Sylvester's question: the flat floor problem

Ludovic Morin Joint work with Jean-François Marckert Friday, 8th November

 \bigcirc $\mathbb{P}_K(n)$: probability that *n* points i.i.d. drawn uniformly in a compact convex domain $K \subset \mathbb{R}^d$ of volume 1 are in convex position.

- \bigcirc $\mathbb{P}_K(n)$: probability that *n* points i.i.d. drawn uniformly in a compact convex domain $K \subset \mathbb{R}^d$ of volume 1 are in convex position.
- The problem was widely studied in the case $d = 2$. $\sqrt{2}$

- $\mathbb{P}_K(n)$: probability that *n* points i.i.d. drawn uniformly in a \bigcirc compact convex domain $K \subset \mathbb{R}^d$ of volume 1 are in convex position.
- $\langle\langle\cdot|\cdot\rangle\rangle$ The problem was widely studied in the case $d = 2$.
- $\langle\langle\cdot|\cdot\rangle\rangle$ In the end, we will be imposing a "floor" in K .

[Sylvester's problem](#page-4-0)

What is the probability that 4 points drawn "uniformly" in the plane are in convex position ?

What is the probability that 4 points drawn "uniformly" in the plane are in convex position ?

Theorem : Blaschke, 1917

For all compact convex domain $K \subset \mathbb{R}^2$ of area 1,

$$
\frac{2}{3}=\mathbb{P}_{\triangle}(4)\leq \mathbb{P}_{\mathcal{K}}(4)\leq \mathbb{P}_{\bigcirc}(4)=1-\frac{35}{12\pi^2}.
$$

Theorem : Blaschke, 1917

For all compact convex domain $K \subset \mathbb{R}^2$ of area 1,

$$
\frac{2}{3} = \mathbb{P}_{\triangle}(4) \leq \mathbb{P}_{\mathcal{K}}(4) \leq \mathbb{P}_{\bigcirc}(4) = 1 - \frac{35}{12\pi^2}.
$$

Efron's formula :

For all compact convex domain $K \subset \mathbb{R}^2$ of area 1, and A, B, C uniformly distributed in K,

$$
\mathbb{P}_K(4) = 1 - 4\mathbb{E}\left[\text{Area}_K(A, B, C)\right].
$$

For all compact convex domain $K \subset \mathbb{R}^2$ of area 1,

Theorem : Blaschke, 1917

$$
\frac{2}{3} = \mathbb{P}_{\triangle}(4) \leq \mathbb{P}_{\mathcal{K}}(4) \leq \mathbb{P}_{\bigcirc}(4) = 1 - \frac{35}{12\pi^2}.
$$

For all compact convex domain $K \subset \mathbb{R}^2$ of area 1,

Theorem : Blaschke, 1917

$$
\frac{2}{3}=\mathbb{P}_\triangle(4)\leq \mathbb{P}_\mathcal{K}(4)\leq \mathbb{P}_\bigcirc(4)=1-\frac{35}{12\pi^2}.
$$

Theorem : Marckert, Rahmani, 2021

$$
\frac{11}{36}=\mathbb{P}_{\triangle}(5)\leq \mathbb{P}_{\mathcal{K}}(5)\leq \mathbb{P}_{\bigcirc}(5)=1-\frac{305}{48\pi^2}.
$$

For all compact convex domain $K \subset \mathbb{R}^2$ of area 1,

Theorem : Blaschke, 1917

$$
\frac{2}{3}=\mathbb{P}_\triangle(4)\leq \mathbb{P}_\mathcal{K}(4)\leq \mathbb{P}_\bigcirc(4)=1-\frac{35}{12\pi^2}.
$$

Theorem : Marckert, Rahmani, 2021

$$
\frac{11}{36}=\mathbb{P}_{\triangle}(5)\leq\mathbb{P}_{\mathcal{K}}(5)\leq\mathbb{P}_{\bigcirc}(5)=1-\frac{305}{48\pi^2}.
$$

