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Outline of the talk

I A very short introduction to static analysis, in view of verifying
concurrent programs

I Reducing the state-space model: components categories
I �Good properties� of component categories: lifting property

and van Kampen

I A closer look at components: future and past components
I lifting and van Kampen
I re�ectivity in −→π1(

−→
X )

I Computing components

I Some mathematical issues
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Context

Static analysis of programs

I Find outer-approximation of sets of reachable values of
variables at some program points

I To ensure absence of runtime errors typically

Example

float x;

x=[0,1]; [1]

while (x<=1) { [2]

x = x-0.5*x; [3]

} [4]

x1 = [0, 1]
x2 = ]−∞, 1] ∩ (x1 ∪ x3)
x3 = x2 − 0.5x2
x4 = ]1,∞[∩x2

(�nal smallest invariant: x2 ∈ [0, 1], x4 = ∅)
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Concurrent programs
shared memory style

2Q1Q 3Q 4Q 5Q
Shared M

em
ory

Processes

x y z

x, y and z are locations

Not sequential programs, bad states, chaotic behavior
=⇒ Need for synchronizations =⇒ Need for locks: Py, Vy
=⇒ Interleaving semantics given by a �shu�e� of transition systems
(or �bred product)
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Interleaving semantics of...
(a = 1, b = 2) Pa.a + 1.Va.Pb.2b.Vb | Pb.b + 1.Vb.Pa.3a.Va

T1 T2

Pa −
a = a + 1 −

Va

− Pb

− b = b + 1

− Vb

Pb −
b = 2 ∗ b −

Vb −
− Pa

− a = 3 ∗ a
− Va
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Equations (invariants)...


X1 = (a0, b0)
X2 = ...

= ...you don't want to know...
X41 = ...

(41 vertices, 60 edges!)
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Geometry
�progress graphs� E.W.Dijkstra'68 (later V.Pratt, R. van Glabbeek'91)

T1=Pa.Pb.Vb.Va in parallel with T2=Pb.Pa.Va.Vb

Pa Pb Vb Va

Pb

Pa

Va

Vb

Forbidden

�Continuous model�: xi = local time; dark grey region=forbidden!
see Algebraic Topology and Concurrency TCS 2006, L. Fajstrup, E. Goubault, M.

Raussen 7
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Execution paths
are continuous

T1=Pa.Pb.Vb.Va in parallel with T2=Pb.Pa.Va.Vb

Pa Pb Vb Va

Pb

Pa

Va

Vb

Traces are continuous paths increasing in each coordinate: dipaths.

8



Static analysis Geometric semantics and components Orthogonal subcategories Computing components

Classes of equivalent dipaths
up to dihomotopy

Pa Pb Vb Va

Pb

Pa

Va

Vb

T2

T1

b=2*b

b=b−1

a=
a+

1

b=
b+

1

b=2
a=1

T1 gets a and b before T2 => a=2 and b=4

T2 gets b and a before T1 => a=2 and b=3

Each of T1 and T2 gets a ressource
=> Deadlock with a=2 and b=1
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Ideally, we want to retract to...
(not quite true though)

We will get back to this later.
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Use for our �rst example
Pa.a + 1.Va.Pb.2b.Vb | Pb.b + 1.Vb.Pa.3a.Va



X1 = (a0, b0)
X2 = (a1 + 1, b1)
X3 = (a1, b1 + 1)
X4 = (a1 + 1, b1 + 1)
X5 = (a2, 2 ∗ b2)
X6 = (3 ∗ a3, b3)
X7 = (a4, 2 ∗ b4) ∪ (a5, b5 + 1)
X8 = (3 ∗ a4, b4) ∪ (a6 + 1, b6)
X9 = (3 ∗ a7, b7) ∪ (a8, 2 ∗ b8)

component category - �nite number of ob-
jects, morphisms and relations!
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In fact...aim of this talk is to go even further...

I They are forward equations so we need only the following
retract (�future components�):

X1 = (a0, b0)
X2 = (a1 + 1, b1)
X3 = (a1, b1 + 1)
X4 = (3 ∗ (a1 + 1), 2 ∗ (b1 + 1))

∪(3 ∗ a2, 2 ∗ b2 + 1)
∪(3 ∗ a3 + 1, 2 ∗ b3)

I (a similar method exists for backwards equations)

I In general, there are loops... out of the scope of this talk!

12



Static analysis Geometric semantics and components Orthogonal subcategories Computing components

Models

I Cubical sets (pre-existing the �eld of course!)

