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1 Games as event structures

1 Introduction

During this internship, our aim is to study, and extend, a particular framework : event structures.
Event structures have been defined and developed by Glynn Winskel in the past few years [NPW81].
They allow us to model various notions of computation, based on game semantics. A lot of important
notions in game theory, and especially about strategies can be described in terms of maps between
event structures. Moreover, various extensions of this notion have been studied in the past few years,
and especially some quantitative ones. By adding some new structures, one can model probabilistic or
quantum computation [CDVW19]. Our goal here is to put this idea some steps further, by generalizing
these quantitative structures. We want to define general quantitative enriched games and strategies,
based on the framework of event structures, using the intuitions from the probabilistic and quantum
case. To do so, we shall define event structures enriched with a symmetric monoidal category, which
will represent the quantitativity added on the game, and then the strategies on these games. This
enrichment will be presented as a category, which will work in parallel with the category of event
structures, as they will form a bicategory. We should then recall the probabilistic and quantum case
while using the good category, and moreover it will allow us to study some new quantitative enrichment
of event structures, for example adding differential structure, which may become an important tool
while studying learning.

The first two sections will present the results and the constructions on event structures that will
be useful for us. Some proofs are presented since this is a work that I have done while trying to get
use to these notions, but an other version of these proofs can be found in [Win17]. In Section 2, we
will present the notion of event structures, and some important constructions on these structure. Since
these represent games, we will see in Section 3 that it is possible to define strategies on these games.
Finally, we will present the general enrichment that we have built during this internship in Section 4.
In Appendix A, we will present the case of probabilistic enrichment, which in not directly connected
to our work because it was not used for the definition of general enrichment. For the proofs, an other
version can also be found in [Win17].

2 Games as event structures

In order to study games and strategies, we base our work on event structures. Event structures have
been designed by Winskel [NPW81] in order to give mathematical structure to represent concurrent
games. As we will see in this section, they are well suited to model various process constructions on
games.

2.1. Event structures : the first definitions.

Definition 2.1. An event structure is a tuple pE,Con,ďq where E is the set of events, partially
ordered by ď, the causal dependency relation. The consistency relation, Con, is a non-empty set of
finite subsets of events such that

‚ for each event e, te1 | e1 ď eu is finite;

‚ for each event e, teu P Con;

‚ if X P Con and Y Ď X, Y P Con;

‚ if X P Con, e P x and e1 ď e, X Y te1u P Con.

Definition 2.2. A configuration x of an event structure E is a subset of E which is

‚ Consistent : x P Con;
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‚ Down-closed : if e P x and e1 ď e, e1 P x.

The set of configurations of E is denoted by C8pEq. The set of finite configurations in denoted by
C0pEq.

Definition 2.3. Let E be an event structure and e1 and e2 be two events.

‚ If te1, e2u P Con and e1 and e2 are incomparable w.r.t. the order ď, they are concurrent, denoted
by e1 „ e2.

‚ We will denote e _ e1 if e ă e1 and no events are between them.

Notation 2.4. The events will be denoted by e, e1, e1 . . . , the sets of events will be denoted by x, y, z, . . .
and the sets of sets of events will be denoted by X,Y, Z, . . .

2.1.1. Product of event structures. First, we need a definition of morphisms of event structures, in
order to define a category.

Definition 2.5. A morphism f between two event structures E and E1 is a partial map f : E á E1

such that for all x P C8pEq, fx P C8pE1q and if e1, e2 P x such that fpe1q “ fpe2q, e1 “ e2 (when
defined).

We then want a product between games, so we must define a product of event structures, which
should be a product in ES, the category of event structures. Then, as a categorical product, we need
to have :

AˆB

A B

D

π1 π2

f1 f2

xf1f2y

Taking for example the two following event structures A and B :

A “

a

b

B “

c

and suppose that the product A ˆ B can be define as an usual cartesian product. Then, let us take
for example, as D, f1 and f2 :

a

b

d

d1

c

˚

f1 f2

f1 f2

Using the properties of the categorical product, we need to have pa, cq _ pb, ˚q in Aˆ B. With some
similar considerations, the product AˆB is at least :
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a

b

ˆ

c

“

pb, ˚q pb, ˚q pb, cq

pa, ˚q pa, cq p˚, cq

The problem is that we have two objects with the same label. We may want to solve this issue by
merging these objects, but then we would have

pb, ˚q

pa, ˚q pa, cq

which is not allowed in ES. To solve this problem, we need to use an other structure : stable families.

2.2. Stable families. Stable families are very important is the theory of event structures. The
definition comes directly from the definition of an event structure. As we will see in Section 2.3, stable
families allow us to define various constructions on event structures.

For a family of subsets F and X Ď F , X is compatible (denoted XÒ) when :

Dy P F ,@x P X,x Ď y

Definition 2.6. A stable family F is a family of subsets such that

‚ Completeness : @Z Ď F , ZÒ ñ YZ P F

‚ Stability : @Z Ď F , if Z is not empty and ZÒ, then XZ P F

‚ Coincidence-freeness : For all e, e1 P x P F with e ‰ e1, Dy P F , y Ď x and e P y ô e1 R y.

‚ Finiteness : for all e P x P F , there is y P F finite such that e P y and y Ď x.

To define the category of stable families SF, we need a notion of morphism, which will be similar
to the one on event structures.

Definition 2.7. A morphism f between two stable families F and G is a partial map from the events
of F to the events of G such that for each x P F , fx P G and for each e, e1 P x such that fpeq “ fpe1q,
e “ e1 (when defined).

2.2.1. Stable families and event structures : an adjunction. In order to use stable families for our
purposes, we will show that there is an adjunction between ES and SF, and we will describe this
adjunction.

Proposition 2.8. For each event structure, its set of configurations is a stable family.

Proof. Let E be an event structure.
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‚ For Z Ď C8pEq such that ZÒ, let x “ YZ. Since ZÒ, let y P C8pEq such that for each
z P Z, z Ď y. Then x Ď y P Con (since y is a configuration) so x P Con. Moreover, for each
e1 ď e P x, there is z P Z such that e P z, and z is a configuration so e1 P z so e1 P x. C8pEq is
complete.

‚ For Z Ď C8pEq nonempty such that ZÒ, let x “ XZ and y P C8pEq such that each z P Z is
included in y. Then x Ď y so x P Con. For e1 ď e with e P x, for each z P Z we have e1 P z since
z is a configuration and e P z. Then e1 P x so C8pEq is stable.

‚ Let x be a configuration and e ‰ e1 P x. If e1 ď e then e R re1s, else, e1 R res. This gives the
coincidence-freeness since res and re1s are subsets of x and are configurations.

‚ Let e P x P C8pEq. Since res is a finite configuration included in x which contains e, the finiteness
condition is respected.

Each axiom of the definition of a stable family is verified : C8pEq is a stable family.

Thanks to this proposition we know how to get a stable family from an event structure. Let’s see
now how to do the opposite.

Definition 2.9. Let F be a stable family. For x P F and e, e1 P x we define :

‚ the order ďx as e1 ďx e if for each y P F such that y Ď x and e P y, e1 P y;

‚ the prime configuration resx “
Ş

ty P F | y Ď x and e P yu “ te1 P x | e1 ďx eu;

‚ PF “ tresx | e P x, x P Fu;

‚ the relation ConF : Z P ConF when Z Ď P and YZ P F ;

‚ the order ďF on PF as the inclusion order;

‚ the tuple PrpFq “ pPF ,ďF , ConF q.

Proposition 2.10. For each stable family F , PrpFq is an event structure.

Proof. Let F be a stable family.

‚ Let resx be in PF . By the finiteness condition on stable families, let z Ď x finite such that e P z.
By definition, if e2 P resx then e2 P z. Hence, tre1sy | re1sy Ď resxu is included in set of the subsets
of z, which is finite.

