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Abstract
We introduce ultrarings, which simultaneously generalize commutative rings and Boolean lextensive
categories. As such, they allow to blend together standard algebraic notions (from commutative
algebra) and logical notions (from categorical logic), providing a unifying descriptive framework
in which complexity classes over arbitrary rings (as in the Blum, Schub, Smale model) and usual,
Boolean complexity classes may be captured in a uniform way.
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1 Introduction

Descriptive complexity measures the difficulty of computational problems in terms of the
expressiveness that a logical language needs to describe them, rather than in terms of the
power that a machine needs to solve them. Initiated in the 1970s with Fagin’s theorem [14],
which provides a characterization of the class NP, it has since been extended to capture
virtually every other so-called “syntactic” complexity class [17].

Computational problems are usually defined as sets of finite objects (graphs, numbers,
programs. . . ) encoded as binary strings. Descriptive complexity regards such objects as
totally ordered finite structures of a first-order language S. A formula φ over an extension
T of S plays the role of a machine, accepting a finite structure s of S if s is a model of φ.
The more expressive T is, the more powerful the corresponding machine. Notice that T is
typically not a first-order extension: for example, NP corresponds to allowing second-order
existential quantifiers [14], and P corresponds to allowing fixpoint operators [16].

Computability and complexity may be meaningfully extended beyond finite objects. An
interesting, well-known example is Blum, Shub and Smale’s (BSS) model of computation
over the real numbers [5]. Rather than having a tape whose cells contain either 0 or 1,
BSS machines have a “tape” whose cells contain arbitrary real numbers. Usual Boolean
operations are replaced by field operations, and testing the order relation ≤ plays the role
of a conditional. Problems become sets of finite sequences of real numbers, and complexity
may be developed in the usual way, including a definition of P, NP and complete problems.

Grädel and Meer [15] showed how the descriptive approach may be applied to the BSS
model. The idea is to introduce a kind of hybrid finite structure, part logical and part
algebraic. The algebraic part takes care of the data manipulated by the machine (real
numbers and field operations), the logical part describes the discrete steps of the BSS
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10:2 Unifying Boolean and Algebraic Descriptive Complexity

machine, allowing the transfer of Fagin’s [14] and Immerman’s [16] logical characterizations
of P and NP to the BSS setting.

We provide a framework in which descriptive complexity may be uniformly formulated over
Booleans and over real numbers (or other commutative rings) using a single logico-algebraic
language. This language arises from a combination of categorical logic and commutative
algebra, taking the form of ultrarings, a new algebraic object whose introduction is the main
contribution of this paper.

To understand ultrarings, one may start from categorical logic. This is a vast subject [21,
18, 19], so we concentrate on what is relevant for our purposes. Define a Boolean lextensive
category to be a category with finite limits and finite pullback-stable disjoint coproducts
in which every subobject has a complement. A primordial example is Fin, the category of
finite sets. Call a functor preserving finite limits and finite coproducts logical. Categorical
logic gives us a correspondence between Boolean lextensive categories and classical finite-
limit theories (or cartesian theories in Johnstone’s terminology [19]). These are theories of
first-order classical logic whose axioms are closed formulas of the form ∀x1 . . . ∀xn.φ with φ

quantifier-free.1 The correspondence is as follows:
from a classical finite-limit theory T one can construct a small Boolean lextensive category
Syn(T), the syntactic category of T;
each small Boolean lextensive category B induces a classical finite-limit theory Lang(B)
such that Syn(Lang(B)) is equivalent to B;
one may define models of T in any Boolean lextensive category K, and models of T in K
correspond to logical functors Syn(T) → K.

In the last point, taking K = Fin yields finite models in the usual sense, which suggests a
categorical approach to descriptive complexity. In fact, there is a classical finite-limit theory
Str such that its finite models, modulo isomorphism, are exactly binary strings. Moreover,
an extension T of Str induces a logical functor Syn(Str) → Syn(T) (intuitively, an injection),
so if we have a binary string seen as a functor s : Syn(Str) → Fin, we may ask whether it
factors through Syn(T), which is to say whether s may be extended to a model of T. This
means that extensions of Str express computational problems (i.e., subsets of {0, 1}∗). The
results of §4.2 capture the classes P and NP as certain forms of extensions.

The above framework only expresses Boolean computation. However, the fact that
classical finite-limit theories may be regarded as presentations for their Boolean lextensive
syntactic categories is analogous to the presentation of a ring by a set X equipped with a set
S of integer polynomials with variables in X. The analogy is as follows:

each presentation (X,S) induces a commutative ring Z[X]/⟨S⟩;
each commutative ring R admits a presentation (XR, SR) such that Z[XR]/⟨SR⟩ ∼= R;
given a commutative ring k, a solution in k of the system {p = 0}p∈S is the same thing
as a ring homomorphism Z[X]/⟨S⟩ → k.

Notice how finding a model of a theory whose set of (closed) axioms is S may be seen as
“solving the system” {¬φ = 0}φ∈S , where 0 is false, so the last point still fits the analogy.

Ultrarings turn the above analogy into two instances of a common construction. That is,
ultrarings simultaneously generalize Boolean lextensive categories and commutative rings, and
we have a notion of annular theory of which classical finite-limit theories and ring presentations
are special cases. An annular theory is given by (possibly empty) sets of sorts, generators
over the sorts, and equations. The latter are formulated using polynomials, which are a
generalization of first-order formulas. Commutative rings are special “sortless” ultrarings: in

1 Actually, φ may contain provably unique existentials, but this is irrelevant at the present level of detail.
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case the are no sorts, a polynomial is exactly a polynomial in the usual algebraic sense. So
ultrarings generalize commutative rings by adding sorts, and they generalize first-order logic
by allowing ring operations on truth values.

Technically, an ultraring is a certain kind of small category (Definition 3), and the cate-
gories of commutative rings and of small Boolean lextensive categories are full subcategories
of the category of ultrarings: to see a commutative ring R as an ultraring, we take the
category of free R-modules of finite rank; to see a Boolean lextensive category B as an
ultraring, we take the Kleisli category of the partiality monad over B (see §2.2).

In particular, there is an ultraring R corresponding to the field of real numbers and an
ultraring F1 corresponding to the category of finite sets (F1 is in fact the initial ultraring).
Let K be either R or F1. We will show that there is an annular theory Str and an associated
ultraring K[Str] such that, modulo isomorphism, a morphism K[Str] → K is a finite sequence
of real numbers if K = R, or a binary string if K = F1. The former is a typical input of a
BSS machine over R, the latter of a Turing machine. This gives a first idea of how both
algebraic and Boolean data may be treated uniformly.

Computability and complexity may be expressed in ultrarings by means of algebras:
given an ultraring R, an R-algebra is (roughly) an ultraring A together with a morphism
R → A. A K[Str]-algebra A expresses a computational problem ΓK(A) as follows: a
string K[Str] → K is in ΓK(A) iff it factors through A. Our main result (Theorem 22)
identifies classes of K[Str]-algebras whose associated problems yield the standard classes RE
(recursively-enumerable), NP and P defined either in terms of BSS machines over R or in
terms of Turing machines, depending on how K is instantiated.

In logical terms, a K[Str]-algebra A may be presented by an extension T of the theory
Str, and x ∈ ΓK(A) is equivalent to the fact that x, seen as a model of Str in K, may be
extended to a model of T. This highlights a shift with respect to descriptive complexity:
rather than changing logical language for each complexity class, we fix one language (in the
Boolean case, what categorical logicians would call “finite-limit logic”) and express complexity
by means of logical extensions of Str in this same language.

The rest of the paper introduces ultrarings (§2), how they may be presented by annular
theories in the above sense (§3), and how they may be used to uniformly formulate complexity
classes over both Booleans and real numbers (§4). We conclude with some perspectives (§5).

2 Ultrarings

2.1 Main Definitions

In what follows, we often abbreviate composition of arrows f ◦ g by fg. If (C,⊗, I, γ) is
a symmetric monoidal category, where γ is its symmetry, we denote by β : I ⊗ I → I

the canonical isomorphism. By “symmetric monoidal functor” we will always mean strong
symmetric monoidal functor (i.e., tensor and unit are preserved up to iso).

A Frobenius sesquimonoid in a symmetric monoidal category is an object A equipped
with arrows δ : A → A⊗A, ε : A → I, δ∗ : A⊗A → A such that (A, δ, ε) is a commutative
comonoid, δ∗ is commutative (δ∗γA,A = δ∗), associative (δ∗(id⊗δ∗) = δ∗(δ∗ ⊗ id), left inverse
to δ (δ∗δ = idA) and verifies the Frobenius law (idA ⊗δ∗)(δ⊗ idA) = δδ∗ = (δ∗ ⊗ idA)(idA ⊗δ).

Initial objects will be denoted by 0. Recall that a (binary) coproduct diagram over an
object A is a pair of arrows ι1 : A1 → A, ι2 : A2 → A, called injections, such that, for every
f1 : A1 → B, f2 : A2 → B there is a unique arrow [f1, f2] : A → B such that [f1, f2]ιi = fi.
In that case, we write A = A1 ⊕A2.

FSCD 2025



10:4 Unifying Boolean and Algebraic Descriptive Complexity

A distributive monoidal category is a symmetric monoidal category with finite coproducts
such that, for all objects A,B,C, A⊗ 0 is initial and the arrow χA,B,C := [idA ⊗ ι1, idA ⊗ ι2] :
(A⊗B) ⊕ (A⊗ C) → A⊗ (B ⊕ C) is an isomorphism.

Recall that an initial object which is also terminal is called a zero object and that any
category with a zero object has, for any pair of objects A,B, a zero morphism 0A,B : A → B

obtained by composing the terminal and initial arrows A → 0 → B. Also, for any pair of
objects A1, A2, the category has coinjections2 defined by:

ι∗1 := [idA1 , 0A2,A1 ] : A1 ⊕A2 → A1, ι∗2 := [0A1,A2 , idA2 ] : A1 ⊕A2 → A2.

It immediately follows that these verify

ι∗i ιj =
{

idAi
if i = j

0Aj ,Ai
if i ̸= j.

