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From the heights
of these pyramids, 40
conjectures look down

on us!

Sylvester’d
be proud !

It’s not
worth a good

menhir !



Notation

PK (n) : probability that n points i.i.d. drawn uniformly in a
compact convex domain K ⊂ Rd of volume 1 are in convex
position.

The problem was widely studied in the case d = 2.

In the end, we will be imposing a "floor" in K .
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Sylvester’s problem



Sylvester’s problem

What is the probability that 4 points drawn "uniformly" in the
plane are in convex position ?
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OK Not OK
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A few important results

Theorem : Blaschke, 1917

For all compact convex domain K ⊂ R2 of area 1,

2
3
= P△(4) ≤ PK (4) ≤ P⃝(4) = 1 − 35

12π2 .

≤ ≤
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A few important results

Theorem : Blaschke, 1917

For all compact convex domain K ⊂ R2 of area 1,

2
3
= P△(4) ≤ PK (4) ≤ P⃝(4) = 1 − 35

12π2 .

Efron’s formula :

For all compact convex domain K ⊂ R2 of area 1, and A,B,C

uniformly distributed in K ,

PK (4) = 1 − 4E [AreaK (A,B,C )] .
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The long-standing d-Sylvester’s conjecture

Conjecture (in dimension d ≥ 3)

For all compact convex domain K ⊂ Rd of volume 1,

P△d (d + 2) ≤ PK (d + 2) ≤ P⃝d (d + 2).
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The bi-pointed (or 2d flat floor) problem



Around the bi-pointed problem

Let t 7→ G (t) a concave map of integral 1 on [0, 1]

n points i.i.d. uniforms in the convex domain delineated by G

QG (n) : probability that the n points are in convex position
together with (0, 0) and (1, 0).
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The bi-pointed triangle

Theorem : Bárány, Rote, Steiger, Zhang, 2000

For all n ≥ 1,

Q△(n) =
2n

n!(n + 1)!
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The bi-pointed triangle

Theorem : Bárány, Rote, Steiger, Zhang, 2000

For all n ≥ 1,

Q△(n) =
2n

n!(n + 1)!

Theorem : Buchta, 2009

Gives a formula for the probability that k points among n are on
the convex hull.
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Notation

Regκ : a regular convex κ-gon of area 1

Pκ(n) := PRegκ(n) the probability that n points i.i.d. drawn
uniformly in Regκ are in convex position.
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Why the bi-pointed problem ? : M.

Theorem : M., 2023

Let κ ≥ 3 an integer. We have

Pκ(n) ∼
n→+∞

Cκ ·
e2n

4n
κ3nr2n

κ sin(θκ)
n

n2n+κ/2 ,

where

Cκ =
1

πκ/2
√
dκ

√
κ
κ+1

4κ(1 + cos(θκ))κ
,

and

dκ =
κ

3 · 2κ
(
2(−1)κ−1 + (2 −

√
3)κ + (2 +

√
3)κ

)
.

a We extended this formula for any convex polygon ! (M.,24+)
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A few elements of proof
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A few elements of proof

Conditional on the "contact" points, the probability to be in
convex position in K is the product of probabilities to be in
convex position in each bi-pointed triangle !

We integrate on all parallel polygons and all bi-pointed
triangles possible inside to get the probability PK (n).
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Why the bi-pointed problem : Valtr’s results

Theorem : Valtr, 1995

For all n ≥ 3, P4(n) = P□(n) =
1

(n!)2

(
2n − 2
n − 1

)2

.
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Why the bi-pointed problem : Valtr’s results

Theorem : Valtr, 1996

For all n ≥ 3, P3(n) = P△(n) =
2n(3n − 3)!

(2n)!((n − 1)!)3
.
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Why the bi-pointed problem ? : Bárány’s result

Theorem : Bárány, 1999

For all compact convex domain K with non empty interior,

lim
n→+∞

n2 (PK (n))
1
n =

e2

4
AP∗(K )3,

where AP∗(K ) is the supremum of affine perimeters of convex
subsets of K .

a This limit gives a logarithmic equivalent of PK (n) but hides
lower order terms.
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Why the bi-pointed problem : Marckert’s result

Theorem : Marckert, 2016

Gives a recursive formula for P⃝(n) ;
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Back to the bi-pointed problem

Let t 7→ G (t) a concave map of integral 1 on [0, 1]

n points i.i.d. uniforms in the convex domain delineated by G

QG (n) : probability that the n points are in convex position
together with (0, 0) and (1, 0).
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Back to the bi-pointed problem

Theorem

Recursive formula for the bi-pointed case :

QG (n) =
n−1∑
k=0

(
n − 1
k

)∫ 1

0
G(t)QL(t)(k)QR(t)(n − 1 − k)L(t)kR(t)n−1−kdt.

0

S1

S2

FF t1

G

L(t)

R(t)
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A few bi-pointed computations

Theorem : Bárány, Rote, Steiger, Zhang, 2000

For all n ≥ 1,

Q△(n) =
2n

n!(n + 1)!
.
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A few bi-pointed computations

Theorem : Marckert, M., 24+

For all n ≥ 1,

Q□(n) =
1

n!(n + 1)!