‚ Each tresxu Ď PF and tresxuÒ so Ytresxu P F .

‚ Let Y Ď X P ConF . Since X Ď P , Y Ď P and for each y P Y , y P X so y Ď YX. Moreover,
YX P F (because X P ConF ) so Y Ò and YY P F .

‚ For X P ConF and resx Ď re1sy P X, each element of resx is in
Ť

X by the inclusion, so

ď

pX Y tresxuq “
ď

X P F .

Each axiom of Definition 2.1 is verified.
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Using our two previous constructions, let us prove now the main theorem of this section.

Theorem 1. We have the following adjunction

SF K ES

Pr

C

Before proving this theorem, we need to define the functors associated to C0 and Pr.

Lemma 2.11. The two maps C0 and Pr can be extended as functors.

Proof. First, let f : E Ñ E1 be a morphism of ES. Then C0pfq is the map such that for each event e of
C0pEq, C0pfqpeq “ fpeq which is an event of C0pE1q. C0pfq is a morphism in SF since f in a morphism
in ES, and C0 obviously preserves identities and composition.
Now, for a morphism g : F Ñ G of SF, Prpgqpresxq “ rgpeqsgpxq

1 when gpeq is defined, otherwise
Prpgqpeq is undefined. We need to check if this map is well defined. Then, let re1sx “ re2sy. We
want to show that rgpe1qsgpxq “ rgpe2qsgpyq. Let e1 P rgpe1qsgpxq, then e1 P gpxq so there is e P x such
that e1 “ gpeq. We have e P re1sgpxq, because for z Ď x such that e1 P z, we have gpzq Ď gpxq and
gpe1q P gpzq so e1 “ gpeq P gpzq. Using the local injectivity, we can deduce that e P z and conclude
that e P re1sgpxq. Using our first assumption we have then e P re2sgpyq. Finally, for each z1 Ď gpyq
such that gpe2q P z1, the local injectivity implies that there is z P F such that gpzq “ z1 and that
e P z (because e P re2sgpyq). Hence, e1 “ gpeq P gpzq “ z1 and we can conclude that e1 P rgpe2qsgpyq so
rgpe1qsgpxq Ď rgpe2qsgpyq. Using a symmetrical reasoning, we have the equality, so Prpgq is well defined.
Moreover, Prpgq is a morphism of ES: the condition on configurations follows directly using that g is
a morphism in SF, and the local injectivity comes from a proof similar to the one we did to show that
Prpgq is well defined.
The identities and the composition are obviously preserved by Pr, which is then extended as a functor.

Proof of Theorem 1.

‚ The functor C0 is left-adjoint : for each F P SF, E P ES and f : C0pEq Ñ F , let us show that
there is a unique g such that

C0pEq

C0pPrpFqq F

fC0pgq

εF

commutes. First, we define the morphism εF : C0pPrpFqq Ñ F such that εF presxq “ e2.
This is a morphism of SF. Then, to make the previous diagram commutative, let us define
g : E Ñ C0pPrpFqq such that for each e P E, gpeq “ rfpeqsfpresq when fpeq is defined and gpeq is
undefined otherwise. For e, e1 two events of E is a common configuration such that gpeq “ gpe1q,
we have fpeq “ fpe1q so e “ e1 since f is a morphism of SF, then g is a morphism of ES.
Moreover, g makes the previous diagram commuting because for e P E,

εF pgpeqq “ εF
`

rfpeqsfpresq
˘

“ fpeq

when fpeq is defined. Otherwise, both ways are undefined. Finally, g is unique : let g1 be a map
such that the previous diagram commutes. Then, for e such that fpeq is defined, gpeq “ rfpeqsx

1The set gpxq is defined as tgpe1
q | e1

P x and gpe1
q is definedu

2This map is well defined because if resx “ re1
sy then e1 is in x so e1

ď e, and symmetrically e ď e1, which leads to
e “ e1
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with x P F . for each e P E, gpeq has to be equal to rfpeqsy with y P F . Whatever our choice of
y is, for each e, e1 is the same configuration, if gpeq “ gpe1q then fpeq “ fpe1q so e “ e1, hence g
is a morphism.

‚ For each E P ES, F P SF and g : E Ñ PrpFq, there is a unique f such that

E PrpC0pEqq

PrpFq

ηE

g Prpfq

commutes. First, we define ηE : E Ñ PrpC0pEqq the map such that ηEpeq “ resres for each event
e. We can easily notice that ηEpeq “ res, using the down-closure property on configurations. The
local injectivity is given by the fact that if re1s “ re2s then e1 ď e2 and e2 ď e1 so e1 “ e2. Now
let x P C0pEq. We have :

ηEpxq P C0pPrpC0pEqqq ðñηEpxq P ConPrpC0pEqq and ηEpxq down-closed w.r.t. Ď

ðñY ηEpxq P C0pEq and ηEpxq down-closed w.r.t. Ď
ðñY ηEpxq P ConE , YηEpxqdown-closed w.r.t. ď

and ηEpxq down-closed w.r.t. Ď .

- YηEpxq Ď x because if e P re1s with e1 P x, then e ď e1 and x is down-closed so e P x. Using
the third axiom of Definition 2.1 we have ηEpxq P ConE for each x P C0pEq.

- For e1 ď e P YηEpxq, there is e1 P x such that e ď e1. Hence, e1 ď e1 so e1 P re1s :
e1 P YηEpxq.

- For e P x and re1sy P PrpC0pEqq such that re1sy Ď res, we have e1 ď e so e1 P x and (first
equality) re1sy “ re1s P ηEpxq : ηE is down-closed w.r.t. with Ď.

Hence, the adjunction Pr $ C0 is proved.

2.3. Process constructions. Here we see the concrete use of stable families : we define some con-
structions on event structures with stable families, using the adjunction of Theorem 1, to transform
the constructions on SF into constructions on ES.

2.3.1. Products. First, let us define the product of two stable families.

Definition 2.12. Let A and B be two stable families, with events A and B respectively. Then we
define

Aˆ˚ B “ tpa, ˚q | a P Au Y tpa, bq | a P A, b P Bu Y tp˚, bq | b P Bu.

The two projections π1 and π2 are defined by π1ppa, bqq “ a and π2ppa, bqq “ b, where πippa, bqq “ ˚
represents the fact that πi is undefined on pa, bq.

The previous definition gives a product in SF.

Corollary 2.13. Since right adjoints preserve products, for two event structures E and F , we define
a categorical product between them by

E ˆ F “ PrpC0pEq ˆ C0pF qq
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2.3.2. Restriction. The restriction of an event structure is an important construction in order to define
strategies, as we will see in Section 3

Definition 2.14. For a stable family F and R a subset of events of F , we define the restriction

F æ R “ tx P F | x Ď Ru

which is obviously a stable family. Now for an event structure E and R a subset of its events, we define

E æ R “ te P E | res Ď Ru

which is a stable family with order and Con induced by E.

2.3.3. Projections. Here, we see how to restrict an event structure to a subset of events. Let pE,ď
, Conq be an event structure, and V Ď E a visible subset of events. Then, we defined the projection of
E on V as

E Ó V “ pV,ďV , ConV q

where v ďV v1 when v, v1 P V with v ď v1 and X P ConV when X Ď V and X P Con.

3 Strategies in a game

Our next important step is to define a strategy in a game. Before that, we add a notion of polarity
in event structures. We will then be able to define a pre-strategy on it. Finally, pre-strategies will be
restricted to have strategies.

3.1. Pre-strategies.

Definition 3.1. An event structure with polarities comprises an event structure E with a polarity
function pol on the events of E, pol : E Ñ t‘,au.