(1)

▶ Definition 1. A δ∗-category is a distributive monoidal category (C,⊗, I, γ) with a zero
object such that each object A is equipped with a Frobenius sesquimonoid structure δA, εA, δ

∗
A

satisfying, for every objects A,B,A1, A2,

δA⊗B = (idA ⊗ γA,B ⊗ idB)(δA ⊗ δB) εA⊗B = β(εA ⊗ εB) δI = β−1,

δ∗
A⊗B = (δ∗

A ⊗ δ∗
B)(idA ⊗ γA,B ⊗ idB) εI = idI δ∗

I = β,

δ∗
A1⊕A2

(ιi ⊗ ιj) =
{
ιiδ

∗
Ai

if i = j

0Ai⊗Aj ,A1⊕A2 if i ̸= j
δA1⊕A2ιi = (ιi ⊗ ιi)δAi εA1⊕A2ιi = εAi ,

and such that, for all f, g : A⇒ B, δ∗
B(f ⊗ id) = δ∗

B(g ⊗ id) implies f = g.
A morphism F : C → D of δ∗-categories is a finite-coproduct-preserving symmetric

monoidal functor with structural isomorphisms φA,B : FA⊗FB → F (A⊗B) and ψ : I → FI

such that, for each object A of C, FδA = φA,AδF A, Fδ∗
A = δ∗

F Aφ
−1
A,A and FεA = ψεF A.

In the sequel, subscripts such as those in idA, δA, εA . . . will be dropped when unambigu-
ously retrievable from the context.

▶ Lemma 2. In a δ∗-category, coinjections are jointly monic.

Proof. See §A.1. ◀

By the above lemma, for every arrows f1 : B → A1, f2 : B → A2 of a δ∗-category, there
is at most one arrow ⟨f1, f2⟩ : B → A1 ⊕A2, which we call pairing, such that ι∗i ⟨f1, f2⟩ = fi.
Some pairings automatically exist. For instance, by (1), ι1 : A1 → A1 ⊕ A2 is the pairing
⟨idA1 , 0A1,A2⟩ and dually for ι2. The pairing ⟨0B,A1 , 0B,A2⟩ is simply 0B,A1⊕A2 . More subtly,
the inverse χ−1

A,B1,B2
of the distributivity isomorphism is the pairing ⟨idA ⊗ ι∗1, idA ⊗ ι∗2⟩,

which can be deduced using the fact that injections into a coproduct are jointly epic.

▶ Definition 3. An ultraring is a small δ∗-category such that:
1. disjoint pairings: for every f : C → A and g : C → B, if (f ⊗ g)δ = 0 then their pairing

⟨f, g⟩ exists;
2. complements: for every p : A → I such that (p⊗ p)δ = p, there exist a unique p : A → I

such that (p⊗ p)δ = 0 and ∇⟨p, p⟩ = ε, where ∇ : I ⊕ I → I is the codiagonal.

A morphism of ultrarings is just a morphism of δ∗-categories. We denote by URing the
strict 2-category whose objects are ultrarings, whose arrows are morphisms between them and
whose 2-cells are monoidal natural transformations.

2 We refer to these as coinjections rather than projections to avoid the reader assuming that the coproducts
are also products.
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2.2 Examples of Ultrarings
Let R be a commutative ring. We denote by UR the category of free R-modules of finite
rank, and linear maps between them. This may be equivalently described as the category
whose objects are natural numbers and whose arrows n → m are m× n matrices (m rows, n
columns) with coefficients in R, and where composition is matrix multiplication.

This category is distributive monoidal: the (strict) monoidal structure is given by
multiplication of natural numbers for objects and by the standard tensor product of matrices
(also known as Kronecker product) for morphisms. Coproduct is addition and 0 is easily seen
to be a zero object. The Frobenius sesquimonoid structure is as follows: δn is the n2 × n

matrix whose i-th column has the element 1 at position n(i− 1) + i and is zero everywhere
else; εn is the row matrix (1 . . . 1); and δ∗

n is the transpose of δn.
Under matrix addition, UR is actually an additive category, which means it has biproducts,

so point (1) of Definition 3 is immediate. For what concerns point (2), any p : n → 1 is a
row matrix (p1 . . . pn), and the condition (p ⊗ p)δ = p amounts to p2

i = pi for all i. It is
then a matter of elementary calculations to show that p := (1 − p1 . . . 1 − pn) is the unique
morphism n → 1 verifying (p⊗ p)δ = 0 and ∇⟨p, p⟩ = ε. So UR is an ultraring.

A ring homomorphism h : R → S induces a morphism of ultrarings Uh : UR → US
by applying h pointwise to matrices. It is well known (see for instance [7]) that every
symmetric monoidal, finite-coproduct-preserving functor UR → US is monoidally isomorphic
to a functor of the form Uh for some h : R → S. Therefore, if we consider the category of
commutative rings CRing to be a 2-category in which every hom-category is discrete, this
defines a 2-functor U : CRing → URing, and we have:

▶ Proposition 4. U : CRing ↪→ URing is fully faithful.

Let Fin∗ be the category of finite sets and partial functions. Observe that the cartesian
product induces a symmetric monoidal structure on Fin∗ (which is not a categorical product),
whose unit is the singleton set {∗}, and that Fin∗ is obviously distributive (coproducts are
disjoint unions) and has a zero object (the empty set). A Frobenius sesquimonoid structure
may be defined by letting δA : A → A×A be the diagonal, εA : A → {∗} be the unique total
function and δ∗

A : A×A → A be the function which is defined on (a, a′) exactly when a = a′.
We invite the reader to check that, if f : C → A and g : C → B are partial functions,

the condition (f ⊗ g)δ = 0 amounts to the domains of f and g being disjoint. In that case,
the pairing ⟨f, g⟩ : C → A ⊕ B is the evident partial function whose domain is the union
of the domains of f and g. Furthermore, observe that any partial function p : A → {∗}
satisfies (p⊗ p)δ = p, and corresponds to a subset P ⊆ A. The partial function p : A → {∗}
corresponding to the complement of P is easily seen to be the unique one verifying the
desired properties of point (2) of Definition 3.

The above shows that Fin∗ has the structure of an ultraring, except that it is not small.
This is easily fixed: let F1 be the category whose objects are natural numbers and whose
arrows n → m are partial functions {1, . . . , n} → {1, . . . ,m}, or equivalently, m×n matrices
with coefficients in {0, 1} such that 1 appears at most once in each column. As a skeleton of
Fin∗, F1 is an ultraring. In fact, it is the initial ultraring: since F1 is generated under finite
coproducts by the monoidal unit 1 and its identity arrow, any finite-coproduct-preserving
functor F : F1 → R with R an ultraring is determined by the image of 1; since morphisms of
ultrarings are monoidal, F1 ∼= I and URing(F1,R) is equivalent to the terminal category.

Observe that Fin∗ is the Kleisli category of the partiality monad −+{∗} over the category
Fin of finite sets and total functions. This is a special case of a more general situation. A
category is lextensive if it has finite limits and disjoint, pullback-stable finite coproducts.

FSCD 2025



10:6 Unifying Boolean and Algebraic Descriptive Complexity

A lextensive category is called Boolean if every subobject has a complement; see [8]. A
primordial example is Fin. In fact, for what concerns finite limits and finite coproducts, the
objects of Boolean lextensive categories may be thought of as sets and their arrows as total
functions. In particular, if B is a Boolean lextensive category whose terminal object is 1, the
endofunctor − + 1 is a monad and the Kleisli category B∗ may again be seen as a category of
“sets and partial functions”. The Kleisli categories of the partiality monad on small Boolean
lextensive categories may be characterized as certain ultrarings, which we introduce below.

▶ Definition 5. An ultraring is Boolean if every arrow f satisfies δf = (f ⊗ f)δ and if for
every p : A → I there exists a unique coproduct diagram (ιp, ιp) over A such that p = ει∗p,
ιp = ιp and, for every arrow f , ιεf = (id ⊗ ε)ιεδ∗(f⊗id).

In the following, we denote by BoolURing the full sub-2-category of URing on Boolean
ultrarings, and by BoolLext the 2-category of small Boolean lextensive categories, finitely
continuous functors which preserve finite coproducts, and natural transformations.

▶ Proposition 6. The categories BoolURing and BoolLext are equivalent.

Proof. We omit this proof due to space constraints. ◀

3 Annular Theories and Models

3.1 Presentations of Ultrarings
Having introduced the motivating examples of ultrarings, we now wish to provide presentations
of these objects, which will subsequently enable us to perform essential constructions on
them, as well as providing the basis for a syntax having a natural semantics in ultrarings.

▶ Definition 7. A signature S is a pair (Sort(S),Gen(S)) such that:
Sort(S) is a set of sorts. A tensor of arity n is a sequence of n sorts A1 ⊗ · · · ⊗An. The
unique tensor of arity 0 is denoted by I.
Gen(S) is a set of generators, each with a type g : T →

⊕k
j=1 Uj where T,Uj are tensors.

We fix a countably infinite set of variables, ranged over by x, y, z. . . and we use x⃗, y⃗,. . . to
denote finite sequences of variables. Given a signature S, the monomials over S are defined
as follows:

p, q ::= (x =A y) | (gj(x⃗) = y⃗) | 1 | p | pq | ∫xp,

where A ranges over Sort(S), g : T →
⊕k

j=1 Uj ranges over Gen(S), 1 ≤ j ≤ k and the length
of x⃗ and y⃗ matches that of T and Uj , respectively. We write gj(x⃗), (gj = y⃗) and gj rather than
(gj(x⃗) =), (gj() = y⃗) and (gj() =), respectively. We abbreviate (x1 =A1 y1) · · · (xn =An

yn)
to (x⃗ =A⃗ y⃗). The notation ∫xa is a binder: x is bound in a and is subject to the usual
renaming conventions. If x⃗ = x1, . . . , xn, we write ∫⃗xa for ∫x1 · · · ∫xn

a. When x⃗ is empty, ∫⃗xa

is just a. We call a monomial positive if it contains no instances of the negation operator p.
Monomials generalize logical formulas. Intuitively, in the Boolean case, the monomials 1,

p, pq and ∫xp could be written ⊤, ¬p, p∧ q, ∃x.p, and the monomial (gj(x⃗) = y⃗) corresponds
to a relation symbol gj(x⃗, y⃗) satisfying that gj(x⃗, y⃗) ∧ gj(x⃗, z⃗) implies y⃗ = z⃗, i.e., a functional
relation. The equality monomial (x =A y) is already a standard Boolean formula.

