Unifying Graded Linear Logic and Differential Operators

Formal Structures for Computation and Deduction 2023 July 4, 2023

Flavien Breuvart, Marie Kerjean & Simon Mirwasser

Background:

Our contributions:

Background:

- Linear logic via its semantics
- Differential linear logic
- Its extension to D-DiLL
- Graded linear logic

Our contributions:

Background:

- Linear logic via its semantics
- Differential linear logic
- Its extension to D-DiLL
- Graded linear logic

Our contributions:

- 2 approaches
 - A syntactical differentiation of graded LL
 - A graded extension of D-DiLL
- Are they the same?

Background:

- Linear logic via its semantics
- Differential linear logic
- Its extension to D-DiLL
- Graded linear logic

Our contributions:

- 2 approaches
 - A syntactical differentiation of graded LL
 - A graded extension of D-DiLL
- Are they the same?

D-DiLL: $!_D$ (D an LPDOcc) B_SLL : $!_s$ (s in a semiring) QUESTION: Can we unify those two notions? Yes!

Mathematical analysis

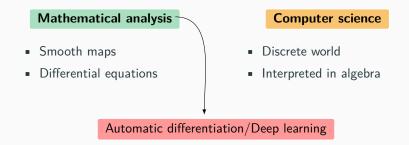
- Smooth maps
- Differential equations

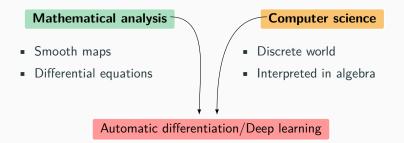
Computer science

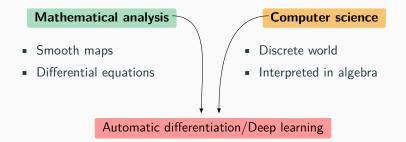
- Discrete world
- Interpreted in algebra

Automatic differentiation/Deep learning

Motivations







- Probabilistic programming, differentiable programming,...
- Can we merge these ideas? Thanks to proof theory?

Computer science	Logic	Mathematics
fun $(x:A) \rightarrow (y:B)$	Proof of $A \vdash B$	$f: A \to B$
Types	Formulae	Objects
Execution	Cut-elimination	Equality

Computer science	Logic	Mathematics
fun $(x:A) \rightarrow (y:B)$	Proof of $A \vdash B$	$f: A \to B$
Types	Formulae	Objects
Execution	Cut-elimination	/ Equality
<pre></pre>		
concrete models :	categor	ical semantics :
Precise description	 Generaliz 	zed description
Respects categorical sema	ntics Encompa	ass every model

Linear logic. Girard (1987)

Computer science	Logic	Mathematics
Proof nets	Linear logic	Linear algebra

$$A \Rightarrow B = !A \multimap B$$

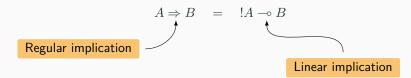
Linear logic. Girard (1987)

Computer science	Logic	Mathematics
Proof nets	Linear logic	Linear algebra

$$A \Rightarrow B = !A \multimap B$$
Regular implication

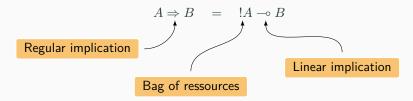
Linear logic. Girard (1987)

Computer science	Logic	Mathematics
Proof nets	Linear logic	Linear algebra



Linear logic. Girard (1987)

Computer science	Logic	Mathematics
Proof nets	Linear logic	Linear algebra



1. Background

Linear Logic

Multiplicative Additive Linear Logic (MALL) :

- 1. A grammar : $A, B := X | X^{\perp} | A \otimes B | A \otimes B | ...$
- 2. A (involutive) negation : $(A \ \mathfrak{P} B)^{\perp} := A^{\perp} \otimes B^{\perp} | \dots$

3. A set of rules

$$\frac{}{\vdash A, A^{\perp}} ax \qquad \frac{\vdash \Gamma, A^{\perp} \vdash \Delta, A^{\perp}}{\vdash \Gamma, \Delta} cut \qquad \frac{\vdash \Gamma, A, B}{\vdash \Gamma, A \ \mathfrak{B}} \ \mathfrak{P}$$

. . .

