

UNIFYING GRADED LINEAR LOGIC AND DIFFERENTIAL OPERATORS

Simon Mirwasser (mirwasser@lipn.fr)

The Curry-Howard-Lambek isomorphism

	Computer science	Logic (syntax)	Mathematics (semantics)
General correspondance :	fun (x:A) -> (y:B)	Proof of $A \vdash B$	$f: A \to B$
	Type	Formula	Object
	Execution	Cut-elimination	Equality
A FUNDAMENTAL EXAMPLE :	Simple type A	Formula of minimal logic	Object in a cartesian closed category
	λ -term typed by A	Proof in natural deduction	Morphism in a cartesian closed category
	β -reduction procedure	Cut elimination procedure	Equality of morphisms

Motivations

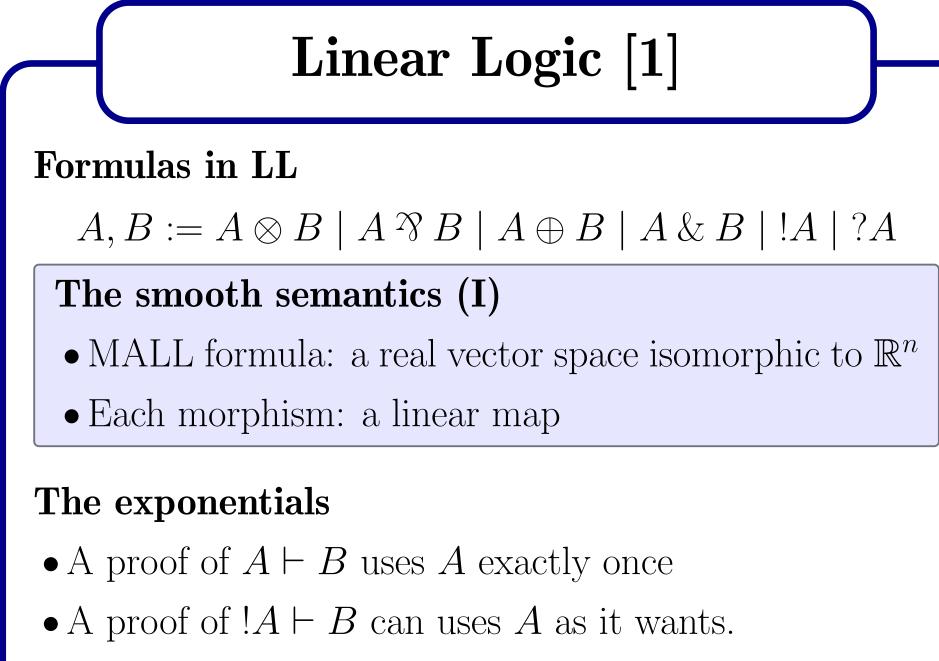
Short-term

• Give a connexion between differential linear logic and graded linear logic, which corresponds to a connexion between differentiation and ressource analysis.

Long-term

• Explain programming paradigms as solutions of differential equations, through the Curry-Howard-Lambek correspondance.

LINEAR LOGIC AND ITS EXTENSIONS



- $\bullet (!A \multimap B) \simeq (A \Rightarrow B)$
- The dereliction expresses that a linear map can be considered as non-linear.

Linear Partial Differential Operators with constant coefficients

D is an operator on smooth maps and distributions.