A pre-polynomial is a formal finite sum of monomials, with 0 representing the empty
sum. We can extend the operations of multiplication and integration in the definition of
monomials (the last two operations) to pre-polynomials by assuming distributivity and
linearity, respectively.
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i ∈ {1, 2}
xi : A ⊢ (x1 =A x2) :: x3−i : A

g : T →
⊕k

j=1 Uj 1 ≤ j ≤ k

x⃗ : T ⊢ (gj(x⃗) = y⃗) :: y⃗ : Uj ⊢ 1 ::
Γ ⊢ p :: ∆

Γ, x : A ⊢ p :: ∆

Γ, x : A, y : A ⊢ p :: ∆
Γ, x : A ⊢ p[x/y] :: ∆

Γ ⊢ p :: ∆, x⃗ : T x⃗ : T,Γ′ ⊢ q :: ∆′

Γ,Γ′ ⊢ ∫⃗xpq :: ∆,∆′
Γ ⊢ p :: ∆, x : A
Γ, x : A ⊢ p :: ∆

Γ ⊢ p ::
Γ ⊢ p ::

Figure 1 Monomials in context. We omit a rule allowing to permute type assignments in contexts.

∫x∫yp ≈Γ ∫y∫xp ∫y(x = y) ≈Γ,x:A 1
(x =A y)p ≈Γ,x:A,y:A (x =A y)p[x/y] (x =A x) ≈Γ,x:A 1
(x =A y) ≈Γ,x:A,y:A (y =A x) p+ p ≈Γ 1

∫xpq ≈Γ p∫xq if x is not free in p

Figure 2 Basic equations for congruences on pre-polynomials. p[x/y] denotes usual substitution.

A context is a finite list of type assignments of the form x : A where x is a variable
and A a sort, such that no variable appears twice. If x⃗ = x1, . . . , xn is repetition-free and
T =

⊗n
i=1 Ai, we also write the context x1 : A1, . . . , xn : An as x⃗ : T . In particular, in x⃗ : I

the sequence x⃗ is empty. If Γ and ∆ are contexts, Γ,∆ denotes their concatenation (the
variables appearing in each are assumed disjoint).

A monomial-in-context is an expression of the form Γ ⊢ p :: ∆, where p is a monomial and
Γ and ∆ are contexts, which is derivable by means of the inductive rules of Fig. 1. If Γ ⊢ p :: ∆
is derivable, we say that p is well-typed, that Γ is a domain for p and that the context Γ,∆
matches p. Note that, thanks to the penultimate rule of Fig. 1, any context matching p is
also a domain for it. Pre-polynomials-in-context are defined similarly, adding a rule to derive
Γ ⊢

∑
i∈I pi :: ∆ whenever Γ ⊢ pi :: ∆ is derivable for all i ∈ I (in particular, Γ ⊢ 0 :: ∆

is derivable for any Γ,∆). From now on, we will only consider well-typed monomials and
pre-polynomials.

A congruence is a context-indexed family of equivalence relations ≈ := (≈Γ)Γ on pre-
polynomials matching Γ, closed under associativity and commutativity of multiplication pq,
neutrality of 1, every equation of Fig. 2 and such that:

p ≈Γ q implies p ≈Γ q, pr ≈Γ qr for all r matching Γ and p ≈Γ′ q for every context Γ′

including the assignments of Γ, possibly in a different order;
p ≈Γ,x:A q implies ∫xp ≈Γ ∫xq;
p ≈Γ q iff p+ r ≈Γ q + r for any r matching Γ (we call this cancellativity).

Given a set S of equations of the form p ≈Γ q where p, q are pre-polynomials matching Γ,
the congruence generated by S is the smallest congruence containing the equations of S.

In the sequel, if ≈ is a congruence and we write p ≈ q, we mean p ≈Γ q for every Γ
matching both p, q.

▶ Lemma 8. For any congruence ≈ and any pre-polynomial p, p2 ≈ p iff pp ≈ 0. Moreover,
either condition implies p2 ≈ p.

Proof. See §A.1. ◀

Given a congruence ≈ over a signature S, we define ≈-compatibility to be the context-
indexed family of smallest symmetric relations ⌢Γ on monomials of S closed under the rules

FSCD 2025



10:8 Unifying Boolean and Algebraic Descriptive Complexity

pq ≈Γ,∆ 0
p ⌢Γ q (gj(x⃗) = y⃗) ⌢x⃗:T,∆ (gj′(x⃗) = y⃗′)

j ̸=j′

p ⌢x⃗:T q

∫⃗x,y⃗spr ⌢Γ ∫⃗x,z⃗tqr
(∗)

p′ ≈Γ,∆ p p ⌢Γ q q ≈Γ,∆ q′

p′ ⌢Γ q
′

Figure 3 Compatibility of pre-polynomials. The side condition (∗) is: Γ, y⃗ : U, z⃗ : V (for some
U, V ) are domains for r, s, t, respectively, and x⃗ are the outputs of r.

of Fig. 3 such that p ⌢Γ q implies that Γ is a domain for both p and q. We write p ⌢ q to
mean p ⌢Γ q for every Γ which is a domain for both p and q.

A ≈-polynomial (or simply polynomial when this is unambiguous) is a pre-polynomial p
such that there exists Γ such that q ⌢Γ r for all monomials q, r of p and such that, whenever
the expression q appears in p, we have q2 ≈ q.

▶ Definition 9. An annular theory T (which we abbreviate to theory in the remainder)
is a triple (Sort(T),Gen(T),Eq(T)) where (Sort(T),Gen(T)) is a signature and Eq(T) is a
well-founded set of equations of the form p ≈Γ q where p, q are pre-polynomials matching Γ,
such that, calling such an equation e, we have that p and q are ≈-polynomials with ≈ the
congruence generated by the equations of Eq(T) strictly below e in the order. We denote by
≈T the congruence generated by Eq(T).

▶ Definition 10. A ≈-matrix (or simply matrix) of type
⊕

k∈K x⃗k : Tk →
⊕

j∈J y⃗
j : Uj con-

sists of a (J×K)-indexed family of ≈-polynomials-in-context
(
x⃗k : Tk ⊢ pjk :: y⃗j : Uj

)
(j,k)∈J×K

which we abbreviate to (pjk), such that,

for every j ̸= j′ ∈ J , k ∈ K, and monomials r in pjk and r′ in pj′k, r ⌢x⃗k:Tk
r′. (†)

We always identify ≈-matrices whose entries are equal modulo ≈.

▶ Lemma 11. Let (pjk) and (qhj) be ≈-matrices of type
⊕

k∈K x⃗k : Tk →
⊕

j∈J y⃗
j : Uj and⊕

j∈J y⃗
j : Uj →

⊕
h∈H z⃗h : Vh, respectively. Then, the family of pre-polynomials-in-context

indexed by H × J defined by

(q ◦ p)hk :=

x⃗k : Tk ⊢
∑
j∈J

∫y⃗jqhjpjk :: z⃗h : Vh


(h,k)∈H×K

is a ≈-matrix of type
⊕

k∈K x⃗k : Tk →
⊕

h∈H z⃗h : Vh.

Proof. See §A.1. ◀

Let T be a theory. We define a category F1[T] as follows:
the objects are formal finite coproducts

⊕
j∈J x⃗

j : Tj of contexts of T, modulo injective
renaming of variables.
If A :=

⊕
k∈K x⃗k : Tk and B :=

⊕
j∈J y⃗

j : Uj , F1[T](A,B) is the set of ≈T-matrices of
type A → B.
Composition is given by Lemma 11, and idA is the diagonal matrix indexed by K ×K

which, at position (k, k), is equal to (x⃗k =Tk
z⃗k), where we used the fact that, since

objects are defined up to variable renaming, by renaming each xk
h to zk

h, we may write A
as

⊕
k∈K z⃗k : Tk.
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As defined, F1[T] is not small, because the finite sets indexing the objects are arbitrary.
This may be circumvented by restricting to finite subsets of a fixed, countably infinite set of
indices. We leave this implicit for notational convenience, but treat F1[T] as a small category.

▶ Proposition 12. F1[T] is an ultraring.

Proof. We spell out the required structures and properties, without entering into the details.
Here “polynomial”, “matrix”, etc. mean ≈T-polynomial, ≈T-matrix, etc.

Let A :=
⊕

j∈J x⃗
j .Tj and B :=

⊕
k∈K y⃗k.Uk be generic objects of F1[T]. The (strict)

symmetric monoidal structure of F1[T] is given by A ⊗ B :=
⊕

(j,k)∈J×K x⃗j y⃗k.Tj ⊗ Uk on
objects, with I as unit. On morphisms, tensor is matrix product, valid by a similar argument
to the proof of Lemma 11, but without the integrals. The empty sum 0 is a zero object,
the all-zero matrix of suitable size is the zero morphism between any two objects. The
coproduct of A and B (where we may suppose J ∩K = ∅ and x⃗j , y⃗k to be disjoint) is given
by

⊕
l∈J∪K z⃗l.Vl, where z⃗l and Vl are equal to x⃗j and Tj (resp. y⃗k and Uk) if l ∈ J (resp.

l ∈ K). This obviously satisfies strict distributivity. The injections ι1, ι2 are the block column

matrices
(

id
0

)
and

(
0
id

)
, respectively, whereas the copairing of two matrices P,Q is the

block row matrix (P Q).
For what concerns the Frobenius sesquimonoid structure, δA is the matrix indexed over

J2 × J whose column for j ∈ J has the element (x⃗j = y⃗j)(x⃗j = z⃗j) at position (j, j) and is
zero everywhere else, where we are renaming variables so that A⊗A =

⊕
j,j′∈J y⃗

j z⃗j′
.Tj ⊗Tj′ .