Linear Logic

Multiplicative Additive Linear Logic (MALL) :

- 1. A grammar : $A, B := X | X^{\perp} | A \otimes B | A \Im B | \dots$
- 2. A (involutive) negation : $(A \ \Im \ B)^{\perp} := A^{\perp} \otimes B^{\perp} | \dots$

3. A set of rules

$$\frac{}{\vdash A, A^{\perp}} ax \qquad \frac{\vdash \Gamma, A^{\perp} \vdash \Delta, A^{\perp}}{\vdash \Gamma, \Delta} cut \qquad \frac{\vdash \Gamma, A, B}{\vdash \Gamma, A \ \mathfrak{B}} \ \mathfrak{R} \qquad \dots$$

Linear Logic :

- Two exponentials connectives : !A and ?A, with $(!A)^{\perp} := ?A$
- A set of exponential rules

$$\frac{\Gamma\vdash\Delta}{\Gamma, !A\vdash\Delta} \ \mathsf{w} \qquad \frac{\Gamma, !A, !A\vdash\Delta}{\Gamma, !A\vdash\Delta} \ \mathsf{c} \qquad \frac{\Gamma, A\vdash\Delta}{\Gamma, !A\vdash\Delta} \ \mathsf{d} \quad \frac{!\Gamma\vdash!A}{!\Gamma\vdash A} \ \mathsf{P}$$

The smooth semantics

Formulas :

- Each MALL formula is a finite dimentional vector space : $\llbracket 1 \rrbracket := \mathbb{R} \quad \llbracket A \otimes B \rrbracket := \llbracket A \rrbracket \otimes \llbracket B \rrbracket \quad \llbracket A \oplus B \rrbracket := \llbracket A \rrbracket \uplus \llbracket B \rrbracket \quad \dots$
- The exponentials are interpreted by infinite dimensional vector spaces : $[\![?A]\!] := \mathcal{C}^{\infty}([\![A]\!]', \mathbb{R})$ $[\![!A]\!] := \mathcal{C}^{\infty}([\![A]\!], \mathbb{R})'$
- Negation is duality : $\llbracket A^{\perp} \rrbracket := \llbracket A \rrbracket' = \mathcal{L}(\llbracket A \rrbracket, \mathbb{R})$

The smooth semantics

Formulas :

- Each MALL formula is a finite dimentional vector space : $\llbracket 1 \rrbracket := \mathbb{R} \quad \llbracket A \otimes B \rrbracket := \llbracket A \rrbracket \otimes \llbracket B \rrbracket \quad \llbracket A \oplus B \rrbracket := \llbracket A \rrbracket \uplus \llbracket B \rrbracket \quad \dots$
- The exponentials are interpreted by infinite dimensional vector spaces : $[\![?A]\!] := \mathcal{C}^{\infty}([\![A]\!]', \mathbb{R})$ $[\![!A]\!] := \mathcal{C}^{\infty}([\![A]\!], \mathbb{R})'$
- Negation is duality : $\llbracket A^{\perp} \rrbracket := \llbracket A \rrbracket' = \mathcal{L}(\llbracket A \rrbracket, \mathbb{R})$

Proofs :

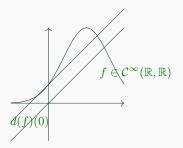
• Each proof is a **linear** map between the interpretation of the formulas.

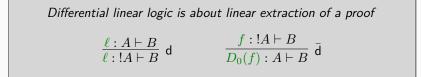
•
$$A \Rightarrow B = !A \multimap B$$
 is $\mathcal{C}^{\infty}(A, B) \simeq \mathcal{L}(!A, B)$

• The dereliction states that $\mathcal{L}(A,B) \subseteq \mathcal{C}^{\infty}(A,B)$: it forgets the linearity.