An event structure with polarities model a game where its ‘-events (resp. a-events) are the possible
moves for the Player (resp. Opponent). The relation ď and the set Con represent the constraints on
this game.

Notation 3.2. Some notations will be used on these polarities : if x Ď x1 and each event between x and
x1 is a (resp. ‘), we will write x Ďa (resp. x Ď‘ x1). Moreover, for a configuration x, xa (resp. ‘),
will denote the a-events (resp. ‘-events) of x.

Some simple operations on these event structures with polarities can be defined.

Definition 3.3. Let pA,ďA, ConA, polAq and pB,ďB, ConB, polBq be two event structures with po-
larities.

‚ The dual of A, denoted by AK, is defined as A, except that the polarity function is reversed. For
each event e P A, its complementary event in AK will be written ē. Hence, for each ē P AK, we
have

polAKpēq “ ‘ when polApeq “ a polAKpēq “ a when polApeq “ ‘.

‚ The simple parallel composition of A and B, denoted by A ‖ B, juxtaposes A and B. Its events
are the elements of pt1u ˆ Aq Y pt2u ˆ Bq. The polarity of an event p1, eq (resp. p2, eq) is the



Quantitative semantics for event structures 8

polarity of e in A (resp. in B). The relation ď does not compare events that do not come from
the same structure, so ď is defined as

pi, eq ď pj, e1q ðñ pi “ 1 “ j and e ďA e1q or pi “ 2 “ j and e ďB e1q.

The set Con is defined such that C P Con if and only if ta | p1, aq P Cu P ConA and tb | p2, bq P
Cu P ConB. Moreover, this operation extends to a functor, when the two maps are putted in
parallel. The empty event structure is the unit of this operation.

We can give a simple definition of a morphism of event structures with polarities.

Definition 3.4. For two event structures with polarites A and B, a morphism f from A to B is a
morphism between A and B in ES such that for each event e P A, polApeq “ polBpfpeqq. The category
of event structures with polarities is denoted by ESp.

Before looking at the precise definition of a strategy, we will see how an event structure can act on
an other one. Such a structure will be considered as a pre-strategy. Restricting this definition, we will
be able to define a strategy of a game.

Definition 3.5. Let A and B be two event structures with polarities.

‚ A pre-strategy in A is a total map σ : S Ñ A in ESp where S in an event structure with
polarities. For two pre-strategies in A σ : S Ñ A and σ1 : S1 Ñ A, a map from σ to σ1 is a map
f : S Ñ S1 such that

S S1

A

f

σ σ1

commutes. When there is an isomorphism θ : S – S1, we will write σ – σ1.

‚ A pre-strategy from A to B is a pre-strategy in AK ‖ B. From such a strategy σ : S Ñ AK ‖ B
we can easily define two partial maps σ1 : S Ñ AK and σ2 : S Ñ B. Then, two pre-strategies σ
and τ from A to B are isomorphic when

S,

T

A B

σ1 σ2

–

τ1 τ2

commutes. A strategy σ from A to B will be denoted by σ : A ÞÑ B.

3.2. The copy-cat strategy. Copy-cat is a important notion in game theory. The copy-cat strategy
for the Player is the strategy when the Player reproduces the actions of the Opponent.

Definition 3.6. For an event structure with polarities A, the copy-cat strategy of A is a pre-strategy
from A to A, so a total map ccA : CCA Ñ AK ‖ A, where CCA and AK ‖ A have the same events and
polarities. The relation ďCCA is defined as the transitive closure of

ďAK‖A Ytpc̄, cq | c P A
K ‖ A and polAK‖Apcq “ ‘u.

The consistent sets of CCA are the finite subsets such that their dow-closure w.r.t. ďCCA is in ConAK‖A.
Then ccA is defined as the identity.

This definition is possible because CCA is an event structure with polarities.
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3.3. Composing pre-strategies. Here we give the construction of the composition of two pre-
strategies. Let σ : A ÞÑ B and τ : B ÞÑ C be two pre-strategies. Hence they can be decomposed
as

S T

AK B BK C.

σ1 σ2 τ1 τ2

Their composition will be denoted by σ d τ : A ÞÑ C. To define it, we will use two constructions that
described before. First, the synchronized composition, because B and BK have the same events, we
will synchronize each s P S with each t P T such that σ2psq “ τ1ptq. Then, some events of the resulting
structure are those used to do the synchronization. We will hide them using the projection on visible
events, so the events not used in the synchronization (which are exactly those from A and C).

Definition 3.7. First, we define the composition of C0pSq and C0pT q as a synchronized composition

C0pSq f C0pT q “ C0pSq ˆ C0pT q æ R

where

R “tps, ˚q | s P S, σ1psq defined u Y

tps, tq | s P S, t P T, σ2psq “ τ1ptq and both defined u Y
tp˚, tq | t P T, τ2ptq defined u.

Then, we define the event structure T d S using the projection :

T d S “ PrpC0pSq f C0pT qq Ó V

where

V “tp P PrpC0pSq f C0pT qq | Ds P S, η´1ppq “ ps, ˚qu Y

tp P PrpC0pSq f C0pT qq | Dt P T, η´1ppq “ p˚, tqu.

Hence, we can define σ d τ as the pre-strategy resulting from

T d S

AK C

v1 v2

where for each p P T d S, if ηppq “ ps, ˚q (resp. ηppq “ p˚, tq) then v1ppq “ σ1psq (resp. v2ppq “ τ2ptq),
else it is undefined.

Proposition 3.8. The span σ d τ constructed in Definition 3.7 is a pre-strategy.

3.4. Strategies. The copy-cat strategy (described in Section 3.2) is usually the identity strategy in
game theory. Here we will add two conditions on pre-strategies, receptivity and innocence, which are
necessary and sufficient to make copy-cat the identity for the composition on strategies.

Definition 3.9. Let σ : S Ñ A be a pre-strategy.

‚ σ is receptive if for each x P C0pSq and e P A such that σpxq Y teu P C0pAq and polApeq “ a,
there is a unique s P S such that xY tsu P C0pSq and σpsq “ e.

‚ σ is innocent when it is ‘-innocent and a-innocent, which corresponds to :
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- ‘-innocent : if s _ s1 and polSpsq “ ‘ then σpsq _ σps1q;

- a-innocent : if s _ s1 and polSps1q “ a then σpsq _ σps1q.

‚ If σ is both receptive and innocent, σ is a strategy.

The intuitions behind this definition are the following. As we saw earlier, the causality relation
relation and the consistency set are the constraints on the game. The definition of a pre-strategy σ
ensures that σ respects these constraints. Here, we add some restrictions because a strategy should
respects some additional properties. The receptivity ensures that each "playable" Opponent event in A
(denoted by e in Definition 3.9) is also in S. Hence, a strategy cannot delete a possible opponent move.
The innocence properties is related with the causal dependency relation. It ensures that a strategy
cannot add a causal dependency as ‘ _ a, because this would correspond to the Player imposing his
choice to the Opponent. However, a strategy cannot introduce ‘ _ ‘, which is harder to understand.

These two conditions are important from an intuitive point of view, but we can prove formally that
they are exactly those which are needed to define a strategy.

Proposition 3.10. For two strategies σ : A ÞÑ B and τ : B ÞÑ C, we have that σ d τ : A ÞÑ C is also
a strategy.

Theorem 2. Let σ : A ÞÑ B be a pre-strategy. Then σ d ccA – σ – ccB d σ if and only if σ is a
strategy.

Since we want copy-cat to be the identity of strategies, Definition 3.9 is the only possible way to
define strategies in our framework.

3.5. Winning games and strategies. Since we are defining a way to model a game, we should
explain how to win a game in our framework, so what is a winning strategy. First, we need a small
extension of the notion of event structure with polarities.