εA is the row matrix which is equal to the monomial 1 everywhere. δ∗
A is the transpose of δA.

Thanks to the above definition, elementary calculations show that, if P = (pkj)j∈J,k∈K

and Q = (qlj)j∈J,l∈L are matrices corresponding to morphisms A → B and A → C for some
other object C (indexed by L, which we may supposed to be disjoint from K even if C = B),
then (P ⊗Q)δA ≈T 0 is equivalent to asking that, for all j ∈ J , k ∈ K and l ∈ L, we have

pkjqlj ≈T 0, which implies pkj ⌢ qlj , so we may form the block column matrix R :=
(
P

Q

)
(with K ∪ L rows and J columns). The reader may check that the coinjections are the block
row matrices (id 0) and (0 id), so R is the (unique) pairing of P,Q, as desired.

Let now P = (pk)k∈K be a matrix of type A → I. This means that P is a row matrix, and
elementary calculations show that (P ⊗P )δ ≈T P is equivalent to asking that p2

k ≈T pk for all
k ∈ K, so we are allowed to consider the polynomials pk and define P := (pk)k∈K . We need
to show that (P ⊗P )δ ≈T 0. By similar calculations as above, this is equivalent to pkpk ≈T 0
for all k ∈ K, which holds by Lemma 8. We are left with proving that ∇⟨P, P ⟩ ≈T ε. Notice
that, in general, ∇⟨Q,R⟩ = Q+ R as matrices. This sum exists because, as shown above,

⟨Q,R⟩ is the block column matrix
(
Q

R

)
. So we need to show that pk + pk ≈T 1 for all

k ∈ K, but this is one of the equations of Fig. 2. ◀

3.2 Models and the Canonical Theory
The term ‘annular theory’ in Definition 9 is not merely an analogy with logic: it is chosen so
that ultraring morphisms out of F1[T] become models of T, in a sense that we now establish.

▶ Definition 13. Given a signature S and an ultraring A, an S-structure in A consists of:
An assignment M0 : Sort(S) → ob(A). This extends to an assignment on tensors given
by M0(

⊗
i Ai) :=

⊗
i M0(Ai).

An assignment M1 : Gen(S) → mor(A) such that if g : T → U then M1(g) : M0(T ) →
M0(U).
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For S-structures M,M ′ in A, a homomorphism m : M → M ′ consists of a collection
of morphisms mX : M0(X) → M ′

0(X) in A indexed by X ∈ Sort(S) such that for each
g :

⊗
i Ai →

⊗
j Bj ∈ Gen(S), M1(g);

⊗
j mBj

=
⊗

i mAi
;M ′

1(g).

Given a theory T over a signature S and a S-structure M , we can define an interpretation
over M of any ≈T-polynomial-in-context, as detailed in §A.2. The notion of model is then
defined in the expected way:

▶ Definition 14. Let T be a theory over signature S and A an ultraring. A model of
T in A is a S-structure M in A such that for each equation p ≈Γ,∆ q of T, we have
M(Γ ⊢ p :: ∆) = M(Γ ⊢ q :: ∆).

For models M,M ′ of T in A, a homomorphism M → M ′ is simply a homomorphism of
S-structures. We denote by T-Mod(A) the category of models of T in A and homomorphisms
between them.

▶ Proposition 15. Let T be a theory. There is an A-natural equivalence of categories
T-Mod(A) ≃ URing(F1[T],A).

Proof. See §A.2. ◀

Proposition 15 implies in particular the existence of a generic model of any annular theory
T, corresponding to the identity functor on F1[T], of which a model in any ultraring is an
image by naturality.

If Proposition 12 shows us that we can generate ultrarings from theories, it may not be a
surprise that every ultraring arises in this way up to equivalence.

▶ Definition 16. We define the canonical theory of an ultraring R to be the theory T where:
Sort(T) = ob(R), where we denote the sort corresponding to A by ⌜A⌝;
Gen(T) has a generator ⌜g⌝ :

⊗
j∈J⌜Aj⌝ →

⊕
k∈K

⊗
l∈Lk

⌜Bk,l⌝ for each morphism
g :

⊗
j∈J Aj →

⊕
k∈K

⊗
l∈Lk

Bk,l in R,3

Eq(T) consists of equations:
(⌜id⌝(x⃗) = y⃗) ≈ (x⃗ = y⃗) for ⌜id⌝ :

⊗
j∈J⌜Ai⌝ →

⊗
j∈J⌜Ai⌝,∫

y⃗
(⌜f⌝(x⃗) = y⃗)(⌜g⌝(y⃗) = z⃗) ≈ (⌜gf⌝(x⃗) = z⃗) for composable f, g in R (with no

coproduct decomposition of the codomains).
(⌜ι∗jg⌝(x⃗) = y⃗) ≈ (⌜g⌝j(x⃗) = y⃗).
(⌜f ⊗ g⌝(x⃗, u⃗) = y⃗, v⃗) ≈ (⌜f⌝(x⃗) = y⃗)(⌜g⌝(u⃗) = v⃗).
(⌜0⌝(x⃗) = y⃗) ≈x⃗:T,y⃗:U,Γ 0, for any typing of ⌜0⌝.
(⌜δ⌝(x⃗) = x⃗1, x⃗2) ≈ (x⃗ = x⃗1)(x⃗ = x⃗2)
⌜ε⌝(x⃗) ≈x⃗:T,Γ 1
(⌜δ∗⌝(x⃗1, x⃗2) = x⃗) ≈ (x⃗1 = x⃗)(x⃗2 = x⃗).

▶ Theorem 17. Let R be an ultraring and T its canonical theory, as defined in Definition 16.
Then R ≃ F1[T].

Proof. See §A.2. ◀

3 This is a mild abuse of notation, since the name ⌜g⌝ can refer to multiple generators depending on
how the domain and codomain are decomposed. When not specified, the type will be the one with the
minimal decomposition.
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3.3 Examples of Annular Theories
In what follows, we let K denote either F1 or the ultraring corresponding to a commutative
ring R with no non-trivial idempotent, i.e., in which r2 = r implies r ∈ {0, 1} for all r ∈ R.
Examples include any field or, more generally, any integral domain such as Z.

We define a predicate of a theory T to be a ≈T-polynomial p : T → I such that p2 ≈T
x⃗:T p.

Observe that, if M is a model of T in K, then M(p) must be a row vector of zeros and ones:
the equation p2 ≈T

x⃗:T p becomes (M(p) ⊗M(p))δT = M(p), and we already observed that
this is equivalent to all entries of M(p) being idempotent. Furthermore, M(T ) = I⊕n for
some n (all objects of K are of this form). If we see M(T ) as the set {1, . . . , n}, M(p) may
be identified with the subset of M(T ) of all i such M(p)i = 1, justifying the terminology.

Predicates are closed under Boolean logic: 0 and 1 are predicates; if p and q are predicates,
then pq and p are predicates (Lemma 8). Also, by the second row of Fig. 2, (x =A y) is always
a predicate: (x =A y)2 ≈x:A,y:A (x =A y)(x =A x) ≈x:A,y:A (x = y). Moreover, models in
K are consistent with Boolean logic: if M and p are as above, M(0) = ∅, M(1) = M(T ),
M(pq) = M(p)∩M(q), M(p) = M(T )\M(p) and M(x⃗ =T y⃗) is the diagonal of M(T )×M(T ).

In the sequel, when we say that a generator P is a predicate over T , we mean that
P : T → I and that the equation P 2 ≈T

x⃗:T P is added to the theory. By the above, a
monomial φ consisting entirely of generators which are predicates is like a Boolean formula
and, if x⃗ : T matches φ, we may impose that ∀x⃗.φ holds by adding the equation φ ≈x⃗:T 1.

For example, we define the theory Ord with one sort N and one predicate ≤ over N ⊗N

with equations making ≤ is a total order. We write (x ≤ y) rather than ≤(x, y). A model of
Ord in K is precisely a finite total order; modulo iso, we may assume it to be of the form
[n] := {1 < · · · < n}. The theory Str is obtained from Ord by adding a generator X : N → I

with no further equations. A model s of Str in K is a finite total order indexing a row vector
s(X) of zeros and ones if K = F1, or of elements of R otherwise. In other words, s represents
a binary string when K = F1, or a string of elements of R otherwise. We denote the i-th
bit/element by s(X)i.

4 Computation

4.1 Computability over Ultrarings
Let K be as in §3.3. A K-string is a binary string if K = F1, or a string over elements of R
otherwise. A K-problem is a set of K-strings.

We define K-operations to be the following functions R × R → R, where R is {0, 1} if
K = F1 or the underlying ring of K otherwise: F1-operations are conjunction, the constant
function 1 and the function negating the first bit and discarding the second; otherwise,
K-operations are constant functions, addition and multiplication of R and, in case R is a
field, also division (the value of a division by zero is chosen arbitrarily). We also define
TestK ⊆ R to be the set of non-negative elements when R is Z, Q or R, or {0} otherwise.

▶ Definition 18. A K-RAM, where RAM stands for random access machine, is a (possibly
empty) list I0, . . . , Im−1 of instructions, m ∈ N, chosen among: comp(op) where op is
a K-operation (a computation); zeror, zerow, incr or incw (an update); branch(l) where
0 ≤ l ≤ m+ 1; and copy.

A configuration of the machine is a tuple (i, s, r, w) where 0 ≤ i ≤ m+ 1, s is a K-string,
whose j-th element is denoted by sj and said to be the content of register j, and r, w ∈ N.
The initial configuration is (0, s, 0, 0), where s is the input of the machine. On configuration
(i, s, r, w), the machine acts as follows. If 0 ≤ i ≤ m − 1, then the next configuration c is
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determined according to Ii (the string s is considered to be padded with infinitely many 0’s
on the right, so sj is defined for all j ∈ N):

Ii = comp(op): c is (i+ 1, s′, r, w), where s′
0 = op(s0, s1), and s′

j = sj for all j > 0;
Ii = branch(l): c is (l, s, r, w) if s0 ∈ TestK or (i+ 1, s, r, w) otherwise;
Ii = copy: c is (i+ 1, s′, r, w) where s′

w = sr and s′
j = sj for all j ̸= w;

Ii = zeror, zerow, incr or incw: c is (i + 1, s, 0, w), (i + 1, s, r, 0), (i + 1, s, r + 1, w) or
(i+ 1, s, r, w + 1), respectively.