Differential Linear Logic

Differential interaction nets. Ehrhard, Regnier (2006)





Differential Linear Logic

• Other rules has to be added

$$\frac{\vdash \Gamma}{\vdash \Gamma, ?A} \text{ w} \qquad \qquad \frac{\vdash \Gamma, ?A, ?A}{\vdash \Gamma, ?A} \text{ c} \qquad \qquad \frac{\vdash \Gamma, A}{\vdash \Gamma, ?A} \text{ d} \qquad \qquad \frac{\vdash ?\Gamma, A}{\vdash ?\Gamma, !A} \text{ p}$$

Differential Linear Logic

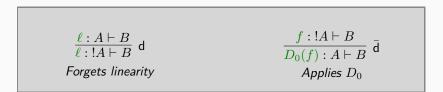
• Other rules has to be added

$$\frac{\vdash \Gamma}{\vdash \Gamma, ?A} \text{ w} \qquad \frac{\vdash \Gamma, ?A, ?A}{\vdash \Gamma, ?A} \text{ c} \qquad \frac{\vdash \Gamma, A}{\vdash \Gamma, ?A} \text{ d} \qquad \frac{\vdash ?\Gamma, A}{\vdash ?\Gamma, !A} \text{ p}$$

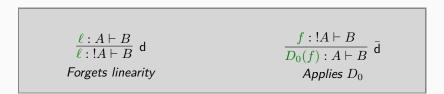
$$\frac{\vdash \Gamma, !A \vdash \Delta, !A}{\vdash \Gamma, \Delta, !A} \bar{\mathsf{c}} \qquad \frac{\vdash \Gamma, A}{\vdash \Gamma, !A} \bar{\mathsf{d}}$$

• They have nice mathematical interpretation

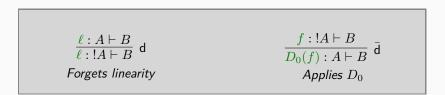
 \overline{d}/p is the chain rule



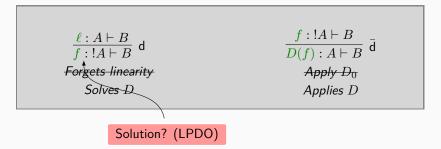
Solution of $D_0(_) = \ell$? That is ℓ since $D_0(\ell) = \ell$

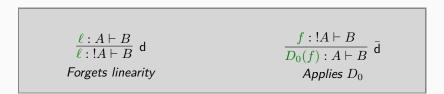


Solution of $D_0(\underline{}) = \ell$? That is ℓ since $D_0(\ell) = \ell$

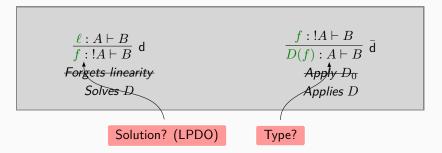


Solution of $D_0(\underline{}) = \ell$? That is ℓ since $D_0(\ell) = \ell$





Solution of $D_0(\underline{}) = \ell$? That is ℓ since $D_0(\ell) = \ell$



 $\begin{array}{c} \hline \textbf{Definition} \\ \textbf{A LPDOcc is a linear operator defined as} \\ D = \sum_{\alpha \in \mathbb{N}^n} a_\alpha \frac{\partial^{|\alpha|}}{\partial x_1^{\alpha_1} \dots \partial x_n^{\alpha_n}} \qquad (a_\alpha \in \mathbb{R}) \end{array}$

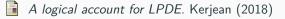
- A LPDO acts on smooth maps, or distributions.
- A fundamental solution is a distribution Φ_D s.t. $D(\Phi_D) = \delta_0$

Examples of LPDOcc: $D: f \mapsto \frac{\partial}{\partial x_1}f + 3\frac{\partial^2}{\partial x_1\partial x_3}f$, or the heat equation.

Theorem (Malgrange-Ehrenpreis, 50's)

Each LPDOcc D has a unique fundamental solution Φ_D .

DiLL indexed by a LPDOcc

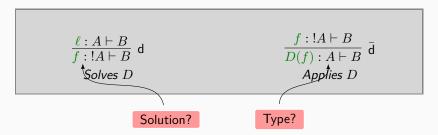


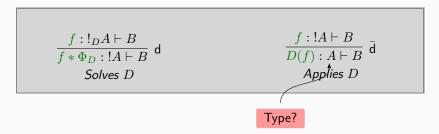
- Two new exponentials connectives : $!_D A$ and $?_D A$
- Their interpretations in the smooth semantics :

 $[\![?_DA]\!] := D(\mathcal{C}^{\infty}([\![A]\!]', \mathbb{R})) \qquad [\![!_DA]\!] := (D(\mathcal{C}^{\infty}([\![A]\!], \mathbb{R})))'$

which respect duality and reflexivity.

