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Introduction

We define and study various notions of morphisms of implicative algebras, in order to find a
categorical structure for these algebras.

The notion of implicative algebra is an algebraic structure which underlies two different
methods for finding new logical models, forcing and realizability, in both intuitionistic and clas-
sical logic. From this structure, it is possible to define a tripos which factors every triposes
constructions that exist so far.

The first three sections give the definitions and explanations that we will need to define
morphisms of implicative algebras, this is the state of the art of this report. In Section 1, we
introduce the notions of forcing and realizability, with the algebraic structures related. Section 2
is about the notion of implicative algebra. We define it and give some important results about it.
In Section 3, we give intuitions behind the notion of tripos and we make the construction of the
implicative tripos. The last three sections are about morphisms in particular, this is where new
results are presented. In Section 4 we define the most natural and naive kind of morphism and
give the main results on this notion. Section 5 is about applicative morphisms which generalize
naive morphisms. Finally, in Section 6, we give some ideas on other possible definitions, which
are directions for future reseach on this topic.

1 Logic, Forcing and Realizability

The mathematics consist in finding results called theorems and proving them in a precise
framework. An essential aspect of this study is that mathematic are formal : a theorem or a
proof can not be approximate. This formalization goes through logic.

1.1. Formalisation for Logic. A logic is defined with a language corresponding to the formu-
las, the axioms which is a set of formulas and a deductive system which is a set of syntaxical
rules allowing to obtain the valid theorems of a theory.

In logic, an important distinction is made between intuitionistic and classical logic. This
distinction allows to know which proofs are constructive and which are not, because deduction
rules in an intuitionistic system are made in order to have constructive proofs. For example, the
excluded middle is not a principle allowed in intuitionistic logic because it is not constructive.

The point of view on logic presented so far is only syntactical. But an important point in
logic is the notion of models, which is a semantic interpretation of a logic. A model can be seen
as a world where the axioms and the rules are satisfied. Then, an important part of research in
logic is to find new logical models.

1.2. Forcing. Historically, forcing was introduced by Cohen in 1963 [Coh63| to prove the inde-
pendence of the continuum hypothesis with regard to the ZFC theory. Forcing can be seen as
a technique to transform a model into an other. To formalize these models, two definitions are
important.

Definition 1.1. A lattice (£, <) is a partially ordered set such that each pair a,b € £ has a
meet a A b and a join a V b. A lattice is bounded when there is two elements T, 1 € £ such that
foralla € £, 1L <a < T. When each subset A C £ has a meet and a join, L is said complete.
An Heyting algebra (H,<) is a bounded lattice such that for all a,b € H there is a greatest
element « € H such that a Az < b. We denote x = a — b. If H is a complete lattice, it is a
complete Heyting algebra.

Definition 1.2. A boolean algebra is a quadruple (B, <, T, L) such that
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1. (B, <) is a bounded lattice where T is the upper bound and L is the lower bound.

2. For all a,b,c € B,
aV(bAec)=(aVb)A(aVc) aN(bVe)=(aNb)V(aAec).

3. For all a € B there is —a € B such that

aV-a="T alN—-a=_1

When (B, <) is a complete lattice, B is a complete boolean algebra.

When we use the forcing with an intuitionistic theory, this technique gives a complete Heyting
algebra. Each formula is interpreted by an element of this algebra. For models of a classical
theory, this is a complete boolean algebra instead of a complete Heyting algebra.

1.3. Realizability. Introducted by Kleene in 1945 [Kle45], realizability consists of an interpre-
tation of each formula by the set of programs realizing this formula. This corresponds, using the
Curry-Howard correspondence, to interpret a formula with the set of proofs of this formula.

In intuitionistic realizability, we get an algebra of programs which induces a model, for
example a partial combinatory algebra (the definition is not given here).

The Curry-Howard correspondence establishes a link between logic and computation. An
essential tool in the study of computation is the so-called A-calculus. It is a minimalistic pro-
gramming language, with a syntax given by

tu:=z|Ax.t|tu

where z belongs to a set of variables. A A-term corresponds to a program and there is a syntactic
rules that we can apply to a program, the S-reduction. The reduction of a term corresponds to
the execution of the program and it is defined with the rewrinting rule (Az.u)v —3 u[x := v], the
usual substitution in A-calculus. For example, (Az.x +1)4 —3 4+ 1. The strong fact about A-
calculus is that, even if this language is very simple, it is as expressive as any other programming
language : it is Turing-complete.

Classical realizability is a great example of the link between logic and computing and the
importance of A-calculus. The beginning of this classical realizability comes from the mid-
90’s, fifty years after the intuitionistic one. This method created by Krivine [Kri09] is based
on a particular A-calculus, but the intuitions are the same in both intuitionistic and classical
realizability. The structure of the induced model is however different, because it is based on this
specific A-calculus. This structure is called an abstract Krivine structure and has been defined
by Streicher [Str13]. Thanks to this new method, Krivine has discovered new models of ZF with
some other axioms like DC the axiom of dependent choice.

2 Implicative Algebras

Implicative algebras are the main object of this report. Defined by Miquel [Miq20], it is
an algebraic structure underlying forcing and realizability. As explained by Van Oosten [VO02],
Scott was the first to make this link, but the central point here is that we get a unique and simple
structure where we used to have four different structures (complete Heying algebra, complete
boolean algebra, partial combinatory algebra and abstract Krivine structure), so one unique way
to represent truth values.
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2.1. Intuitions. An implicative structure defined in the next subsection is an algebraic structure
equipped with a partial order. The main idea of this definition is that both formulas and realizers
are elements of the same set. Moreover, the realizers can also be seen as truth values, which is
exactly what gives to implicative algebras the power to underlie both forcing and realizability.

