ∨ 1
matching, and 2, for the two connections to the negative variables. Counting 5 flips per
clause yields v + 5c.
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If at least one padding gadget is triggered, this very padding gadget generates k
flips. In this case, the length of the shortest possible untangle sequences starting at
a clause gadget connected to three variable gadgets and which is known to trigger its
padding gadget is 7, and is obtained by adding 4, the length of the untangle sequences
of a 0 ∨ 0 ∨ 0 matching, and 3, for the three connections to the negative variables. All
the other cause gadgets may be set to their 1 ∨ 1 ∨ 1 matching, adding no flip to the
shortest untangle sequence, the length of which is thus v + 7 + k.

We now prove Theorem 8.0.1, reducing RPM 3-SAT to Problem 1. Let φ be an
instance of RPM 3-SAT with c clauses and v variables. We build the matching Sφ, which
serves as an instance of Problem 1, choosing k = α(v+5c)+1. As k is polynomial in the
size of the input (α is a constant), the computation of the matching Sφ is polynomial
(Lemma 8.7.1).

By hypothesis, we compute an untangle sequence starting at Sφ of length ℓ at most
αd(Sφ). We decide that φ is satisfiable if ℓ ≤ α(v + 5c), and that φ is not satisfiable if
ℓ > α(v + 5c).

Indeed, Lemma 8.9.1 ensures the following. If φ is satisfiable, then the length of the
shortest untangle sequence of Sφ is at most v+ 5c. Otherwise the length of the shortest
sequence is at least v + 7 + k ≥ k = α(v + 5c) + 1. This ends the reduction, and proves
Theorem 8.0.1.
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Chapter 9

Conclusion

This chapter is less a conclusion to this dissertation than an introduction to possible
future developments. For each choice (i.e., for no choice, removal choice, insertion
choice, and both choices) and for intractability, we explain the difficulties to extend or
improve known results sometimes providing counter-examples to some intuitive ideas,
we present some open problems which might be stepping stones to tackle the main open
problems, and we discuss about what we believe could be promising ideas.

9.1 Untangling with No Choice

When no choice is available, the only approach so far has been to find “good” potentials
to measure how far a multiset of segments is from being crossing free. To specify what
“good” means, we define (in the Π version for some property Π) the faithful potential
of a multiset S of segments d∅

Π(S) as the length of longest untangle sequence of S.
Obviously, d∅

Π(S) decreases by at least one at each flip, and any other potential does
not provide a better upper bound than maxS d∅

Π(S). The issue is then to prove a good
upper bound on d∅

Π(S). Now, we see that a good potential is one that is as close to the
faithful potential as possible while still admitting a good upper bound for which we
have a proof. In the following, we first present some variations of the potentials used in
the previous chapters with some of their interesting consequences.

The potential of one point. The potential of a point p ∈ P is defined as the sum
of the potentials of the lines through p, i.e., the sum of the Λpp′ for all p′ ∈ P \ {p}
(Λ is defined just before Lemma 3.1.1 [83]). This potential shows that the point p is
involved in at most n2 flips in an untangle sequence. Using the fact that there is a
zone defined by each flip f such that all the points both in P and in this zone define
f -critical lines (see the proof of Theorem 4.3.1 [30] for the definition of an f -critical
line, see Lemma 4.5.3 [30] for another use of this fact), we can show that a ray from p
containing the segment adjacent to p and rotating in the direction minimizing its angle
of rotation sweeps at most n2 points of P in an untangle sequence.

The potential of two points. There are three alternatives to define the potential of
two points.
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The potential of two points p1, p2 may be defined as the potential of the line p1p2,
i.e., Λp1p2 . This potential decreases by at least 1 at each flip removing the segment p1p2
and takes at most n distinct values, thus proving that a given segment is removed at
most n− 1 times (and inserted at most n times).

Similarly, the potential of two points p1, p2 may be defined as the sum of the
potentials of two lines crossing the segment p1p2 which are close enough to the line p1p2.
This potential decreases by at least 2 at each flip removing the segment p1p2 and takes
at most 2n− 1 distinct values, thus proving that a given segment is removed at most
n− 1 times (and inserted at most n times). This potential proved handy in the proof
of Theorem 3.1.3 to cope with the absence of any general position assumption.