Otherwise, the machine accepts if i = m and rejects if i = m+ 1.

It is immediate to see that a K-RAM with K one of Z, Q or R is equivalent to a BSS
machine [5] over those rings, modulo a polynomial slowdown (because computation steps
of BSS machines are rational functions of arbitrary finite arity). On the other hand, an
F1-RAM is obviously equivalent to a deterministic Turing machine on the alphabet {0, 1}.

The notion of acceptance/decision of a K-problem by a K-RAM is as usual. A polytime
K-RAM is a K-RAM which always terminates in polynomially many steps in the size of the
input. We denote by REK the class of K-problems accepted by a K-RAM, by PK the class
of K-problems decided by a polytime K-RAM, and by NPK the class of K-problems which
are projections over the first component of a K-problem in PK whose K-strings encode pairs
(s1, s2) such that the length of s2 is polynomially bounded by the length of s1. By the above
observations, REF1 , PF1 and NPF1 are the usual classes RE, P and NP, whereas RER, PR and
NPR are the usual classes defined using the BSS model [5].

By contrast, PZ and NPZ do not coincide with the corresponding BSS classes. Indeed,
BSS sort of “tweak” their definition of computability over Z in order to recover the usual,
Boolean P and NP: they consider an integer to have size equal to its representation as a
binary string. We do not need to do this, as we use F1 to capture Boolean computation.

4.2 Capturing Complexity Classes
Let R be an ultraring. We define an R-algebra to be an ultraring A equipped with a structure
map R′ → A and an equivalence R′ ≃ R. Typical examples are given by extensions of
theories: if T is defined by adding sorts and/or generators and/or equations to a theory S,
then there is an obvious inclusion functor F1[S] → F1[T], mapping every object and morphism
of F1[S] to “itself”, making F1[T] into an F1[S]-algebra, with equality as equivalence. In
general, if R is presented by S with a chosen equivalence e : F1[S] ≃ R, and if T extends S,
to make it clear that we are viewing F1[T] as an R-algebra with inclusion as structure map
and equivalence e, we write R[T \ S] rather than F1[T].

For example, if K is as in §3.3, we may fix a presentation TK of K and an equivalence
F1[TK] ≃ K (taking TF1 to be the empty theory), and add to TK the sort, generators, and
equations of Str, obtaining a theory StrK (so StrF1 = Str) and a K-algebra that we denote
by K[Str], which is equal to F1[StrK] with structure map the inclusion of F1[TK] ≃ K.

▶ Definition 19. Let A be an F1[Str]-algebra with structure map f : S → A and equivalence
e : S → F1[Str]. We say that A accepts a K-string s if any morphism F1[Str] → K
corresponding to s as a model of Str in K (via Proposition 15) factors through f , modulo
isomorphism. That is, given a morphism g : F1[Str] → K representing s, there exists a
morphism h : A → K and a monoidal natural isomorphism between g ◦ e and h ◦ f . We
denote by ΓK(A) the set of K-strings accepted by A.

Notice that the above definition does not depend on the choice of g representing s: if h exists
for some g, then it exists for all g′ representing s, because in that case g′ ∼= g and therefore
g′ ◦ e ∼= g ◦ e ∼= h ◦ f as well.
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Also observe that, by initiality of F1, every K[Str]-algebra is an F1[Str]-algebra. Moreover,
if K has no non-identity endomorphism (for instance, if K is Z, Q, R or Fp with p prime or
1), K-strings still correspond to morphisms K[Str] → K. In this case, the above definition
may be equivalently formulated by speaking of K[Str]-algebras. Concretely, if A = K[T],
a K-string s, seen as a model of Str in K, is in ΓK(A) iff we may extend it to a model in
K of Str augmented with the extra sorts, generators and equations of T. This is how the
definition is applied in the statement of Theorem 22 below. The above definition is more
general because, if K has non-trivial endomorphisms (for example K = C), a morphism
K[Str] → K may not correspond to a K-string, but a morphism F1[Str] → K always does.

We say that an R-algebra of the form R[T] is
of finite presentation if T is finite (finitely many sorts, generators and equations are
added);
plain if T has no sorts (no sorts are added).

The latter terminology is justified by the fact that plain R-algebras are algebras in the usual
sense when R is a commutative ring.

Let T be a tensor of a theory T. We say that is it a chain if there exist a predicate (as
defined in §3.3) ≤T over T ⊗ T and ≈T-polynomials ZT ,MaxT : I → T and SuccT : T → T

such that, with respect to ≈T, ≤T is a total order, ZT and MaxT are functions identifying the
minimum and maximum element w.r.t. ≤T, and SuccT is the successor function (every element
has a unique successor and predecessor, except zero and max, which have no predecessor
and successor, respectively). Notice that, if T and U are chains, the so is T ⊗ U via the
lexicographic order (it is not hard to see that this is definable in annular theories). Whenever
p is a polynomial matching a context Γ, t⃗ : T , we will write p(0), p(max) and p(⃗t+1) to mean
∫⃗tZT (⃗t)p(⃗t), ∫⃗tMaxT (⃗t)p(⃗t) and ∫⃗t′SuccT (⃗t, t⃗′)p(⃗t′), respectively.

▶ Definition 20. Let R be an ultraring and A = R[T] a plain R-algebra, whose underlying
equivalence is F1[S] ≃ R. We say that A is inductive if there exists a tensor T of S which
is a chain in T such that every added generator g ∈ Gen(T) is either making T into a chain
or has type T ⊗ U → V for some U and V and belongs to one of the following classes:

inductive generators: generators with equations of the form
initialization:

∑
i φig(0) ≈Γ

∑
i φici,

induction:
∑

i ψi(⃗t)g(⃗t+1) ≈Γ,⃗t:T
∑

i ψi(⃗t)fi(⃗t),
and, possibly, equations stating that g is a predicate and/or final value equations of
the form

∑
i φ

′
ig(max) ≈Γ

∑
i φ

′
ic

′
i, where ci, c

′
i, fi are polynomials and φi, φ

′
i, ψi are

predicates such that, for all i ̸= j, φiφj ≈T
Γ 0, φ′

iφ
′
j ≈T

Γ 0 and ψiψj ≈T
Γ,⃗t:T 0;

harmless predicates and ancillary generators: predicates P over T coming with their
ancillary generators XP

1 , . . . , X
P
k : T → I and their defining equations Pp ≈t⃗:T 0 and

Pqi ≈t⃗:T 0 for 1 ≤ i ≤ k, where p and qi are polynomials such that:
the degree of p in the ancillary generators of P is at most 2;
no harmless predicate appears in p or any qi;
in any model M of S in K, the equation M(p) = 0 has a solution in K (with respect
to the ancillary generators) iff the system (M(qi) = 0)k

i=1 has no solution in K.
Moreover, the ancillary generators of P do not appear in any equation of T except the
defining equations of P .

Inductive algebras are inspired by fixed point operators in logic [16, 15]. Let K be an
integral domain or F1. The idea is that, given a model M in K of the base theory S (i.e., a
morphism f : R → K), finding whether M may be extended to a model M ′ of S plus the
generators and equations of T (i.e., whether f factors via the inclusion R → A) may be
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done inductively on T , which is like a time parameter. Indeed, to build M ′ one must find
an interpretation in K for the generators of T. For an inductive generator, the initialization
equation gives the value when t⃗ = 0 and, once the value at t⃗ is known, the induction equation
gives the value for t⃗+1. For a harmless predicate P with defining equations involving p and
(qi), one may know whether P holds at time t⃗ by testing whether p = 0 has a solution in K.
This may be done efficiently (at least for certain K of interest, such as R and F1) because p
has degree at most two (it involves something like computing a discriminant, or solving a
2-CNF). The definition guarantees that, if p = 0 has a solution, then one of the qi = 0 does
not, therefore P (⃗t) = 0 (because K has no zero divisor) hence P is true at time t⃗. Otherwise,
if p = 0 has no solution, then P must be false at time t⃗.

The following results hold more generally than stated (for example, they also hold for Q,
Z and Fp with p prime), but for succinctness we prove them only for F1 and R.

▶ Lemma 21. Let K be F1 or R. For any polytime K-RAM M there exists a finite extension
X of Str such that:

K[X] is an inductive K[Str]-algebra of finite presentation;
a model of X in K is an accepting run of M , and its restriction to Str is the input of M
for that run.

Proof. Let the running time of M be bounded by nk, with n the input length and k a
constant. The theory X adds a chain structure on N (the sort of Str), so that T := Nk is
also a chain, which will play the role of the time parameter. Then, X adds the inductive
generators Reg : T ⊗Nk → I (the work tape, which is of length at most nk because it cannot
be longer than the running time of M), Pr,Pw : T → Nk (the values of r and w), and the
inductive predicates In0, . . . , Inm over T (where Ini(t) holds iff instruction i is executed at
time t). If K = R, X also adds the harmless predicate Gez over T , with ancillary generators
Pos,Neg,Neg−1 : T → I (for the TestK relation), and the harmless predicate Div over T ,
with ancillary generator Quo : T → I (for division).

