Efficient Algorithms for Battleship

FUN with algorithms 2020, June, 1st 2022, Favignana, Italy
Yan Gerard
with Loïc Crombez and Guilherme Da Fonseca

The Game / Shooting Algorithms

Examples

Results

No restriction on the shapes of the ships to segments....
We play with polyominoes or more generally with any given digital shape!

First player: Alice
Second player: Together

First player: Alice

We choose together the

Second player: Together

Alice hides the ship in the grid
by translating it...

Alice hides the ship
 in the grid by translating it...

Alice hides the ship
 in the grid by translating it...

凸ூ

Miss

Miss

Miss \square

凸ூ

Miss

Miss

Miss

Miss

													\square
													\square
					Miss								
	Miss							Miss					
		Miss											
		Miss											
										Miss			
			Miss										
				Miss									
													$1 \geqslant$
													\% ${ }^{\text {anem }}$

													\square
													\square
					Miss								
	Miss							Miss					
		Miss											
		Miss											
										Miss			
			Miss										
				Miss									
													$1 \geqslant$
													\% ${ }^{\text {anem }}$

We do not consider this initial sequence of shots...

Miss

We do not consider this initial sequence of shots...

Forget the first Misses...
Miss

Miss
Miss

Miss $\square \square \square$ Hit

Miss

We do not consider this initial sequence of shots...

Forget the first Misses...
Start the game from the first Hit...

We do not consider this initial sequence of shots...

Forget the first Misses...

Start the game from the first Hit...

Which shot should we play now ?

We assume w.l.g that the first hit occurs at coordinates $(0,0)$.

$\overbrace{(0,0)}$

The position of the ship is the point of the shape that Alice sent to the origin... and which is hit at the initial shot.

For a shape of size n, Alice has the choice between n positions p...
 and we have to guess p

For a shape of size n,
Alice has the choice
 between n positions p... and we have to guess p

For a shape of size n, Alice has the choice between n positions $p .$.

For a shape of size n,
Alice has the choice between n positions p... and we have to guess p

Alice chooses this position p

														-		-											

Shot (0,0)

Hit

-																											
-																											
-																	†										
-																											
-																											
-																											
-																											

Shot $(0,0)$

Shot (0,-1)

Shot $(0,0)$

Hit

Shot (0,-1) Miss

Shot $(0,0)$

Shot (0,-1)
Shot (1,1)

Shot $(0,0)$

When we start, all positions are feasible...

Shot $(0,0)$

At each step, we represent the feasible positions by \boxtimes

Shot $(0,0)$

Shot (0,-1)
Miss

Shot $(0,0)$

We found the position with only 2 misses...

Shot $(0,0)$

Shot $(0,0)$

园

Shot (0,0)

园

$$
\sqrt[\square]{\square}
$$

Shot $(0,0)$

Maximum number of misses
$=2$

(2i)

凡ー 4

What's an efficient shooting algorithm ? Which efficiency measure should we use ?

2 닺ํ H1

(5)

\section*{| $\boxed{1}$ |
| ---: |
| \square |}

\section*{| $\boxed{1}$ |
| :---: |
| \square |}

What's an efficient shooting algorithm ? Which efficiency measure should we use ?

2 단

Alice is not a
« uniform random player»

Alice is not a « uniform random player»

(2i)

$\begin{array}{r}187 \\ 1 \\ \hline\end{array}$

Given a shape S, our goal is to design a shooting algorithm with a minimum maximum number of misses ...

Min Max Problem

Given a shape S , our goal is to design a shooting algorithm with a minimum maximum number of misses ...

For a given algorithm

Given a shape S , our goal is to design a shooting algorithm with a minimum maximum number of misses ...

For a given algorithm
Min Max Number of misses

Over all shooting algorithms

Over all positions of the shape

Given a shape S, our goal is to design a shooting algorithm with a minimum maximum number of misses ...

Given a shape S, our goal is to design a shooting algorithm with a minimum maximum number of misses ...

Battleship Compexity $(S)=$ Min Max Number of misses

Over all shooting algorithms

Over all positions of the shape

How to compute the B.complexity of a given shape ?

