Parent, element, coercion

Author: Thierry Monteil
Author: Vincent Delecroix
License: CC BY-SA 3.0

Here is a short introduction about parent and elements, you can find some more details at this tutorial (sagenb live
/ jupyter live)

The elements (numbers, matrices, polynomials, ...) have parents (integer ring, rationnal field, matrix spaces,
polynomial rings, ...):

sage: 3.parent ()

sage: 3.parent () == ZZ

sage: m = matrix([[1,2,3],[4,5,6]])
sage: m.parent ()

sage: m.parent () == MatrixSpace (Z%Z,2,3)

sage: RDF.an_element ()

sage: RDF.random_element () .parent ()
Parents are objects with their methods:
sage: a = 3/2

sage: g = a.parent ()
sage: g

sage: dJ.
sage: alg = g.algebraic_closure ()

sage: alg.

This allows for example to add numbers of different types, by transforming them into elements of a common
parent:

sage: from sage.structure.element import get_coercion_model

sage: cm = get_coercion_model ()

sage: K = RDF

sage: L = RealField(2)

sage: M = cm.common_parent (K, L)

sage: M

sage: (K.an_element () + L.an_element ()) .parent ()

Here is a more subtle example where the result of the operation is a different parent:

sage: R = ZZ["x"]
sage: cm.common_parent (R, QQ)

http://doc.sagemath.org/html/en/tutorial/tour_coercion.html
/doc/live/tutorial/tour_coercion.html
/kernelspecs/sagemath/doc/tutorial/tour_coercion.html

sage:

(R.an_element () + QQ.an_element ()) .parent ()

Note that equality testing is done in a common parent:

sage:
sage:

sage:
sage:

sage:
Exercice:

sage:
sage:

sage:

sage:

a = RDF (pi)
a

b = RealField(2) (3)

M = random_matrix (QQbar, 2)

M
a=20.2
N =M+ a

Could you guess, before evaluating the following lines, how will N look like and what will be its parent ?

sage:

sage:

sage:

sage:

N

M.parent ()

a.parent ()

N.parent ()

Here is an example showing the importance to know how are objects represented. We want to plot the sequence
of points given by sum_{k=0}"{n-1} z_n where z_n = exp(2 i pi u_n) and u_n = n log(n) sqrt(2).

Here is a first naive version:

sage:
sage:

sage:

sage:

sage:

sage:

u = lambda n: n x log(n) * sqgrt(2)
z lambda n: exp(2 = I * pi * u(n))

z (5)
vertices = [0]
for n in range(1l,20):

vertices.append (vertices[-1]+z(n))

vertices|[7]

The computation is very slow since they are symbolic (i.e. there are done within the Symbolic Ring parent).
To accelerate, we should use floating-point numbers instead:

sage:
sage:
sage:
sage:

sage:

sage:

sage:

sage:

pi_approx = pi.numerical_approx()

sqrt2_approx = (2.0) .sqgrt ()

u_float = lambda n: n * (1.0%n).log() * sgrt2_approx

z_float = lambda n: (2.0 = CDF(0,1) » pi_approx * u_float(n)) .exp()

u_float (5)
z_float (5)
vertices = [CDF (0)]

for n in range(1,10000) :
vertices.append(vertices[-1]+z_float (n))

sage: vertices|[7]

sage: line2d(vertices)

We can also visualize the points on the same graphic (note that graphics objects can be added):
sage: line2d(vertices) + point2d(vertices, color='red’)

You can compare the timings:

sage: timeit ("sum(z (n) for n in range(1l,100))")

sage: timeit ("sum(z_float (n) for n in range(1,100))")

