Max-flow min-cut

Author: Vincent Delecroix
License: CCBY-SA 3.0

Let G be an oriented graph with non-negative weights ¢ : E — R on the edges. The weights have to be thought
of a capacity (ie a maximum quantity of fluid) on each edge. Now let u and v be two vertices. We are interested in
Sflows in this graph from u to v that is a function f : E(G) — R so that f(e) < ¢(e) and for each vertex w we have

Y flo= X [l

e incoming at w e outgoing at w

Write an Linear Program that solves the max-flow (the input is the weighted graph G and two vertices u and v).

Note that linear programing is not the most efficient way to solve the max-flow problem. You might want to have
in a book about "combinatorial optimization". Could you find an other implementation available in Sage?

Now let G be a (non-oriented) graph. A matching in G is a set of edges F C E(G) so that no pair of edges in F
shares a vertex. Write an Integral Linear Program that find the matching with maximal cardinality on a graph.

Do you know the algorithmic complexity of the maximum matching problem?

We will now consider the maximum matching on bipartite graph. Given a bipartite graph G with bi-partition
V =V UV, we consider the weighted oriented graph G’ whose vertex set is V U {s, e} and the following edges and
weights:

e for each v € V| an edge s — v with weight +oo
e for each e = {v;,v2} in G where v; € V; an edge v — v, with weight 1
e for each v € V; an edge v — e with weight 4-o0

Show that the maximum matching problem on G can be solved by considering the max-flow on G’ from s to e.
Then implement this for bipartite graphs

How does the performance compare with your integer program?

(hint: for comparing performance you might want to have a look at the $time and $timeit IPython magic
command)

Now, use the bipartite version of your program to solve the following weighted version of the Hall mariage
problem. Given M be a n X n matrix with positive entries, compute

max ZMM(I-)

oeS,

