Let A be a nonempty alphabet. We define the following distance on the set of subshifts of $A^\mathbb{N}$: $d(X,Y) = 2^{-\min\{n\in\mathbb{N} | L_n(X)\neq L_n(Y)\}}$, where $L_n(X)$ denotes the set of factors of length n of some element of the subshift X.

When X is a subshift and σ is a (non-erasing) substitution (i.e. a morphism of the free monoid A^* which sends any letter to a nonempty word), we can define $\sigma(X)$ as the smallest subshift that contains $\{\sigma(x) | x \in X\}$ (σ can be applied to an infinite word in a natural way). If $L(X)$ denotes the language associated to X, $L(\sigma(X))$ is the set of factors of the set $\{\sigma(u) | u \in L(X)\}$.

Martin is interested to the sets F of subshifts that are:

1. non-empty.
2. stable under the action of any substitution σ defined on A.
3. closed for the topology induced by the previous distance.
4. minimal for those properties.

We will make a lot of easy steps.

Proposition 1 Any E satisfying 1,2 contains the trivial subshift $\{a^\omega\}$ (where a is any letter in A).

Proof E is stable under the action of the substitution which sends any letter to the letter a. \(\square\)

Proposition 2 Such an F exists and is unique.

Proof The set of all subshifts satisfies 1,2,3 and the intersection of all E satisfying properties 1,2,3 satisfies 1,2,3,4 (this intersection is non-empty because of the previous step). \(\square\)

Proposition 3 F contains all periodic subshifts.
Proof If \(X_u \) is the periodic subshift generated by the word \(u^\omega \), \(X_u = \sigma(\{a^\omega\}) \), where \(\sigma \) sends any letter of \(A \) to the word \(u \).

Extending the notion defined for words, we will say that a subshift \(X \) is recurrent if all of its Rauzy graphs \(G_n(X) \) are (strongly) connected.

Proposition 4 \(F \) contains any recurrent subshift.

Proof Let \(X \) be a recurrent subshift, since \(F \) is closed it suffice to find a periodic subshift arbitrarily close to \(X \). Let \(n \) be an integer, since \(G_n(X) \) is strongly connected, there exists a closed path in \(G_n(X) \) which meets any vertex of it. Such a path corresponds to a finite word \(u \), hence \(X \) and the subshift generated by \(u^\omega \) are at distance at most \(2^{-n} \).

Proposition 5 The set of recurrent subshifts is closed (in the set of subshifts on \(A^\mathbb{N} \)).

Proof Let \(X \) be a non-recurrent subshift: there exists an integer \(n \) such that \(G_n(X) \) is not strongly connected. Hence, any recurrent subshift is at distance at least \(2^{-(n+1)} \) of \(X \). Hence, the set of non-recurrent subshifts is open.

Proposition 6 The set of recurrent subshifts is stable under the action of any substitution.

Proof Let \(X \) be a recurrent subshift, let \(\sigma \) be a non-erasing substitution and let \(U \) and \(V \) be two elements of \(L_n(\sigma(X)) \). There exists two elements \(u \) and \(v \) of \(L_n(X) \) (the same \(n \)) such that \(U \) is a factor of \(\sigma(u) \) and \(V \) is a factor of \(\sigma(v) \). Since \(G_n(X) \) is strongly connected, there exists a path \(u = u_0 \xrightarrow{w_1} u_1 \xrightarrow{w_2} \ldots \xrightarrow{w_m} u_m = v \) in \(G_n(X) \), meaning that, for any \(i \leq m \), \(w_i \in L_{n+1}(X) \) is such that \(u_{i-1} \) is a prefix of \(w_i \) and \(u_i \) is a suffix of \(w_i \). Each \(\sigma(w_i) \) is in \(L(\sigma(X)) \) and has length at least \(n+1 \), so, the factors of length \(n \) of the \(\sigma(u_i) \) create a path joining \(U \) to \(V \) in \(G_n(\sigma(X)) \).

Note that there can be \(u' \) and \(v' \) in \(L_k(X) \) with \(k < n \) such that \(U \) is a factor of \(\sigma(u') \) and \(V \) is a factor of \(\sigma(v') \), but we choose \(u \) and \(v \) in \(L_n(X) \) to avoid a problem along the path from \(u \) to \(v \).

Theorem 1 The set \(F \) is the set of recurrent subshifts.

Proof Put the previous propositions together.

Note that the poset of sets \(E \) satisfying 1,2,3 (ordered by inclusion) is not trivial. Indeed, if we denote by \(F(D) \) the smallest set \(E \) that contains \(D \) and satisfies 1,2,3, we have:

Proposition 7 The sets \(F(\{baw^\omega, a^\omega\}) \) and \(F(\{b^\omega, a^\omega\}) \) are not comparable.

Proposition 8 The sets \(E_n = F(\{X_{(ab)^\omega}, X_{(aabb)^\omega}, \ldots, X_{(a^n b^n)^\omega}\}) \) form a countable chain.