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Background:
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• Graded linear logic

Our contributions:
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1. Background



The smooth semantics

Formulas :

• Each MALL formula is a finite dimentional vector space :
J1K := R JA⊗BK := JAK⊗ JBK JA⊕BK := JAK ] JBK . . .

• Exponentials are interpreted by infinite dimensional vector spaces:
• J?AK := C∞(JAK′,R) (functions)
• J!AK := C∞(JAK,R)′ (distributions)

• Negation is duality: JA⊥K := JAK′ = L(JAK,R)

Proofs :

• Each proof is a linear map between the interpretation of the
formulas.

• A⇒ B = !A( B is C∞(A,B) ' L(!A,B)

• The dereliction states that L(A,B) ⊆ C∞(A,B) : it forgets the
linearity.
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Differential Linear Logic

Differential interaction nets. Ehrhard, Regnier (2004)

f ∈ C∞(R,R)

d(f)(0)

Differential linear logic is about linear extraction of a proof

` : A ` B
` : !A ` B d

f : !A ` B
D0(f) : A ` B d̄
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Differential Linear Logic

• Other rules has to be added (cut-elimination)

` Γ
` Γ, ?A w ` Γ, ?A, ?A

` Γ, ?A c ` Γ, A
` Γ, ?A d

` ?Γ, A
` ?Γ, !A

p

• They have nice mathematical interpretation (differential calculus)

d̄/p is the chain rule . . .
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From D0 to differential equations

` : A ` B
` : !A ` B d

Forgets linearity

f : !A ` B
D0(f) : A ` B d̄

Applies D0

Solution of D0(_) = ` ?
That is ` since D0(`) = `

` : A ` B
f : !A ` B d

Forgets linearity
Solves D

f : !A ` B
D(f) : A ` B d̄

Apply D0

Applies D
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Linear Partial Differential Operators

Definition
A LPDOcc is a linear operator defined as

D =
∑
α∈Nn

aα
∂|α|

∂xα1
1 . . . ∂xαn

n
(aα ∈ R)

• A LPDO acts on smooth maps, or distributions.
• A fundamental solution is a distribution ΦD s.t. D(ΦD) = δ0

Examples of LPDOcc: D : f 7→ ∂
∂x1

f + 3 ∂2

∂x1∂x3
f , or the heat equation.

Theorem (Malgrange-Ehrenpreis, 50’s)
Each LPDOcc D has a unique fundamental solution ΦD.
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DiLL indexed by a LPDOcc

A logical account for LPDE. Kerjean (2018)

• Two new exponentials connectives : !DA and ?DA
• Their interpretations in the smooth semantics :

• J?DAK := D(C∞(JAK′,R)) (parameters)
• J!DAK := (D(C∞(JAK,R)))′ (solutions)

• We have !D0A ' A

The exponential rules of D-DiLL

` Γ
` Γ, ?DA

wD
` Γ, ?A, ?DA
` Γ, ?DA

cD
` Γ, ?DA
` Γ, ?A dD

` !DA
w̄D

` Γ, !A ` ∆, !DA
` Γ,∆, !DA

c̄D
` Γ, !DA
` Γ, !A d̄D
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DiLL indexed by a LPDOcc

Did we solve our issues?

` : A ` B
solution of D : !A ` B d

Solves D

f : !A ` B
D(f) : A ` B d̄

Applies D

A graded version?

• Our exponential is indexed, can we connect with other frameworks?
• Is there an interaction?
• LPDOcc are well-behaved: ΦD1◦D2 = ΦD1 ∗ ΦD2
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Graded linear logic

A core quantitative coeffect calculus. Brunel et. al (2014)

Combining Effects and Coeffects via Grading. Gaboardi et. al (2016)

Exponential rules of BSLL

Γ ` B
Γ, !0A ` B

w
Γ, !xA, !yA ` B
Γ, !x+yA ` B

c Γ, A ` B
Γ, !1A ` B

d

!x1A1, . . . , !xn
An ` B

!x1×yA1, . . . , !xn×yAn ` !yB
p Γ, !xA ` B x ≤ y

Γ, !yA ` B
dI

(S,+, 0,×, 1,≤) is an ordered semiring

• Type system for ressource consumption
• Coeffect analysis
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2. A graded differential linear
logic



The logic DBSLL

• A syntactical differentiation of BSLL

The exponential rules of DBSLL

` Γ
` Γ, ?0A

w
` Γ, ?xA, ?yA
` Γ, ?x+yA

c ` Γ, ?xA x ≤ y
` Γ, ?yA

dI
` Γ, A
` Γ, ?A d

` !0A
w̄
` Γ, !xA ` ∆, !yA
` Γ,∆, !x+yA

c̄
` Γ, !xA x ≤ y
` Γ, !yA d̄I

` Γ, A
` Γ, !A d̄

Theorem
When S is additive splitting, and the order is define through the sum,
DBSLL enjoys a cut elimination procedure.
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The monoid of LPDOcc

Let D be the set of LPDOcc.