Definition 3.11. A game with winning conditions comprises G “ pA,W q where A is an event structure
with polarities and W Ď C8pAq The loosing conditions are defined as L “ C8pAqzW . A strategy in G
is a strategy in A.

Using this definition, we can easily define a winning strategy. Intuitively, it should be a strategy
which leads to a winning strategy for each choice of the Opponent.

Definition 3.12. Let σ : S Ñ be a strategy. A configuration x P C8pSq is ‘-maximal when for each
event s P S not in x such that xY tsu P C8pSq, polSpsq “ a. Then, σ is a winning strategy if for each
‘-maximal configuration x P C8pSq, σpxq PW .

Remark 3.13. Some other properties such as deterministic strategies for example are important in the
framework of event structures. They are not presented here since they have not been studied a lot so
far.

4 Quantitative enrichement

In the previous sections, we have presented the general framework of event structures, and how
we can model games and strategies. Two extensions of this framework have been made by Winskel
: probabilistic event structures and quantum event structures. These are described in [CDVW19]. I
have worked a bit on probabilistic event structure, but since this work is not directly related to the
goal of this internship, it is presented in Appendix A.

Probabilistic and quantum extensions will be generalized here. We will give a general categorical
framework allowing to extend event structures with some quantitative informations. These quantities
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will be represented by a symmetric monoidal category. Hence, the probabilistic extension can be
recall using this general enrichment with the category of the real numbers between 0 and 1, as for the
quantum one with the category of completely positive maps. We hope that, thanks to this general
enrichment it will be possible to design a framework to study learning with event structures, using the
category of Euclidian spaces with smooth maps.

4.1. Enriched games and strategies. The first step of our construction, is to show how to extend
games and strategies, in order to add quantitative information on them. To do this on strategies, we
need a categorical construction in order to avoid confusion between parameters and inputs/outputs.

Definition 4.1. Let pM,b, Iq be a symmetric monoidal category, and A be an event structure. An
enrichment of A w.r.t. M is a map H : AÑM, extended to C0pAq by :

@X P C0pAq, HpXq “
â

aPX

Hpaq.

We will also say that H is an M-enrichment of A.

Definition 4.2. Let pM,b, Iq be a symmetric monoidal category. We define the parametrized category
ParapMq, which has the same objects as M, where the maps are defined by pP, f,Qq : X Ñ Y , when
f : X b P Ñ Qb Y is a map in M.

‚ The composition pR, g, Sq˝pP, f,Qq in ParapMq is then defined as pPbR, pQbgq˝pfbRq, QbSq.

‚ We also define an other operation : the horizontal composition. For two maps pP, f,Qq : X Ñ Y
and pQ, g,Rq : X 1 Ñ Y 1 in ParapMq, their horizontal composition is defined as pP, f,Qq ˛
pQ, g,Rq “ pP, h,Rq : X 1 bX Ñ Y 1 b Y with

h “ pg b Y q ˝ pX 1 b fq : X 1 bX b P Ñ Rb Y 1 b Y

This second composition can be seen, graphically, as

fP Q

X

Y

˛ gQ R

X 1

Y 1

“ hP R

X 1 bX

Y 1 b Y

where the horizontal arrows represent the parameters and the vertical arrows the inputs and outputs.

Proposition 4.3. (Interchange law). Let

pP1, f1, Q1q : X Ñ Y pP2, f2, Q2q : Y Ñ Z

pQ1, g1, R1q : X 1 Ñ Y 1 pQ2, g2, R2q : Y 1 Ñ Z 1

be four maps in ParapMq. Then,

ppP2, f2, Q2q ˝ pP1, f1, Q1qq ˛ ppQ2, g2, R2q ˝ pQ1, g1, R1qq

“ ppP2, f2, Q2q ˛ pQ2, g2, R2qq ˝ ppP1, f1, Q1q ˛ pQ1, g1, R1qq
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This law corresponds graphically to

P1 Q1

X

Y

f1

˝

P2 Q2

Y

Z

f2

˛

Q1 R1

X 1

Y 1

g1

˝

Q2 R2

Y 1

Z 1

g2

“

P1 Q1

X

Y

f1 ˛

P2 Q2

Y

Z

f2

˝

Q1 R1

X 1

Y 1

g1

˛ Q2 R2

Y 1

Z 1

g2

Proof. This law comes from the definition of the horizontal composition.

ppP2, f2, Q2q ˝ pP1, f1, Q1qq ˛ ppQ2, g2, R2q ˝ pQ1, g1, R1qq

“pP1 b P2, pQ1 b f2q ˝ pf1 b P2q, Q1 bQ2q ˛ pQ1 bQ2, pR1 b g2q ˝ pg1 bQ2q, R1 bR2q

“pP1 b P2, h,R1 bR2q

and we have

pg1 bQ2q : X 1 bQ1 bQ2 Ñ R1 b Y
1 bQ2 pR1 b g2q : R1 b Y

1 bQ2 Ñ R1 bR2 b Z
1

so
pR1 b g2q ˝ pg1 bQ2q : X 1 bQ1 bQ2 Ñ R1 bR2 b Z

1.

With a similar calculus, we also have

pQ1 b f2q ˝ pf1 b P2q : X b P1 b P2 Ñ Z bQ1 bQ2.

We deduce then that

h “ rppR1 b g2q ˝ pg1 bQ2qq b Zs ˝ rX
1 b ppQ1 b f2q ˝ pf1 b P2qqs

“ pR1 b g2 b Zq ˝ pg1 bQ2 b Zq ˝ pX
1 bQ1 b f2q ˝ pX

1 b f1 b P2q

which is well defined :

X 1 bX b P1 b P2 X 1 bQ1 b Y b P2 X 1 bQ1 bQ2 b Z

R1 bR2 b Z
1 b Z R1 b Y

1 bQ2 b Z

X 1bf1bP2 X 1bQ1bf2

g1bQ2bZ

R1bg2bZ

Now, developping the second term of the equality, we get :

ppP2, f2, Q2q ˛ pQ2, g2, R2qq ˝ ppP1, f1, Q1q ˛ pQ1, g1, R1qq

“pP2, pg2 b Zq ˝ pY
1 b f2q, R2q ˝ pP1, pg1 b Y q ˝ pX

1 b f1q, R1q

“pP1 b P2, rR1 b ppg2 b Zq ˝ pY
1 b f2qqs ˝ rppg1 b Y q ˝ pX

1 b f1qq b P2s, R1 bR2q

“pP1 b P2, pR1 b g2 b Zq ˝ pR1 b Y
1 b f2q ˝ pg1 b Y b P2q ˝ pX

1 b f1 b P2q, R1 bR2q

“ pP1 b P2, h
1, R1 bR2q
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where h1 is

X 1 bX b P1 b P2 X 1 bQ1 b Y b P2 R1 b Y
1 b Y b P2

R1 bR2 b Z
1 b Z R1 b Y

1 bQ2 b Z

X 1bf1bP2 g1bYbP2

R1bY 1bf2

R1bg2bZ

But, the diagram

R1 b Y
1 b Y b P2

X 1 bQ1 b Y b P2 R1 b Y
1 bQ2 b Z

X 1 bQ1 bQ2 b Z

R1bY 1bf2g1bYbP2

X 1bQ1bf2 g1bQ2bZ

commutes because

pg1 bQ2 b Zq ˝ pX
1 bQ1 b f2q “ pg1 ˝ pX

1 bQ1qq b ppQ2 b Zq ˝ f2q

“ pg1 ˝ idX 1bQ1q b pidQ2bZ ˝ f2q

“ g1 b f2

“ pidR1bY 1 ˝ g1q b pf2 ˝ idYbP2q

“ ppR1 b Y
1q ˝ g1q b pf2 ˝ pY b P2qq

“ pR1 b Y
1 b f2q ˝ pg1 b Y b P2q

by functoriality of the tensor. Hence, h “ h1 and the interchange law is proven.