Conjecture (in the plane)

$$
\mathbb{P}_{\triangle}(n) \leq \mathbb{P}_{K}(n) \leq \mathbb{P}_{\bigcirc}(n), \forall n \geq 6.
$$

Conjecture (in dimension $d \geq 3$)

For all compact convex domain $K \subset \mathbb{R}^d$ of volume 1,

$$
\mathbb{P}_{\triangle^d}(d+2)\leq \mathbb{P}_K(d+2)\leq \mathbb{P}_{\bigcirc^d}(d+2).
$$

[The bi-pointed \(or 2](#page-13-0)d flat floor) problem

Around the bi-pointed problem

 \triangle Let $t \mapsto G(t)$ a concave map of integral 1 on [0, 1] n points i.i.d. uniforms in the convex domain delineated by G

Around the bi-pointed problem

The bi-pointed triangle

Theorem : Bárány, Rote, Steiger, Zhang, 2000

$$
\mathbb{Q}_{\triangle}(n) = \frac{2^n}{n!(n+1)!}
$$

Theorem : Bárány, Rote, Steiger, Zhang, 2000

For all $n > 1$,

$$
\mathbb{Q}_{\triangle}(n) = \frac{2^n}{n!(n+1)!}
$$

Theorem : Buchta, 2009

Gives a formula for the probability that k points among n are on the convex hull.

 $\operatorname{\sf Reg}_\kappa$: a regular convex κ -gon of area 1

 \bigoplus $\operatorname{\sf Reg}_\kappa$: a regular convex κ -gon of area 1 $\mathbb{P}_{\kappa}(n) := \mathbb{P}_{\mathsf{Reg}_{\kappa}}(n)$ the probability that *n* points i.i.d. drawn uniformly in Reg_κ are in convex position.

Why the bi-pointed problem ? : M.

Theorem : M., 2023

Let $\kappa \geq 3$ an integer. We have

$$
\mathbb{P}_{\kappa}(n) \underset{n \to +\infty}{\sim} C_{\kappa} \cdot \frac{e^{2n}}{4^n} \frac{\kappa^{3n} r_{\kappa}^{2n} \sin(\theta_{\kappa})^n}{n^{2n+\kappa/2}},
$$

where

$$
\mathcal{C}_\kappa = \frac{1}{\pi^{\kappa/2}\sqrt{d_\kappa}} \frac{\sqrt{\kappa}^{\kappa+1}}{4^\kappa(1+\cos(\theta_\kappa))^\kappa},
$$

and

$$
d_{\kappa} = \frac{\kappa}{3 \cdot 2^{\kappa}} \left(2(-1)^{\kappa - 1} + (2 - \sqrt{3})^{\kappa} + (2 + \sqrt{3})^{\kappa} \right).
$$

Why the bi-pointed problem ? : M.

Theorem : M., 2023

Let $\kappa > 3$ an integer. We have

$$
\mathbb{P}_{\kappa}(n) \underset{n \to +\infty}{\sim} C_{\kappa} \cdot \frac{e^{2n}}{4^n} \frac{\kappa^{3n} r_{\kappa}^{2n} \sin(\theta_{\kappa})^n}{n^{2n+\kappa/2}},
$$

where

$$
\mathcal{C}_\kappa = \frac{1}{\pi^{\kappa/2}\sqrt{d_\kappa}} \frac{\sqrt{\kappa}^{\kappa+1}}{4^\kappa(1+\cos(\theta_\kappa))^\kappa},
$$

and

$$
d_{\kappa} = \frac{\kappa}{3 \cdot 2^{\kappa}} \left(2(-1)^{\kappa - 1} + (2 - \sqrt{3})^{\kappa} + (2 + \sqrt{3})^{\kappa} \right).
$$

 \mathbb{R} We extended this formula for any convex polygon! (M., 24+)

A few elements of proof

A few elements of proof

 \bigtriangleup Conditional on the "contact" points, the probability to be in convex position in K is the product of probabilities to be in convex position in each bi-pointed triangle !