The equations added by X are as follows (we will explain them momentarily):

In0(0) ≈ 1, Ink(0) ≈ 0 for k ̸= 0 max(t) ≈ Inm(t) Ini(t)Inj(t) ≈ 0 for all i ̸= j (2)
Gez(t)(Pos(t)2 − Reg(t, 0)) ≈ 0 Gez(t)(Neg(t)2 + Reg(t, 0)) ≈ 0 Gez(t)(Neg(t)Neg−1(t) − 1) ≈ 0 (3)

Div(t)(Reg(t, 0) − Reg(t, 1)Quo(t)) ≈ 0 Div(t)Reg(t, 0) ≈ 0 (4)
(Pw(0) = 0) ≈ 1 (Pr(0) = 0) ≈ 1 (5)

∫xInk(t)(Pi(t) = x)(Pi(t+1) = x+1) + (Pi(t+1) = 0) ≈ 0 with i ∈ {r, w} (6)

∫xInk(t)(Pi(t) = x)(Pi(t+1) = x) ≈ 0 (7)
In0(t)In1(t+1) + · · · + Ink(t)Gez(t)Inl(t+1) + Ink(t)Gez(t)Ink+1(t+1) + · · · + Inm−1(t)Inm(t+1) ≈ 0 (8)
Ink(t)Reg(t+1, 0) ≈ Ink(t)(Reg(t, 0) ∗ Reg(t, 1)) where ∗ ∈ {+,−,×} (9)

Ink(t)Reg(t+1, 0) ≈ Ink(t)Div(t)(Reg(t, 1)/Reg(t, 0)) + Ink(t)Div(t) (10)
∫xInk(t)(Pw(t) = x)Reg(t+1, x) ≈ ∫yInk(t)(Pr(t) = y)Reg(t, y) (11)
(
∑

i∈I Ini(t)) + (
∑

j∈C Inj(t))(Pw(t) = 0)Reg(t, 0) ≈ (
∑

i∈I Ini(t)) + (
∑

j∈C Inj(t))(Pw(t) = 0)Reg(t+1, 0) (12)
∫s(

∑
i∈C Ini(t))(Pw(t) ̸= s)(s ̸= 0)Reg(t, s) ≈ ∫s(

∑
i∈C Ini(t))(Pw(t) ̸= s)(s ̸= 0)Reg(t+1, s) (13)

(i <T maxN)Reg(0, i) + (i <T maxN)Reg(0, i) ≈ (i <T maxN)X(i) (14)

Equations (2) state that the first (resp. last) instruction is the instruction of index 0 (resp.
m) and that only one instruction is executed at a time; (3) define the predicates Gez (which
is true iff s0 ≥ 0, where s0 is the content of register 0, as in Definition 18), Pos (resp. Neg
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and Neg−1) which is a witness of positivity (resp. negativity); (4) define the predicates
Div,Quo which are witnesses of divisibility and the quotient; (5) and (6) state that Pw and
Pr are initialized to 0 and how they are updated, note that, due to the chain structure of
Nk, x+1 ̸= 0 and thus (Pi(t) = x+1)(Pi(t) = 0) ≈ 0 so the sum is well defined; (7) states
that when Ink is not an update(i) the Pi addresses is not modified; (8) defines the jump
instructions, (9) and (10) the operations and (11) the copy instructions; (12) states that
the first cell of the tape is only modified by computations and copies, where I is the set of
indices of computation and C the one of copy instructions, also, note that the sets I and C

are disjoints which is important for summability; (13) states that the other cells can only
change if the instruction is a copy and the writing register is the right one; (14) states that
the work tape initially contains the input and is filled with zeros after that, note that maxN
is the maximum of the sort N (which X equips with a chain structure), whereas <T is the
strict order on the tensor T = Nk (which is lexicographically ordered from the order on N).

By definition, X adds no sorts and is finite. Towards proving the second point of the
statement, we observe that a finite model of X consists of a K-string x of length |N | (the
underlying model of Str in K), where |N | is the interpretation of N , plus seven additional
functions and m+ 3 predicates.

Let us prove the second point of the statement by induction on |N |k: if this is 1 (i.e.,
there is only one time step), then by equations 1 and 2 we have that m = 0, so the machine
has only one state, which is accepting. Therefore, any model is an accepting run of the
machine. If |N |k = {t0, · · · , tn+1} (note that, by definition, (tn)+1 = tn+1), by induction all
the functions and predicates are defined at time tn, then, for some i we have that Ini(tn)
is defined. Also, i cannot be m by equation 2. This means that the current instruction is
either a branch, an update, a copy or a computation.

First, if it is a branch(l), then, since we supposed that Gez(tn) is defined, by equation
9 we have that either Inl(tn+1) or Ini+1(tn+1) is defined, in any of those cases, Inj(tn+1) is
also defined by equation 3. By equations 13 and 14 we have that Reg(tn+1, s) is also defined
for any s. Axioms 4 and 5 ensure that Gez,Pos,Neg,Neg−1,Div and Quo are defined at
time tn+1, and equation 8 gives us that Pr(tn+1) and Pw(tn+1) are both defined.

Then, if the instruction is an update, again, equations 13 and 14 ensure the definition of
Reg(tn+1, s) for any s, equations 4 and 5 for the definitions of Gez,Pos,Neg,Neg−1,Div and
Quo, equation 7 for Pj(tn+1) and 8 for Pj′(tn+1), with j, j′ ∈ {r, w} and j ̸= j′.

If the instruction is a copy, since Pr(tn) and Pw(tn) are defined we have that, for some
s ∈ Nk, Reg(tn+1, s) is defined by equation 12, if s ̸= 0 then Reg(tn+1, 0) is defined thanks
to equation 13 and for all other y ∈ Nk Reg(tn+1, y) is defined by equation 14. Again all
other functions and predicates are defined by the same equations as before.

Finally, if the instruction is a computation, then either it is a division and Reg(tn+1, 0)
is defined by equation 11 (Reg(t, 0) is divisible by Reg(t, 1), if not then the behavior of the
machine is not defined) either it is not a division and Reg(tn+1, 0) is defined by equation 10.
For all s ̸= 0,Reg(tn+1, s) is defined by equation 14 and the other functions and predicates
are still defined as before.

We have thus proved that, at any given t ≤ |N |k, if i is the unique element of {0, . . . ,m}
such that Ini(t) holds, (i,Reg(t),Pr(t),Pw(t)) is the configuration obtained by running M
for t steps from the initial configuration on input x. Equation 2 guarantees that this is an
accepting run, as the machine must have entered instruction m at some point before time
|N |k (after which it stays there).

We are left with checking that the resulting algebra is inductive. The inductive generators
are clearly of the right form, so we just need to check that the other predicates are indeed
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harmless: for Gez, in any model, at any time t either Reg(t, 0) is positive and there exists a
real number Pos(t) such that Pos(t)2 − Reg(t, 0) = 0 either it is negative and there exists
Neg(t) and Neg−1(t) such that Neg(t)Neg−1(t) = 1 and Neg2 + Reg(t, 0) = 0, in any case
(Pos(t)2−Reg(t, 0))(Neg2+Reg(t, 0)) and (Pos(t)2−Reg(t, 0))(NegNeg−1−1) have a solution.
The same is true for Div, either Reg(t, 0) is 0, either is not and there is a real number Quo(t)
such that (Reg(t, 0) − Reg(t, 1)Quo(t)) = 0, in any case Reg(t, 0)(Reg(t, 0) − Reg(t, 1)Quo(t))
has a solution. Hence, the theory is inductive. ◀

▶ Theorem 22. Let K be F1 or R and let L be a K-problem. Then:
1. L ∈ REK iff L = ΓK(A) with A a K[Str]-algebra of finite presentation;
2. L ∈ NPK iff L = ΓK(A) with A a plain K[Str]-algebra of finite presentation;
3. L ∈ PK iff L = ΓK(A) with A an inductive K[Str]-algebra of finite presentation.

Proof. For (1), consider an arbitrary K-RAM M . We slightly modify the proof of Lemma 21:
rather than using Nk as chain, we introduce a new sort T , with the structure of a chain,
and reproduce the proof with T instead of Nk. The theory thus obtained is no longer
inductive but is still of finite presentation, and its models are accepting runs of M , with the
interpretation of T giving its running time, which may now be arbitrary.

Conversely, if we are given an algebra K[T] with T finitely extending Str and a K-string
s, we have that a model of T extending s has finitely more data than s, namely the data
interpreting the additional sorts and generators of T. Given such extra data, checking
whether it verifies the additional equations of T, of which there are finitely many, is certainly
doable in a finite time (in fact, in polynomial time) on a K-RAM.

For (2), let L ∈ NPK. This means that there exists a polytime K-RAM M and a constant
c such that, for every K-string s, s ∈ L iff there exists a string s′ of length at most |s|c such
that M accepts the pair (s, s′). We let k be the maximum between c and the exponent of the
polynomial bound on the running time of M , and construct a K[Str]-algebra just like in the
proof of Lemma 21, expect that we do not initialize the work tape beyond the input length.
The algebra thus obtained is still plain (no sort is added) of finite presentation, but it is
no longer inductive because the generator Reg now is missing some initialization equations.
The models of the resulting theory are still accepting runs of M , on which the tape is now
initialized non-deterministically beyond the input s. In particular, it may be initialized with
the witness s′, which is small enough to fit in Nk.

The converse is much like point (1), except that this time we only need to account for
the interpretation of the extra generators, which are of polynomial size (because these have
types of the form Nk →

⊕
j N

kj with k and kj constants) and may therefore be guessed and
then checked with a polytime K-RAM.

For (3), the implication from left to right is Lemma 21. For the converse, if we have an
inductive algebra K[T] with T finitely extending Str, and we have a K-string s, we check
whether s may be extended to a model of T as outlined after Definition 20. The only thing
left to verify is that computing harmless generators takes no more than polynomial time.

Let us start with the case K = R. For each harmless predicate P we have an equation of
the form P (t)φ(t) ≈Γ 0, so for each t, to know whether P (t) is true in a given model in R
we just need to check whether the interpretation of φ(t) has a root in R. The idea here is to
generalize the discriminant to multivariate polynomials of degree two. See the appendix for
details (Lemma 24).

When K = F1, the truth of a harmless generator at time t is controlled by a polynomial
φ(t) of degree two. In F1, this is interpreted as a 2-DNF. Therefore, testing the equation
φ(t) = 0 is testing whether a 2-DNF is falsifiable, which is well-known to be polytime [20]. ◀
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Let us conclude with a few words about when K = Z. In this case, Lagrange’s four square
theorem may be used to implement TestZ. Moreover, combined with the Davis-Putnam-
Robinson-Matiyasevich theorem, Theorem 22 implies that REZ = NPZ.

