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The smooth semantics

Formulas :

= Each MALL formula is a finite dimentional vector space :
[1] =R [A®B]:=[A]®[B] [A® B]:=[A]w¥][B]
= Exponentials are interpreted by infinite dimensional vector spaces:
» [?A] := C>([A]’,R) (functions)
= [IA] :=C*>([A],R)’ (distributions)
= Negation is duality: [A] := [A]’ = L([A],R)



The smooth semantics

Formulas :

= Each MALL formula is a finite dimentional vector space :
[1] =R [A®B]:=[A]®[B] [A® B]:=[A]w¥][B]
= Exponentials are interpreted by infinite dimensional vector spaces:
» [?A] := C>([A]’,R) (functions)
= [1A] := C>*([A],R)’ (distributions)

= Negation is duality: [A] := [A]’ = L([A],R)
Proofs :

= Each proof is a linear map between the interpretation of the
formulas.

« A=B=14—-B is C®(A B)~L(IA,B)

= The dereliction states that L(A4, B) C C*(A, B) : it forgets the
linearity.



Differential Linear Logic

[d Differential interaction nets. Ehrhard, Regnier (2004)

faCl”R,R)

_/
A0

Differential linear logic is about linear extraction of a proof

(:AFB f:lA-B -
(:'AFB Do(f): AFB
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Differential Linear Logic

= Other rules has to be added (cut-elimination)

FT W l—l—‘,f:?A,g:?AC I—F,;L':Ad Fl,x: A
FT,csty : 7A FT,fg:7A FTev,7A F0, o, 1A
B FT,bo:1A FAQ: 1A FT,v: A _

Fog:1a " FT,A0%6:14 ¢ FT,Do()(w) 14 ¢

= They have nice mathematical interpretation (differential calculus)

d/p is the chain rule



From D, to differential equations
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/1A B Do(f): AF B

Forgets linearity Applies Dy
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Solution of Dg(_) =¢7
That is ¢ since Dy (¢) = ¢
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ForgetsHinecarity Apply-Dy

Solves D Applies D




From D, to differential equations

é:Al—Bd f:1AEB -
l: 1A+ B Do(f): AF B
Forgets linearity Applies Dy

Solution of Dg(_) =¢7
That is ¢ since Dy (¢) = ¢
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o AophyD
So Applies D
A

Solution? (LPDO)



From D, to differential equations

é:Al—Bd f:1AEB -
l: 1A+ B Do(f): AF B
Forgets linearity Applies Dy

Solution of Dg(_) =¢7
That is ¢ since Dy (¢) = ¢

é:AI—Bd f:1A-B -

f:1AFB D(f): A-B

So pplies D
) [

Solution? (LPDO) Type?



Graded linear logic

8 A core quantitative coeffect calculus. Brunel et. al (2014)

[§ Combining Effects and Coeffects via Grading. Gaboardi et. al (2016)

—{ Exponential rules of BsLL |

TkERB w F,!IA,!yAl—BC I'AFB q
I WAFB I leyyAEB WA B
Iy A1, .. Ay E B ', ArB z<y

P
!-731 ><yA17 sy !anyAn F 'yB F, 'yA B 4
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Graded linear logic

8 A core quantitative coeffect calculus. Brunel et. al (2014)

[§ Combining Effects and Coeffects via Grading. Gaboardi et. al (2016)

—{ Exponential rules of BsLL |
TkERB w F,!IA,!yAl—BC I'AFB
T, AF B T, AF B T LAFB ¢

!mAl,.-.,!annFB‘\ o DLAFB z<y
!zlzyAla-..alanyAnF!yB\ F,'yAl_B \ 4

\ \

Multiplicative law Additive law Order

(S,+,0, x,1,<) is an ordered semiring

= Type system for ressource consumption

= Coeffect analysis



The logic DBsLL

= A syntactical differentiation of BgLL
—( The exponential rules of DBSLLJ

kD FD%A%A ED%A a<y FrA
FT,24 F T, 24,4 FT,7,A T Fr,7,4
_ FDLA FANLA O FTLA z<y - FT,A

C

Fd Y T FLLA LA FT,,A 9 Fronad

—{ Theorem )}

When S is additive splitting, and the order is define through the sum,

DBsLL enjoys a cut elimination procedure.




The monoid of LPDOcc

Let D be the set of LPDOcc.

Proposition

The set of LPDOcc, endowed with composition, is an additive splitting
commutative monoid.