A few elements of proof

 \mathbb{Z} Conditional on the "contact" points, the probability to be in convex position in K is the product of probabilities to be in convex position in each bi-pointed triangle ! We integrate on all parallel polygons and all bi-pointed

triangles possible inside to get the probability $\mathbb{P}_K(n)$.

Theorem : Valtr, 1995

For all
$$
n \ge 3
$$
, $\mathbb{P}_4(n) = \mathbb{P}_{\square}(n) = \frac{1}{(n!)^2} {2n-2 \choose n-1}^2$.

Theorem : Valtr, 1996

For all
$$
n \ge 3
$$
, $\mathbb{P}_3(n) = \mathbb{P}_{\triangle}(n) = \frac{2^n(3n-3)!}{(2n)!((n-1)!)^3}$.

Theorem : Bárány, 1999

For all compact convex domain K with non empty interior,

$$
\lim_{n\to+\infty}n^2\left(\mathbb{P}_K(n)\right)^{\frac{1}{n}}=\frac{e^2}{4}\mathsf{AP}^*(K)^3,
$$

where AP* (\mathcal{K}) is the supremum of affine perimeters of convex subsets of K

Theorem : Bárány, 1999

For all compact convex domain K with non empty interior,

$$
\lim_{n\to+\infty}n^2\left(\mathbb{P}_K(n)\right)^{\frac{1}{n}}=\frac{e^2}{4}\mathsf{AP}^*(K)^3,
$$

where AP* (\mathcal{K}) is the supremum of affine perimeters of convex subsets of K

This limit gives a logarithmic equivalent of $P_K(n)$ but hides lower order terms.

Theorem : Marckert, 2016

Gives a recursive formula for $P_{\bigcirc}(n)$;

Back to the bi-pointed problem

 $\langle\langle\cdot|\rangle$ Let $t \mapsto G(t)$ a concave map of integral 1 on [0, 1] n points i.i.d. uniforms in the convex domain delineated by G \bigoplus $\mathbb{Q}_G(n)$: probability that the *n* points are in convex position $\langle\langle\cdot|\rangle$ together with $(0, 0)$ and $(1, 0)$.

Back to the bi-pointed problem

Theorem

Recursive formula for the bi-pointed case :

$$
\mathbb{Q}_G(n)=\sum_{k=0}^{n-1}\binom{n-1}{k}\int_0^1G(t)\mathbb{Q}_{L(t)}(k)\mathbb{Q}_{R(t)}(n-1-k)L(t)^kR(t)^{n-1-k}dt.
$$

A few bi-pointed computations

Theorem : Bárány, Rote, Steiger, Zhang, 2000

$$
\mathbb{Q}_{\triangle}(n) = \frac{2^n}{n!(n+1)!}.
$$

$$
\mathbb{Q}_{\square}(n) = \frac{1}{n!(n+1)!} {2n \choose n}.
$$

$$
\mathbb{Q}_{\mathsf{Parabola}}(n) = \frac{2 \cdot 12^n}{(2n+2)!}.
$$

For all concave map G of area 1,

$$
\mathbb{Q}_{\triangle}(2) \leq \mathbb{Q}_{G}(2) \leq \mathbb{Q}_{\square}(2).
$$

[Larger dimensions](#page-37-0)

Sylvester's flat floor problem in dimension d

Sylvester's flat floor subprism problem in dimension d

Sylvester's flat floor subprism problem in dimension d

 \bigcirc Pick a convex domain $F \subset \mathbb{R}^{d-1} \times \{0\}$ with $\mathsf{Vol}_{d-1}(F) = 1$ $\langle\langle\cdot|\rangle\rangle$ A prism with base F is a convex domain of the form $F \times [0, h]$ for some $h > 0$.