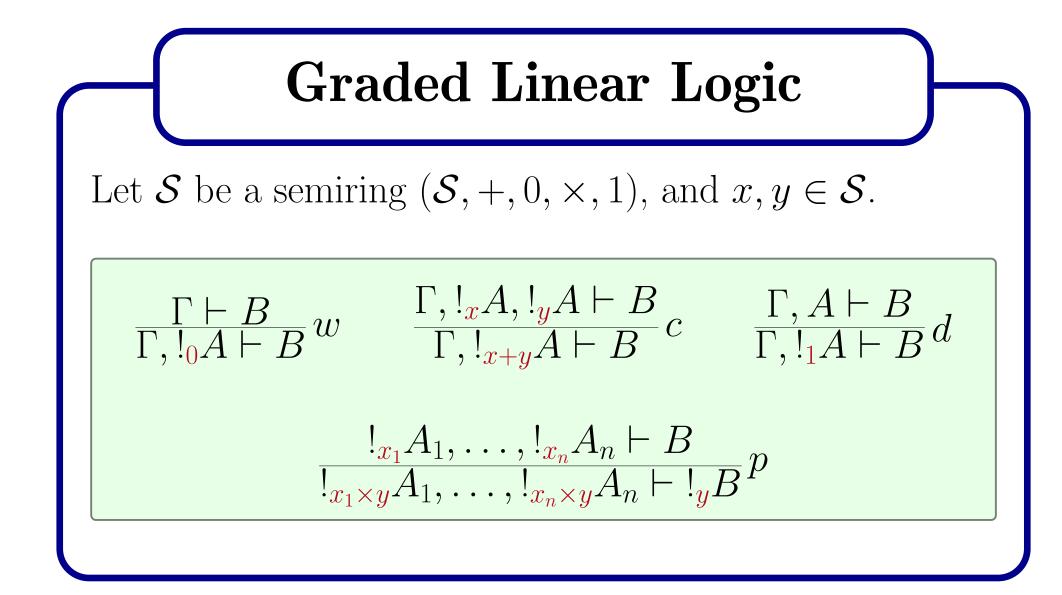
$$D(f) = \sum_{\alpha \in \mathbb{N}^n} a_\alpha \partial^\alpha f, \ D(\psi) = f \mapsto \psi \left(\sum_{\alpha \in \mathbb{N}^n} (-1)^{|\alpha|} a_\alpha \partial^\alpha f \right)$$

Theorem (Malgrange-Ehrenpreis)

For each LPDOcc D, there is a unique fundamental solution Φ_D : $D(\Phi_D) = \delta_0$.

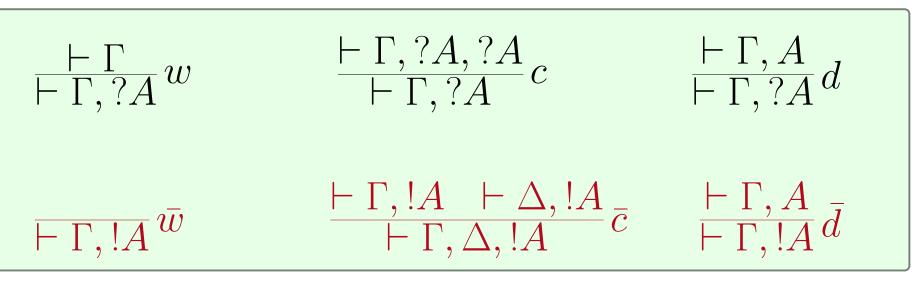
Distribution theory Each topological vector space $\mathcal{C}^{\infty}(\mathbb{R}^n, \mathbb{R})$ is reflexive: $\mathcal{C}^{\infty}(\mathbb{R}^n,\mathbb{R})''\simeq \mathcal{C}^{\infty}(\mathbb{R}^n,\mathbb{R}).$ The space $\mathcal{C}^{\infty}(\mathbb{R}^n, \mathbb{R})'$ is the space of distributions. The smooth semantics (II) • The interpretation of A is the space $\mathcal{C}^{\infty}(A, \mathbb{R})$. • By duality, !A is interpreted by distributions. $?_D A = D(\mathcal{C}^{\infty}(A, \mathbb{R}^n)) \qquad !_D A = (D(\mathcal{C}^{\infty}(A, \mathbb{R}^n)))'$

Extensions able to represent differentiation



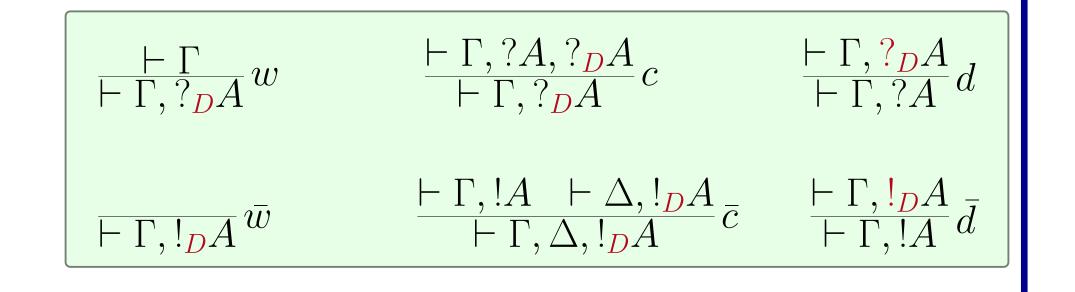
Differential linear logic (DiLL) [2]