5 Discussion and Perspectives

As implicitly shown in §2.2, ultrarings generalize commutative rings by generalizing their
categories of modules (free of finite rank). This is not a new idea: it has already been
mentioned or directly used in at least a few attempts to generalize algebraic geometry beyond
commutative rings [13, 10, 6, 4]. What is new in ultrarings is the emphasis on presenting
such generalized algebraic objects by means of a language which is directly derived from
first-order logic and which still captures all ring presentations.

Speaking of algebraic geometry, it is very interesting to point out that the ultraring F1
has some of the properties typically expected of the “field with one element”. In fact, the
full subcategory of ultrarings which are plain F1-algebras (i.e., of the form F1[T] with T

sortless) may be fully and faithfully embedded in the category of generalized commutative
rings studied by Durov [12]. Under this embedding, F1 is mapped to Durov’s version of the
“field with one element”.

The reader may have observed that the field F2 could also have been used capture
Boolean computation: F2-strings are just binary strings and REF2 , NPF2 and PF2 coincide
with the usual Boolean classes. We contend that this is sort of an accident, and that Boolean
computability is really over F1. Indeed, any K-RAM may be restricted to operate only on
{0, 1}, simulating a Boolean machine. This is routinely used in BSS or algebraic complexity
to define the “Boolean part” of the language decided by a machine. Our approach nicely
explains this by the existence of a unique morphism F1 → K saying that “Booleans are
everywhere”. By contrast, there is no morphism F2 → K unless K has characteristic 2.

In this paper, we have not developed the theory of ultrarings to the extent necessary
to give a technical content to the above statement, but to the acquainted reader we may
say that the above observation becomes a change of base along F1 → K. In fact, the
definition of ultraring in this paper has been intentionally restricted to give “logical-looking”
presentations. We already know that ultrarings may be given a more liberal definition, still
allowing presentations, but of a different flavor than the ones introduced here. Modules for
these ultrarings may open interesting perspectives in terms of computational complexity: at
least in the plain case (i.e., for the class NP and below), modules generalize algebras and
could potentially be used to give finer characterizations of complexity classes.

In a different direction, if we restrict to Boolean lextensive categories (which, as §2.2
shows, are special cases of ultrarings) we know that more Boolean complexity classes may be
captured by adapting ideas from descriptive complexity. These include deterministic and
nondeterministic logarithmic space, the logtime hierarchy and the polynomial hierarchy, as
well as non-uniform complexity classes, and will be the subject of another paper [9].

Finally, let us mention that descriptive complexity has well-known tools, taking the form
of various pebble games [17], allowing one to establish lower bound results. These have been
reformulated categorically [1, 3, 11, 2, 22]. Knowing if and how these reformulations interface
with our work is an interesting question for the future.
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A Appendix

A.1 Proofs of Some Lemmas
Proof of Lemma 2. We start by observing that, if ιi : Bi → B1 ⊕ B2 are injections, then
ιiδ

∗
Bi

(ι∗i ⊗ idBi) = δ∗
B1⊕B2

(idB1⊕B2 ⊗ ιi). We prove this for i = 1, the other case is essentially
identical. We omit obvious subscripts for identity arrows. Let χ = [ι1 ⊗ id, ι2 ⊗ id] :
(B1 ⊗B1) ⊕ (B2 ⊗B1) → (B1 ⊕B2) ⊗B1 be the distributivity isomorphism. We have, using
(1), ι1δ∗

B1
(ι∗1 ⊗ id)χ = ι1δ

∗
B1

[ι∗1ι1 ⊗ id, ι∗1ι2 ⊗ id] = ι1δ
∗
B1

[id, 0] = [ι1δ∗
B1
, 0] = [δ∗

B1⊕B2
(ι1 ⊗

ι1), δ∗
B1⊕B2

(ι2 ⊗ ι1)] = δ∗
B1⊕B2

(id ⊗ ι1)χ, which proves the claim because χ is invertible.
We will also need that, if κi : A ⊗ Bi → (A ⊗ B1) ⊕ (A ⊗ B2) are injections and χ′ :
(A⊗B1) ⊕ (A⊗B2) → A⊗ (B1 ⊕B2) another instance of distributivity, then χ′κi = id ⊗ ιi,
which holds by definition of χ′.

Suppose now that we have f, g : A ⇒ B1 ⊕ B2 with ι∗i f = ι∗i g for i = 1, 2. Using
the above observations, we have δ∗

B1⊕B2
(f ⊗ id)χ′κi = δ∗

B1⊕B2
(f ⊗ ιi) = ιiδ

∗
Bi

(ι∗i f ⊗ id) =
ιiδ

∗
Bi

(ι∗i g ⊗ id), from which, applying the first two equalities in reverse order, we obtain
δ∗

B1⊕B2
(f ⊗ id)χ′κi = δ∗

B1⊕B2
(g⊗ id)χ′κi for i = 1, 2. Since injections are jointly epic and χ′

is invertible, we infer δ∗
B1⊕B2

(f ⊗ id) = δ∗
B1⊕B2

(g ⊗ id), from which we conclude f = g by
definition δ∗-category. ◀

Proof of Lemma 8. We start by observing that cancellativity implies p ≈ p, as well as
1 ≈ 0. Next, we claim that, whenever q matches the same contexts as p and q2 ≈ q, we have
pq ≈ pq+ pq+ p q. Indeed, pq+ pq ≈ 1 ≈ (p+ p)(q+ q) ≈ pq+ pq+ pq+ p q, so we conclude
by cancellativity.

Suppose that pp ≈ 0. Then, p ≈ p(p + p) ≈ p2 + pp ≈ p2. For the converse, if p2 ≈ p,
then using the above claim we have pp = p2 + p2 + pp = p+ p(p+ p) = p+ p = 1, so pp = 0
by the first two observations. Finally, we have p ≈ p2 ≈ pp+ pp+ p2 ≈ p2. ◀

Proof of Lemma 11. For indices h, j, j′, k, let r, r′, s, s′ be monomials in pjk, pj′k, qhj , qhj′ ,
respectively. We need to check that each (q ◦ p)hk is a polynomial by verifying that, when
j ̸= j′ we have ∫y⃗jsr ⌢x⃗k:Tk

∫y⃗j′ s′r′. By hypothesis, r ⌢x⃗k:Tk
r′, so we conclude by the last

rule of Fig. 3. We must also check that the context is valid. By hypothesis, qhjpjk is matched
by x⃗k : Tk, y⃗

j : Uj , z⃗
h : Vh, with y⃗j and z⃗h being outputs, hence each monomial ∫y⃗jrs is

well-typed and matched by x⃗k : Tk, z⃗
h : Vh, as required. Finally, we must check condition (†)

of Definition 10. Given h ̸= h′, we require ∫y⃗jsr ⌢x⃗k:Tk
∫y⃗j′ t′r′, where t′ is a monomial of

qh′j′ . If j ̸= j′, we conclude as above. If j = j′, by hypothesis we have s ⌢y⃗j :Uj
t′, so we

conclude by applying the last rule of Fig. 3 to these instead. ◀

A.2 Interpreting Polynomials in a S-structure
Let M be a S-structure. We start by inductively defining an interpretation over M for
positive monomials-in-context, following Fig. 1.

As a base case, we interpret monomials over S with the maximal codomain context of
all outputs and the minimal domain of all remaining free variables, for each of the basic
constructions of monomials:
M (x : A ⊢ (x =A y) :: y : A) is idM0(A),
M

(
x⃗ : T ⊢ (gj(x⃗) = y⃗) :: y⃗ : U

)
is M1(g); ι∗j ,

M (⊢ 1 ::) is εI = idI ,
Next, we describe the effect of expanding and reorganizing contexts.

Given f := M(Γ ⊢ p :: ∆, x : A), let M(Γ, x : A ⊢ p :: ∆) := εM0(A)δ
∗
M0(A)(f ⊗ idA).
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Relatedly, given f := M(Γ ⊢ p :: ∆), we define M(x : A,Γ ⊢ p :: ∆) to be β(εM0(A) ⊗f),
(recalling that β : I ⊗ I → I is the canonical isomorphism).
Given M(Γ ⊢ p :: ∆), permutations of Γ and ∆ are interpreted by pre- or post-
composing with the corresponding symmetry morphisms.

Finally, we specify how monomials combine.
Given f := M(Γ ⊢ p :: ∆, x⃗ : T ) and g := M(x⃗ : T,Γ′ ⊢ q :: ∆′) we can define
M

(
Γ,Γ′ ⊢

∫
x⃗:T pq :: ∆,∆′) to be (id ⊗ g)(f ⊗ id); to recover an interpretation of

∫
x⃗
p,

we identify this with
∫

x⃗
p1.

Given f := M(x1 : A, x2 : A,Γ ⊢ p :: ∆) and a variable x not appearing in p, we define
M(x : A,Γ ⊢ p[x1/x][x2/x] :: ∆) to be f(δM0(A) ⊗ id).
Dually, given f := M(Γ ⊢ p :: x1 : B, x2 : B,∆) and a variable x not appearing in p,
we define M(Γ ⊢ p[y1/y][y2/y] :: y : B,∆) to be (δ∗

M0(B) ⊗ id)f .

Let us check that the above interpretations are well-defined. The first set of rules give
unambiguous interpretations. For the second set, there is exactly one way to arrive a given
context using these rules up to reordering, so it suffices to check that the order of operations
does not affect the result; this is straightforward, relying on the fact that δ∗ is symmetric.

The only place where ambiguity is introduced in the third set of rules, where the
interpretation ostensibly depends on how the domain and codomain contexts are partitioned.
We take these case by case.

Consider M
(
Γ,Γ′ ⊢

∫
x⃗:T pq :: ∆,∆′). By disjointness, ∆ and ∆′ must respectively contain

only outputs of p and q, so this is unambiguous; the remaining free variables of p and q

must respectively go into Γ and Γ′. Any remaining free variables, whether assigned to Γ
or Γ′, must be interpreted by ε, which eliminates any remaining ambiguity.
In M(x : A,Γ ⊢ p[x1/x][x2/x] :: ∆), there is formally a choice to make about how to
assign the instances of x to x1 or x2; however, since the inductive construction will
eventually disambiguate between any pair of repeated instances, commutativity and
associativity of δ guarantee that any such choice will result in the same interpretation
(considering also that the interpretation is invariant under α-equivalence).
Similarly, distinguishing duplicates of variables in the codomain produces a well-defined
result by commutativity and associativity of δ∗, so we are done.