Alternatively, the potential of two points p1, p2 may be defined as the sum of the
potentials of two lines being close enough to the line p1p2 while being parallel to p1p2.
This potential decreases by at least 2 at each flip inserting the segment p1p2 and takes
at most 2n− 1 distinct values, thus proving that a given segment is removed at most
n − 1 times (and removed at most n times). This potential is introduced in [19] to
prove Theorem 3.1.3 in the Matching version (assuming general position).

The potential of one segment. In the Convex version, we may define the potential
of one segment s of S as the number of segments of S crossing s. We have found no
way to generalize this type of potential to the non-Convex versions.

The potential of a convex partition. Note that a line defines a convex partition
of the plane. One idea is to try to define a potential of a convex partition which is
not necessarily induced by a line. Our tries all led to functions increasing in some flip
situations.

A potential based on the cyclic order of the points. The potential Φ based
on the cyclic order of P \ {p} around each point p used in the proof of Theorem 4.4.1
in the Redonaline version is very interesting. Indeed, the idea is to see untangling as
a generalisation of sorting. Moreover, counting the number of points in P that “see”
a given T-pair as an X-pair provides a “measure” of how much this T-pair is from
being X ( or H). For instance, this observation can be used to relax the requirement
that the removed segments cross in the definition of a flip to the requirement that less
points in P “see” the inserted pair has an X-pair than the removed pair. Unfortunately,
the potential Φ does not generalise well to the other versions. A possible reason is
that the point set order type (see Section 1.5 for the definitions of the order type and
crossing type of a point set) is not determined by this list of cyclic orders (see [5] for
a reconstruction of all the order types of a given list of cyclic orders). It seems also
unlikely that the point set crossing type would be determined by this list of cyclic orders
(see for example [73] for an algorithm reconstructing the crossing type of a point set
from its planar spanning trees organised in a reconfiguration graph).

A potential based on state tracking. As we have seen in Section 5.8, the state
tracking framework sheds a new light on the untangling problems. For instance, it is
possible to see the line potential ΛL (where L is the set of the lines defined by any
pair of points in the point set P ) as counting the transitions X → H. In fact, ΛL
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also decreases by at least one for each H → T and each T → X (via critical lines).
As we already know that each X-pair may be flipped at least once, we may focus on
counting how many times each pair is flipped beyond once. We may therefore hope that
some lines in L are not needed anymore if we focus on counting H → T (or T → X)
transitions instead of X → H. Unfortunately, all the lines are needed in general. In
the Bipartite version, only the lines defined by to points of P of the same color are
needed (instead of the lines defined by to points of P of different colors), but their
number is still quadratic, leading to the same cubic upper bound again. In fact, in the
context of bounds parameterized by t, the first proof of Theorem 4.3.1 was found in
the case where the points of T are inside the convex hull of C using the state tracking
approach to count H → T transitions with fewer lines than in L.

Searching head-on for good potentials is one strategy. In the following, we present
interesting remarks which are less focused on potentials.

The crossing type of a flip sequence. Similarly to the crossing type of a point set,
we define the labeled crossing type of a flip sequence as the set of the pairs of pairs of
labels of points which corresponds to the set of pairs of segments which are removed at
some point in the flip sequence. Two flip sequences have the same crossing type if there
exists a relabeling of the points such that the two flip sequences have the same labeled
crossing type. This definition is useful to realize that

• a lot of the flip sequences we may come up with have the same crossing type
(hence at most a quadratic length) as a flip sequence with endpoints in convex
position,

• when we are only interested in some multisets of segments on a given point set, the
problem depends only on the union of the crossing types of all the flip sequences
of the multisets of interest (which may be even less constrained than the crossing
type of the point set itself).

The intuition that all the flip sequences have the same crossing type as some flip
sequence with endpoints in convex position is disproved by Theorem 4.2.1.