Hence, the partial order of the structure can be understood in different ways depending on
how the elements are considered. For two elements a and b, if they are both considered as truth
values, if a < b then the order corresponds to the usual order of subtyping. But if they both
are seen as realizers, it is a relation on the power of the realizer. This point of view still has a
meaning in terms of forcing, and can be understood as the strength of a condition. Finally, if a
is seen as a program and b as a type, this order means that a has type b.

This structure is therefore able to gather the intuitions from both forcing and realizability by
using the same set for each kind of object studied, thanks to the Curry-Howard correspondance.
The notion of truth will then be given by a subset of the structure containing the true formulas.

2.2. Implicative Structures.

Definition 2.1. An implicative structure 7 is a complete meet-semilattice (<, <) equipped
with a binary operation (a,b) — a — b such that

1. For a,ad’, b,V € o,

if d < aand b <V then (a —b) < (a/ = V)

2. For a € o and B C &/,

a— Ab: A(a—ﬂ))

beB beB

Complete Boolean algebras, complete Heyting algebras, total combinatory algebras and ab-
stract Krivine structures can be translated as implicative structures [Miq20|. This result illustrate
how implicative structures underlie forcing and realizability and their algebraization.

2.3. Interpreting A-terms. In applicative structures, we want to be able to interpret both
proofs and programs. Then, we shall now define A\-terms and their interpretation.
Firstly, we need to intrepret application and abstraction in an implicative structure.

Definition 2.2. The application and the abstraction are defined such that for a,b € & and
f:9 — o,
ab= \{ce o :a<(b—c)} Af= A\ (a— f(a))

acd

It is now possible to define A-terms and how to interpret them.
Definition 2.3. In an applicative structure, A-terms are defined by :
tu:=x|al|xt|tu

with z a variable and @ € 7. Then, each closed A-term ¢ is interpreted by an element t7 € o
defined by induction with

a? =a (for a € o)
(tu),;z{ — té?/u.Q{
()\m.t)d = Xa+— (t[a/x]d)

where t[a/x] is the usual substitution in A-calculus.

!This means that each subset B C &7 has a greatest lower bound noted A B
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2.3.1. Adequacy. In an implicative algebra, it is possible to define conjuction, disjunction and
usual quantifiers following Girard’s work |Gir72] [GTL89] :

axb:A((a—W—W)—m) Vielai:Aai
2 el
a+b:A((a—>c)—>(b—>c)—>c) Hielai:A (A(ai%c)—)C).
ceds ces/ \iel

We have an adequacy result in [Miq20] for the typing rules coming from these operations : they
are valid in any implicative structure.
Another important result on typing is about the following combinators

I=)\zx K= \zy.x
B = \xyz.2(yz) W = \zy.xyy
C = \ryz.z2y S = \xyz.xz(yz)

They have well-known types and these types corresponds to the value of there interpretation in
any implicative structure [Miq20] :

I'W:A(a%a) K7 = A(a—)b—)a)
aco a,bed

BY = A ((a—=b) = (c—a) —>c—0D) W = A((a—)a—)b)—)a—)b)
a,b,ceqf a,bes/

cY = A ((a—=b—=c)—b—a—c) S7 = A ((a—=b—c)— (a—=b)—>a—c)
a,b,ceof a,b,ceof

In order to compare intuitonistic and classical logic, we define

? = bAd(((a —b) = a) = a)

following Pierce’s law.

2.4. Implicative Algebras. Implicative structures are now equipped with A-calculus but an
essential element is still missing : the translation of the notion on truth.

Definition 2.4. A separator of an implicative structure 7 is a subset S C & such that for all
a,beof

1. faeSand a<bthenbe S
2. K = (\zy.x2)? € S and S = (\zyz.xz(yz))? € S
3. If (a—b)eSandaec Sthenbe S

An implicative structure equipped with a separator is an implicative algebra and if 1 ¢ S the
implicative algebra is called consistent. When «? € S, the algebra is said classical.

This definition matches with the A-calculus defined previously :
Proposition 2.5. For each closed term t, t7 € S.

Some particular separators will be useful in what follows.
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Definition 2.6. Let (<7, <, —) be an implicative structure. We define SY(&/), the intuitionistic

core of o/ as the smallest separator of o7, and S% () the classical core of o as the smallest

separator containing a? .

As for implicative strutures, complete Boolean algebras, complete Heyting algebras, total
combinatory algebras and abstract Krivine structures can be traduced as implicative algebras.
In addition, these algebras are consistent (in the sense of Definition 2.4).

3 The Implicative Tripos

3.1. Triposes. Triposes were introduced by Hyland, Johnstone and Pitts?® [HJP80] in 1980 in
order to create categorical models for higher-order logic. Here we will see that it is possible to
create a tripos from an implicative algebra but before that we have to introduce the notion of
category.

3.1.1. Category Theory. We give here the definitions that will be used later.

Definition 3.1. A category C is given by a class of objects and a class of morphisms C(a, b) for
all a,b € C such that :

e Morphisms can be composed associatively with an operator noted o : for each f €

C(a,b), g € C(b,c), we have go f € C(a,c).
e For each a € C there is a morphism id, € C(a,a) such that :

Vf € Cla,b), foidy =idyo f=f.