• We have
$$!_{D_0}A \simeq A$$





$$\begin{array}{c} \displaystyle \frac{f: !_D A \vdash B}{f \ast \Phi_D: !A \vdash B} \ \mathsf{d} & \qquad \displaystyle \frac{f: !A \vdash B}{D(f): !_D A \vdash B} \ \bar{\mathsf{d}} \\ \hline & \\ \displaystyle \text{Solves } D & \qquad & \\ \end{array}$$

A graded version?

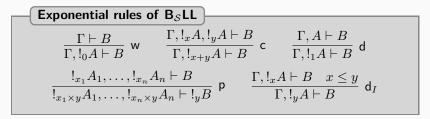
- Our exponential is indexed, can we connect with other frameworks?
- Is there an interaction?
- LPDOcc are well-behaved:

$$\Phi_{D_1 \circ D_2} = \Phi_{D_1} * \Phi_{D_2}$$

Graded linear logic

A core quantitative coeffect calculus. Brunel et. al (2014)

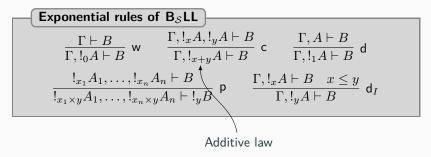
Combining Effects and Coeffects via Grading. Gaboardi et. al (2016)



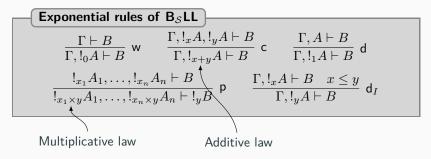
Graded linear logic

A core quantitative coeffect calculus. Brunel et. al (2014)

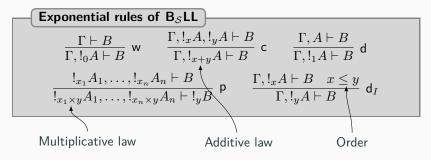
Combining Effects and Coeffects via Grading. Gaboardi et. al (2016)



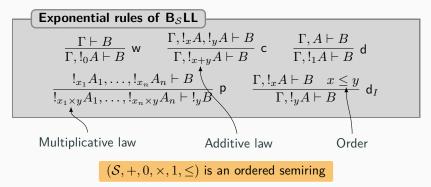
A core quantitative coeffect calculus. Brunel et. al (2014)



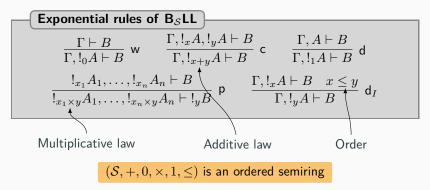
A core quantitative coeffect calculus. Brunel et. al (2014)



A core quantitative coeffect calculus. Brunel et. al (2014)



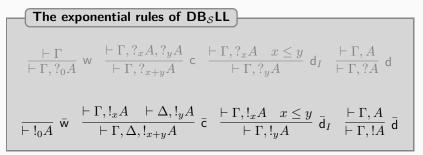
A core quantitative coeffect calculus. Brunel et. al (2014)



