
Unifying Graded Linear Logic and
Differential Operators

Formal Structures for Computation and Deduction 2023
July 4, 2023

Flavien Breuvart, Marie Kerjean & Simon Mirwasser

1

Outline

Background:

• Linear logic via its semantics
• Differential linear logic
• Its extension to D-DiLL
• Graded linear logic

Our contributions:

• 2 approaches
• A syntactical differentiation of graded LL
• A graded extension of D-DiLL

• Are they the same?

D-DiLL: !D (D an LPDOcc) BSLL: !s (s in a semiring)

Question: Can we unify those two notions? Yes!

2

Outline

Background:

• Linear logic via its semantics
• Differential linear logic
• Its extension to D-DiLL
• Graded linear logic

Our contributions:

• 2 approaches
• A syntactical differentiation of graded LL
• A graded extension of D-DiLL

• Are they the same?

D-DiLL: !D (D an LPDOcc) BSLL: !s (s in a semiring)

Question: Can we unify those two notions? Yes!

2

Outline

Background:

• Linear logic via its semantics
• Differential linear logic
• Its extension to D-DiLL
• Graded linear logic

Our contributions:

• 2 approaches
• A syntactical differentiation of graded LL
• A graded extension of D-DiLL

• Are they the same?

D-DiLL: !D (D an LPDOcc) BSLL: !s (s in a semiring)

Question: Can we unify those two notions? Yes!

2

Outline

Background:

• Linear logic via its semantics
• Differential linear logic
• Its extension to D-DiLL
• Graded linear logic

Our contributions:

• 2 approaches
• A syntactical differentiation of graded LL
• A graded extension of D-DiLL

• Are they the same?

D-DiLL: !D (D an LPDOcc) BSLL: !s (s in a semiring)

Question: Can we unify those two notions? Yes!

2

Motivations

Mathematical analysis

• Smooth maps
• Differential equations

Computer science

• Discrete world
• Interpreted in algebra

Automatic differentiation/Deep learning

• Probabilistic programming, differentiable programming,. . .
• Can we merge these ideas? Thanks to proof theory?

3

Motivations

Mathematical analysis

• Smooth maps
• Differential equations

Computer science

• Discrete world
• Interpreted in algebra

Automatic differentiation/Deep learning

• Probabilistic programming, differentiable programming,. . .
• Can we merge these ideas? Thanks to proof theory?

3

Motivations

Mathematical analysis

• Smooth maps
• Differential equations

Computer science

• Discrete world
• Interpreted in algebra

Automatic differentiation/Deep learning

• Probabilistic programming, differentiable programming,. . .
• Can we merge these ideas? Thanks to proof theory?

3

Motivations

Mathematical analysis

• Smooth maps
• Differential equations

Computer science

• Discrete world
• Interpreted in algebra

Automatic differentiation/Deep learning

• Probabilistic programming, differentiable programming,. . .
• Can we merge these ideas? Thanks to proof theory?

3

The Curry-Howard-Lambek isomorphism

Computer science Logic Mathematics
fun (x:A)->(y:B) Proof of A ` B f : A→ B

Types Formulae Objects
Execution Cut-elimination Equality

concrete models :
• Precise description
• Respects categorical semantics

categorical semantics :
• Generalized description
• Encompass every model

4

The Curry-Howard-Lambek isomorphism

Computer science Logic Mathematics
fun (x:A)->(y:B) Proof of A ` B f : A→ B

Types Formulae Objects
Execution Cut-elimination Equality

concrete models :
• Precise description
• Respects categorical semantics

categorical semantics :
• Generalized description
• Encompass every model

4

Linear Logic

Linear logic. Girard (1987)

• Comes from semantical study of typed λ-calculus (coherent spaces)

Computer science Logic Mathematics
Proof nets Linear logic Linear algebra

• A logic about ressources (and much more. . .):

A⇒ B = !A(B

5

Linear Logic

Linear logic. Girard (1987)

• Comes from semantical study of typed λ-calculus (coherent spaces)

Computer science Logic Mathematics
Proof nets Linear logic Linear algebra

• A logic about ressources (and much more. . .):