Reductions. In Lemma 2.3.1, Lemma 2.3.2, Lemma 2.3.3, and Theorem 4.1.1, we
showed a relationship among different versions of d∅. The latter result shows how upper
bounds in the Matching version can be easily transferred to different versions. But they
can also be applied to transfer lower bounds among different versions. For example, the
lower bound of 3

2

(
n
2

)
− n

4
in the Bipartite Matching version from Theorem 4.2.1 [33]

implies a lower bound of 1
3

(
n
2

)
− n

2
in the Cycle version. It is not clear if the constants

in the Cycle version lower bound may be improved, perhaps by a more direct approach
(or perhaps the lower bounds are not even asymptotically tight). However, we showed
that all these versions are related by constant factors.

Upper bound without multiplicity. The upper bound from Theorem 4.5.1 on the
number of distinct flips may be useful if one of the following open problems is solved.



114 CHAPTER 9. CONCLUSION

• What is the maximal multiplicity of a flip removing a given segment p1p2 in an
untangle sequence? We know that it is at most n− 1 thanks to the line potential
Λp1p2 . Any sub-linear upper bound would lead to a sub-cubic upper bound on
d∅
Multigraph.

• Is it possible to devise a removal strategy which guaranties that the multiplicity of
each flip is sub-linear? A yes would improve the cubic upper bound on dR

Multigraph.

The proof of Theorem 4.5.1 is based on the O(n2k2) bound from Lemma 4.5.3. A
better analysis of the dual arrangement could potentially improve this bound, perhaps
to O(n2k).

An inductive approach. If we add a new segment to a crossing-free multiset of
segments, what is the maximum length of an untangle sequence? Notice that a sub-
quadratic bound would lead to a sub-cubic bound for d∅

Multigraph.

A tight quadratic lower bound. All our small scale experiments have so far shown
that the quadratic lower bound seems to be asymptotically tight. Specifically in the
Bipartite version, all our small scale experiments have so far shown that the lower
bound of Theorem 4.2.1 seems to be exactly tight for even n. Apparently, bipartite
matchings with endpoints in general position do not lead to untangle sequences longer
than in the Redonaline version.

9.2 Untangling with Removal Choice
Devising removal strategies is strongly related to the motivation of untangling TSP
tours. In this section, we discuss about lower bounds, what to do with the results in
the Redonaline version, how counting flips without multiplicity could become useful, a
recursive approach, the irregular dependencies in t in parameterized bounds, and last
but not least we present work in progress involving state tracking to prove a quadratic
upper bound on dR

Bipartite Matching.

A tight linear lower bound. All our small scale experiments have so far shown
that the linear lower bound seem to be asymptotically tight. In the following, we forget
about this remark to discuss about how to prove lower bounds.

First note that most of the removal strategies are not known to be optimal. In
fact, only the Convex version algorithms are shown to have optimal worst case flip
complexity, except in the Multigraph version. It is uncertain whether the O(n log n)
upper bound or the linear lower bound on dR

Convex Multigraph can be improved. Besides, in
the Convex Bipartite version, there are hints (explained in Section 9.5, see footnote3)
for the lower bound of Theorem 5.1.1 to be exactly tight for even n.

Improving the lower bound amounts to devising a strategy in place of the adversary,
using insertion choice to make the untangle sequence as long as possible. As some
multisets of segments do not admit untangle sequence with super-linear length, the
choice of the initial multiset of segments is important. Moreover, to fully benefit from
this choice, we have to use insertion choice to decrease as little as possible a potential
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for which we know a high lower bound on its initial value and an low upper bound
its the final value. The only three potentials known to have a low upper bound on
crossing-free multisets of segments (in fact, they all equal 0 on crossing-free multisets)
are the number of crossings χ and the sum, or the product, of the crossing depths δ×(s)
of the segments s in the multiset (the potential involving the crossing depths are specific
to the Convex version). There are flip situations where both insertion choices lead to a
big decrease of any of these three potentials. For instance, the potential χ decreases by
n− 2 for any flip of a multiset having each of its segments crossing all its others (with
endpoints in convex position). Avoiding these situations or proving that they are not
frequent (for example, by a similar argument than in the proof of Theorem 6.1.1 [31])
would lead to a lower bound on dR

Convex Multigraph.