Some categories will be useful for what follows :

Set The category where the objects are the sets and the morphisms are the functions between
sets

Pos The category of partially ordered sets where morphisms are monotonic functions
HA The category of Heyting algebras with Heyting algebras morphisms

Definition 3.2. An Heying algebras morphism is a map f : H — H' such that H and H' are
Heyting algebras and

1. for all a,b € H,
fland)=fla)Af(b)  flavd)=fla)Vf(b)  fla—0b)=fla)— f(b)

2. f(T)=T and f(L) = L.

Definition 3.3. Let C be a category. The dual category C° is the category with the same
objects where morphisms are reversed : C%(a,b) = C(b,a) for each a,b € C. The composition
is also reversed : f ocer g = goc f.

It is possible to define maps between categories.

2To be more precise, they introduced Set-based triposes, which are one kind of triposes, but they are the only
one that we will study here.



8 The Implicative Tripos

Definition 3.4. A functor F between two categories C and D is a correspondence mapping
each object a of C to an object F(a) of D and each morphism f € C(a,b) to a morphism
F(f) € D(F(a), F(b)) such that :

e for each object a of C, F(id,) = idp,)
e for each morphisms f € C(a,b) and g € C(b,c), F(go f) = F(g)o F(f).
The Cartesian product between sets can be described and generalized in category theory :

Definition 3.5. For a category C and two objects a,b € C, a product of a and b is a triple
(a x b,m1,m) where a x b € C,m € C(a x b,a) and m € C(a x b,b) such that for each
ceC, feClca),g € C(cb) there is a unique morphism h € C(c,a x b) such that

SN
aTaXbTb

commutes (i.e each pair of path in this diagram with the same points at the beginning and at
the end is equal, using the composition of morphisms). A category C is Cartesian when each
pair of object has a product and C contains a terminal object (an object ¢ is said terminal if for
each object a of C there is a unique morphism in C(a,t)).

If f,g € C(a,b), eq € C(e,a) is an equalizer if for each m € C(o,e) there is a unique u € o,e
such that

f
?;b

u

eq
— Qa
s

commutes. When a Cartesian category has all the equalizers, it is said to be finitely complete?.
If for each index set I and each family (z;);e; of objects of C there is x an object of C and
family of morphisms (7;);er such that for each ¢ € I, m; € C(z,x;) such that for each y object
and (f;)ier family of morphisms from y to x; there is a unique f € C(y,x) such that for each

1€1
xT
2

Y — T4
1

S —

commutes, the category C has all small products.

3.1.2. Definition. The formal definition of triposes will not be presented here, because it is a very
technical definition with a lot of categorical notions and it is not useful for our work. However,
we shall give some intuitive ideas about triposes.

The triposes considered here are functors from the category Set to the category HA which
fullfil three conditions. The objects of Set®? represent the types, and the functor associates each
type I to the set of predicates over I (which is represented by an element of HA). The order
between two elements of an Heyting algebra represents the logical implication and the equality
represents the equivalence. The tripos has to be a functor because with the commutativity

3This is not the usual definition, but the usual one needs a lot more categorical definitions that we would only
need to define a complete category.
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properties of functors it is possible to make substitutions in the formulas. The first two conditions
in the definition of a tripos allow us to use existential and universal quantifications and ensure
that substitutions commute with these quantifiers. The last condition expresses that we have a
particular type (which is here an element of Set“?) representing the type of propositions and a
particular predicate over this type asserting the truth of a proposition.

3.2. The Implicative Tripos. Triposes can be constructed from complete Heyting or Boolean
algebras, from partial combinatory algebras and from abstract Krivine structures. It means that
from both (intuitionistic or classical) forcing and realizability there is a construction of a tripos.
But it is possible to construct a tripos from implicative algebras, which factors each construction
from forcing and realizability.

3.2.1. Construction. The first step of this construction is to define the product between im-
plicative structures. For an index set I, let (% );c; = (4%, <i, —>i)ier be a familly of implicative
structure indexed by I. With & = [[,c; %%, we equip &/ with an order and an implication
defined by

(a;)i < (bi); & Viel, a; <Xi b;
(ai)i = (bi)i = (@i —4 by)i.

The triple (&7, <, —) is an applicative structure.
For each implicative structure (&, <,—) any separator induces a preorder relation called
relation of entailment defined by

atsbs (a—b)eS

Now, let (&7, <, —,S) be an implicative algebra. For each index set I, the implicative struc-
ture @1 = [Lic; # is defined following the product construction. It is possible to define the
uniform power separator for each index set I by

S[I={(a;) e ! :35€ S, Viel, s<a;}

For each I, this set is a separator of &7! (so (&1, S[I]) is an implicative algebra).

The last definition that we need for the construction of the tripos is the Heyting algebra
induced by the relation of entailement. Let (<7, <, —, S) be an implicative algebra. This relation
induces an equivalence relation :

adsb< (a—b),(b—a)es

Hence, it is possible to quotient .2 by this relation g, we obtain a set </ /S. Writing [a] € &7 /S
the equivalence class of a € 7, we define the order

[a] <s [b] < atgb.
Let H = (&7 /S,<g), defining for all a,b € o/ the operations
[a] =9 [b] = [a — D] [a] A [b] = [a x b] [a] V3 [b] = [a + b]

and the elements
Ty=[T]=S5 Ly =[1],

‘H is a Heyting algebra.