A⇒ B = !A(B

Regular implication

5

Linear Logic

Linear logic. Girard (1987)

• Comes from semantical study of typed λ-calculus (coherent spaces)

Computer science Logic Mathematics
Proof nets Linear logic Linear algebra

• A logic about ressources (and much more. . .):

A⇒ B = !A(B

Regular implication
Linear implication

5

Linear Logic

Linear logic. Girard (1987)

• Comes from semantical study of typed λ-calculus (coherent spaces)

Computer science Logic Mathematics
Proof nets Linear logic Linear algebra

• A logic about ressources (and much more. . .):

A⇒ B = !A(B

Regular implication
Linear implication

Bag of ressources
5

1. Background

Linear Logic

Multiplicative Additive Linear Logic (MALL) :

1. A grammar : A,B := X | X⊥ | A⊗B | A`B | . . .

2. A (involutive) negation : (A`B)⊥ := A⊥ ⊗B⊥ | . . .
3. A set of rules

` A,A⊥
ax

` Γ, A⊥ ` ∆, A⊥
` Γ,∆ cut

` Γ, A,B
` Γ, A`B

` · · ·

Linear Logic :

• Two exponentials connectives : !A and ?A, with (!A)⊥ := ?A
• A set of exponential rules

Γ ` ∆
Γ, !A ` ∆

w Γ, !A, !A ` ∆
Γ, !A ` ∆

c Γ, A ` ∆
Γ, !A ` ∆ d !Γ ` !A

!Γ ` A
p

6

Linear Logic

Multiplicative Additive Linear Logic (MALL) :

1. A grammar : A,B := X | X⊥ | A⊗B | A`B | . . .

2. A (involutive) negation : (A`B)⊥ := A⊥ ⊗B⊥ | . . .
3. A set of rules

` A,A⊥
ax

` Γ, A⊥ ` ∆, A⊥
` Γ,∆ cut

` Γ, A,B
` Γ, A`B

` · · ·

Linear Logic :

• Two exponentials connectives : !A and ?A, with (!A)⊥ := ?A
• A set of exponential rules

Γ ` ∆
Γ, !A ` ∆

w Γ, !A, !A ` ∆
Γ, !A ` ∆

c Γ, A ` ∆
Γ, !A ` ∆ d !Γ ` !A

!Γ ` A
p

6

The smooth semantics

Formulas :

• Each MALL formula is a finite dimentional vector space :
J1K := R JA⊗BK := JAK⊗ JBK JA⊕BK := JAK] JBK . . .

• The exponentials are interpreted by infinite dimensional vector
spaces : J?AK := C∞(JAK′,R) J!AK := C∞(JAK,R)′

• Negation is duality : JA⊥K := JAK′ = L(JAK,R)

Proofs :

• Each proof is a linear map between the interpretation of the
formulas.

• A⇒ B = !A(B is C∞(A,B) ' L(!A,B)

• The dereliction states that L(A,B) ⊆ C∞(A,B) : it forgets the
linearity.

7

The smooth semantics

Formulas :

• Each MALL formula is a finite dimentional vector space :
J1K := R JA⊗BK := JAK⊗ JBK JA⊕BK := JAK] JBK . . .

• The exponentials are interpreted by infinite dimensional vector
spaces : J?AK := C∞(JAK′,R) J!AK := C∞(JAK,R)′

• Negation is duality : JA⊥K := JAK′ = L(JAK,R)

Proofs :

• Each proof is a linear map between the interpretation of the
formulas.

• A⇒ B = !A(B is C∞(A,B) ' L(!A,B)

• The dereliction states that L(A,B) ⊆ C∞(A,B) : it forgets the
linearity.

7

Differential Linear Logic

Differential interaction nets. Ehrhard, Regnier (2006)

f ∈ C∞(R,R)

d(f)(0)

Differential linear logic is about linear extraction of a proof

` : A ` B
` : !A ` B d

f : !A ` B
D0(f) : A ` B d̄

8

Differential Linear Logic

• Other rules has to be added

` Γ
` Γ, ?A w ` Γ, ?A, ?A

` Γ, ?A c ` Γ, A
` Γ, ?A d

` ?Γ, A
` ?Γ, !A

p

` !A w̄
` Γ, !A ` ∆, !A
` Γ,∆, !A c̄

` Γ, A
` Γ, !A d̄

• They have nice mathematical interpretation

d̄/p is the chain rule . . .