An indexed differential linear logic

—{ Exponential rules of IDiLL |
T FT, ?DIA,?D2A I—F,?DlA
— WrI (¢ ds
F Fa?DA F F7?D10D2A F F7?D10D2A
_ FT,Ip, A FAlp,A FT,!p, A _
FipA F = CER S D g,
FT,A,!pop, A FT,!p,on, A

From dp to dj: syntax has to change, and semantics as well

s ['pA] = D(C*([A],R)’) {setutions) (parameters)
» [?7pA] = D7HC>®([A]',R)) {parameters} (solutions)

The duality transforms solutions into parameters



The smooth semantics for IDiLL

—{ Definition

R — ?idE _ R — !idE
W @ W @
1 — csty 1 - 50
c: {?D1E ® ?DzE — ?D1°D2E
feg = ®p,op, * (D1(f)-D2(9))

. {!DlE ® !DzE — !DlngE

Y®9 = *
d; - {?DlE — ?DloDzE a . {!DlE — !DlngE
I- I
f = @p, * f (] = oDy

—{ Theorem )}

The smooth semantics is compatible with the cut-elimination proce-

dure. 10




Higher order : the promotion rule

= In linear logic

Ay, A0 B !ALJ?
AL, A, F B 1A P44 B

11



Higher order : the promotion rule

= In linear logic

Ay, Ma b B !ALJ‘B
AL, A, F B 1A P44 B

For f € C(A,B),g € C(B,C), f;gis:

1A P4 14 5B % ¢
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Higher order : the promotion rule

= In linear logic

Ay, A0 B 'ALB
A, 1A, 1B 1A P4 14 5B

For f € C(A,B),g € C(B,C), f;gis:

1A 24804 Yop 9 0

= In graded linear logic

/
|
AL ... ly Ao F B A B

PA,zy
!zxylAl,...,!nynA FLB T At A B

11



Promotion and LPDO

Three questions:

1. Can we compose solutions?
2.
3.
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Promotion and LPDO

Three questions:

1. Can we compose solutions?
2.
3.

= The function x — e” is a solution of f' — f =0.

But ¢ is not a solution of D(f) = 0 (even with polynomial coeffs!)

Not really a problem for us: each map can be chosen as a parameter.

If f solution of Dy and g solution of D5, g o f solution of ?

12



Promotion and LPDO

Three questions:

1.
2. Can we multiply differential operators?
3.

12



Promotion and LPDO

Three questions:

1.

2. Can we multiply differential operators?
3.

= Qur sum is the composition of operators

Can we define ® such that (D, 0,®) is a semiring?

12



Promotion and LPDO

Three questions:

1.
2. Can we multiply differential operators?
3.

—{ Definition
A differential  semiring is a tuple (S,0,1,4,x) st
Oxz=0 (w) zy=0=z2z=00ry=0 (w)
(c4y)r=aztys () mult sphit. (w12 =y +3) ()
Ilxz=z (d z+y=1=2=00ry=0 (d)
r<y=wxz<yz (df) x(yz)=(wy)z (p)

The axiom (dy) is implied by (c), thanks to the definition of the order.

12



Promotion and LPDO

Three questions:

1.
2. Can we multiply differential operators?
3.
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Promotion and LPDO

Three questions:

1.
2.

3. Can we interpret higher-order?
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Three questions:

1.
2.

3. Can we interpret higher-order?

An overview of models of DiLL

Model Reflexivity | Smoothness | Higher-order
Kothe spaces v X v
Convenient spaces X v v
Nuclear Frechet spaces v v v

Promotion and LPDO

12



Promotion and LPDO

Three questions:

1.
2.

3. Can we interpret higher-order?
We need linearly independant families to interpret partial derivatives:

= For finitary formulas, we are isomorphic to R™.

= For (E,V), we define |p(E,V) as (IpE,!pV), where
V=(21,...,2n,...) = 1DV = (601, 0z,,...)