10 Naive Morphisms

Finally, let &/ be an implicative algebra. For each set I we write PI = «/!/S[I]. For
f e Set?(I,J) (f:J— Iisafunction), Pf is defined such that for each (a;)icr, Pf([(a:)ic1]) =
[(af(j))jes] and Pf € HA(PI,PJ). The map P : Set®” — HA is a functor and this functor is a
tripos [Miq20].

A strong result proved by Miquel is that each tripos is isomorphic to an implicative tripos.
This result illustrates that this construction factors every existing tripos constructions.

4 Naive Morphisms

After having recalled the basics of the theory of implicative algebras, we can now address the
central topic of this internship, namely: the definition of a category of implicative algebras. In
order to define such a category where objects are implicative algebras, the main point is to find
a good definition for morphisms between implicative algebras.

By good definition we mean two things. First, the most important, the definition needs to
make sense from a logical point of view. That is : a morphism between two implicative algebras
& and % should preserve some logical invariants, typically by commuting with conjunction, and
possibly with other connectives. The second feature that we want for a good definition is that
the corresponding category has properties which seem important. For exemple, the product of
implicative algebras is an implicative algebra, hence the category should be Cartesian.

For these reasons, the first definition to consider is the most naive one, because it is the
most natural : the definition where the considered map commutes with the two fundamental
operations of implicative algebras: the implication, and arbitrary meets.

4.1. Definition.

Definition 4.1. For (&7, — ./, S./) and (B, — 4, S%) two implicative algebras, amap ¢ : & — £
is called a naive morphism if it fulfills

1. For each P C o7, o( \ P) = \ #(P).
2. For each a,b € o, p(a =4 b) = p(a) =z ¢(b).
3. p(Sa) C S

Note that the first condition 1. when P = () corresponds to ¢(T) = T.
The category where objects are implicative algebras and the morphisms are naive morphisms
is denoted by IAn

Remark 4.2. From this definition it is possible to define naive morphisms for implicative struc-
tures, saying that a map is such a morphism if and only if it fullfils axioms 1. and 2. of Definition
4.1. Hence, it would be possible to study the category ISn of implicative structures with naive
morphisms.

4.2. Logical and Categorical Results. Here, we only give intuitions and some results without
proofs on naive morphisms, because this notion is not the center of this work. It is the most
natural idea but it seems that the notion of applicative morphisms given in Section 5 is better.

First, the following proposition gives which logical results can be given from naive morphisms.

Proposition 4.3. Let &/ and % be two implicative structures and ¢ : o/ — 9B be a naive
morphism *. We get the following results :

“Here we use Remark 4.2 : ¢ only fullfils axioms 1. and 2. from Definition 4.1.
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1. for each a,b € o7, p(ab) = p(a)p(b)
2. for each closed term t, o(t7) = t7
3. if Soy and Sy are the intuitionistic (resp. classical) cores of &7 and B, p(Sz) C S4.

In terms of realizability, naive morphisms are convincing but in order to consider this defini-
tion as a good one, we would like to have some categorical results about it.

Proposition 4.4. The category IAn is Cartesian and the category ISn is complete.

This proposition is, as explained before, essential on an intuitive point of view. To prove it?,
we need the following lemma.

Lemma 4.5. For an indez set I and a family of implicative algebras (<%);cr where for eachi € I
the separator of <7 is S;, S = H S; is a separator for the implicative structure of = H Yo7

icl icl
Proof.

o If (a;) € S and (b;) € o such that for each i € I, a; < b;, using the axiom 1. of the
separator, each b; € S; : (b;) € S.

e Using the Proposition 4.3 from [Miq20], K¢ = (K“); and S = (S%),. Hence we have
(with axiom 2. of the separator) K<, 8% ¢ S.

e If (a;) € S and (b;) € &7 such that for each i € I, a; — b; € S;, for each i € I, b; € S; so
(bz) es.

However, the definition of the following section seems better than this one : we give a
characterization in terms of tripos that may not be possible with naive morphisms. Moreover, in
a more intuitive point of view, this definition may be too restrictive and some important maps,
like transformations between logic or lambda calculus, could not be naive morphisms.

5 Applicative Morphisms

Naive morphisms defined in Section 4 fullfil important logical properties. The results proved
in this section will give a justification to this point : here, we will define the notion of applicative
morphism which is a generalization of the notion of naive morphisms.

The Definition 5.1 of applicative morphisms seems, at least at first sight, very technical and
it is hard to understand the ideas behind. That is why it is important to explain where this
definition comes from and what is hidden behind.

5.1. Origins. The notion of applicative morphism comes from [vOZ16]. In this paper, van
Oosten and Zou link different kind of realizability using some strutures like ordered partial
combinatory algebras (OPCA) introduced by Hofstra [Hof06]. The Definition 1.12 in [vOZ16] is
a definition of an applicative morphism between two filtered opcas. The important point here
is that filtered opcas and implicative algebras are very similar. Hence, it is easy to transpose
applicative morphisms to implicative algebras. This work has been made by Ferrer and Malherbe
[FM17] in order to find an adjunction between AKS and implicative algebras.

5Here we prove this lemma because it will be useful later, but as explained before the proof of the proposition
will not be given.
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However, Miquel found an issue in the Proposition 1.13 of [vOZ16]. Then, the definition
of applicative morphisms has to be slightly modified in order to get the property of commuta-
tion with finite meets in the induced Heyting algebra (here we only consider the definition for
implicative algebras, but it is easy to give one for filtered opcas).