9

Differential Linear Logic

• Other rules has to be added

` Γ
` Γ, ?A w ` Γ, ?A, ?A

` Γ, ?A c ` Γ, A
` Γ, ?A d

` ?Γ, A
` ?Γ, !A

p

` !A w̄
` Γ, !A ` ∆, !A
` Γ,∆, !A c̄

` Γ, A
` Γ, !A d̄

• They have nice mathematical interpretation

d̄/p is the chain rule . . .

9

From D0 to differential equations

` : A ` B
` : !A ` B d

Forgets linearity

f : !A ` B
D0(f) : A ` B d̄

Applies D0

Solution of D0(_) = ` ?
That is ` since D0(`) = `

` : A ` B
f : !A ` B d

Forgets linearity
Solves D

f : !A ` B
D(f) : A ` B d̄

Apply D0

Applies D

10

From D0 to differential equations

` : A ` B
` : !A ` B d

Forgets linearity

f : !A ` B
D0(f) : A ` B d̄

Applies D0

Solution of D0(_) = ` ?
That is ` since D0(`) = `

` : A ` B
f : !A ` B d

Forgets linearity
Solves D

f : !A ` B
D(f) : A ` B d̄

Apply D0

Applies D

10

From D0 to differential equations

` : A ` B
` : !A ` B d

Forgets linearity

f : !A ` B
D0(f) : A ` B d̄

Applies D0

Solution of D0(_) = ` ?
That is ` since D0(`) = `

` : A ` B
f : !A ` B d

Forgets linearity
Solves D

f : !A ` B
D(f) : A ` B d̄

Apply D0

Applies D

10

From D0 to differential equations

` : A ` B
` : !A ` B d

Forgets linearity

f : !A ` B
D0(f) : A ` B d̄

Applies D0

Solution of D0(_) = ` ?
That is ` since D0(`) = `

` : A ` B
f : !A ` B d

Forgets linearity
Solves D

f : !A ` B
D(f) : A ` B d̄

Apply D0

Applies D

Solution? (LPDO)
10

From D0 to differential equations

` : A ` B
` : !A ` B d

Forgets linearity

f : !A ` B
D0(f) : A ` B d̄

Applies D0

Solution of D0(_) = ` ?
That is ` since D0(`) = `

` : A ` B
f : !A ` B d

Forgets linearity
Solves D

f : !A ` B
D(f) : A ` B d̄

Apply D0

Applies D

Solution? (LPDO) Type?
10

Linear Partial Differential Operators

Definition
A LPDOcc is a linear operator defined as

D =
∑
α∈Nn

aα
∂|α|

∂xα1
1 . . . ∂xαn

n
(aα ∈ R)

• A LPDO acts on smooth maps, or distributions.
• A fundamental solution is a distribution ΦD s.t. D(ΦD) = δ0

Examples of LPDOcc: D : f 7→ ∂
∂x1

f + 3 ∂2

∂x1∂x3
f , or the heat equation.

Theorem (Malgrange-Ehrenpreis, 50’s)
Each LPDOcc D has a unique fundamental solution ΦD.

11

DiLL indexed by a LPDOcc

A logical account for LPDE. Kerjean (2018)

• Two new exponentials connectives : !DA and ?DA
• Their interpretations in the smooth semantics :

J?DAK := D(C∞(JAK′,R)) J!DAK := (D(C∞(JAK,R)))′

which respect duality and reflexivity.
• We have !D0A ' A

The exponential rules of D-DiLL

` Γ
` Γ, ?DA

wD
` Γ, ?A, ?DA
` Γ, ?DA

cD
` Γ, ?DA
` Γ, ?A dD

` !DA
w̄D

` Γ, !A ` ∆, !DA
` Γ,∆, !DA

c̄D
` Γ, !DA
` Γ, !A d̄D

12

DiLL indexed by a LPDOcc

Did we solve our issues?