- Type system for ressource consumption
- Coeffect analysis

2. A graded differential linear logic

- A syntactical differentiation of $\mathsf{B}_{\mathcal{S}}\mathsf{LL}$



- A syntactical differentiation of $\mathsf{B}_{\mathcal{S}}\mathsf{LL}$

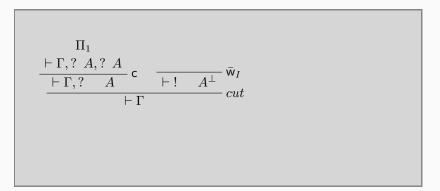
$$\begin{array}{c} \hline \textbf{The exponential rules of DB}_{\mathcal{S}}\textbf{LL} \\ \\ \hline \vdash \Gamma,?_{0}A & \forall \quad \frac{\vdash \Gamma,?_{x}A,?_{y}A}{\vdash \Gamma,?_{x+y}A} \leftarrow \quad \frac{\vdash \Gamma,?_{x}A \quad x \leq y}{\vdash \Gamma,?_{y}A} \quad \textbf{d}_{I} \quad \frac{\vdash \Gamma,A}{\vdash \Gamma,?A} \quad \textbf{d} \\ \\ \hline \hline \vdash !_{0}A \quad \bar{\forall} \quad \frac{\vdash \Gamma,!_{x}A \quad \vdash \Delta,!_{y}A}{\vdash \Gamma,\Delta,!_{x+y}A} \quad \bar{c} \quad \frac{\vdash \Gamma,!_{x}A \quad x \leq y}{\vdash \Gamma,!_{y}A} \quad \bar{\textbf{d}}_{I} \quad \frac{\vdash \Gamma,A}{\vdash \Gamma,!A} \quad \bar{\textbf{d}} \end{array}$$

- A syntactical differentiation of $\mathsf{B}_\mathcal{S}\mathsf{LL}$

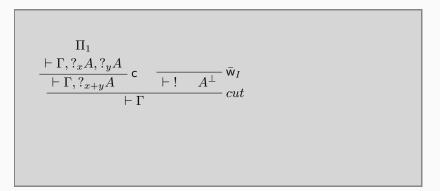
$$\begin{array}{c} \hline \textbf{The exponential rules of DB}_{\mathcal{S}}\textbf{LL} \\ \\ \hline \begin{array}{c} \vdash \Gamma \\ \vdash \Gamma,?_{0}A \end{array} & \texttt{w} \quad \begin{array}{c} \vdash \Gamma,?_{x}A,?_{y}A \\ \vdash \Gamma,?_{x}+yA \end{array} \texttt{c} \quad \begin{array}{c} \vdash \Gamma,?_{x}A \quad x \leq y \\ \vdash \Gamma,?_{y}A \end{array} \texttt{d}_{I} \quad \begin{array}{c} \vdash \Gamma,A \\ \vdash \Gamma,?A \end{array} \texttt{d} \\ \\ \hline \begin{array}{c} \end{array} \\ \hline \begin{array}{c} \end{array} \\ \hline \begin{array}{c} \vdash !_{0}A \end{array} \\ \hline \texttt{w} \quad \begin{array}{c} \vdash \Gamma,!_{x}A \quad \vdash \Delta,!_{y}A \\ \vdash \Gamma,\Delta,!_{x+y}A \end{array} \\ \hline \texttt{c} \quad \begin{array}{c} \vdash \Gamma,!_{x}A \quad x \leq y \\ \vdash \Gamma,!_{y}A \end{array} \\ \hline \textbf{d}_{I} \quad \begin{array}{c} \vdash \Gamma,A \\ \vdash \Gamma,!A \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \end{array}$$

• Question: what is the dynamic of this logic?

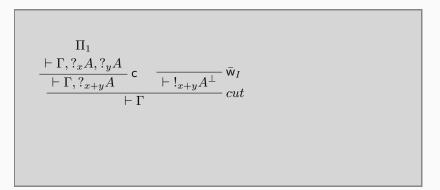
• Naive solution: Decorate the one from DiLL



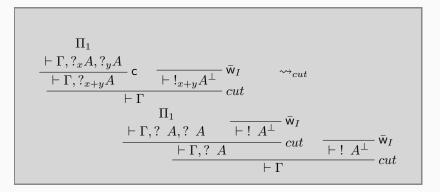
• Naive solution: Decorate the one from DiLL



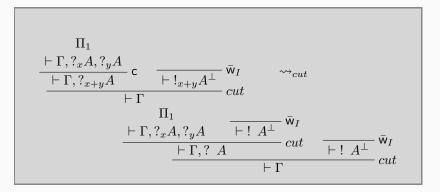
• Naive solution: Decorate the one from DiLL



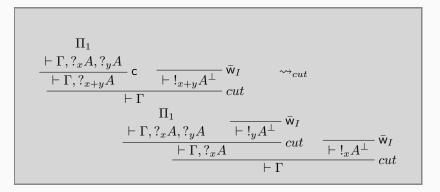
Naive solution: Decorate the one from DiLL