5.2. Définition and Fundamental Results.

Definition 5.1. A map ¢ : &/ — A is an applicative morphism when it fulfills
L. ¢(Sw) C Sz
2. There is r € Sz such that for all a,a’ € &7, rp(a’)p(a) X p(d'a).
3. There is u € Sy such that for all a,a’ € &7, if a < @ then up(a) < p(a’).

Remark 5.2. This definition is a correction of Definition 3.1 of [FM17] using the correction of
Proposition 1.13 of [vOZ16].
These conditions 1. and 2. are equivalent to

1. There is r € Sg such that for all a,d’ € &, r < p(a') = p(a) = p(da).

¥
2. There is u € Sy such that for all a,a’ € &, if a < a’ then u 5 ¢(a) — (d’).
In order to use this definition, there is a useful analogy with modal logic : the map ¢ can be

seen as the [J ("necessity") of modal logic, and the two rules (V) the necessitation rule and (K)
the distribution axiom

FA

@(N) FO(A= B) = (0A=0B) (K)

correspond respectively to the axiom 1. and the axiom 2. of the Definition 5.1 because, using
the entailement preorder, conditions 1. and 2. can be understood by

1. for all a € &7, Fg_, a implies g, ¢(a)
2. for all a,d’ € &, p(a — d') ks, ¢la) = (d).

The proof of the next proposition uses this analogy.

An important result in modal logic is that rules (N) and (K) imply some commutation
properties with usual operators. Hence, following the previous analogy, we get a similar result
on applicative morphisms.

Proposition 5.3. For each applicative morphism ¢ : of — B, there are :
foldy,unfoldy,fold;,unfoldy, foldt,unfoldr,fold; € Sy
such that for all ai,as € o, for all index set I and for all (a;)ic; € 7

ai) x p(az) — (a1 X ag)
a1 X az) = p(a1) x p(az)
a1) + p(az) = p(a1 + az)
Vierai) — Viere(aq)

Before giving the proof of this result, we introduce a lemma where the terms used in the
proof are characterised.
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Lemma 5.4. There are terms inl, inr, split, projl, projr,pair such that for each implicative

algebra o
in1?, inr?, split?, proj 17, proj r? pair? € §

and for each ai,as,a € & :

in l”<a1—>a1+a2 pI‘OJl <a] Xag —ay
M<a2—>a1+a2 projr‘ < a1 Xag — ag
caseQ/ <a;+ay— (a1 —a) = (a2 —a) —>a pair"zf < a1 = azx — a1 X as
Proof. Let
in1? = Aa\z)\y.za projl? = Az. z(Ayz.y)
inr? = Aadz\y.ya projr? = Az.x(\yz.2)
case” = Azab.zab paird = Aabx.zab

Then, all these elements are in S and by adequacy of typing rules, we get the wanted in-
equalities. u

Proof of Proposition 5.3. Let ¢ : &/ — % be an applicative morphism.

e foldy : First, for a; and as in &7 we have

pair? < a; — as — a1 X as (by adequacy of typing)

up(pair?) < elar — ag — a1 X ag)
r(up(pair?))p(a1) < (a2 — a1 X az)
r(r(up(pair?))p(ar)) < ¢laz) = @lar x a2)
Now, for z < ¢(ay), by monotonicity of the application,
7V < r(up(pair?)p(ar)
“p(ar))

r(up(pair
r(r(ugp(palr )z) < r(r(up(pair

so using the previous inequality
r(r(up(pair”)z) < p(az) — (a1 x az)
and by adequacy of the rule of introduction of the —
()\a:.r(r(unp(paird)x))ﬁ < p(ar) = p(az) — p(a X ag).

Let t = (Az.r(r(up(pair®)z))? for the sake of clarity. Then, using projl and projr we
get, by adequacy :

()\:L‘.t(projlx)(projrx))‘d < pla1) X plaz) — ¢(a1 X ag)

The following points are very similar to the first one, they are proved in Appendix A. ]
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5.3. Action on the Induced Structures.

5.3.1. Heyting Algebras. For two implicative algebras o/ and £, let H,y = &7/ /S,y and Hy =
PB/Sxz be the Heyting algebra induced by (7, /) and (#,F4). The two canonical surjections
associated with these Heyting algebras are denoted by 7y : &/ — Hy and g : B — Hap.
Hence, each map ¢ : & — £ factors into a map ¢ such that

o —C s B

mr | |

commutes because axiom 1. of Definition 5.1 ensure that if two elements of &7 are equivalent
(for 4F5_,), their images are equivalent (for 4Fg,). The map ¢ is not a morphism of Heyting
algebra in general but we can give a characterization of this map using the notion of morphism
of bounded meet-semilattices

Definition 5.5. A map ¢ : £ — L' where £ and L' are bounded meet-semilattices is a morphism
of bounded meet-semilattices if

e p(T)=T
o forall x,y € L, p(x Ny) = () A p(y).

Proposition 5.6. A map ¢ : o — B factors into a morphism of bounded meet-semilattices @
if and only if the following conditions are satisfied

(1) ©(Ser) € ©(S2)
(ii) for all a,a’ € o, (p(a — a') — ¢(a) = p(d’)) € Sxz.