Sylvester's flat floor subprism problem in dimension d

- Pick a convex domain $F \subset \mathbb{R}^{d-1} \times \{0\}$ with $\mathsf{Vol}_{d-1}(F) = 1$
- \triangle A prism with base F is a convex domain of the form $F \times [0, h]$ for some $h > 0$.
- \triangle A mountain with floor F and apex z (with positive last coordinate $z_d \geq 0$), is the compact convex set

 $\text{Mo}_{F}(z) = \text{CH}(\{z\} \cup F).$

The class $SubPrism(F)$

We will be looking at convex domains K having floor F , contained in a prism with floor F.

The class $SubPrism(F)$

- $\langle\langle\cdot|\cdot\rangle\rangle$ We will be looking at convex domains K having floor F . contained in a prism with floor F.
- Each element $K \in SubPrim(F)$ is characterized by its top function G_K defined by $G_K(z) := \sup\{y \in \mathbb{R}, (\underbrace{z_1, \cdots, z_{d-1}}, y) \in K\}$

 ϵ F

The class $SubPrism(F)$

- $\langle\!\langle\cdot|\rangle\!\rangle$ We will be looking at convex domains K having floor F . contained in a prism with floor F.
- Each element $K \in SubPrism(F)$ is characterized by its top function G_K defined by $G_K(z) := \sup\{y \in \mathbb{R}, (\underbrace{z_1, \cdots, z_{d-1}}, y) \in K\}$
- ϵ F $Q_K(n)$: probability that *n* points uniform under G_K are in $\langle\langle\cdot|\cdot\rangle\rangle$ convex position together with F.

Sylvester's flat floor subprism problem

Theorem : Marckert, M., 24+

For all $K \in SubPrism(F)$, we have

$$
Q_{\mathsf{Mo}_{\mathsf{F}}}(2) \leq Q_{\mathsf{K}}(2) \leq Q_{\mathsf{Prism}(\mathsf{F})}(2).
$$

Sylvester's flat floor subprism problem

Theorem : Marckert, M., 24+

For all $K \in SubPrism(F)$, we have

$$
Q_{\mathsf{Mo}_{\mathsf{F}}}(2) \leq Q_{\mathsf{K}}(2) \leq Q_{\mathsf{Prism}(\mathsf{F})}(2).
$$

Proof.

A uniform point in K has coordinates $U = (Z, H_K)$ where $Z \in F$, and H_K is its height "above" F.

Sylvester's flat floor subprism problem

Theorem : Marckert, M., 24+

For all $K \in SubPrism(F)$, we have

$$
Q_{\mathsf{Mo}_{\mathsf{F}}}(2) \leq Q_{\mathsf{K}}(2) \leq Q_{\mathsf{Prism}(\mathsf{F})}(2).
$$

Proof.

A uniform point in K has coordinates $U = (Z, H_K)$ where $Z \in F$, and H_K is its height "above" F.

$$
Q_K(2) = 1 - 2\mathbb{E}(H_K/d)
$$

$$
= 1 - \int_F \frac{G_K^2(z)}{d} dz
$$

The lower bound

Let us write $\mathbb{E}(H_K) = \int_{\mathbb{R}} \mathbb{P}(H_K \geq t) dt$.

The lower bound

Let us write
$$
\mathbb{E}(H_K) = \int_{\mathbb{R}} \mathbb{P}(H_K \geq t) dt
$$
.

Proof.

Now we write

$$
\mathbb{P}(H_K \ge t) = \int_t^{\infty} L_K(s)ds
$$

$$
= 1 - \int_0^t L_K(s)ds
$$

so that it suffices to prove

$$
\int_0^t (L_K(s)-L_{\text{Mo}}(s))ds\geq 0 \quad \forall t>0.
$$

We look for the sign of $t \mapsto L_K (t) - L_{\text{Mo}} (t)$ to obtain the \bigtriangleup variations of $t \mapsto \int_0^t (L_K(s) - L_{\text{Mo}}(s))ds$.