= For MALL connectives over exponential formulas, usual
constructions work

12



Syntactical issues

= The going up procedure:

FT,7.4,7,A FT,7,4,7,A .
e — C
F T, 7p4yA ~ FT, 74,7, A CI
o tehyd
F T, 7piytoA F T, 70iyt-A

13



Syntactical issues

= The going up procedure:

FT,7.4,7,A FT,7,4,7,A .
e — C
F T, 7p4yA ~ FT, 74,7, A CI
o tehyd
F T, 7piytoA F T, 70iyt-A

= Does not work with promotion:

- 7,4, B -7yA, B
R el — e dI
F?.4A,1.B ] ~ F?y+tA4, B
T PayizA, eB F ?eytatd, 1B P

with ¢t = 2. But we can't divide!
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Syntactical issues

= The going up procedure:

T, 7,4,7,A FLLATA
— U I
I F, ?r—&-yA o F F, ?IA, ?y+zA c

e g
FL, TetytzA4 FD, 7etytzA

= Does not work with promotion:

- 7,4, B - 7,4, B
R A A p PR - A A dI
= ?CEUA7 'zB XD [ ?U+tA7 B
J dI ke p
F 7ayteA, 1. B F 2eytatA, 1z B

with ¢t = 2. But we can't divide!

= Even worse with d;:

-2, A B

S +F?,A,B _
FP,A LB T o~ v g
F 7,4, 1,2.8 O a

13



Cut elimination from DiLL

= Solution through equivalent rules

FTLA o FDLA FRa
T lyA °7 FT LA ©
= For most of the rules, we decorate
1 o) 1
T " FALLA = &) Uyl .
FT,7A F A E, !;,/.erzoAL t o
FT,A, = o
liir W
FI,70A FAlLAL ;
CU
FT,A w
FT,A,70A FE lgAt .
cut
FT,AZ

= Some cases can't be decorated

14



No more sums in proofs

= |n DiLL, cut elimination introduces sums of proofs
= Semantically, D(f.g) = D(f)g + fD(g)
= In the syntax: proofs get very technical

Fab - —

F 74,74 FA- - o d E24.74 Al W b AL -
2= ¢ d ., Frara Rl _ ‘AA PlAT d
F?4 . Flat cut At AT W + F74 CL Flat ¢
= cut [
= No more sums with the grading
F7:.A,7,A AL d
e ol il N T S
F 2y A FlAL r+y=1=2x=0y=1lorz=1,y=0
= cut

15



A polarized setting

PQ:=1|0|P®Q|PaQ|™P|1EP
NM:=T|L|NZM|N&M|?N|I"N
(72p)t =1"pt  ("N)t =1PNL

16



A polarized setting

PQ:=1|0|P®Q|PaQ|™P|1EP
NM:=T|L|NZM|N&M|?N|I"N
(72p)t =1"pt  ("N)t =1PNL

b T, 72N, 77N FT,N
FT, 76N FT, N C FT, 77N ¢
. FT,EN  FAN FO,N
=y FT,A TN C Fr,eN ¢
FDUEN @<y FL,°N o<y _
FT,7°N ! FI,"N dr
1Yy 7y
FUENGQ
Fon N BQ
16




Laplace transform and DilLL

The Laplace transform for distributions:

L. 1A -
Ny (e A gz e A @)

ZL(bo) =cstr  L(Yx¢) = ZL().L(¢)  L(Do(_)(v)) = evaly

Laplace transform turns costructural rules into structural ones.

17



The Laplace transform

= Comes from a model of functions with exponential growth

= This model is graded, higher order (and gives codigging)

PosITIVE
7 A i A
w,c,d, p o O+ W, ¢, d
" A “n mA
NEGATIVE

18



What about differential operators?

For P =3 a,X®, we note P(0) =)  aa0%.

Z(P0)(¢)) = P.L(¢) Z(P4p) = P(O)(Z(¢))

19



What about differential operators?

For P =3 a,X®, we note P(0) =)  aa0%.

Z(P0)(¢)) = P.L(¢) Z(P4p) = P(O)(Z(¢))
PARAMETERS
7pA <z o) A
w,c,d,p o+ O+ w, ¢, d
1P A Z 2P(9) 4

SOLUTIONS

19



Conclusion

What do we have?

= A non higher-order logic, where one can interpret solutions and
parameters of LPDO

= A way to eliminate cuts with the promotion

= A polarized version, with higher-order, coming from concrete models
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What do we want next?

= A proof of terminaison for the cut elimination
= A semiring of LPDO
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Conclusion

What do we have?

= A non higher-order logic, where one can interpret solutions and
parameters of LPDO

= A way to eliminate cuts with the promotion

= A polarized version, with higher-order, coming from concrete models
What do we want next?

= A proof of terminaison for the cut elimination
= A semiring of LPDO

Thank you!

20