Approximations?

Open questions....

How to compute the B.complexity of a given shape ?

Polynomial Time ?
 NP-hard ?
 Approximations?

Give some algorithms for some classes of shapes

How to compute the B.complexity of a given shape ?

Polynomial Time?
 NP-hard ?
 Approximations?

Results

4
 $(0,0)$

(II)

Shoot on the left until the firt miss

Shoot on the left until the firt miss

Miss

Shoot on the left until the firt miss

\square

Miss

Shoot on the left until the firt miss

Shoot on the left until the firt miss

Shoot on the left until the firt miss

Shoot on the left until the firt miss

Shoot on the left until the firt miss

Shoot on the left until the firt miss Shoot down until the second miss

Shoot on the left until the firt miss Shoot down until the second miss

Shoot on the left until the firt miss Shoot down until the second miss

Shoot on the left until the firt miss Shoot down until the second miss

Shoot on the left until the firt miss Shoot down until the second miss

We have an algorithm with at most 2 misses.
There is no algorithm with at most 1 miss.

$$
\text { B-complexity }(R)=2
$$

Shoot on the left until the firt miss Shoot down until the second miss

We have an algorithm with at most 2 misses.

 There is no algorithm with at most 1 miss.B-complexity (R)=2

\square
The B-complexity is invariant by shifting (more generally by morphisms (injective on S-S)).

We have an algorithm with at most 2 misses.
There is no algorithm with at most 1 miss.

$$
\text { B-complexity }(\mathrm{R})=2
$$

The same strategy can be used for...

Can we say something more general than a few observations?

Results

Results

Shot (-2,1)

New feasible positions

The set of the
feasible positions
decreases
at each shot!

The set of the feasible positions
decreases at each shot!
height of the tree $\leq n$ ($\mathrm{n}=$ size of the shape)

Number of misses $\leq \mathrm{n}-1$

Bound 1
For any shape of size n
B-complexity(S) $\leq \mathrm{n}-1$

Non Parallelogram-free shape

There exists 4 distinct points u, v, s, t in S with $v-u=t-s$

YES: for any parallelogram-free shape, we have B-complexity(S)=n-1

Non Parallelogram-free shape
There exists 4 distinct points u, v, s, t in S with $v-u=t-s$

Parallelogram-free shape

YES: for any parallelogram-free shape, we have B-complexity(S)=n-1

Non Parallelogram-free shape
There exists 4 distinct points u, v, s, t in S with $v-u=t-s$

Parallelogram-free shape

For parallelogram-free shapes
B-complexity (S) = $\mathrm{n}-1$

The four 4-neighbors of a red point

4-connected

Any pair of squares/points is related
by a sequence of neighbors.

NOT 4-connected

4-connected

NOT horizontally convex

horizontally convex

NOT horizontally convex

horizontally convex
NOT vertically convex

NOT horizontally convex

horizontally convex
NOT vertically convex

S is vertically convex. $\}$ S is horizontally convex. $\}$
S is $H V$-convex.

HV-convex polyomino

HV-convex polyomino

We use a property of monotonicity of HV-convex polyominoes...

A staircase shooting algorithm with at most $O(\log (n))$ misses

A staircase shooting algorithm with at most $O(\log (n))$ misses

At each miss, the number of feasible positions is divided by 2.

S is not digital convex.

Digital convexity means
S is equal to its intersection with its (real) convex hull.

S is not digital convex.

S is digital convex.

Digital convexity means
S is equal to its intersection with its (real) convex hull.

Bound 2

For l-convex polyor noes B-complexity $(S)=O(\log (n))$

Digital convex shape

Bound 3
For digital convex sets
B-complexity(S)=O(...)

Digital convex shape

WikipediA
 The Free Encyclopedia

Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
Contribute
Help
Learn to edit
Community portal
Recent changes
Upload file
Tools
What links here
Related changes
Special pages
Permanent link
Page information
Cite this page

Blaschke-Lebesgue theorem

From Wikipedia, the free encyclopedia
In plane geometry the Blaschke-Lebesgue theorem states that the Reuleaux triangle has the least area of all curves of given constant width. ${ }^{[1]}$ In the form that every curve of a given width has area at least as large as the Reuleaux triangle, it is also known as the Blaschke-Lebesgue inequality. ${ }^{[2]}$ It is named after Wilhelm Blaschke and Henri Lebesgue, who published it separately in the early 20th century.