D ' R[X1, . . . , Xn, . . . ](
D =

∑
α∈N

kα
∂|α|

∂xα1
1 . . . xαn

n

)
7→

(
P =

∑
α∈N

kαX
α1
1 . . . Xαn

n

)

Proposition
The set of LPDOcc, endowed with composition, is an additive splitting
commutative monoid.
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An indexed differential linear logic

Exponential rules of IDiLL
` Γ wI` Γ, ?DA

` Γ, ?D1A, ?D2A c
` Γ, ?D1◦D2A

` Γ, ?D1A dI` Γ, ?D1◦D2A

w̄I` !DA
` Γ, !D1A ` ∆, !D2A c̄` Γ,∆, !D1◦D2A

` Γ, !D1A d̄I` Γ, !D1◦D2A

From dD to dI : syntax has to change, and semantics as well

• J!DAK = D(C∞(JAK,R)′) (solutions) (parameters)
• J?DAK = D−1(C∞(JAK′,R)) (parameters) (solutions)

The duality transforms solutions into parameters

13



The smooth semantics for IDiLL

Definition

w :
{
R → ?idE
1 7→ cst1

w̄ :
{
R → !idE
1 7→ δ0

c :
{

?D1E ⊗̂ ?D2E → ?D1◦D2E

f ⊗ g 7→ ΦD1◦D2 ∗ (D1(f).D2(g))

c̄ :
{

!D1E ⊗̂ !D2E → !D1◦D2E

ψ ⊗ φ 7→ ψ ∗ φ

dI :
{

?D1E → ?D1◦D2E

f 7→ ΦD2 ∗ f
d̄I :

{
!D1E → !D1◦D2E

ψ 7→ ψ ◦D2

Theorem
The smooth semantics is compatible with the cut-elimination proce-
dure. 14



3. Laplace transform and
promotion rule



The (graded) promotion rule

• In linear logic

!A1, . . . , !An ` B
!A1, . . . , !An ` !B

p
!A f−→ B

!A pA−→ !!A !f−→ !B

For f ∈ C(A,B), g ∈ C(B,C), f ; g is:

!A pA−→ !!A !f−→ !B g−→ C

• In graded linear logic

!y1A1, . . . , !yn
An ` B

!x×y1A1, . . . , !x×ynAn ` !xB
p

!yA
f−→ B

!x×yA
pA,x,y−→ !x!yA

!xf−→ !xB

15
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Can we define a promotion?

Three questions:

1. Can we compose solutions?
2. Can we multiply differential operators?
3. Can we interpret higher-order?
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2. Can we multiply differential operators?
3. Can we interpret higher-order?

• The function x 7→ ex is a solution of f ′ − f = 0.
• But eex is not a solution of D(f) = 0 (even with polynomial coeffs!)
• Not really a problem for us: each map can be chosen as a parameter.
• If f solution of D1 and g solution of D2, g ◦ f solution of ?
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Can we define a promotion?

Three questions:

1. Can we compose solutions?
2. Can we multiply differential operators?
3. Can we interpret higher-order?

• Our sum is the composition of operators
• Can we define � such that (D, ◦,�) is a semiring?

` Γ, B⊥
d

` Γ, ?1B
⊥

` ?xA,B p
` ?1×xA, !1B

cut` Γ, ?1×xA

 ` Γ, B⊥ ?xA,B
cut` Γ, ?xA
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Can we define a promotion?

Three questions:

1. Can we compose solutions?
2. Can we multiply differential operators?
3. Can we interpret higher-order?

Definition
A differential semiring is a tuple (S, 0, 1,+,×) s.t.