Naive solution: Decorate the one from DiLL



Naive solution: Decorate the one from DiLL



$$\begin{array}{c|cccc} \Pi_1 & \Pi_2 & \Pi_3 \\ \hline & + \Gamma, ?_{x_1} A^{\perp}, ?_{x_2} A^{\perp} \\ \hline & + \Gamma, ?_{x_1 + x_2} A^{\perp} \end{array} \mathsf{c} & \begin{array}{c} + \Delta, ! & A & + \Xi, ! & A \\ \hline & + \Delta, \Xi, ! & A \\ \hline & + \Delta, \Xi, ! & A \end{array} \bar{\mathsf{c}} \\ \hline & & \mathsf{cut} \end{array}$$

$$\frac{ \begin{array}{ccc} \Pi_1 & \Pi_2 & \Pi_3 \\ \hline + \Gamma, ?_{x_1} A^{\perp}, ?_{x_2} A^{\perp} \\ \hline + \Gamma, ?_{x_1 + x_2} A^{\perp} \end{array} \mathsf{c} & \frac{\vdash \Delta, ! \quad A \quad \vdash \Xi, ! \quad A}{\vdash \Delta, \Xi, !_{x_1 + x_2} \quad A} \bar{\mathsf{c}} \\ \hline + \Gamma, \Delta, \Xi & cut \end{array}$$

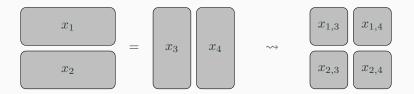
$$\frac{ \begin{array}{ccc} \Pi_1 & \Pi_2 & \Pi_3 \\ \hline + \Gamma, ?_{x_1} A^{\perp}, ?_{x_2} A^{\perp} \\ \hline \hline + \Gamma, ?_{x_1 + x_2} A^{\perp} \end{array} \mathsf{c} & \frac{\vdash \Delta, ! \quad A \quad \vdash \Xi, ! \quad A}{\vdash \Delta, \Xi, !_{x_1 + x_2 = x_3 + x_4} A} \bar{\mathsf{c}} \\ \hline + \Gamma, \Delta, \Xi & cut \end{array}$$

$$\frac{ \begin{array}{ccc} \Pi_1 & \Pi_2 & \Pi_3 \\ \hline + \Gamma, ?_{x_1} A^{\perp}, ?_{x_2} A^{\perp} & \mathsf{c} & \hline + \Delta, !_{x_3} A & \vdash \Xi, !_{x_4} A \\ \hline \hline + \Gamma, ?_{x_1+x_2} A^{\perp} & \mathsf{c} & \hline + \Gamma, \Delta, \Xi & cut \end{array}}{ \vdash \Gamma, \Delta, \Xi \\ \end{array} \\$$

Definition

A monoid $(\mathcal{M}, +, 0)$ is additive splitting if for each $x_1, x_2, x_3, x_4 \in \mathcal{M}$ such that $x_1 + x_2 = x_3 + x_4$, there are elements $x_{1,3}, x_{1,4}, x_{2,3}, x_{2,4} \in \mathcal{M}$ such that

$$x_1 = x_{1,3} + x_{1,4}$$
 $x_2 = x_{2,3} + x_{2,4}$ $x_3 = x_{1,3} + x_{2,3}$ $x_4 = x_{1,4} + x_{2,4}$



Cut elimination III

- Issue: indexed (co)derelictions do not exist in DiLL
- Solution: (co)derelicitons will go up in the tree (subtyping idea)

$$\frac{\prod_{\substack{\vdash \Gamma \\ \vdash \Gamma, ?_{x}A}} {\mathbb{W}_{I}} \mathsf{w}_{I} \xrightarrow{\rightsquigarrow_{\mathsf{d}_{I}, 3}} \frac{\prod_{\substack{\vdash \Gamma \\ \vdash \Gamma, ?_{x+y}A}} \mathsf{w}_{I}$$

Cut elimination III

- Issue: indexed (co)derelictions do not exist in DiLL
- Solution: (co)derelicitons will go up in the tree (subtyping idea)

$$\frac{\prod_{\substack{\vdash \Gamma \\ \vdash \Gamma, ?_{x}A}} \mathsf{w}_{I}}{\vdash \Gamma, ?_{x+y}A} \mathsf{d}_{I} \xrightarrow{\rightsquigarrow_{\mathsf{d}_{I}, 3}} \frac{\prod_{\substack{\vdash \Gamma \\ \vdash \Gamma, ?_{x+y}A}} \mathsf{w}_{I}$$

Combining these three parts, we get:

Theorem

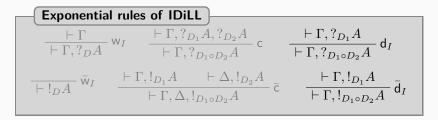
The logic $\mathsf{DB}_{\mathcal{S}}\mathsf{LL}$ has a cut elimination procedure when $\mathcal S$ is additive splitting.