Contents [hide]	
1	Statement
2	History
3	In other planes
4	Application
5 Related problems	
6 References	

A Reuleaux triangle, a curve of constant width whose area is minimum among all convex sets with the same width

Statement [edit]

The width of a convex set K in the Euclidean plane is defined as the minimum distance between any two parallel lines that enclose it. The two minimum-distance lines are both necessarily tangent lines to K, on opposite sides. A curve of constant width is the boundary of a convex set with the property that, for every direction of parallel lines, the two tangent lines with that direction that are tangent to opposite sides of the curve are at a distance equal to the width. These curves include both the circle and the Reuleaux triangle, a curved triangle formed from arcs of three equal-radius

Blaschke-Lebesgue Inequality (1914) The area of a convex shape is bounded by area $\geq \frac{1}{2}(\pi-\sqrt{3})$ width 2 (Equality for Reuleaux triangles).

Is there a discrete version with the number of points instead of the area?

Blaschke-Lebesgue Inequality (1914) The area of a convex shape is bounded by

$$
\text { area } \geq \frac{1}{2}(\pi-\sqrt{3}) \text { width }^{2}
$$

(Equality for Reuleaux triangles).

Barany-Füredi Inequality (2001)
The area of a discrete shape S is bounded by \quad width $\leq \mid 4 / 3$ diam $\mid+1$ where diam is the maximum number of points of S on a line and width is the arithmetic width (tight bound).

Is there a discrete version with the number of points instead of the area?

Blaschke-Lebesgue Inequality (1914) The area of a convex shape is bounded by

$$
\text { area } \geq \frac{1}{2}(\pi-\sqrt{3}) \text { width }^{2}
$$ (Equality for Reuleaux triangles).

Barany-Füredi Inequality (2001)
The area of a discrete shape S is bounded by \quad width $\leq \mid 4 / 3$ diam $\mid+1$ where diam is the maximum number of points of S on a line and width is the arithmetic width (tight bound).

Blaschke-Lebesgue Inequality (1914)
The area of a convex shape is bounded by area $\geq \frac{1}{2}(\pi-\sqrt{3})$ width 2 (Equality for Reuleaux triangles).

Barany-Füredi Inequality (2001)
The area of a discrete shape S is bounded by \quad width $\leq \mid 4 / 3$ diam $\mid+1$ where diam is the maximum number of points of S on a line and width is the arithmetic width (tight bound).

Pick formula \& ...

Discrete Blaschke-Lebesgue Inequality (L. Crombez, G. Da Fonseca, Y.G) The number n of a digital convex shape S is bounded by

$$
n \geq \frac{1}{4} w_{i d t h}{ }^{2}+2
$$

Blaschke-Lebesgue Inequality (1914) The area of a convex shape is bounded by area $\geq \frac{1}{2}(\pi-\sqrt{3})$ width 2 (Equality for Reuleaux triangles).

Discrete Blaschke-Lebesgue Inequality (L. Crombez, G. Da Fonseca, Y.G)
The number n of a digital convex shape S is bounded by

$$
n \geq \frac{1}{4} w^{2} d t h^{2}+2
$$

(not tight)

Blaschke-Lebesgue Inequality (1914) The area of a convex shape is bounded by

$$
\text { area } \geq \frac{1}{2}(\pi-\sqrt{3}) \text { width }^{2}
$$

(Equality for Reuleaux triangles).

Discrete Blaschke-Lebesgue Inequality (L. Crombez, G. Da Fonseca, Y.G) The number n of a digital convex shape S is bounded by

$$
n \geq \frac{1}{4} w i d t h^{2}+2
$$

We use it for bounding the maximum number of misses of our algorithm...

