

Flipping

Wolfgang Mulzer (based on joint work w/ Oswin Aichholzer, Kristin Knorr, Johannes Obenaus, Rosna Paul, Alexander Pilz, and Birgit Vogtenhuber)

A flip is a simple local operation that transforms one combinatorial structure into another

Many notions of flips: flips in triangulations, rotations in binary search trees, sliding tokens on graphs, ...

Many variants, a lot of work, many open questions

I will show two examples, one positive, one negative, with many open questions

Part I

Flips in Triangulations of Simple Polygons

Flipping in Simple Polygons

Bounds on the Flip Distance

Convex Polygons: at most 2n – 10 flips.

In general: $\Omega(n^2)$ flips necessary.

Example: the double chain; a special polygon on 2n vertices.

A Lower Bound

Two extreme triangulations of the double chain.

[Hurtado, Noy, Urrutia, 1999]: flip distance is $(n - 1)^2$.

Double Chains as Gadgets

One additional vertex decreases the flip distance.

Double Chains as Gadgets

One addipsinasteendeed decreases the flip distance.

E

Double Chains as Gadgets

Two facts about extreme triangulations [Lubiw, Pathak 2012]:

point in red region: flip distance is exactly 4n - 4.

no point in green region: flip distance is exactly $(n - 1)^2$.

Rectilinear Steiner Arborescence

Given: N sinks on n x n grid, k

Arborescence: monotone paths on grid from origin to sinks

Question: exists arborescence of length at most k?

NP-complete [Shi, Su, 2000]

Triangulations and Grid Paths

Triangulations of a special polygon correspond to x- and y-monotone grid paths from (1,1).

A flip can move the head of the path.

E.

Triangulations and Grid Paths

Triangulations of a special polygon correspond to x- and y-monotone grid paths from (1,1).

A flip can change a bend of the path.

E.

The Reduction – Main Challenges

We want to reduce RSA to PolyFlip.

How to represent sinks of the RSA?

How to relate flip distance to length of the RSA?

Representing Sinks

Representing Sinks

If the last edge of the path is at the sink, 4d - 4 flips suffice.

Source and Target Triangulation

One modified double chain in (1,1) position (grid path).

For each RSA-site: a small double chain, in extreme position.

Lemma: Flip distance is short iff grid path visits all sites.

The Reduction – Main Challenges

We want to reduce RSA to PolyFlip.

How to represent sinks of the RSA?

How to relate flip distance to length of the RSA?

F

Flip Distance and RSA Length

Problem: chain flips are difficult to analyze

Idea: make grid path static

Trace: all edges and cells covered by the grid path during the traversal

Flip Distance and RSA Length

Problem: chain flips are difficult to analyze

Idea: make grid path static

Trace: all edges and cells covered by the grid path during the traversal

Lemma: From each trace, we can obtain RSA of comparable length.

The Reduction – Main Challenges

We want to reduce RSA to PolyFlip.

How to represent sinks of the RSA?

How to relate flip distance to length of the RSA?

Conclusion for Part I

PolyFlip is NP-complete, by a reduction from RSA.

Does there exist a PTAS?

What about the convex case (probably hard)?

What about computing the diameter of the flip graph?

Part II

Flipping Non-Crossing Paths

Question. Can every plane straight-line paths be transformed into each other by flipping edges?

Question. Can every plane straight-line paths be transformed into each other by flipping edges?

Question. Is the flip-graph F(S) connected for every point set S?

Question. Is the flip-graph F(S) connected for every point set S?

- vertex for every plane, straight-line spanning path on S,
- edge iff corresponding paths differ by a single flip.

Types of Flips

Question. Is the flip-graph F(S) connected for every point set S?

- vertex for every plane, straight-line spanning path on S,
- edge iff corresponding paths differ by a single flip.

Question. Is the flip-graph F(S) connected for every point set S?

- vertex for every plane, straight-line spanning path on S,
- edge iff corresponding paths differ by a single flip.

→yes, if S is in convex position [Akl, Islam, Meijer 2007]

Examples

S = •••

S =

Results

Theorem 1: If the subgraph of F (S) induced by the set of plane spanning paths with starting edge e is connected for any fixed (directed) edge e, the flip-graph is also connected.

Results

Generalized Double Circles (GDCs)

Generalized Double Circles (GDCs)

Idea: Flip arbitrary path to a canonical path.

canonical path: path consisting entirely of boundary edges.

Let P be a plane spanning path.

Iteratively flip P to a canonical path by:

- (i) increasing the number of boundary edges
- (ii) decreasing the overall (combinatorial) length of P.

uncrossed Hamilton cycle

Idea: Flip arbitrary path to a canonical path.

canonical path: path consisting entirely of boundary edges.

Let P be a plane spanning path.

Iteratively flip P to a canonical path by:

- (i) increasing the number of boundary edges
- (ii) decreasing the overall (combinatorial) length of P.

Idea: Flip arbitrary path to a canonical path.

canonical path: path consisting entirely of boundary edges.

Let P be a plane spanning path.

Iteratively flip P to a canonical path by:

- (i) increasing the number of boundary edges
- (ii) decreasing the overall (combinatorial) length of P.

 $length(e) = min(b_1, b_2)$ $length(P) = \sum_{e \in P} length(e)$

Idea: Flip arbitrary path to a canonical path.

canonical path: path consisting entirely of boundary edges.

Let P be a plane spanning path.

Iteratively flip P to a canonical path by:

- (i) increasing the number of boundary edges
- (ii) decreasing the overall (combinatorial) length of P.

 $length(e) = min(b_1,b_2)$ $length(P) = \sum_{e \in P} length(e)$

Idea: Flip arbitrary path to a canonical path.

canonical path: path consisting entirely of boundary edges.

Let P be a plane spanning path.

Iteratively flip P to a canonical path by:

- (i) increasing the number of boundary edges
- (ii) decreasing the overall (combinatorial) length of P.

The proof uses a detailed case distinction to show that there is always an improving flip.

Conclusion Part II

- Flip connectivity for wheel and generalized double circle point sets.
- Sufficient condition to consider paths with fixed starting edge.
- For general point sets, the connectedness of the flip graph remains open.
- What is the diameter of the flip graph?

Thank you