Next, given f := M (Γ ⊢ p ::), we have that M
(
Γ ⊢ p2 ::

)
is exactly (f ⊗ f)δ. As

such, when these interpretations are equal, we may take M (Γ ⊢ p ::) to be f provided by
Definition 3, thus extending the above to monomials featuring p.

Finally, we define M (Γ ⊢ 0 :: ∆) to be the zero morphism of the appropriate type.

▶ Lemma 23. Suppose we are given a theory T over a signature S and a S-structure M in
A. Suppose that whenever we have positive monomials-in-context Γ ⊢ p :: ∆ and Γ ⊢ q :: ∆
such that p ≈Γ,∆ q, it is the case that M(Γ ⊢ p :: ∆) = M(Γ ⊢ q :: ∆), so that in particular
M can interpret all monomials which are ≈-polynomials. Suppose further that M identifies
p and q whenever p ≈ q when p and q are either monomials or 0. Then p ⌢T q implies the
pairing ⟨p, q⟩ exists in A.

Proof. It suffices to check the axioms of Fig. 3 which determine the compatibility relation.
Indeed, pq ≈ 0 guarantees that if M respectively interprets p, q as f, g in a given context
then the first axiom of ultrarings Definition 3 ensures that the pairing exists.

The pairing of two components j, j′ of (the interpretation of) a generator g is the result
of coinjecting g onto the coproduct of their codomains.

If p ⌢ q and ⟨p, q⟩ exists, we can obtain the pairing of the interpretations of ∫⃗x,y⃗spr and
∫⃗x,z⃗tqr by precomposing with r and postcomposing with s⊕ t.
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The existence of pairings in the last instance is immediate, so we are done. ◀

As such, given T and a model M satisfying the conditions of Lemma 23, M has a
well-defined interpretation of any ≈-polynomial-in-context Γ ⊢ p :: ∆ as the joint pairing of
the monomials appearing in p (with the same context), followed by the codiagonal map.

▶ Proposition 15. Let T be a theory. There is an A-natural equivalence of categories
T-Mod(A) ≃ URing(F1[T],A).

Proof. We have thus far shown that a T-model M in A uniquely determines interpretations
of ≈T-polynomials-in-context. To produce a functor F1[T] → A, we need to extend this
to ≈T-matrices. Each entry of a matrix (pjk) determines a morphism M0(Tk) → M0(Uj).
Condition (†) of Definition 10 ensures that for fixed k, the interpretations of pjk can be paired
to give a morphism M0(Tk) →

⊕
j∈J M0(Uj); via the universal property of the coproduct,

these produce a morphism
⊕

k∈K M0(Tk) →
⊕

j∈J M0(Uj). This extended construction
ensures that the monoidal product and coproduct, as well as δ, δ∗ and ϵ, are preserved.

Conversely, a morphism of ultrarings F : F1[T] → A defines a model M by its restriction
to the sorts and generators. The equations of T necessarily hold because they correspond to
morphisms forced to be equal in F1[T], so are mapped by F to the equal morphisms in A.

It is straightforward to verify that a model morphism uniquely determines a monoidal
natural transformation, and conversely, since the latter are determined by their components
at objects which generate the category under monoidal products and coproducts.

Finally, naturality in A follows from the fact that morphisms of ultrafunctors preserve
the required structure: composing with an ultraring morphism A → B turns a T-model in A
into one in B. ◀

▶ Theorem 17. Let R be an ultraring and T its canonical theory, as defined in Definition 16.
Then R ≃ F1[T].

Proof. We have a functor ⌜−⌝ : R → F1[T] sending each object X to the sort ⌜X⌝ and each
morphism g : X → Y to the corresponding generator (with no decomposition of X and Y as
tensors or coproducts). We show that ⌜−⌝ is an equivalence of ultrarings.

Consider the generators (which we distinguish by a subscript) ⌜id⌝1 : ⌜
⊗

j∈J Aj⌝ →⊗
j∈J⌜Aj⌝ and ⌜id⌝2 :

⊗
j∈J⌜Aj⌝ → ⌜

⊗
j∈J Aj⌝. By the second and first equations, these

are mutual inverses in F1[T]. Moreover, naturality of these morphisms follows from the fourth
axiom (applied inductively), so ⌜−⌝ preserves the monoidal product.

Consider the generator ⌜id⌝ : ⌜
⊕

j∈J Aj⌝ →
⊕

j∈J⌜Aj⌝. By the third equation, we have
that

(
⌜id⌝j(x⃗) = y⃗

)
≈ (⌜ι∗j⌝(x⃗) = y⃗), so this is equal to the row vector (⌜ι∗j1

⌝, . . . , ⌜ι∗jn
⌝).

Dually, we have generators ⌜ιi⌝ : ⌜Ai⌝ →
⊕

j∈J⌜Aj⌝. By the third, first and fifth
equations, we have

(
⌜ιi⌝j(x⃗) = y⃗

)
≈

(
⌜ι∗j ιi⌝(x⃗) = y⃗

)
which gives (x⃗ = y⃗) if i = j and 0

otherwise. Thus ⌜−⌝ preserves the coproduct injections; in particular, these morphisms are
compatible, so we can construct the column vector (⌜ιj1⌝, . . . , ⌜ιjn

⌝)t. We can use the second
and third axioms to conclude that this column vector is the inverse to ⌜id⌝, so ⌜−⌝ preserves
coproducts. Formally, we must also check that the universal morphisms are respected by
this isomorphism, in the sense that

∫
y⃗

(⌜[f1, . . . , fn]⌝(x⃗) = y⃗) (⌜id⌝(y⃗) = z⃗) ≈
∫

y⃗′(⌜id⌝(x⃗) =
y⃗′) ((⌜f1⌝, . . . , ⌜fn⌝) (y⃗′) = z⃗) . It suffices to check this componentwise by composing with ιi,
which works by the preceding observations and the second axiom.

For the δ∗-category structure, we observe that the sixth, seventh and eighth axioms
directly ensure that these are preserved up to the isomorphisms constructed above. With
this, we have shown that ⌜−⌝ is a valid morphism of ultrarings.

FSCD 2025
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Conversely, there is a canonical model of the canonical theory T in R, given by interpreting
⌜A⌝ as A and ⌜g⌝ as g (with the relevant typing). The claim that this S-structure is indeed
a model amounts to saying that the interpretations of the monomials appearing in the axioms
of Definition 16 are equal in R, which is straightforward to check.

Finally, to see that ⌜−⌝ is an equivalence, we simply observe on the one hand that the
induced model in F1[T] is isomorphic to that corresponding to the identity functor and on
the other that the induced endofunctor of R is naturally isomorphic to the identity. The
involved natural isomorphisms are the structural ones constructed above. ◀

A.3 Harmless Predicates Over the Real Numbers
▶ Lemma 24. In the case K = R, the truth value of a harmless predicate may be computed
in constant time on a R-RAM.

Proof. For each harmless predicate P we have an equation of the form P (t)φ(t) ≈Γ 0, so for
each t, to know whether P (t) is true in a given model in R we just need to check whether the
interpretation of φ(t) has a root in R. The idea here is to reduce this problem as a series of
positivity tests that can be done in constant time by generalizing the idea of the discriminant
for n variate polynomials of degree two. Let us give some details about this generalization.

If the polynomial is of degree zero the test is trivial because it has no roots. If it is of
degree one, since every polynomial of R of odd degree have a root in R, we know that there is a
root in R. The only non trivial case is the degree two. Since we work in R the polynomial has
a root in R iff it is reducible. First, let us do the special case of an homogeneous polynomial.
A quadratic form q can be written as a matrix multiplication xTAx, where A is the Kronecker
matrix of the quadratic form and is a symmetric matrix. We now show that A has rank
one iff q is reducible. First if q is reducible then we can write the q as (

∑
i bixi)(

∑
i cixi),

by rewriting it with matrices multiplication q = xT
(

b0
···

bn

)(
1 1 1
1 1 1
1 1 1

)(
c0

···
cn

)
x so A is of

rank 1. Conversely if A is of rank one, since we know that A is a real symmetric matrix, it is
diagonalizable. Hence, A is similar to

(
0 0 0
0 0 0
0 0 1

)
which is also similar to

(
1 1 1
1 1 1
1 1 1

)
thus we can

rewrite q as a product of two degree one polynomials. Moreover A is of rank one iff it has
exactly one non-zero eigenvalue. Hence, we need 0 to be root of its characteristic polynomial
with multiplicity m− 1, m being the number of variables, we can then rewrite the general
form of the characteristic polynomial as λm−1((−1)mλ + (−1)m−1Tr(A)). By identifying
with the formula det(A − λIm) we are given a set of constraint on the coefficients of the
quadratic form for it to be reducible. Let us now consider a general multivariate polynomial
of degree two. We can write it as p =

∑
i,j ai,jxixj +

∑
i a

′
ixi +

∑
i a

′′
i the xi being variables

taken in a set X. The following polynomial q =
∑

i,j ai,jxixj + y(
∑

i a
′
ixi) + y2(

∑
i a

′′
i ) is a

quadratic form. We need to show that q is reducible iff p is. This comes from the fact that if
we note x′ := (x0, · · · , xm, 1) we have p = x′Ax′T where A is the Kronecker matrix of q. To
go from a factorisation of q to one of p is simply to replace y by 1 and the other way is only
multiplying constant terms of each factor by y.

To conclude, we need to show that these constraints we exhibited are fixed by the theory T

and can be hardcoded as a sequence into the code of the machine for each harmless predicate
in T. This means the machine doesn’t have to compute the characteristic polynomial each
time but only compute the set of constraint we can deduce of it, this can be done in constant
time. Since the polynomial might depend on non-harmless generators they should all be
computed by the machine before the harmless predicate, which can be done because, by
definition, non-harmless generators only depends on t− 1 generators. ◀
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