From the Redonaline version to generalizations. Generalizing the algorithm
used in the proof of Theorem 3.3.1 to bipartite point sets with the red points below the
x-axis and the blue points above using ray shooting ideas to generalize the path u did
not work.1

Generalizing the algorithm used in the proof of Theorem 5.8.1 did not work either as
Lemma 5.8.3 relies on the red-on-a-line setting. It may generalize to some deformation
of this setting like red-on-a-convex for instance.

Upper bound without multiplicity. Recall that a removal strategy which guar-
anties that the multiplicity of each flip is sub-linear together with the upper bound
from Theorem 4.5.1 on the number of distinct flips may improve the cubic upper bound
on dR

Multigraph.

A recursive approach. A recursive removal strategy which untangles a new segment
added to a crossing-free multiset of segments in sub-quadratic time would lead to a
sub-cubic bound for dR

Multigraph.

The dependency on t. In the upper bound of Theorem 5.5.2 [31], the quadratic
dependency on t provides a continuous transition between the upper bounds in the
Convex versions (as in Theorem 5.2.1) and the cubic upper bound for general point sets
from Theorem 3.1.3. In the upper bounds of Theorem 5.4.2 [31] and Theorem 5.6.1 [31],
the linear dependency on t would provide a continuous transition between the upper
bounds in the Convex versions (as in Theorem 5.2.1) and a conjectured quadratic
upper bound for general point sets (see the next paragraph “State tracking to prove a
quadratic upper bound on dR

Bipartite Matching.”). In the upper bound of Theorem 5.7.1,
the exponential dependency on t seems more to emerge for technical reasons than to
reflect an intrinsic aspect of the problem.

State tracking to prove a quadratic upper bound on dR
Bipartite Matching. The

author believe it is possible to use state tracking to prove a quadratic upper bound on
dR
Bipartite Matching. Next, we provide some insight on this intuition.

1This was discussed at the workshop [86].
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As we have seen in the proof of Theorem 3.2.1, there is a correspondence between the
permutations of n elements and the bipartite matchings on a given bipartite point set
where the red (respectively blue) points are labeled r1, . . . , rn (respectively r̄1, . . . , r̄n).
Specifically, a bipartite matching S defines a permutation σ where, for each segment
rar̄b in S, a is mapped to b. For such a bipartite matching, the flips correspond to a
subset of the transpositions. Specifically, a flip (in the Bipartite version) removing
the segments rar̄b, rcr̄d corresponds to the transposition (ac) (i.e. the transposition
mapping a to c and vice versa). A flip sequence (Si)i∈{0,...,k} corresponds to a sequence
of permutations, say (σi)i∈{0,...,k}, and the associated sequence of flips corresponds to a
sequence of transposition, say (τi)i∈{1,...,k}, such that for all i ∈ {1, . . . , k} σi−1τi = σi.

Two transpositions do not commute unless they are identical or they operate on
disjoint subsets of {1, . . . , n}. Yet, we may swap two transpositions in a wicker sense,
preserving at least one of them. Specifically, for all distinct four integers a, b, c, d in
{1, . . . , n}, we have the following identities from elementary algebra.

(ab)(ab) = Id (9.1)
(ab)(cd) = (cd)(ab) (9.2)
(ab)(bc) = (ca)(ab) = (bc)(ca) (9.3)

The idea is to transform any flip sequence (seen as a sequence of transpositions) into
a flip sequence of length at most

(
n
2

)
where the track of each pair of segments (i.e., the

sequence of pairs of segments, each turning into the next one) is only flipped once. This
may be achieved by iteratively choosing a flip f in the sequence which is the second
flip of its track and swapping the transposition τ corresponding to f with the others
transpositions (using (9.2) or (9.3)) to place τ next to its first occurrence in the track
and cancel these to copies of τ (using (9.1)). The swapping of τ is guided by the track,
i.e., choosing which of the two identities in (9.3) to use for a swap is done in order to
“preserve” the states of the pairs of segments involved in the swap. It is still work in
progress whether the final sequence of transposition we obtain is a flip sequence, but
our experiments swapping the longest sequence known (starting with a butterfly, see
Theorem 4.2.1) work well.

