
Max-flow min-cut

Author: Vincent Delecroix
License: CC BY-SA 3.0

Let G be an oriented graph with non-negative weights φ : E → R+ on the edges. The weights have to be thought
of a capacity (ie a maximum quantity of fluid) on each edge. Now let u and v be two vertices. We are interested in
flows in this graph from u to v that is a function f : E(G)→R+ so that f (e)≤ φ(e) and for each vertex w we have

∑
e incoming at w

f (e) = ∑
e outgoing at w

f (e)

Write an Linear Program that solves the max-flow (the input is the weighted graph G and two vertices u and v).

Note that linear programing is not the most efficient way to solve the max-flow problem. You might want to have
in a book about "combinatorial optimization". Could you find an other implementation available in Sage?

Now let G be a (non-oriented) graph. A matching in G is a set of edges F ⊂ E(G) so that no pair of edges in F
shares a vertex. Write an Integral Linear Program that find the matching with maximal cardinality on a graph.

Do you know the algorithmic complexity of the maximum matching problem?

We will now consider the maximum matching on bipartite graph. Given a bipartite graph G with bi-partition
V =V1∪V2 we consider the weighted oriented graph G′ whose vertex set is V ∪{s,e} and the following edges and
weights:

∙ for each v ∈V1 an edge s → v with weight +∞

∙ for each e = {v1,v2} in G where vi ∈Vi an edge v1 → v2 with weight 1

∙ for each v ∈V2 an edge v → e with weight +∞

Show that the maximum matching problem on G can be solved by considering the max-flow on G′ from s to e.
Then implement this for bipartite graphs

How does the performance compare with your integer program?

(hint: for comparing performance you might want to have a look at the %time and %timeit IPython magic
command)

Now, use the bipartite version of your program to solve the following weighted version of the Hall mariage
problem. Given M be a n×n matrix with positive entries, compute

max
σ∈Sn

∑Mi,σ(i)

1