Discrete Blaschke-Lebesgue Inequality (L. Crombez, G. Da Fonseca, Y.G) The number n of a digital convex shape S is bounded by $\quad n \geq \frac{1}{4}$ width $^{2}+2$ (not tight)

At each step of the algorithm

At each step of the algorithm

is digital convex....

At each step of the algorithm

The set of the feasible positions

is digital convex....

We compute its arithmetic width....and shot in the direction of the lines...

At each step of the algorithm

The set of the feasible positions

is digital convex....

We compute its arithmetic width....and shot in the direction of the lines...

At each step of the algorithm

The set of the feasible positions

is digital convex....

We compute its arithmetic width....and shot in the direction of the lines...

Shot $k(1,0)$ until finding the two first misses with a positive and negative integer $k . .$.

At each step of the algorithm

The set of the feasible positions

is digital convex....

We compute its arithmetic width....and shot in the direction of the lines...

Shot $k(1,0)$ until finding the two first misses with a positive and negative integer $k . .$.

With these 2 new misses, we go from Q feasible positions
to at most $Q^{3 / 4}$ feasible positions
provides the $O(\log (\log (n)))$ bound

With these 2 new misses, we go from Q feasible positions to at most $Q^{3 / 4}$ feasible positions

Results

Conclusion

Bound 1
For any shape B-complexity (S) $\leq \mathrm{n}-1$

Bound 2
For HV-convex polyominoes B-complexity(S) $=\mathrm{O}(\log (n)$)

Bound 3

For digital convex polyominoes B-complexity(S) $=\mathrm{O}(\log (\log (\mathrm{n}))$)

Conclusion

Bound 1
For any shape B-complexity (S) $\leq \mathrm{n}-1$

Bound 2
For HV-convex polyominoes B-complexity(S) $=\mathrm{O}(\log (\mathrm{n})$)

Bound 3
For digital convex polyominoes B-complexity(S) $=\mathrm{O}(\log (\log (\mathrm{n}))$)

Complexity
of computing the B-complexity of a given shape ?

A lot of open questions...

Conclusion

B-complexity $(\mathrm{A} U \mathrm{~B}) \leq \mathrm{B}$-complexity(A) + B-complexity (B) ?

Complexity
of computing the B-complexity of a given shape ?

A lot of open questions...

B-complexity(A U B) $\leq \mathrm{B}$-complexity(A) + B-complexity(B) ?
B-complexity $(\mathrm{A}+\mathrm{B}) \leq \mathrm{B}$-complexity(A) + B-complexity(B) ?

Complexity
of computing the B-complexity of a given shape ?

A lot of open questions...

Conclusion

B-complexity (A U B) \leq B-complexity (A) + B-complexity (B) ?

B-complexity $(\mathrm{A}+\mathrm{B}) \leq \mathrm{B}$-complexity(A) + B-complexity (B) ?

Complexity
of computing the B-complexity of a given shape ?

B-complexity of polyominoes?

A lot of open questions...

Conclusion

B-complexity(A U B) $\leq \mathrm{B}$-complexity(A) + B-complexity(B) ?
 B-complexity $(\mathrm{A}+\mathrm{B}) \leq \mathrm{B}$-complexity(A) +B -complexity(B) ?

What I like with the B-complexity ?

What I like with the B-complexity ?

This algorithmic game can be played in any group!!!!!!

$$
\begin{array}{lllll}
Z & Z 2 & \ldots & Z d & Z / n Z
\end{array}
$$

$G L_{n}(R)$

What I like with the B-complexity ?

This algorithmic game can be played in any group!!!!!!
Z

$$
Z^{2} \quad \ldots \quad Z d \quad Z / n Z
$$

$G L_{n}(R)$
with any shape i.e finite set

What I like with the B-complexity ?

This algorithmic game can be played in any group!!!!!!

Z

It is invariant by morphisms (injective* on S-S)

* for any $u, v, u^{\prime}, v^{\prime}$ in $S: f(u-v)=f\left(u^{\prime}-v^{\prime}\right)$ implies $u-v=u^{\prime}-v^{\prime}$

Thanks a lot for your attention...
Some questions ?