` : A ` B
f : !A ` B d

Solves D

f : !A ` B
D(f) : A ` B d̄

Applies D

Solution? Type?

A graded version?

• Our exponential is indexed, can we connect with other frameworks?
• Is there an interaction?
• LPDOcc are well-behaved: ΦD1◦D2 = ΦD1 ∗ ΦD2

13

DiLL indexed by a LPDOcc

Did we solve our issues?

f : !DA ` B
f ∗ ΦD : !A ` B d

Solves D

f : !A ` B
D(f) : A ` B d̄

Applies D

Type?

A graded version?

• Our exponential is indexed, can we connect with other frameworks?
• Is there an interaction?
• LPDOcc are well-behaved: ΦD1◦D2 = ΦD1 ∗ ΦD2

13

DiLL indexed by a LPDOcc

Did we solve our issues?

f : !DA ` B
f ∗ ΦD : !A ` B d

Solves D

f : !A ` B
D(f) : !DA ` B d̄

Applies D

A graded version?

• Our exponential is indexed, can we connect with other frameworks?
• Is there an interaction?
• LPDOcc are well-behaved: ΦD1◦D2 = ΦD1 ∗ ΦD2

13

DiLL indexed by a LPDOcc

Did we solve our issues?

f : !DA ` B
f ∗ ΦD : !A ` B d

Solves D

f : !A ` B
D(f) : !DA ` B d̄

Applies D

A graded version?

• Our exponential is indexed, can we connect with other frameworks?
• Is there an interaction?
• LPDOcc are well-behaved: ΦD1◦D2 = ΦD1 ∗ ΦD2

13

Graded linear logic

A core quantitative coeffect calculus. Brunel et. al (2014)

Combining Effects and Coeffects via Grading. Gaboardi et. al (2016)

Exponential rules of BSLL

Γ ` B
Γ, !0A ` B

w
Γ, !xA, !yA ` B
Γ, !x+yA ` B

c Γ, A ` B
Γ, !1A ` B

d

!x1A1, . . . , !xn
An ` B

!x1×yA1, . . . , !xn×yAn ` !yB
p Γ, !xA ` B x ≤ y

Γ, !yA ` B
dI

(S,+, 0,×, 1,≤) is an ordered semiring

• Type system for ressource consumption
• Coeffect analysis

14

Graded linear logic

A core quantitative coeffect calculus. Brunel et. al (2014)

Combining Effects and Coeffects via Grading. Gaboardi et. al (2016)

Exponential rules of BSLL

Γ ` B
Γ, !0A ` B

w
Γ, !xA, !yA ` B
Γ, !x+yA ` B

c Γ, A ` B
Γ, !1A ` B

d

!x1A1, . . . , !xn
An ` B

!x1×yA1, . . . , !xn×yAn ` !yB
p Γ, !xA ` B x ≤ y

Γ, !yA ` B
dI

Additive law

(S,+, 0,×, 1,≤) is an ordered semiring

• Type system for ressource consumption
• Coeffect analysis

14

Graded linear logic

A core quantitative coeffect calculus. Brunel et. al (2014)

Combining Effects and Coeffects via Grading. Gaboardi et. al (2016)

Exponential rules of BSLL

Γ ` B
Γ, !0A ` B

w
Γ, !xA, !yA ` B
Γ, !x+yA ` B

c Γ, A ` B
Γ, !1A ` B

d

!x1A1, . . . , !xn
An ` B

!x1×yA1, . . . , !xn×yAn ` !yB
p Γ, !xA ` B x ≤ y

Γ, !yA ` B
dI

Additive lawMultiplicative law

(S,+, 0,×, 1,≤) is an ordered semiring

• Type system for ressource consumption
• Coeffect analysis

14

Graded linear logic

A core quantitative coeffect calculus. Brunel et. al (2014)

Combining Effects and Coeffects via Grading. Gaboardi et. al (2016)