Remark 5.7. Here, the condition (i7) is weaker than the axiom 2. from Definition 5.1, because

this condition is not uniform. Condition (zz) implies also a non-uniform version of axiom 3. of

Definition 5.1. For a,a’ € & such that a < @/, by (ii) there is r! ,, € S such that 7/ , < p(a —
a') = p(a) = ¢(a’), so with u, o = ra,a,cp(a —a') € Syg, we get Ugr < p(a) = ¢(a )

To prove this result we first prove a general lemma on Heyting algebras.

Lemma 5.8. Let H and H' be two Heyting algebras and f : H — H' a map such that f(Ty) =
Ty . Then the two conditions

1. Forallz,y € H, f(x —y) < f(x) = f(y)
2. Forallz,y € H, f(xANy) = f(x)A f(y)

are equivalent, and if f fullfils one of these conditions, f is monotonic.

Proof. For two Heyting algebras H and H' and f : H — H' such that f(Tx) = Ty,

e (1) = (2) : Let z,y € H. First, let us show that f is monotonic : for z,y € H such that
x <y, we have x — y = T4 so

T =f(Tu)=flx—=y) < flz) = fly) < Tw
Then, f(z) — f(y) = T3¢ which implies that f(z) < f(y) : f is monotonic.

By monotonicity, f(z Ay) < f(x) and f(z Ay) < f(y) so f(z Ay) < F(@) A f(y). The
reverse inequality uses the fact x — (x A y) > y because it gives

F@)Nfy) = fle) A fle=any) < fl@)A(f(x) = flzny) < fleiy)
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e (2) = (1) : Let x,y € H. We notice the equality (**) x A (z — y) = = Ay because
zAN(x—=y) <z, zA(x—y) <yandif z < xAythen zAz < ysoz<x— y by definition
of x —ysoz<xA(x—y). We deduce the inequality:

f@)A flxz—y) flan(z—y) = flxrhy) = fl@)Afly) < fy)

by (2) by (%) by (2)

which corresponds exactly with (1).

We can now prove the wanted result.
Proof of Proposition 5.6. This technical proof is given in Appendix A. [
Then, we can deduce an obvious corollary :

Corollary 5.9. If p : & — A is an applicative morphism, then ¢ factors into a morphism of
bounded meet-semilattices @.

5.3.2. Triposes. Here, recalling the notations from Subsection 3.2, for two implicative algebras
o/ and A, for each index set I, PI = o/1/S/[I] and QI = %! /Sy[I]. The maps 7y : &/ — PI
and wr : 1 — QI are the canonical surjections. Here, most of the maps that we will use are
monotonic but in general they are not morphisms of Heyting algebras. Then, P and Q are here
considered as functors whose destination is in Pos rather that in HA.

For a map ¢ : & — % and an index set I, the map ¢! : &' — 2! is defined such that for

all (ai)ier € &7, 0" ((ai)ier) = (0(as))ier-
Now, we can give a full characterization in terms of triposes of the notion of applicative
morphism.

Theorem 1. A map ¢ : & — P is an applicative morphism if and only if for each index set I,
@' factors through nr and wr into a morphism of bounded meet-semilattices (.

Proof. Let ¢ : of — % be a map.

e If ¢ is an applicative morphism, and I is an index set, o’ : &1 — %! is also an applicative
morphism because :

1. For (ai)ier € Sw[I] let s € Sy such that Vi € I, s < a;, which implies that ue(s) <
¢(a;) for all i € I, and up(s) € Sy because u, p(s) € Sz so p!((a;)) € Sx[I].

2. With v/ = (r);e; € Sx|I], for (a;), (a}) € o7! and for each i € I we have :
< plai = a;) = p(ai) = o(a;)
and
(plai = ai) = ¢(a;) = (a))ier = ¢ ((a)ier = (a))ier) = ¢’ (ai)ier) = ¢' ((a})ier)-
We can then conclude :
rf < ((ai)ier = (a))ier) = ' ((ai)ier) — ¢ ((a})ier)-

3. With u! = (u);c; € Sz[I], using the same methods as in 2. we get that, for (a;), (a}) €
/T such that (a;) < (a})

7

ul < o1 ((a:) — @' ().
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By Corollary 5.9, ¢ is a morphism of bounded meet-semilattices.

e Let us now suppose that for each index set I, ¢’ is a morphism of bounded meet-semilattices.
It is easy to deduce that ¢(S,) C S¢ using a set with only one element and the Proposition
5.6 and the fact that if I has only one element then S,/ [I] = S/, Sz[I] = Sz and ¢! = .
Now let I = o x o/. We define now (a;);c; by a = a1 € & and (a)ier by

/ _
(ar,a) = @2 € /. Moreover,

ai,a2)

¢! (ai)ier = (ah)ier) = ©'((ai)icr) = ¢ ((a})ier) = (p(as = af) = p(a;) = (a]))ier
and ¢! is a morphism of bouded meet-semilattices so, by Proposition 5.6 :
(p(ai = az) = p(ai) = ¢(aj))ier € Szll].
Then, by definition of Sg[I], there is r € S such that
Viel, r<pla; — a,) — o(a;) — ¢(a))
which is equivalent, with ¢ = (a,a’) to
Va,a' € o, r < ¢pla—d') — ¢(a) = p(d).