0× x = 0 (w) xy = 0⇒ x = 0 or y = 0 (w̄)
(x+ y)z = xz + yz (c) mult. split. (x1x2 = y1 + y2) (c̄)
1× x = x (d) ??? (chain rule) (d̄)
x ≤ y ⇒ xz ≤ yz (dI) ??? (graded chain rule) (d̄I)
x(yz) = (xy)z (p)

The axiom (dI) is implied by (c), thanks to the definition of the order.
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Can we define a promotion?

Three questions:

1. Can we compose solutions?
2. Can we multiply differential operators?
3. Can we interpret higher-order?

We define � as:(∑
α∈Nn

aα∂
α

)
�

∑
β∈Nn

bβ∂
β

 =
∑

α,β∈Nn

aα(bβ)|α|∂αβ

This verifies (w), (c), (dI) and (d) or (p).
What about costructural axioms?
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Can we define a promotion?

Three questions:

1. Can we compose solutions?
2. Can we multiply differential operators?
3. Can we interpret higher-order?

An overview of models of DiLL

Model Reflexivity Smoothness Higher-order
Kothe spaces 3 7 3

Convenient spaces 7 3 3

Nuclear Frechet spaces 3 3 3
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Can we define a promotion?

Three questions:

1. Can we compose solutions?
2. Can we multiply differential operators?
3. Can we interpret higher-order?

We need linearly independant families to interpret partial derivatives:

• For finitary formulas, we are isomorphic to Rn.
• For (E, V ), we define !D(E, V ) as (!DE, !DV ), where

V = (x1, . . . , xn, . . . )→ !DV = (δx1 , . . . , δxn
, . . . )

• For MALL connectives over exponential formulas, usual
constructions work

16



Laplace transform and DiLL

The Laplace transform for distributions:

L :
{

!A → ?A′

ψ 7→ (` ∈ A′ 7→ ψ(x ∈ A 7→ e`(x)))

L (δ0) = cst1 L (ψ∗φ) = L (ψ).L (φ) L (D0(_)(v)) = evalv

Laplace transform turns costructural rules into structural ones.

17



Laplace transform and differential operators

For P =
∑
α aαX

α, we note P (∂) =
∑
α aα∂

α.

L (P (∂)(ψ)) = P.L (ψ) L (P.ψ) = P (∂)(L (ψ))

Parameters

?P A !P (∂)A

w, c, d, p w̄, c̄, d̄

!P A ?P (∂)A

Solutions

L−1

(_)⊥ (_)⊥

L

18



Laplace transform and differential operators

For P =
∑
α aαX

α, we note P (∂) =
∑
α aα∂

α.

L (P (∂)(ψ)) = P.L (ψ) L (P.ψ) = P (∂)(L (ψ))

Parameters

?P A !P (∂)A

w, c, d, p w̄, c̄, d̄

!P A ?P (∂)A

Solutions

L−1

(_)⊥ (_)⊥

L

18



A new syntax

` Γ w
` Γ, ?PA

` Γ, ?PA, ?QA c
` Γ, ?PQA

` Γ, ?PA dI` Γ, ?PQA

w̄` !P (∂)A
` Γ, !P (∂)A ` ∆, !Q(∂)A

c̄` Γ,∆, !(PQ)(∂)A

` Γ, !P (∂)A
d̄I` Γ, !(PQ)(∂)A

` ?P (∂)A,B p
` ?(Q�P )(∂)A, !Q(∂)B

19



A new semantics

w :
{
R → ?PA
1 7→ P.cst1

c :
{

?PA⊗ ?QA → ?PQA
f ⊗ g 7→ f.g

dI :
{

?PA → ?PQA
f 7→ Qf

w̄ :
{
R → !P (∂)A

1 7→ P (∂) ◦ δ0

c̄ :
{

!P (∂)A⊗ !Q(∂)A → !(PQ)(∂)A

ψ ⊗ φ 7→ ψ ∗ φ

d̄I :
{

!P (∂)A → !(PQ)(∂)A

ψ 7→ Q(∂) ◦ ψ

• The contraction rule is the one from DiLL
• We do not need fundamental solutions (other LPDO?)

20



Conclusion

Take away:

• Promotion free logic, which interprets LPDOcc with solutions and
parameters

• Algebraic structure for structural rules
• Laplace transform between parameters and solutions

Future works:

• A double indexed syntax for our logic
• What about the categorical semantics?
• Can we extend this to other operators? D-finite/holonomic

functions?

QUESTIONS ?
21
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