Exponential rules of BSLL

Γ ` B
Γ, !0A ` B

w
Γ, !xA, !yA ` B
Γ, !x+yA ` B

c Γ, A ` B
Γ, !1A ` B

d

!x1A1, . . . , !xn
An ` B

!x1×yA1, . . . , !xn×yAn ` !yB
p Γ, !xA ` B x ≤ y

Γ, !yA ` B
dI

Additive lawMultiplicative law Order

(S,+, 0,×, 1,≤) is an ordered semiring

• Type system for ressource consumption
• Coeffect analysis

14

Graded linear logic

A core quantitative coeffect calculus. Brunel et. al (2014)

Combining Effects and Coeffects via Grading. Gaboardi et. al (2016)

Exponential rules of BSLL

Γ ` B
Γ, !0A ` B

w
Γ, !xA, !yA ` B
Γ, !x+yA ` B

c Γ, A ` B
Γ, !1A ` B

d

!x1A1, . . . , !xn
An ` B

!x1×yA1, . . . , !xn×yAn ` !yB
p Γ, !xA ` B x ≤ y

Γ, !yA ` B
dI

Additive lawMultiplicative law Order

(S,+, 0,×, 1,≤) is an ordered semiring

• Type system for ressource consumption
• Coeffect analysis

14

Graded linear logic

A core quantitative coeffect calculus. Brunel et. al (2014)

Combining Effects and Coeffects via Grading. Gaboardi et. al (2016)

Exponential rules of BSLL

Γ ` B
Γ, !0A ` B

w
Γ, !xA, !yA ` B
Γ, !x+yA ` B

c Γ, A ` B
Γ, !1A ` B

d

!x1A1, . . . , !xn
An ` B

!x1×yA1, . . . , !xn×yAn ` !yB
p Γ, !xA ` B x ≤ y

Γ, !yA ` B
dI

Additive lawMultiplicative law Order

(S,+, 0,×, 1,≤) is an ordered semiring

• Type system for ressource consumption
• Coeffect analysis

14

2. A graded differential linear
logic

The logic DBSLL

• A syntactical differentiation of BSLL

The exponential rules of DBSLL

` Γ
` Γ, ?0A

w
` Γ, ?xA, ?yA
` Γ, ?x+yA

c ` Γ, ?xA x ≤ y
` Γ, ?yA

dI
` Γ, A
` Γ, ?A d

` !0A
w̄
` Γ, !xA ` ∆, !yA
` Γ,∆, !x+yA

c̄
` Γ, !xA x ≤ y
` Γ, !yA d̄I

` Γ, A
` Γ, !A d̄

• Question: what is the dynamic of this logic?

15

The logic DBSLL

• A syntactical differentiation of BSLL

The exponential rules of DBSLL

` Γ
` Γ, ?0A

w
` Γ, ?xA, ?yA
` Γ, ?x+yA

c ` Γ, ?xA x ≤ y
` Γ, ?yA

dI
` Γ, A
` Γ, ?A d

` !0A
w̄
` Γ, !xA ` ∆, !yA
` Γ,∆, !x+yA

c̄
` Γ, !xA x ≤ y
` Γ, !yA d̄I

` Γ, A
` Γ, !A d̄

• Question: what is the dynamic of this logic?

15

The logic DBSLL

• A syntactical differentiation of BSLL

The exponential rules of DBSLL

` Γ
` Γ, ?0A

w
` Γ, ?xA, ?yA
` Γ, ?x+yA

c ` Γ, ?xA x ≤ y
` Γ, ?yA

dI
` Γ, A
` Γ, ?A d

` !0A
w̄
` Γ, !xA ` ∆, !yA
` Γ,∆, !x+yA

c̄
` Γ, !xA x ≤ y
` Γ, !yA d̄I

` Γ, A
` Γ, !A d̄

• Question: what is the dynamic of this logic?