Finally, let J = {(a,d') € & x &/ : a X a'} and (ai)ies, (aj)ics such that ay, 4,) = a1
and a’(a1 ) = Q2 Using Remark 5.7 and the fact that ¢” is a morphism of bounded
meet-semilattices we have :

07 ((ai)ies) = ¢7((a))ics) = (p(ai) = @(a}))ics € Szl ).
Hence there is u € Sg such that :

Va,d' € (%), u =< ¢(a) = ¢(d).

5.4. Categorical Result. As for naive morphsisms, if IA is the category of implicative algebras
where the morphisms are applicative morphisms, this category should be Cartesian. We prove a
stronger result.

Theorem 2. The category IA has all small products.

Proof. First, for an index set I and implicative algebras (47, —;, S;) for all i € I we define the

product (H o, —>,HS¢) where the product H&Z and HSi are usual products in Set, the
el el el el

arrow is defined such that (a;)icr — (a})ier = (@i —; a})ier and (a;)ier < (a})ier if and only if

for all i € I, a; < a}. This is an implicative algebra because

(1) for (af)ier < (ai)ier and (b;)ier < (0))ier, for i € I, (a; — b;) < (a — b}) so ((a;)ier —
(bi)ier) < ((@})ier — (b))ier)
(2) for (a;)ier and B; C & for all i,
(ai)ier — A Gier=( A\ (@—=ib))= A ((@)ier = (bi)ier)

(bs)icr€ll;es Bi b;eB; (bi)i€ll;cr Bi

SO H &; is an applicative structure. For the sake of clarity, let &/ = H o 78
i€l el
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By Lemma 4.5, H S; is a separator of 7.

el
Now, let us define, for all j € I a map 7; : & — 7 such that for all (a;)ic; € &7 we
have 7;((ai)icr) = a;. We need to show that these maps are applicative morphisms : first
Wj(H S;) = S;, then for (a;)icr, (a})ic; € & we have I¥4 € S; so

el
17 5 (aj = af) = aj — af = mj((ai)ier — (a))ier) = mj((ai)ier) = mj((ab)ier)
and if (a;)ier < (a})ier we have
1% < a; — dy = m;((ai)ier) — 75((a))icr)

Finally, we need to prove that we have the universal property : let %4 be an implicative algebra
and for all j € I, ¢; : 8 — <7} is an applicative morphism. Then, let ¢ : & — & be a map such
that p(b) = (i(b))icr- Then ¢ is an applicative morphism because every ¢; is also one and for
each j €1

2N

;z/(—sz/

commutes and if an other morphism ¢ has the same properties, for all b € # we have ¢(b) =
(pi(b))ier = w(b). Hence the algebra defined is a product. ]

6 Other Possible Definitions

Applicative morphisms is the best definition for morphisms of implicative algebras so far,
but it is still possible to imagine a better definition. As we saw in the Theorem 1, applicative
morphisms are exactly the maps inducing morphisms of bounded meet-semilattices. Hence, it is
natural to search which maps induce well known types of morphisms between Heyting algebras.

6.1. Natural Ideas. The first natural idea is to study the monotonic maps. The order is an
essential property in the stuctures that we use, because it is a caracterisation of the level of truth.
Hence, it is important to characterize what are the maps inducing monotonic maps.

Proposition 6.1. A map ¢ : &/ — B induces a family of monotonic maps if and only if
Vs € Sy,3s' € Sp,Va,a' € o, s<a—d = s <p(a)— pld)

Proof. Let ¢ : &/ — % be a map and (@) the family induced by ¢. Describing this property
in the implicative algebra /! we get :

VI, V(aiier, (a))ier € 97, [(ai)ier] = [(ah)ier] = [(p(ai))ier] < [(#(af))ier]
SYIY(a;)ier, (a))ier € 71, ¥s € Sy, (Vi€ 1, s < a; — a) = [(p(a;) — ¢(a}))ier]
VI, Vs € S,y3s" € Sz, ¥(a:)ier, (a))ier € 1, (Viel, s<a; —»ad))=> (Viel, s
Vs € Sy,3s € Sy,Va,d € o, s<xa—d =5 <pla)— pla

~

which prove this result. =
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This proposition is a first step of a study that is not done here : the next step is to use this
characterization to explore the category of implicative algebras where the morphisms are the
maps inducing monotonic maps.

An other natural idea is to study the maps inducing Heyting algebra morphisms.

Proposition 6.2. A map ¢ : &f — A induces a family of morphisms of Heyting algebras if and
only if ¢ is an applicative morphism and there are elements

fold ,, unfold, € Sy

such that
fold, < (p(a1) = ¢(az)) = ¢(ar — az)

unfoldy < p(a1 + a2) = w(a1) + p(az)

for all ay,as € .

Proof. Let ¢ : &/ — % be a map and (¢!); be the induced family. For each (a;)ier, (a})ics € <71
we have :

?'([(ai) = (a))])) = [(p(ai = a))] and &' ([(@)]) = &' ([(a))]) = [(w(a:) = ¢(a}))]

We can then deduce :