9.3 Untangling with Insertion Choice
It may be surprising that a quadratic upper bound is known on dI

Multigraph (Theo-
rem 3.1.4 [19] and Theorem 3.1.5 [17]) but not on dR

Multigraph (where the best upper
bound known is cubic in general, thanks to Theorem 3.1.3 [19, 82]). Insertion choice is
indeed very different from removal choice; any simple reduction between the two seems
unlikely. Next, we discuss about lower bounds, then about the recursive approach.

Lower bounds. We have not coded any experiments for insertion choice. In the
following, we discuss about how to prove lower bounds nonetheless, with many aspect
similar to lower bounds with removal choice.

Similarly to lower bounds with removal choice, proving a lower bound amounts to
devising a strategy in place of the adversary, this time using removal choice to make
the untangle sequence as long as possible. Again, the choice of the initial multiset of
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segments is important. Again, to fully benefit from this choice, we have to use removal
choice to decrease as little as possible a potential for which we know a high lower bound
on its initial value and an low upper bound on its final value. Again, the only three
potentials known to have a low upper bound on crossing-free multisets of segments are
the number of crossings χ and the sum, or the product, of the crossing depths δ×(s) of
the segments s in the multiset. Recall that there are flip situations where both insertion
choices lead to a big decrease of any of these three potentials. Avoiding these situations
or proving that they are not frequent would lead to a lower bound on dI

Convex Multigraph.
As usual, the insertion strategies are not known to be optimal. Even in the Convex

version, the algorithm from Theorem 6.1.1 providing an O(n log n) upper bound on
dI
Convex Multigraph is not optimal. It is uncertain whether this O(n log n) upper bound

or the linear lower bound on dI
Convex Multigraph can be improved. Regardless, if we set

our mind to improve the lower bound, it may be a good approach to choose a multiset
having each of its segments crossing all its others (with endpoints in convex position)
as the starting multiset, and to use a similar removal strategy as in the proof of
Theorem 5.2.1 [31]. Yet, it remains to prove that the crossing depth potentials do not
decrease too much or too often.

The author’s current belief is that dI
Multigraph is Θ(n log n) (even in the non-Convex

version). If, regardless of this intuition, we want to prove a lower bound on dI
Multigraph

which is ω(n
3
2 ), a consequence of Theorem 3.1.5 [17] is that, we need a point set with

a crossing type that admits no realisation with an O(
√
n) spread. In other words, we

need to find a crossing type that is impossible to draw as a dense point set.

A recursive approach. Again, a recursive insertion strategy which untangles a new
segment added to a crossing-free multiset of segments in sub-linear time would lead to
a sub-quadratic bound for dI

Multigraph.

9.4 Untangling with Both Choices

It is surprisingly not obvious how to take advantage of both choices to untangle
segments when there is such a gap between the quadratic upper bound in general
(Theorem 3.1.4 [19]) and the linear lower bound (Theorem 3.2.12). Next, we discuss
about lower bounds, about the recursive approach, and about the intriguing only
theorem specific to the Matching version.

A tight linear lower bound. As with removal choice, all our small scale experiments
have so far shown that the linear lower bound seem to be asymptotically tight.

Regardless, proving a lower bound amounts to choosing an initial multiset of segments
such that all its untangle sequences are long. This may be achieve similarly to the
proofs of Theorem 3.2.12 and Theorem 5.1.1 using a flip invariant of some class of
multiset of segments in which we have chosen the initial multiset.

A recursive approach. Once more, a recursive strategy for both choices which
untangles a new segment added to a crossing-free multiset of segments in sub-linear
time would lead to a sub-quadratic bound for dRI

Multigraph.
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The only theorem specific to the Matching version. It is intriguing that
Lemma 7.2.1 [31], and thereby Theorem 7.2.3 [31] are so far the only results spe-
cific to the Matching version which do not admit a straightforward generalization to
the Multigraph version.

9.5 Intractability

Designing strategies to untangle segments with optimal worst case flip complexity
is one thing, computing the shortest untangle sequence of each instance is another.
This raises the problem of the complexity class of the latter. Theorem 8.0.1 shows
that this problem is NP-hard in the Bipartite Matching version. Although a direct
corollary of Theorem 8.0.1 is that the shortest untangle sequence (or any constant factor
approximation of it) is also NP-hard in the Bipartite Multigraph version, it remains
unclear how to prove intractability in any other versions. We have also consider proving
the intractability of computing the longest untangle sequence of each instance. In the
following, first we present ideas about why the shortest untangle sequence problem in
the Convex Bipartite Matching version could possibly be in P, then we explain the
main difficulties we have encountered to prove the intractability of the shortest untangle
sequence in other versions and of the longest untangle sequence, and we conclude by a
remark about a hypothetical unified intractability proof.