15

Cut elimination I

• Naive solution: Decorate the one from DiLL

Π1
` Γ, ?xA, ?yA c
` Γ, ?x+yA

w̄I` !x+yA
⊥

cut` Γ
Π1

` Γ, ?xA, ?yA
w̄I` !yA⊥
cut` Γ, ?xA

w̄I` !xA⊥
cut` Γ

16

Cut elimination I

• Naive solution: Decorate the one from DiLL

Π1
` Γ, ?xA, ?yA c
` Γ, ?x+yA

w̄I` !x+yA
⊥

cut` Γ
Π1

` Γ, ?xA, ?yA
w̄I` !yA⊥
cut` Γ, ?xA

w̄I` !xA⊥
cut` Γ

16

Cut elimination I

• Naive solution: Decorate the one from DiLL

Π1
` Γ, ?xA, ?yA c
` Γ, ?x+yA

w̄I` !x+yA
⊥

cut` Γ
Π1

` Γ, ?xA, ?yA
w̄I` !yA⊥
cut` Γ, ?xA

w̄I` !xA⊥
cut` Γ

16

Cut elimination I

• Naive solution: Decorate the one from DiLL

Π1
` Γ, ?xA, ?yA c
` Γ, ?x+yA

w̄I` !x+yA
⊥

cut` Γ

 cut

Π1
` Γ, ?xA, ?yA

w̄I` !yA⊥
cut` Γ, ?xA

w̄I` !xA⊥
cut` Γ

16

Cut elimination I

• Naive solution: Decorate the one from DiLL

Π1
` Γ, ?xA, ?yA c
` Γ, ?x+yA

w̄I` !x+yA
⊥

cut` Γ

 cut

Π1
` Γ, ?xA, ?yA

w̄I` !yA⊥
cut` Γ, ?xA

w̄I` !xA⊥
cut` Γ

16

Cut elimination I

• Naive solution: Decorate the one from DiLL

Π1
` Γ, ?xA, ?yA c
` Γ, ?x+yA

w̄I` !x+yA
⊥

cut` Γ

 cut

Π1
` Γ, ?xA, ?yA

w̄I` !yA⊥
cut` Γ, ?xA

w̄I` !xA⊥
cut` Γ

16

Cut elimination II

• Issue :the contraction/cocontraction case

Π1

` Γ, ?x1A
⊥, ?x2A

⊥
c

` Γ, ?x1+x2A
⊥

Π2

` ∆, !x3A

Π3
` Ξ, !x4A c̄` ∆,Ξ, !x3+x4=x1+x2A

cut` Γ,∆,Ξ

• Solution: Use the additive splitting to decompose and decorate

17

Cut elimination II

• Issue :the contraction/cocontraction case

Π1

` Γ, ?x1A
⊥, ?x2A

⊥
c

` Γ, ?x1+x2A
⊥

Π2

` ∆, !x3A

Π3
` Ξ, !x4A c̄` ∆,Ξ, !x1+x2=x3+x4A

cut` Γ,∆,Ξ

• Solution: Use the additive splitting to decompose and decorate

17

Cut elimination II

• Issue :the contraction/cocontraction case

Π1

` Γ, ?x1A
⊥, ?x2A

⊥
c

` Γ, ?x1+x2A
⊥

Π2

` ∆, !x3A

Π3
` Ξ, !x4A c̄` ∆,Ξ, !x1+x2=x3+x4A

cut` Γ,∆,Ξ

• Solution: Use the additive splitting to decompose and decorate

17

Cut elimination II

• Issue :the contraction/cocontraction case

Π1

` Γ, ?x1A
⊥, ?x2A

⊥
c

` Γ, ?x1+x2A
⊥

Π2

` ∆, !x3A

Π3
` Ξ, !x4A c̄` ∆,Ξ, !x1+x2=x3+x4A

cut` Γ,∆,Ξ

• Solution: Use the additive splitting to decompose and decorate

17

Additive splitting (or refinement monoid): an algebraic notion

Definition
A monoid (M,+, 0) is additive splitting if for each x1, x2, x3, x4 ∈M
such that x1 +x2 = x3 +x4, there are elements x1,3, x1,4, x2,3, x2,4 ∈
M such that

x1 = x1,3 +x1,4 x2 = x2,3 +x2,4 x3 = x1,3 +x2,3 x4 = x1,4 +x2,4

=

x1

x2

x3 x4

x2,3

x1,3

x2,4

x1,4

18

Cut elimination III

• Issue: indexed (co)derelictions do not exist in DiLL
• Solution: (co)derelicitons will go up in the tree (subtyping idea)

Π
` Γ wI` Γ, ?xA dI` Γ, ?x+yA

 dI ,3

Π
` Γ wI` Γ, ?x+yA

Combining these three parts, we get:

Theorem
The logic DBSLL has a cut elimination procedure when S is additive
splitting.