Using this categorical construction, we can now enrich the strategies w.r.t. the symmetric monoidal
category.

Definition 4.4. For a strategy σ : S Ñ A, an enriched strategy is a functor Q : pC0pSq,Ďq Ñ ParapMq
such that

1. for each x Ď y, Qpx Ď yq has the form pHσpyzxqa, f,Hσpyzxq‘q ;

2. for each x Ďa x1, Qpx1q – Qpxq bHσpx1zxq.

We will say that Q is an M-enrichment of σ.

4.2. Composition with neutral events. The second step of our construction is to describe how
to compose two enriched strategies. We will do it on strategies with neutral events here, which are
the composed strategies where the events used for synchronization have not been hidden yet : the
strategies of the form σ f τ .
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Throughout this section, we fix M an SMC3 , and each game and strategy will have an M-
enrichment. Let σ : S Ñ AK ‖ B and τ : T Ñ BK ‖ C be two strategies, with their M-enrichments Qσ
and Qτ . Our purpose here is to define Qτfσ, an M-enrichment of the composition of σ and τ , from
Qσ and Qτ . We recall that each event of C0pT q f C0pSq belongs to the set

R “tps, ˚q | s P S, σpsq P Au Y

tpt, ˚q | t P T, τptq P Cu Y

tps, tq | s P S, t P T, σpsq “ τptqu.

Definition 4.5. For py f xq P C0pS f T q, we define Qpy f xq “ Qσpxq b Qτ pyq, and Qpidyfxq “
pI, idyfx, Iq

4. Then, for each e P pTfSq, we define Qppyfxq Ď py1fx1qq, where y1fx1 “ ppyfxqYteuq,
as :

‚ if e “ ps, ˚q and s a a-event, Qppxf yq e Ă px1 f y1qq “ Qσpx
s Ă x1q ˛Qτ pyq;

‚ if e “ ps, ˚q and s a ‘-event, Qppxf yq e Ă px1 f y1qq “ Qτ pyq ˛Qσpx
s Ă x1q;

‚ if e “ p˚, tq and t a a-event, Qppxf yq e Ă px1 f y1qq “ Qτ py
t Ă y1q ˛Qσpxq;

‚ if e “ p˚, tq and t a ‘-event, Qppxf yq e Ă px1 f y1qq “ Qσpxq ˛Qτ py
t Ă y1q;

‚ if e “ ps, tq and s a a-event, Qppxf yq e Ă px1 f y1qq “ Qτ py
t Ă y1q ˛Qσpx

s Ă x1q;

‚ if e “ ps, tq and s a ‘-event, Qppxf yq e Ă px1 f y1qq “ Qσpx
s Ă x1q ˛Qτ py

t Ă y1q.

Lemma 4.6. (Diamond lemma). For each z P C0pS f T q and e, e1 P S f T ,

Qpz
e
Ă z1q ˝Qpz1

e1
Ă z1q “ Qpz

e1
Ă z2q ˝Qpz2

e
Ă z1q

Proof. This lemma comes from the interchange law (Proposition 4.3) of ParapMq.
Let z “ pxf yq. To prove this equality, we will study the value of

D “ Qpz
e
Ă z1q ˝Qpz1

e1
Ă z1q

according to the different possibilities of the forms of e and e1.

‚ If e “ ps, ˚q and e1 “ ps1, ˚q, the functoriality of Qσ gives

Qσpx
s
Ă x1q ˝Qσpx1

s1
Ă x1q “ Qσppx

s
Ă x1q ˝ px1

s1
Ă x1qq

“ Qσpx Ď x1q

“ Qσppx
s1
Ă x2q ˝ px2

s
Ă x1qq

“ Qσpx
s1
Ă x2q ˝Qσpx2

s
Ă x1q

3Symetric monoidal category
4Here, I stands for the identity of the category M
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which, thanks to the interchange law, leads to

D “ pQσpx
s
Ă x1q ˛Qτ pyqq ˝ pQσpx1

s1
Ă x1q ˛Qτ pyqq

“ pQσpx
s
Ă x1q ˝Qσpx1

s1
Ă x1qq ˛ pQτ pyqq

“ pQσpx
s1
Ă x2q ˝Qσpx2

s
Ă x1qq ˛ pQτ pyqq

“ Qpz
e1
Ă z2q ˝Qpz2

e
Ă z1q.

The case with e “ p˚, tq and e1 “ p˚, t1q is similar by symetry.

If e “ ps, ˚q and e1 “ p˚, tq, the composition gives

Qppxf yq
ps, ˚q

Ă ppx1 f yqq ˝Qppx1 f yq
p˚, tq

Ă ppx1 f y1qq

“ pQσpx
s
Ă x1q ˛Qτ pyqq ˝ pQσpx

1q ˛Qτ py
t
Ă y1qq

“ pQσpx
s
Ă x1q ˝Qσpx

1qq ˛ pQτ pyq ˝Qτ py
t
Ă y1qq (interchange law)

“ Qσpx
s
Ă x1q ˛Qτ py

t
Ă y1q

“ pQσpxq ˝Qσpx
s
Ă x1qq ˛ pQτ py

t
Ă y1q ˝Qτ py

1qq

“ pQσpxq ˛Qτ py
t
Ă y1qq ˝ pQσpx

s
Ă x1q ˛Qτ py

1qq (interchange law)

“ Qppxf yq
p˚, tq

Ă ppxf y1qq ˝Qppxf y1q
ps, ˚q

Ă ppx1 f y1qq

and the case with e “ p˚, tq and e1 “ ps, ˚q is also similar by symetry.

If e “ ps, tq and e1 “ ps1, t1q, we have

Qppxf yq
e
Ă ppx1 f y1qq ˝Qppx1 f y1q

e1
Ă ppx1 f y1qq

“ pQσpx
s
Ă x1q ˛Qτ py

t
Ă y1qq ˝ pQσpx1

s1
Ă x1q ˛Qτ py1

t1
Ă y1qq

“ pQσpx
s
Ă x1q ˝Qσpx1

s1
Ă x1qq ˛ pQτ py

t
Ă y1q ˝Qτ py1

t1
Ă y1qq (interchange law)

“ pQσpx
s1
Ă x2q ˝Qσpx2

s
Ă x1qq ˛ pQτ py

t1
Ă y2q ˝Qτ py2

t
Ă y1qq (functoriality)

“ pQσpx
s1
Ă x2q ˛Qτ py

t1
Ă y2qq ˝ pQσpx2

s
Ă x1q ˛Qτ py2

t
Ă y1qq (interchange law)

“ Qppxf yq
e1
Ă ppx2 f y2qq ˝Qppx2 f y2q

e
Ă ppx1 f y1qq

which is the equality wanted.

Thanks to this lemma, we can define Q on each z Ď z1 by

Qpz Ď z1q “ Qpz
e1
Ă . . .

en
Ă z1q,

which is a definition by induction of the size of the covering. The Lemma 4.6 ensures that Qpz Ď z1q
does not depend on the choice of the covering.
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Proposition 4.7. The map Q is an M-enrichment of σ f τ .

Proof. The functoriality of Q comes directly from its definition. Let z Ď z1 Ď z2 P C0pS f T q. Then,

Qppz Ď z1q ˝ pz1 Ď z2qq “ Qpz Ď z1 Ď z2q

“ Qpz
e1
Ă . . .

en
Ă z1

en`1
Ă . . .

en`m
Ă z2q

“ Qpz
e1
Ă z1q ˝ ¨ ¨ ¨ ˝Qpz2

en
Ă z1q ˝Qpz1

en`1
Ă z3q ˝ ¨ ¨ ¨ ˝Qpz4

en`m
Ă z2q

“ Qpz Ď z1q ˝Qpz1 Ď z2q.