The shortest untangle sequence in the Convex Bipartite Matching version.
The proof of Theorem 8.0.1 relies on gadgets which do not have endpoints in convex
position. In fact, it might not be the case that the shortest untangle sequence is
NP-hard in the Convex Bipartite Matching version.2 In the following, we try to give
some ideas for an algorithm to compute the shortest untangle sequence in the Convex

Bipartite Matching version.
As in any Bipartite version, the segments of a bipartite matching S (with end

points in convex position) are oriented. Let us explicitly represent this orientation with
arrows pointing from the red point to the blue point (Figure 9.1). Recall from the
exhaustive version of the proof of Lemma 3.2.3 that χ(S), the total number of crossings
in S, decreases by more than one in two specific situations (both corresponding to the
rightmost case in Figure 5.3). Let us call these two situations the triangle situations.
They consists in three pairwise crossing segments. One of the triangle situations occurs
when the orientation of the three segments form an oriented cycle (if we cut off the
portions of segments with no crossings and containing an endpoint). Let us call it the
cyclic triangle situation (Figure 9.1(b)). The other triangle situation occurs when only
two of the three segments form an oriented path. Let us call it the shortcut triangle
situation (Figure 9.1(e)). In a cyclic triangle situation, flipping any two of the three
segments leads to an extra drop of 2 in χ(S) (for instance, one of these three flips
transforms Figure 9.1(b) into Figure 9.1(a)), while in a shortcut triangle situation, the
only two segments leading to such a drop are the segments of the oriented path we
mentioned (this flip transforms Figure 9.1(e) into Figure 9.1(d)).

2This was also discussed at the workshop [86].
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 9.1: Bipartite matchings with endpoints in convex position and segments
decorated with an arrow pointing towards the blue point. The sequences (c)(b)(a),
(f)(e)(d), and (h)(g) are flip sequences.
(a) & (d) Crossing-free bipartite matchings.
(b) A cyclic triangle situation.
(c) & (f) Quadrilateral situations.
(e) A shortcut triangle situation.
(g) A bipartite matching without k-gon situation.
(h) A dead-end quadrilateral situation.
(i) The circled crossing is both a good choice and a bad choice: its weight is 1− 1 = 0.

Note that the greedy removal strategy maximizing the decrease of the potential χ(S)
is not well defined if there are no triangle situation; and there exists convex bipartite
matchings with no triangle situation and with untangle sequences shorter than others
(Figure 9.1(c) and Figure 9.1(f) show two examples).

The difficulty is that a triangle situation may be created only by flipping two segments
forming an oriented path in what we call a quadrilateral situation (Figure 9.1(c) and
Figure 9.1(f) may be flipped into Figure 9.1(b) and Figure 9.1(e)). Again, a quadrilateral
situation may only come from a pentagon situation using the same type of oriented
path segment flipping, and so on.

Generalizing, let the crossing graph of a bipartite matching S be the directed graph
whose vertices are crossing pairs of segments and such that there is an directed edge
between two crossing pairs of segments if they share a segment (the orientation of
this segment gives the orientation of the edge). Let k be a positive integer at least
3. A k-gon situation occurs when the crossing graph of bipartite matching S with
endpoints in convex position admits a k-cycle such that non-adjacent vertices in the
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k-cycle are also not adjacent in the crossing graph. If k ≥ 4 and if the k-cycle of a
k-gon situation admits a directed path of length 2, then flipping the two corresponding
segments transforms the k-gon situation into a k− 1-gon situation. We say that a k-gon
situation is a dead-end if no flip sequence transforms it into a triangle situation (k is
then even). Figure 9.1(h) shows a dead-end quadrilateral situation; an example of a flip
leads to Figure 9.1(g).3