I Po-spaces (i.e. topological space with closed partial order),
introduced �rst in other �elds (domain theory P. Johnstone
etc., functionnal analysis L. Nachbin etc.) local po-spaces
(atlas of po-spaces - L. Fajstrup, E. Goubault, M. Raussen)

I d-spaces (M. Grandis)

I Flows (P. Gaucher)

I Streams (S. Krishnan)

I etc.

Most of the rest would apply to all of these models (except for
loops!)
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Partially Ordered Spaces
framework for �progress graphs� (one only needs MFPS'98)

A topological space X with a (global) closed partial order v

I Morphisms are increasing and continuous maps: dimaps

I (Finite) Traces on (X ,v) are dimaps from ~I = ([0, 1],≤) to
(X ,v): dipaths

I Dihomotopies between dipaths α and β with �xed extremities

x and y are dimaps H :
−→
I ×
−→
I → X such that for all s ∈

−→
I ,

t ∈
−→
I ,

I H(t, 0) = α(t) and H(t, 1) = β(t)
I H(0, s) = x and H(1, s) = y

I Two dipaths are dihomotopic if there exists a �nite sequence
of dihomotopies relating them (alternative de�nition,

equivalent under some conditions: H :
−→
I × I → X )
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How to retract?
The fundamental category −→π1(

−→
X ) of a pospace

−→
X

I Starting with a variation on the Poincaré groupoid, π1(X )
de�ned as the category:

I objects: points of X ,
I morphisms: classes of dipaths up to dihomotopy:

a morphism from x to y is a dihomotopy class [α] of a dipath
α going from x to y .

I We see that in most interesting (to static analysis) case, it is
�essentially� �nite

r’

h’h

r

2B

B1

C

A

=⇒ Formally invert �inessential� arrows
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Yoneda morphism
axiomatizing the preservation of the future and the past (1)

Let C be a small category. A Yoneda morphism σ is an element of
C[x , y ] such that for all object z of C,

future if C[y , z ] 6= ∅ then for all f ∈ C[x , z ], there is a unique
g ∈ C[y , z ] such that

z

x
σ

//

f

??��������
y

g

OO

past if C[z , x ] 6= ∅ then for all f ∈ C[z , y ], there is a unique
g ∈ C[z , x ] such that

x
σ // y

z
f

??�������
g

OO
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Example: Yoneda morphism is a �small� move
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Yoneda system of a small category C (2004-2007)
axiomatizing the preservation of the future and the past (2)

A collection Σ of morphisms of C such that:

1. Σ is stable under composition,

2. Σ contains all the isomorphisms of C,
3. all the elements of Σ are Yoneda morphisms and

4. Σ is stable under change and cochange of base.

y

x

f
@@����

y ′

σ∈Σ__????

x ′
σ′∈Σ

^^

f ′

??
pull
back
in C

y ′

x ′

f ′ ??

y

σ′∈Σ^^

x
σ∈Σ

``BBBB
f

>>~~~~

push
out
in C
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Examples
of morphisms which do not belong to a Yoneda system

z

x
y

σ

y

x

z

f

fσ

Va

Pa

VaPa Pa Pb Vb Va

Pb

Pa

Va

Vb
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Fundamental properties

I Given Σ a Yoneda system, the isomorphism classes of objects
(i.e. points of underlying X ) is convex

I Due to the essential property of pureness: for all σ ∈ Σ,
σ = f ◦ g implies f ∈ Σ and g ∈ Σ

I When C is loop-free i.e. all isomorphisms are identities, the
collection of Yoneda systems forms a locale, i.e. is a complete
lattice (in�nite join and meet), which is distributive (and
distributivity of meet over in�nite join)

De�ne now the component category to be −→π0(X ) equal to the
category of fractions of π1(X ) by the maximal Yoneda System
(equivalently as we shall see, as the quotient category of the same
two categories).
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The category of components of the Swiss �ag

Pa Pb Vb Va

Pb

Pa

Va

Vb

(the two red squares are commutative!)
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The components category of the 3 philosophers

the pospace its category of components
22
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The components category of a 2-semaphore

the pospace its category of components

(details of the calculation omitted...but...)
23
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2 semaphore

Notice: a certain amount of the classical π2 is apparent; and −→π1 has
no �cancellation� property in general
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Fundamental properties (2)

Lifting properties of the component category

Furthermore, let C1,C2 ⊂ Ob(C) denote two components such that
the set of morphisms (in C/Σ) is �nite. Then, for every x1 ∈ C1

there exists x2 ∈ C2 such that the quotient map

C(x1, x2) → C/Σ(C1,C2)
f 7→ [f ]

is bijective.