- Dereliction turns a linear map into a non-linear one.
- The opposite operation is the differentiation, that is the codereliction \overline{d} .

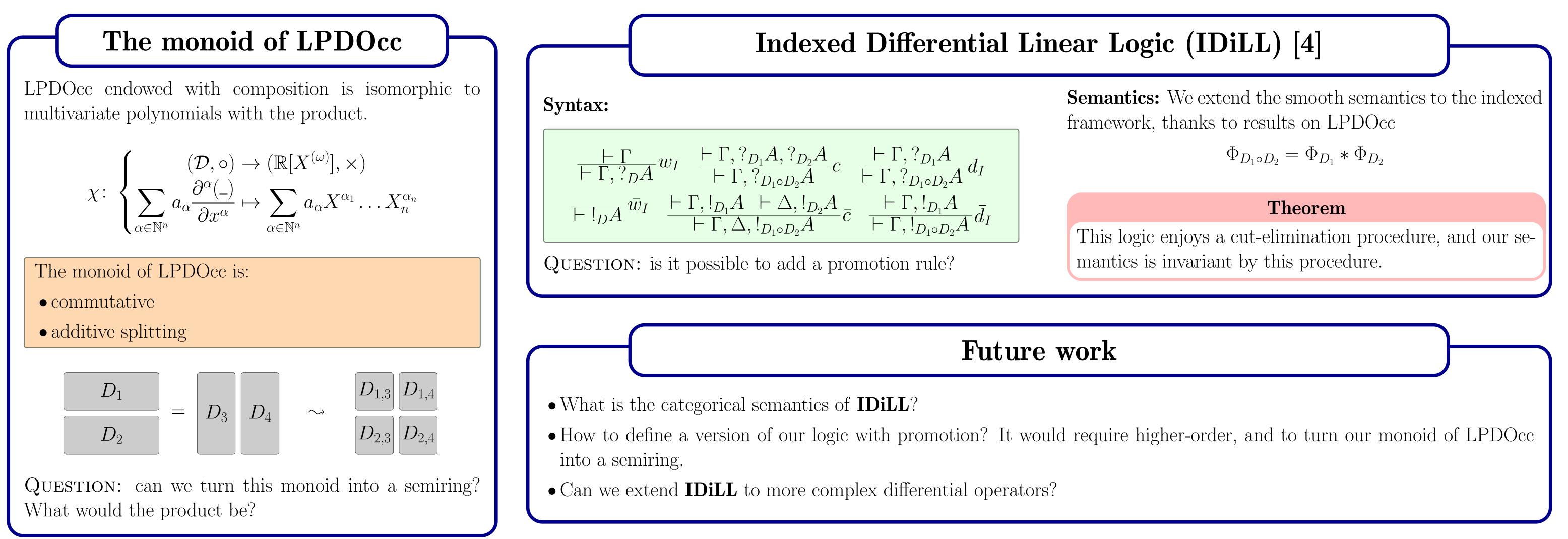


DiLL indexed by a LPDOcc (D-DiLL) [3]

• Analogy between d as the application of the operator D_0 , and d as the resolution of its differential equation.



AN INDEXED DIFFERENTIAL LINEAR LOGIC



References

1. Linear Logic. Jean-Yves Girard, Theoretical Computer Science, 1987. 2. Differential interaction nets. Thomas Ehrhard, Laurent Regnier, Th. Comp. Sci., 2006.

3. A Logical Account for Linear Partial Differential Equations Marie Kerjean, LICS, 2018. 4. Unifying Graded Linear Logic and Differential Operators, Flavien Breuvart, Marie Kerjean, M., 2023 preprint