Obviously, our algorithm should perform in priority the flips removing pairs of
segments forming an oriented path in some polygon situation which is not a dead-end;
let us call this type of removal choice a good choice. If there is no such pair, or if there
is no polygon, then it is easy to prove that any untangle sequence uses as many flips as
there are crossings in S. The question is how to choose the removed pair when there
is more than one good choice, or when a choice is simultaneously good in a polygon
situation and not good in another polygon situation. Moreover, there are also bad
choices, i.e., choices breaking a k-gon situation which is not a dead-end; and a choice
may be simultaneously good and bad (Figure 9.1(i)). This hints that we should weight
each choice with the number of polygon situations making it a good choice minus the
number of polygon situations making it a bad choice (in Figure 9.1(i), the circle crossing
has a weight of 0 as it is involved as a good choice in exactly 1 quadrilateral situation
and as a bad choice in exactly 1 quadrilateral situation; in fact 0 appears to be the
maximum weight in this matching). Is remains to prove that the strategy prioritizing
the removal choice with the highest weight indeed computes one of the shortest untangle
sequences, and that it runs in polynomial time using some dynamic data structure.

The shortest untangle sequence in Redonaline Matching version. The proof of
Theorem 8.0.1 relies on gadgets which do not have colinear red points. It is thus unclear
whether reducing the rectilinear planar monotone 3-SAT problem is a good approach.

The shortest untangle sequence in non-bipartite versions. The proof of The-
orem 8.0.1 takes advantage of the fact that the pair of segments inserted at a flip
depends only on the color of the four endpoints involved and not on all the multiset of
segments. This approach is not possible in the Cycle version, in the Tree version, or in
the non-bipartite Multigraph version.

The longest untangle sequence. We have tried to reduce the Hamiltonian path
problem in grid graphs (this problem is NP-hard [58]) to the longest untangle sequence
problem (in the Bipartite version). We did not succeed in building a gadget which
transmits the untangling chained reaction to one of the outgoing edges of a vertex. The
author’s current intuition is that it is geometrically impossible to build such a gadget.

A unified intractability proof. If the shortest (respectively the longest) untangle
sequence of a given multiset of segments is NP-hard to compute in all the non-Convex

3A fence only has quadrilateral situations and all of them are dead-ends. Each segment of a
fence (except the leftmost and rightmost ones) participates in two quadrilateral situations. The
author currently believes that this property optimizes the number of crossings while having only
dead-end situations, and that is is achieved only by a fence, hinting that the lower bound provided by
Theorem 5.1.1 may be tight.
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versions (as we currently believe), then it is likely that there exists a proof by reduction
easily adaptable to all these versions.

9.6 Conclusion
In this dissertation, we have studied the problem of untangling segments in the plane,
a reconfiguration problem with notable applications in TSP approximation algorithms.
We have clarified and formalized a common framework based on the notion of choice to
study the different versions of flips combining point set properties, degree properties, and
insertion properties. We have gathered the fourteen results about untangling segments
from the literature, generalizing many of them. Throughout eighteen theorems, we
have proved several reductions between different versions, two counter-intuitive lower
bounds, fourteen upper bounds, and one intractability result. We have used well-known
techniques such as potentials, balancing arguments, preprocessing, induction, and divide
and conquer, as well as new techniques such as state tracking. We have initiated a
systematic study of point sets near convex position.

Our problematic on untangling segments in the plane is easy to state yet hard to
solve; it is deeply related to crossing types and order types, an active field of research
with many essential open problems. The special version of the problem where the
endpoints form a convex polygon is well understood and nearly solved. However, for
endpoints in general position, there remain striking gaps between quadratic lower
bounds and cubic upper bounds on d∅, between linear lower bounds and cubic upper
bonds on dR, and between linear lower bounds and quadratic upper bonds on dI and
dRI. While we showed that the convex version does not always maximize the length of
a flip sequence, the conjecture that the quadratic upper bounds on d∅

Convex, the upper
bounds on dR

Convex and dI
Convex (both O(n log n) or linear depending on the version), and

the linear upper bounds on dRI
Convex asymptotically hold in the general version is still

open.4

4The author thinks that knowledge, and maybe even truth, is more a collection of open questions
than a series of answers.
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