25
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Getting back to the Swiss �ag

Pa Pb Vb Va

Pb

Pa

Va

Vb

=⇒ �Finite presentation� of −→π1(
−→
X ) (and each component is the

trace on X of an hypercube)
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Fundamental results (3)
fractions vs quotients

Let C be a small loop-free category and Σ a Yoneda system of C:
1. the small category C/Σ is loop-free,
2. the small categories C[Σ−1] and C/Σ are equivalent and
3. the category C[Σ−1] is �bered over C/Σ.
4. Seifert/van Kampen on component categories

I Relies heavily on the localic structure of Yoneda systems
I Allows for inductive computations of C[Σ−1] for PV programs

5. if
−→
K is a compact pospace, then any component of −→π1(

−→
K ) has

both a greatest lower bound and an least upper bound in(
|K |,v

)
.

see Ph. D. Thesis of E. Haucourt

see Components of the Fundamental Category - APCS 04, L. Fajstrup, E. Goubault,

E. Haucourt, M. Raussen

see also Components of the Fundamental Category II - APCS 07, E. Goubault, E.

Haucourt
27
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Example of computation using van Kampen

→ inductive formulas in some cases, �algebra� of cubes etc. Used
for static analysis (reduction of the state space)
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Some �gures - full component computations

(with the current naive implementation)
n sec Mb # o # m # r # p #s # t

3 0.38 ≤ 10 27 48 18 6 576 1475

4 0.43 ≤ 15 85 200 132 24 3966 13450

5 0.69 19 263 770 730 120 27265 113938

6 3.49 23 807 2832 3516 720 184876 914019

7 96 42 2467 10094 15484 5040 ? ?

8 1656 100 7533 35216 64312 40320 ? ?

9 13739 319 22995 120924 256158 362880 2996970 22698700

→ but non economical, need of future/past components only!
=⇒ How can we generalize it to future components?
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A closer view on components - �future� components (2008-)

Let C be a small category, Σ+ ⊆ Mo(C) is a Yoneda-f-system if and
only if Σ+ is stable under composition and satis�es

(Af1) for all objects z of C such that C[y , z ] 6= ∅, the map:

C[y , z ]
−◦σ // C[x , z ] is a bijection,

(Af2) Σ+ contains Iso(C)

(Af3) Σ+ is stable under pushouts (with any morphim in C)
And...

30



Static analysis Geometric semantics and components Orthogonal subcategories Computing components

Future components

(Af4) Σ+ is stable under �ltered pullbacks (with any
morphism in C) i.e.: for all f ∈ C, for all σ ∈ Σ+ with
same codomains such that there exists some g ∈ C
and h ∈ C such that f ◦ g = σ ◦ h, then there exists
σ′′ ∈ Σ+ giving us a pullback diagram:

pullback

f
??�������

σ
__???????

σ′′

__??????? f ′′

??�������
g

MM

h

QQ

q

OO

Let Yf (C) denote the collection of all Yoneda f -systems in C.
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Example: X = [0, 1]2\]13 ,
2
3[2

Notice that each of the component is a the trace on X of a
maxplus polyhedron (see end of talk!)
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Example: X = [0, 1]3\]13 ,
2
3[3

Start with the 26 below: (x , y , z) with
x , y , z ∈ {−, 0,+}\{(0, 0, 0)} and
the unique morphisms f(xa,yb,zc)

in C ((x , y , z), (a, b, c)) with
x , y , z ∈ {−, 0,+}\{(0, 0, 0),
(+,+,+)} and (a, b, c) being
(s(x), y , z) or (x , s(y), z) or
(x , y , s(z)) (whenever de�ned),
where s(−) = 0, s(0) = + and s(+)
is unde�ned.

We know that Yoneda systems are particular future Yoneda
systems, so we just have to check whether the f(xa,xb,xc) are in the
maximal future Yoneda system or not:
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Weakly-invertible morphisms in the future (WI)

I As | C ((−, 0,−), (+, 0,+)) |= 2 whereas
| C ((−,−,−), (+, 0,+)) |= 1, morphisms in
C ((−,−,−), (−, 0,−)) cannot be WI: f(−−,−0,−−) =the class
of such morphisms.

I By symmetry, morphisms in C ((−,−,−), (0,−,−)) and in
C ((−,−,−, ), (−,−, 0)) cannot be WI: f(−0,−−,−−) and
f(−−,−−,−0) resp. these two morphisms.
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Hence...

35



Static analysis Geometric semantics and components Orthogonal subcategories Computing components

Filtered pullback argument

I Consider f(−0,00,−−) and f(00,−0,−−):
f(−0,00,−−) ◦ f(−−,−0,−−) = f(00,−0,−−) ◦ f(−0,−−,−−).