(
2n
n

)
.
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A few bi-pointed computations

Theorem : Marckert, M., 24+

For all n ≥ 1,

QParabola(n) =
2 · 12n

(2n + 2)!
.
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Sylvester’s bi-pointed problem

Theorem : Marckert, M., 24+

For all concave map G of area 1,

Q△(2) ≤ QG (2) ≤ Q□(2).

≤ ≤
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Larger dimensions



Sylvester’s flat floor problem in dimension d

F F
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Sylvester’s flat floor subprism problem in dimension d

Pick a convex domain F ⊂ Rd−1 × {0} with Vold−1(F ) = 1

A prism with base F is a convex domain of the form F × [0, h]
for some h > 0.
A mountain with floor F and apex z (with positive last
coordinate zd ≥ 0), is the compact convex set

MoF (z) = CH({z} ∪ F ).

F
20
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The class SubPrism(F )

We will be looking at convex domains K having floor F ,
contained in a prism with floor F .

Each element K ∈ SubPrism(F ) is characterized by its top
function GK defined by
GK (z) := sup{y ∈ R, (z1, · · · , zd−1︸ ︷︷ ︸

∈F

, y) ∈ K}

QK (n) : probability that n points uniform under GK are in
convex position together with F .

F
21
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Sylvester’s flat floor subprism problem

Theorem : Marckert, M., 24+

For all K ∈ SubPrism(F ), we have

QMoF (2) ≤ QK (2) ≤ QPrism(F )(2).

Proof.

A uniform point in K has coordinates U = (Z ,HK ) where Z ∈ F ,
and HK is its height "above" F .

QK (2) = 1 − 2E(HK/d)

= 1 −
∫
F

G 2
K (z)

d
dz
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The lower bound

Let us write E(HK ) =
∫

R P(HK ≥ t)dt.

Proof.
Now we write

P(HK ≥ t) =

∫ ∞

t
LK (s)ds

= 1 −
∫ t

0
LK (s)ds

so that it suffices to prove∫ t

0
(LK (s)− LMo(s))ds ≥ 0 ∀t > 0.
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The lower bound
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The lower bound

We look for the sign of t 7→ LK (t)− LMo(t) to obtain the
variations of t 7→

∫ t
0 (LK (s)− LMo(s))ds.

The idea is to prove that t 7→ LK (t)
1/(d−1) − LMo(t)

1/(d−1) is
concave.
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We can see that

LayerK (s) ⊃
t2 − s

t2 − t1
LayerK (t1) +

s − t1
t2 − t1

LayerK (t2),

so that by the Brunn-Minkowski inequality,

LK (s)
1

d−1 ≥ t2 − s

t2 − t1
LK (t1)

1
d−1 +

s − t1
t2 − t1

LK (t2)
1

d−1 .

25

t2

s

t1

0

mK
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What if we remove the subprism hypothesis ?

Theorem : Marckert, M., 24+

For all domain K with floor F , we have

QMoF (2) ≤ QK (2) < 1,

and for all α > 0 small enough, there exists a domain K with
floor F such that QK (2) ≥ 1 − α.

F
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Bounds in dimension 3



Theorem : Marckert, M., 24+

Take any floor F (compact convex subset of R2 × {0} with area
1), any unit mountain MoF with floor F . For all n ≥ 0,

QMoF (n) ≥ Yn :=
2n

n!

n∏
j=1

1
3j − 1

.

The first terms of the sequence (Yn), for n ≥ 0, are the following :

1, 1,
1
5
,

1
60

,
1

1320
,

1
46200

,
1

2356200
,

1
164934000

,
1

15173928000
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Lemma

For some valid floor F , consider a sequence of points such z1, · · · , zn in

F × [0, 3] such that that 0 ≤ π3(z1) ≤ · · · ≤ π3(zn) (their third coordinates

are non decreasing). If the points (1, 0), (a(z1), π3(z1)), · · · , (a(zn), π3(zn))

are in convex position in the 2D-rectangle [0, 1]× [0, 3], then the zi together

with the floor F , are in convex position in R3.
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0 1

3

h

a

h
1−a

x = 1− 1−a
h y
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The tri-pointed tetrahedron

Theorem : Marckert, M., 24+

Consider a tetrahedron △3 with vertices A = (0, 0, 0), B = (1, 0, 0),
C = (0, 1, 0), D = (0, 0, 6), and floor F = CH(A,B,C). We have

ℓn ≤ Q△3(n) ≤ un, with the sequences

ℓn = 6
(n − 1)! n!
(2n + 1)!

n−1∑
k=0

ℓk ℓn−1−k , un =
6

(n + 2)(n + 1)n

n−1∑
k=0

ukun−1−k .
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The example of the lower bound

A

B′

C ′

B

C

D

q p

F

πt(q)
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Thanks for
your attention !
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