We look for the sign of $t \mapsto L_K (t) - L_{\text{Mo}} (t)$ to obtain the $\langle\langle\cdot|\rangle$ variations of $t \mapsto \int_0^t (L_K(s) - L_{\text{Mo}}(s))ds$. \bigtriangleup The idea is to prove that $t \mapsto L_K (t)^{1/(d-1)} - L_{\text{Mo}} (t)^{1/(d-1)}$ is concave.

We can see that

$$
\mathsf{Layer}_K(s) \supset \frac{t_2 - s}{t_2 - t_1} \mathsf{Layer}_K(t_1) + \frac{s - t_1}{t_2 - t_1} \mathsf{Layer}_K(t_2),
$$

We can see that

$$
\mathsf{Layer}_K(s) \supset \frac{t_2 - s}{t_2 - t_1} \mathsf{Layer}_K(t_1) + \frac{s - t_1}{t_2 - t_1} \mathsf{Layer}_K(t_2),
$$

so that by the Brunn-Minkowski inequality,

$$
L_K(s)^{\frac{1}{d-1}} \geq \frac{t_2-s}{t_2-t_1}L_K(t_1)^{\frac{1}{d-1}} + \frac{s-t_1}{t_2-t_1}L_K(t_2)^{\frac{1}{d-1}}.
$$

What if we remove the subprism hypothesis ?

Theorem : Marckert, M., 24+

For all domain K with floor F , we have

$$
Q_{\mathsf{Mo}_{\mathsf{F}}}(2) \leq Q_{\mathsf{K}}(2) < 1,
$$

and for all $\alpha > 0$ small enough, there exists a domain K with floor F such that $Q_K(2) \geq 1 - \alpha$.

[Bounds in dimension 3](#page-55-0)

Take any floor F (compact convex subset of $\mathbb{R}^2\times\{0\}$ with area 1), any unit mountain Mo_F with floor F. For all $n \geq 0$,

$$
Q_{\text{Mo}_{F}}(n) \geq Y_{n} := \frac{2^{n}}{n!} \prod_{j=1}^{n} \frac{1}{3j-1}.
$$

The first terms of the sequence (Y_n) , for $n \geq 0$, are the following :

$$
1, 1, {\frac{1}{5}}, {\frac{1}{60}}, {\frac{1}{1320}}, {\frac{1}{46200}}, {\frac{1}{2356200}}, {\frac{1}{164934000}}, {\frac{1}{15173928000}}
$$

Lemma

For some valid floor F, consider a sequence of points such z_1, \dots, z_n in $F \times [0, 3]$ such that that $0 \leq \pi_3(z_1) \leq \cdots \leq \pi_3(z_n)$ (their third coordinates are non decreasing). If the points $(1,0)$, $(a(z_1), \pi_3(z_1)), \cdots, (a(z_n), \pi_3(z_n))$ are in convex position in the 2D-rectangle $[0,1] \times [0,3]$, then the z_i together with the floor F , are in convex position in \mathbb{R}^3 .

Lemma

For some valid floor F, consider a sequence of points such z_1, \dots, z_n in $F \times [0, 3]$ such that that $0 \leq \pi_3(z_1) \leq \cdots \leq \pi_3(z_n)$ (their third coordinates are non decreasing). If the points $(1,0)$, $(a(z_1), \pi_3(z_1)), \cdots, (a(z_n), \pi_3(z_n))$ are in convex position in the 2D-rectangle $[0, 1] \times [0, 3]$, then the z_i together with the floor F , are in convex position in \mathbb{R}^3 .

The tri-pointed tetrahedron

Theorem : Marckert, M., 24+

Consider a tetrahedron \triangle^3 with vertices $A = (0, 0, 0), B = (1, 0, 0),$ $C = (0, 1, 0), D = (0, 0, 6),$ and floor $F = CH(A, B, C)$. We have

 $\ell_n \leq Q_{\wedge}$ a(n) $\leq u_n$, with the sequences

The example of the lower bound