We will prove that Q fulfills the condition 1 of Definition 4.4 by induction on the size of the inclusion.
This result is trivial for the identities. Then, for z Ď z1 P C0pS f T q,

Qpz Ď z1q “ Qpz Ď z1
e
Ă z1q “ Qpz Ď z1q ˝Qpz1

e
Ă z1q

where Qpz Ď z1q has the form pHpσfτpz1zzqq
a, f,Hpσfτpz1zzqq

‘q using induction hypothesis. Now,
if e has the form ps, ˚q with s a-event, we have

Qpz1
e
Ă z1q “ Qσpx

s
Ă x1q ˛Qτ pyq “ pHσpsq, f, Iq ˛ pI, id, Iq “ pHσpsq, g, Iq.

Hence, using the induction hypothesis, Qpz Ď z1q has the form

pHpσ f τpz1zzq
aq bHσpsq, h,Hpσ f τpz1zzq

‘qq “ pHpσ f τpz1zzqaq, h,Hpσ f τpz1zzq‘q

because the only event between z1 and z1 is ps, ˚q, why is a a-event, and σfτpps, ˚qq “ σpsq. The other
cases where e has the form ps, ˚q or p˚, tq are similar. But the situation is different when e “ ps, tq. We
have not be completely formal in our definition of Q : the construction of σf τ leads to a strategy on
an event structure where some events are neutral events : they do not have a polarity. They are the
events of the form ps, tq. However, this is not a problem here, because we define Q in order to define
an enrichment for σ d τ later. Now, for this case, we will suppose that s is a ‘-event (the other case
is similar).

Qpz1
ps, tq

Ă z1q “ Qσpx
s
Ă x1q ˛Qτ py

t
Ă y1q “ pI, f,Hσpsqq ˛ pHτptq, g, Iq “ pI, h, Iq

which gives our result because e does not have a polarity so

Hpσ f τpz1zzq
aq “ Hpσ f τpz1zzqaq Hpσ f τpz1zzq

‘q “ Hpσ f τpz1zzq‘q.

Then, this induction proves that Q fulfills the first condition of Definition 4.4. For the second condition,
let z Ďa z1, such that z “ y f x and z1 “ y1 f x1. Each event between z and z1 has the form ps, ˚q or
p˚, tq with s or t a-event. Hence, x Ďa x1 and y Ďa y1, and we can then use the fact that Qσ and Qτ
are enrichments :

Qpz1q “ Qσpx
1q bQτ py

1q – Qσpxq bHσpx
1zxq bQτ pyq bHτpy

1zyq – Qpzq bHppσ f τqpz1zzqq

and we can then conclude that our construction Q gives an M-enrichment of σ f τ .
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4.3. Hiding the neutral events. Since we know now how to compose two enriched strategies with
neutral events, we will define the composition on strategies where these events are hidden. These
strategies are the "real" ones, those described in 3.3, and those that we can actually use as strategies
of a game.

Definition 4.8. Let σ and τ be two strategies, enriched by Qσ and Qτ , and Qσfτ be the enrichment
of σ f τ defined in the previous subsection. We will now define Q, on pC0pS d T q,Ďq, by :

‚ On the objects, Qpzq “ Qσfτ przsq, where rzs is the downwards closure of z in T f S.

‚ On the maps, Qpz Ď z1q “ Qσfτ przs Ď rz
1sq.

Theorem 3. The map Q is an M-enrichment of σ d τ .

Before proving this theorem, we need a technical lemma, which comes from Proposition 4.2 of
[Win17] and the fact that the union is a isomorphism from the prime configurations to the "regular"
configurations.

Lemma 4.9. For each configuration z, σ f τprzsq – σ d τpzq.

Because of this lemma, we will work up to isomorphism while constructing our categorical frame-
work

Proof of Theorem 3. The map Q is a functor, because Qσfτ is also one : for a configuration z,

Qpidzq “ Qσfτ pidrzsq – idQσfτ przsq “ idQpzq

and for three configurations z Ď z1 Ď z2,

Qpz Ď z1 Ď z2q “ Qσfτ przs Ď rz
1s Ď rz2sq “ Qσfτ przs Ď rz

1sq˝Qσfτ prz
1s Ď rz2sq “ Qpz Ď z1q˝Qpz1 Ď z2q.

Now, this functor follows the conditions of Definition 4.4 thanks to Lemma 4.9. For two configurations
z Ď z1,

Qpz Ď z1q “ pHpσ f τprz1szrzsqaq, f,Hpσ f τprz1szrzsq‘qq – pHpσ d τpz1zzqaq, f,Hpσ d τpz1zzq‘qq

which is the first condition, and if z Ďa z1 we have rzs Ďa rz1s, so

Qpz1q “ Qσfτ prz
1sq – Qσfτ przsq bHpσ f τprzsqq – Qpzq bHpσ d τpzqq.

and we can conclude that Q is an M-enrichment of σ d τ .

4.4. Enriching copycat. As we have seen before, copycat is an important strategy in the framework
of event structures, and more generally in game theory. Moreover, since we are defining a categorical
framework for general enrichment, we need to give identities, which will be enriched copycats. To
define enriched copycats, we use a proposition from [Win17], saying that for each configuration x of
CCA, if c is a ‘-event of this configuration, its negative counterpart is also in x.

Definition 4.10. Let A be an event structure with polarities. Then QccA is defined such that for each
configuration px ‖ yq P CCA,

QccApx ‖ yq “ pHpxaq bHpyaqqzpHpx‘q bHpy‘qq

where the polarity is the one in CCA. For each z Ď z1 P CCA,

QccApz Ď z1q “ pHccApz
1zzqa, id,HccApz

1zzq‘q.
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In this definition, we do not precise which identity is used, because only one can be chosen thanks
to the types.

Proposition 4.11. The map QccA is an M-enrichment of ccA.

Proof. First, we need to show that the typing is correct. For px ‖ yq Ď px1 ‖ y1q two configurations,
QccApx ‖ yq is the tensor product of the a-events such that their positive counterpart is not in x ‖ y. Let
us take such an event, e. If its positive counterpart ē appears in pz1zzq‘5, it will not appears in QccApz

1q.
But if ē appears in QccApz

1q then it can not appears in pz1zzq‘. With the same argument on pz1zzqa, we
can connect each event of QccApx ‖ yqbHccApz1zzqa to exactly one event of QccApx

1 ‖ y1qbHccApz1zzq‘
which is either the same event or its counterpart. Since Hpēq “ Hpeq, we have

QccApzq bHccApz
1zzqa “ QccApz

1q bHccApz
1zzq‘

which shows that QccA is well defined (we can use the identities)6.
The fact that QccA is a functor and that the two conditions of Definition 4.4 are fulfilled comes

directly from its definition.

4.5. The bicategory of enriched strategies. With the previous subsections, we have all the in-
gredients that we need to define a bicategory, we will connect the category of event structures with
strategies, and our enrichment.

Definition 4.12. The bicategory M-Strat of M-enriched strategies is defined by
0-cells : The polarized event structures A,B, . . .
1-cells : The pairs pQσ, σq, pQτ , τq, . . . where σ is a strategy and Qσ is an M-enrichment of σ. The
composition is defined by the composition of enrichment from Definition 4.5 and the composition of
strategies. The identities are the pairs pQccA , ccAq.
2-cells : For σ : S Ñ AK ‖ B and τ : S1 Ñ AK ‖ B two strategies, the maps between two 1-cells
pQσ, σq, pQτ , τq : A ÞÑ B consist in pϕ, fq, where ϕ is a natural transformation between Qσ and Qτ ˝f ,
so for each x Ď y the first diagram commutes, and f : S Ñ S1 such that the second diagram commutes

Qσpxq Qτ pfpxqq S S1

Qσpyq Qτ pfpyqq AK ‖ B

ϕx

QσpxĎyq Qτ pfpxqĎfpyqq σ

f

τ

ϕy

In order to ensure that we have a real bicategory, we need to show that pQccA , ccAq are identities
w.r.t. our definitions. Before that, we will need an important lemma.