Let $\ensuremath{\mathcal{D}}$ be the set of LPDOcc.

$$\mathcal{D} \simeq \mathbb{R}[X_1, \dots, X_n, \dots]$$
$$\left(D = \sum_{\alpha \in \mathbb{N}} k_\alpha \frac{\partial^{|\alpha|}}{\partial x_1^{\alpha_1} \dots x_n^{\alpha_n}}\right) \mapsto \left(P = \sum_{\alpha \in \mathbb{N}} k_\alpha X_1^{\alpha_1} \dots X_n^{\alpha_n}\right)$$

Proposition The set of LPDOcc, endowed with composition, is an additive splitting commutative monoid.

3. From differential operators to ressources



From d_D to d_I : syntax has to change, and semantics as well

 $\llbracket !_D A \rrbracket = D(\mathcal{C}^{\infty}(\llbracket A \rrbracket, \mathbb{R})') \qquad \llbracket ?_D A \rrbracket = D^{-1}(\mathcal{C}^{\infty}(\llbracket A \rrbracket', \mathbb{R}))$

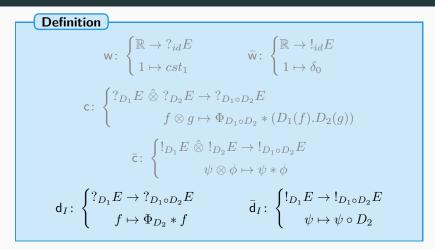
• An order on LPDOcc:

$$D_1 \le D_2 \iff \exists D_3, \ D_2 = D_1 \circ D_3$$

Dereliction in both logics:

$$\frac{\vdash \Gamma, ?_{x}A \quad x \leq y}{\vdash \Gamma, ?_{y}A} \, \mathsf{d}_{I} \qquad \simeq \qquad \frac{\vdash \Gamma, ?_{D_{1} \circ D_{2}}A}{\vdash \Gamma, ?_{D_{1}}A} \, \mathsf{d}_{I}$$

The smooth semantics for IDiLL



Theorem

The smooth semantics is **compatible** with the cut-elimination procedure.

An example for the compatibility

The syntax of the interaction between indexed dereliction and weakening:

$$\frac{\prod_{\substack{\vdash \Gamma \\ \vdash \Gamma, ?_{D_1}A}} \mathsf{w}_I}{\vdash \Gamma, ?_{D_1 \circ D_2}A} \mathsf{d}_I \xrightarrow{\sim}_{\mathsf{d}_I, 3} \frac{\prod_{\substack{\vdash \Gamma \\ \vdash \Gamma, ?_{D_1 \circ D_2}A}} \mathsf{w}_I$$

Its semantical interpretation:

$$\frac{\prod\limits_{\vdash} \Psi_{D_1} * cst_1}{\vdash \Phi_{D_2} * \Phi_{D_1} * cst_1} \mathsf{d}_I \xrightarrow{\sim \mathsf{d}_I, 3} \frac{\prod}{\vdash} \Phi_{D_1 \circ D_2} * cst_1} \mathsf{w}_I$$

• Well known result: $\Phi_{D_1} * \Phi_{D_2} = \Phi_{D_1 \circ D_2}$

Take away:

- Two approaches which are the same
- A semantics with correct intuition:
 - Dereliction solves the equation
 - Codereliction apply it
- A syntax closer to the graded idea
- A calculus which uses various ideas

The promotion rule:

- What would be the product rule of the semiring?
- How can we extend our work on higher-order? Spaces of functions/distributions are infinite-dimensional

Other questions:

- What about the categorical semantics?
- Can we extend this to other operators? D-finite/holonomic functions?

QUESTIONS ?