V(a;), (a}) € 7, @' ([(ai) = (a7)]) = &' ([(ai)]) = &' ([(a})])
& V() () e, Viel, ¢la—ad)— ola;)— pla) € Sxp(l]
and (p(ai) = plaj)) = plai — a;) € Spll]
& 3s1,5 € Sy, Va,d e o/ (1) 515 pla—d) = pla) = ¢(d)
(2) 52 < (p(a) = p(a’) = p(a — a')

by the same methods we have
V(a;), (a) € o7, ¢ ([(as) A (@))]) = @' ([(as)]) A &' ([(a)])
& Y(a),(a)e !, Viel, ¢a; xal)— ola;) x p(al) € Szl
and (p(as) x p(aj)) = @(a; x aj) € Sx(l]
& ds3,s4€ Sy, Va,d € o (1) s3 % plaxad)— pla) x ¢(d)
(2) sa < ((a) x p(a’)) = p(a x d)
V(@) (a) € o, ¢ ([(as) v (@))]) = ¢"([(as)]) v &' ([(a)])
o Ve (@) e o Viel, plartal) = pla) +pla) € Sall
and (p(as) + o(aj)) = @(ai + aj) € Sx(l]
& Jss,s6 € Sg, Va,d € o (1) 35<g0a+a) o(a) + p(a)
(2) s6 < (p(a) +p(a’)) = pla+d)
Moreover, if for each index set I, ¢! is a morphlsm of Heyting algebras then ¢ is an applicative
morphism by Theorem 1. Then the elements s, s3,s4 and sg exist by Proposition 2.5. Hence
(¢') is a family of morphisms of Heyting algebras if and only if ¢ is an applicative morphism
such that there are fold_,,unfold; € Sz such that

fold-, < (p(a1) — p(az)) — ¢(a1 — az)

unfold, < ¢(aj +az) — @(ar) + p(as)

for all aq,as € . m
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Here we have a characterization as well. The maps inducing Heyting algebra morphisms are
obviously included in the applicative morphisms, so it could be useful to define the morphisms
of implicative algebras like this if applicative morphisms do not fullfil some important logical
properties because a stronger definition like this one could solve this potential issue.

Conclusion

Various definitions of morphisms of implicative algebras are possible, so the category of
implicative algebras has also a lot a definitions. Applicative morphisms are fully characterized in
terms of triposes, and have a lot of commutation properties. In the future, it may be interesting
to study more precisely the category with this definition of morphisms, for exemple we proved
that this category is Cartesian but the question to know if it is complete or not is still open.

Other possible definitions may be considered. The maps inducing monotonic maps or Heyt-
ing algebra morphisms are characterized here but it may be important to study commutation
properties fullfiled by these definitions.

Finally, an other possible idea that is not presented before is the notion of applicative dense
morphisms. Coming from [vOZ16] like applicative morphisms, it is possible to adapt the defini-
tion to implicative algebras and it may be interesting to compare the results from this definition
and those from applicative morphisms.
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A Technical Proofs

We already proved one point of Proposition 5.3. The rest of the proof is given here
Proof of Proposition 5.3.
e unfoldy : Now, for a; and a9 in &7,
projl“% < a1 Xas — ay
ucp(projl”oi) ay X az —> ay)

r’up(proj 1”)

< ¢(
< plar x az) = p(ar)

€ €

and the same calculus with projr gives

r'up(projr?) < p(ar x as) — ¢(a2)

Then, by adequacy, we get

(Az.pair(r'up(proj 1”)x)(r'ugp(projrd)x))% < plar X ag) = @(a1) x p(az)

e fold, : Here, for a; and ag in &7,

in1? < a1 —al+as

ﬂ) (a1 — a1 + az)

up(inl?) 5 ¢
rup(inl?) < @(a1) = p(a1 + as)
and similarly
rup(inr?) < ¢(ag) — @(ar + az)
Hence,

of

(Az.casex(r'up(inl?)) (rup(inr? )Y < ¢(a1) + p(az) = (a1 + az)

e unfoldy : Let unfoldy = u and (a;);c; € &7!. Then,

Vi € I, unfoldy < @(A a;) — p(a;) (because \;c;ai < a;)
i€l
which implies that

unfoldy X A (0( A af) = ¢(ai)) = o( A ai) = \ ¢la:)

el el el il

e foldt : By axiom 1. of Definition 5.1, p(T) € Sy, and ¢(T) = T — ¢(T) = K¥ € Sy,
then by adjunction of the application, T — (T) = KZp(T) € Sx.

e unfoldt : Let unfoldt = T. Then unfoldt =T = ¢(T) — T and unfoldt € Sy.

e fold, : We have the inequality u < ¢(L) — ¢(L) < L — ¢(L). Then, with fold, = u
we have the wanted result.
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Proof of Proposition 5.6. Let ¢ : of — 9 be a map.

e When ¢ is a morphism of bounded semi-lattices, if a € S, we have :

1z(p(a)) = @(ry(a)) = @y (Tw)=0(Tu,)=Tu, =52

acd gy

Then, ¢(a) € Sz so we can deduce (7).
By Lemma 5.8,

Va,d' € o, §(ry(a— d)) <s, G(m(a)) = G(m(a))
which implies that :

Va,d' € o, mg(pla— d)) <s, m5(p(a)) = ma(p(a’))
Then, by definition of the order <g_, we have :

Va,a' € o, p(la—d') — ¢(a) = ¢(d') € Sy

e Let us now assume that ¢ satisfies conditions (¢) and (7).
By (i), ¢(T.) € S, then

S(Th,) =0 (Tw)) =72(p(Ta) =Sz = Thg,

For o, 0 € Hyy, let a,a’ € o7 such that 7 (a) = aq and 7(a’) = aq. The condition (i)
implies that :
mz(pla = d')) <5, ma(p(a) = o(d))
then,
Plar = az) <s5 Pla1) = p(az)

We can now conclude by Lemma 5.8 that ¢ is a morphism of bounded meet-semilattices.
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