Lemma 4.13. For each configuration z of CCA d S, there is a unique x P C0pSq, y P C0pAq such that
rzs “ pσx ‖ yq f x1 and σx Ďa y.

This idea behind this lemma is based on the construction of the composition with hiding (the d)
thanks to pullbacks. We have not gave this construction here, but it is made in [Win17]. Unfortunately,
I did not succeed to prove this lemma before the end of my internship.

Proposition 4.14. The 1-cell pQccA , ccAq is an identity for each A.
5we take z “ x ‖ y and z1

“ x1 ‖ y1

6It is important to remark that here we are working up to isomorphism : we do not pay attention to the order of the
tensor product.
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Proof. Let A be an enriched event structure. For pQσ, σq a 1-cell with σ : A ÞÑ B such that σ : S Ñ
AK ‖ B, let θ be such that

CCA d S S

AK ‖ B

ccAdσ

θ
–

σ

which exists since ccA is an identity for non-enriched strategies [RW11]. To prove this result, we need
to define an isomorphical natural transformation pϕzq such that

QccAdσpz1q Qσpθz1q

QccAdσpz2q Qσpθz2q

ϕz1

QccAdσpz1Ďz2q Qσpθz1Ďθz2q

ϕz2

“

QccAfσprz1sq Qσpθrz1sq

QccAfσprz2sq Qσpθ rz2sq

ϕrz1s

QccAfσp

”

z1

ı

Ď

”

z2

ı

q Qσpθ
”

z1

ı

Ďθ
”

z2

ı

q

ϕrz2s

commutes. Using Lemma 4.13, let x1 and y1 be such that rz1s “ pσx1 ‖ y1q f x1 and σx1 Ď
a y1.

With the definition of θ (which is given in [RW11] but it is more precisely described in [Win17]), we
have θrz1s “ x1 Y py1zσx1q. Moreover, since σx1 Ďa y1, we have x1 Y py1zσx1q Ďa x1, and the second
condition of Definition 4.4 implies that

Qσpθrz1sq “ Qσpx1 Y py1zσx1qq – Qσpx1q bHσpx1zpy1zσx1qqq.

But, using our description of rz1s again, we have

QccAdσpz1q “ QccAfσprz1sq “ QccAfσppσx1 ‖ y1q f x1qq “ QccApσx1 ‖ y1q bQσpx1q.

Since σx1 Ďa y1, QccApσx1 ‖ y1q “ Hpy1zσx1q, and the events of σpx1zpy1zx1qq are exactly the positive
counterpart of those in yzσx1, which leads to the fact that QccAdσpz1q – Qσpθz1q. The exact same
reasoning can be made for z2, which leads to the isomorphical natural transformation that we need,
since the diagram commutes thanks to the definition of enrichment functor.

Hence, Definition 4.12 gives a bicategory of enriched event structures and strategies, based on the
symmetric monoidal category M.

5 Conclusion

In this internship, we have studied the rich framework of event structures. A lot of notions are
presented here, such as some constructions, (pre)-strategies, the probabilistic extension, and finally
our construction for a general enrichment based on a symmetric monoidal category. We gave the
complete construction of a bicategory which enrich event structures with quantitative information.
However, some refinement could be interesting. We could try to study deterministic strategies, or
winning strategies, in terms of enriched strategies. Hence, it may extend our construction to every tool
already endowed in the framework of event structures.

The next step of this work would be to study the enrichment based on the symmetric monoidal
category of Euclidian spaces and smooth maps. This is our biggest motivation here, because we hope
that it would allow us to study learning through event structures, which is a central topic in computer
science nowadays.

5.1. Acknowledgments. I would like to thank Glynn Winskel for the time and the precious advices
that he gave me during this internship. It has been great to work on this interesting topic with him.
I am also grateful to Chris Heunen for the discussions we had, and his interest on my work.
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A Probabilistic games

In this section we present the first enrichment of event structures. We will define probabilistic
games and strategies. These definitions are very important for us. Since we want to define a general
enrichment, it is useful to see a working example of one enrichment. Moreover, we should recall this
example while using our general definition with a particular category which describe the quantitative
aspect of probability theory.

A.1. A bit of domain theory. Some topological constructions on Scott-domains will be useful in
order to define a probability on event structures. Here we recall some of these definitions and properties.

Definition A.1. Let pD,Ďq be a partial order.

‚ A set S Ď D is a directed set if for each x, y P S there is z P S such that x, y Ď z.

‚ If each directed set S Ď D has a join, D is a directed-complete partial order, or dcpo. This join
will be denoted by \S.

Thanks to this definition of dcpo, we can define the notion of Scott-domain.

Definition A.2. Let pD,Ďq be a dcpo.

‚ An element d P D is isolated (or finite), when for each directed set S Ď D such that d Ď \S,
there is s P S such that d Ď s. The set of isolated elements of D will be denoted by D0.

‚ D is said algebraic if for each d P D, the set

qd “ te P D0 | e Ď du

is directed, and \qd “ d.

‚ D is a Scott-domain if it is ω-algebraic7 and if for each S Ď D such that SÒ, X has a join
\X P D.

Now, let us define a topology on a Scott-domain : the Scott-topology. This will then give a topology
on configurations of event structures since, as we will see, they are Scott-domains.

7this notion is not studied here

https://www.cl.cam.ac.uk/~gw104/EVSTRSSFAMGAMES.pdf
https://www.cl.cam.ac.uk/~gw104/EVSTRSSFAMGAMES.pdf
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Definition A.3. Let pD,Ďq be a Scott-domain. A Scott-open of D is a subset U Ď which is upward-
closed, and such that for each directed set S Ď D, if \S P U then there is an element s P S such that
s P U . The Scott-opens of D is a topology on D, and the set of Scott-opens is denoted by OpDq.

To caracterize this topology, we can give a basis of it, which will only use the isolated elements of
the domain.

Proposition A.4. Let pD,Ďq be a Scott-domain. For each d P D we first define the following set :

pd “ td1 P D | d Ď d1u.

Then we have that tpe | e P D0u forms a basis of the Scott-topology.

Proof. To prove this property, we will show that for each U Ď D,

U is Scott-open ðñ U “
ď

tpe | e P D0 and e P Uu

which implies the proposition.
First, for each e P D0, pe is obviously open, so if U “

Ť

tpe | e P D0 and e P Uu, U is an open as
union of opens.

For the converse, for each e P U , pe Ď U because opens are upward-closed, which gives a first
inclusion. Now let d P U . Since D is algebraic, we have that d “ \qd and te P D0 | e Ď du is directed.
Using the fact that U is open, there is e P D0 such that e P U and e Ď d. Hence, d P pe, which proves
the converse.

A.1.1. The case of configurations of an event structure.

Proposition A.5. Let E be an event structure. Then pC8pEq,Ďq is a Scott-domain.

Proof. For each X Ď C8pEq such that XÒ, we have YX P C8pEq because C8pEq is a stable family,
and YX is a join for X.

Proposition A.6. Let E be an event structure. Considering C8pEq as a Scott-domain, we have

pC8pEqq0 “ C0pEq.

Proof. Let x P pC8pEqq0 and

X “

#

ď

1ďiďn

reis

ˇ

ˇ

ˇ

ˇ

ˇ

n P N, @1 ď i ď n, ei P x

+

Ď C8pEq.