19

Cut elimination III

• Issue: indexed (co)derelictions do not exist in DiLL
• Solution: (co)derelicitons will go up in the tree (subtyping idea)

Π
` Γ wI` Γ, ?xA dI` Γ, ?x+yA

 dI ,3

Π
` Γ wI` Γ, ?x+yA

Combining these three parts, we get:

Theorem
The logic DBSLL has a cut elimination procedure when S is additive
splitting.

19

The monoid of LPDOcc

Let D be the set of LPDOcc.

D ' R[X1, . . . , Xn, . . .](
D =

∑
α∈N

kα
∂|α|

∂xα1
1 . . . xαn

n

)
7→

(
P =

∑
α∈N

kαX
α1
1 . . . Xαn

n

)

Proposition
The set of LPDOcc, endowed with composition, is an additive splitting
commutative monoid.

20

3. From differential operators to
ressources

An indexed differential linear logic

Exponential rules of IDiLL
` Γ wI` Γ, ?DA

` Γ, ?D1A, ?D2A c
` Γ, ?D1◦D2A

` Γ, ?D1A dI` Γ, ?D1◦D2A

w̄I` !DA
` Γ, !D1A ` ∆, !D2A c̄` Γ,∆, !D1◦D2A

` Γ, !D1A d̄I` Γ, !D1◦D2A

From dD to dI : syntax has to change, and semantics as well

J!DAK = D(C∞(JAK,R)′) J?DAK = D−1(C∞(JAK′,R))

21

Our two logics are the same!

• An order on LPDOcc:

D1 ≤ D2 ⇐⇒ ∃D3, D2 = D1 ◦D3

• Dereliction in both logics:

` Γ, ?xA x ≤ y
` Γ, ?yA

dI '
` Γ, ?D1◦D2A

` Γ, ?D1A
dI

22

The smooth semantics for IDiLL

Definition

w :
{
R→ ?idE
1 7→ cst1

w̄ :
{
R→ !idE
1 7→ δ0

c :
{

?D1E ⊗̂ ?D2E → ?D1◦D2E

f ⊗ g 7→ ΦD1◦D2 ∗ (D1(f).D2(g))

c̄ :
{

!D1E ⊗̂ !D2E → !D1◦D2E

ψ ⊗ φ 7→ ψ ∗ φ

dI :
{

?D1E → ?D1◦D2E

f 7→ ΦD2 ∗ f
d̄I :

{
!D1E → !D1◦D2E

ψ 7→ ψ ◦D2

Theorem
The smooth semantics is compatible with the cut-elimination proce-
dure.

23

An example for the compatibility

• The syntax of the interaction between indexed dereliction and
weakening:

Π
` Γ wI` Γ, ?D1A dI` Γ, ?D1◦D2A

 dI ,3

Π
` Γ wI` Γ, ?D1◦D2A

• Its semantical interpretation:

Π
` wI` ΦD1 ∗ cst1 dI` ΦD2 ∗ ΦD1 ∗ cst1

 dI ,3

Π
` wI` ΦD1◦D2 ∗ cst1

• Well known result: ΦD1 ∗ ΦD2 = ΦD1◦D2

24

Conclusion

Take away:

• Two approaches which are the same
• A semantics with correct intuition:

• Dereliction solves the equation
• Codereliction apply it

• A syntax closer to the graded idea
• A calculus which uses various ideas

25

Future works

The promotion rule:

• What would be the product rule of the semiring?
• How can we extend our work on higher-order? Spaces of

functions/distributions are infinite-dimensional

Other questions:

• What about the categorical semantics?
• Can we extend this to other operators? D-finite/holonomic

functions?

QUESTIONS ?

26

	Background
	A graded differential linear logic
	From differential operators to ressources