It is easy to check thatX Ď C8pEq, because for Y1ďiďnreis such that each ei P x, we have te1, . . . , enu Ď
x P Con and since each reis is finite, Y1ďiďnreis P Con.

Moreover, X is directed because Y1ďiďnreis, Y1ďjďmre
1
js Ď Y1ďiďn`mreis P X with ei “ e1i´n for

each n ` 1 ď i ď n `m. In addition, x Ď \X since for each e P x, e P res P X Ď \X. Then, by
definition of isolated, there is y P X such that x Ď y. Each y P X is in C0pEq, so x P C0pEq. Hence,
pC8pEqq0 Ď C0pEq.

Now, for each e P x we have res Ď \X so e P \X. Thus, x Ď \X. Let x P C0pEq and
X Ď C8pEq directed such that x Ď \X. Since x is finite, there are n P N and e1, . . . en P E such that
x “ te1, . . . , enu. If there is ei such that ei R y for each y P X, let x1 “ p\Xqzte | ei ď eu. Then x1 is a
configuration because if e1 ď e P x1, then e1 P \X and e1 ě ei would implie that e ě ei. Hence, e1 P x1.
Moreover, each y Ď x1 because y Ď \X and y X te | ei ď eu “ ∅ because if not the down-closure of y
would give that ei P y. Thus, x1 is an upper bound of X, strictly smaller than \X, which is impossible.
Hence, for each ei P x, there is y P X such that ei P y. By an easy induction on the size of x, using
the fact that X is directed, we get C0pEq Ď pC8pEqq0.
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A.2. Probabilistic event structures.

Definition A.7. Let pE,ď, Conq be an event structure. A continuous valuation is a function w :
OpC8pEqq Ñ r0, 1s which is :

‚ normalized : wpC8pEqq “ 1;

‚ strict : wp∅q “ 0;

‚ monotone : if X Ď Y , then wpXq ď wpY q;

‚ modular : wpXq `W pY q “ wpX Y V q ` wpX X V q;

‚ continuous : if YiPIXi is a directed union8 then wpYiPIXiq “ supiPI wpXiq.

Then, pE,ď, Con,wq is a probabilistic event structure.

A.2.1. The drop functions.

Lemma A.8. Let F be a stable family. Defining FJ as F with an additional element J, FJ is a
complete lattice with, for each X Ď FJ, the join is defined as

if XÒ then
ł

X “
ď

X if not XÒ then
ł

X “ J.

The meet can be defined as
ľ

X “
ł

ty P F | @x P X, y Ď xu.

Definition A.9. Let F be a stable family and v : F Ñ R. We define vJ : FJ Ñ R by taking
vJpJq “ 0. Then, the drop functions of v are defined by, for each n P N and y, x1, . . . , xn P FJ with
y Ď x1, . . . , xn are defined by :

dp0qv ry; s “ vJpyq

dpn`1qv ry;x1, . . . xn`1s “ dpnqv ry;x1, . . . , xns ´ d
pnq
v rxn`1;x1 _ xn`1, . . . , xn _ xn`1s.

This definition is recursive, which makes hard to compute the result of a drop function. But we
can give a direct expression of these drop functions.

Proposition A.10. For v : F Ñ R, n P N and y, x1, . . . , xn P FJ with y Ď x1, . . . xn, we have

dpnqv ry;x1, . . . , xns “ vJpyq ´

¨

˝

ÿ

∅‰IĎt1,...,nu
p´1q|I|`1vJ

˜

ł

iPI

xi

¸

˛

‚.

When y, x1, . . . , xn P F , we have

dpnqv ry;x1, . . . , xns “ vpyq ´

¨

˚

˚

˝

ÿ

∅‰IĎt1,...,nu
txi|iPIuÒ

p´1q|I|`1v

˜

ď

iPI

xi

¸

˛

‹

‹

‚

.

Proof. We prove the first equality by induction on n :

dp0qv ry; s “ vJpyq “ vJpyq ´

˜

ÿ

∅‰IĎ∅
p´1q|I|`1vJ

˜

ł

iPI

xi

¸¸

loooooooooooooooooooomoooooooooooooooooooon

“0 because the sum index is empty

.

8That is when the set YiPIXi is directed.
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Now, for n P N,

dpn`1qv ry;x1, . . . xn`1s “ dpnqv ry;x1, . . . , xns ´ d
pnq
v rxn`1;x1 _ xn`1, . . . , xn _ xn`1s

“ vJpyq ´

¨

˝

ÿ

∅‰IĎt1,...,nu
p´1q|I|`1vJ

˜

ł

iPI

xi

¸

˛

‚

´ vJpxn`1q `

¨

˝

ÿ

∅‰IĎt1,...,nu
p´1q|I|`1vJ

˜

ł

iPI

pxi _ xn`1q

¸

˛

‚

“ vJpyq ´

¨

˝

ÿ

∅‰IĎt1,...,nu
p´1q|I|`1vJ

˜

ł

iPI

xi

¸

˛

‚

´ vJpxn`1q `

¨

˝

ÿ

∅‰IĎt1,...,nu
p´1q|I|`1vJ

˜

xn`1 _

˜

ł

iPI

xi

¸¸

˛

‚

“ vJpyq ´

¨

˚

˚

˝

ÿ

∅‰IĎt1,...,n`1u
n`1RI

p´1q|I|`1vJ

˜

ł

iPI

xi

¸

˛

‹

‹

‚

´ vJpxn`1q

`

¨

˚

˚

˝

ÿ

∅‰IĎt1,...,n`1u
n`1PI

p´1q|I|`2vJ

˜

ł

iPI

xi

¸

˛

‹

‹

‚

` p´1q1`1vJpxn`1q

“ vJpyq ´

¨

˝

ÿ

∅‰IĎt1,...,n`1u
p´1q|I|`1vJ

˜

ł

iPI

xi

¸

˛

‚

which proves the first statement. For the second one, if I Ď t1, . . . , nu is such that we do not have
txi | i P IuÒ, then _iPIxi “ J so vJp_iPIxiq “ 0.

From this proposition, we deduce that the order in the drop function does not matter for the result.

Corollary A.11. For each v : F Ñ R, n P N, and yseqx1, . . . , xn, and σ an n-permutation,

dpnqv ry;xσp1q, . . . , xσpnqs “ dpnqv ry;x1, . . . , xns.

A.2.2. A definition with drop functions. Using our work on drop functions, we will give a second
definition of probabilistic event structures.

Definition A.12. Let F be a stable family.

‚ A configuration-valuation on F is a function v : F Ñ r0, 1s such that vp∅q “ 1 and which respects
the drop condition (DC) :

@n P N˚, @y, x1, . . . xn P F , y Ď x1, . . . , xn ùñ dpnqv ry;x1, . . . , xns ě 0 (DC)

‚ A probabilistic stable family is a stable family F endowed with a configuration-valuation on F .

‚ A probabilistic event structure E is an event structure E endowed with a configuration-valuation
on C0pEq.
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We have two different definitions for probabilistic event structures. However, these are equivalent.

Theorem 4.

‚ A configuration-valuation v on an event structure E extends to a unique configuration-valuation
wv on the open sets of C8pEq, so that wvppxq “ vpxq, for all x P C0pEq.

‚ Conversely, a continuous valuation w on the open sets of C8pEq restricts to a configuration-
valuation vw on E, assigning vwpxq “ wppxq, for all x P C0pEq.

Now that we have extended our framework to probabilities, it is possible to extend this in order to
define probabilistic strategies. To do so, we have to be careful about polarities : defining probabilistic
event structures with polarities leads directly to a definition of probabilistic strategies. However, it
requires the definition of race-free games, which is not given here since this is not useful for the next
section.

Remark A.13. An other important example of enrichment is quantum games. This example, which is
a generalization of the probabilistic one, is not presented here.
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