I So if the morphism f(−0,00,−−) were in Σ+ then by (Af4), the
diagram:

f(−0,00,−−)//___

f(−−,−0,−−)

OO�
�
�

f(−0,−−,−−)

//___

f(00,−0,−−)

OO

would have to be a pullback diagram with f(−0,−−,−−) in Σ+.

I But f(−0,−−,−−) is not WI! so impossible!

I Hence f(−0,00,−−) is not in Σ+, similarly for f(00,−0,−−)
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Hence...
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Iteration of the argument...

I By symmetry, this argument shows that f(−0,−−,00), f(00,00,−0),
f(−−,−0,00), and f(−−,00,−0) are not in Σ+.

I And then... f(−0,yy ,zz), f(xx ,−0,zz) and f(xx ,yy ,−0) with
x , y , z ∈ {−, 0,+} cannot be in Σ+ (by �propagation� around
one axis of the �ltered pullback argument above, of each of
the three morphisms that are not future Yoneda invertible)

I No other constraints can be found due to axioms (Af1) to
(Af4).
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Hence...
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Future components, geometrically

40
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Future components, geometrically
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Future components, geometrically
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I.e....

=⇒ Take full subcat of −→π1(
−→
X ) with �max of components� objects!

We will give meaning to this later
Certainly not true with full components...
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Fundamental results (1): Yoneda-f-systems are pure
Suppose Iso(C) is pure, then any Yoneda-f -system is pure.

Proof.

I Take Σ+ ∈ Yf (C) and take σ ∈ Σ+ and f1, f2 ∈ Mo(C) such
that σ = f2 ◦ f1.

I By (Af3), we have a σ′ ∈ Σ+ and f ′1 and a unique g ∈ Mo(C)
s.t.:

g

OO

f ′1
??�

�
�

�

id

88

σ′
__?

?
?

?

f2

ff

σ

__??????? f1

??�������

pushout
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Proof...

I By pureness of Iso(C) in C, f ′1 and g are isomorphisms

I hence by (Af2), belong to Σ+.

I So by (Af1), f2 = g ◦ σ′ ∈ Σ+.

I Now, f2 and σ ∈ Σ+ admit a pullback by (Af4) because
f2 ◦ f1 = σ ◦ id :

pullback

f2
??�������

σ
__???????

σ′′

__??????? f ′′2

??�������

f1

MM

id

QQ

h

OO

where σ′′ is in Σ+.
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End of proof

I Also, id = f ′′2 ◦ h and as Iso(C) is pure, h is in Iso(C)

I By (Af2), h is in Σ+.

I We also have in the commutative diagram of last slide that
f1 = σ′′ ◦ h, composite of two arrows in Σ+, hence in Σ+

I Thus Σ+ is pure in C.

�
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The locale of Yoneda-f-systems (meet)
If (Σ+

j )j∈J is a non empty family of Yoneda-f-systems of a small

category C then
⋂

j∈J Σ+
j is a Yoneda-f-system of C.

Proof.

I (Af1) and (Af2) are trivial

I Suppose σ ∈
⋂

j∈J Σ+
j and f ∈ Mo(C) with src(f ) = src(σ).

Take j1, j2 ∈ J, since σ ∈ Σ+
j1
we have a pushout square

x1
f ′1

>>~
~

~
~

σ′1∈Σ+
j1

``@
@

@
@

σ

aaCCCCCCCC f

=={{{{{{{{

pushout
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The locale of Yoneda-f-systems (meet)

I and also
x2

f ′2
>>~

~
~

~

σ′1∈Σ+
j2

``@
@

@
@

σ

aaCCCCCCCC f

=={{{{{{{{

pushout

because σ ∈ Σ+
j2

I By uniqueness of the pushout, we have an iso τ from x2 to x1
s.t. σ′1 = τ ◦ σ′2. (Af2) implies τ ∈ Σ+

j2
and (Af1) implies

σ′1 = τ ◦ σ′2 ∈ Σ+
j2
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The locale of Yoneda-f-systems (meet)

I By the same argument, for all j ∈ J, σ′1 ∈ Σ+
j i.e.

σ′1 ∈
⋂

j∈J Σ+
j and we have

f ′1
??�

�
�

�

σ′1∈
T

j∈J Σ+
j

__?
?

?
?

σ∈
T

j∈J Σ+
j

__??????? f

??�������

pushout

I The same proof holds for pullback squares �
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The locale of Yoneda-f-systems (join)

If (Σ+
j )j∈J is a non empty family of Yoneda-f-systems of a small

category C then
⊎

j∈J Σ+
j is a Yoneda-system of C, where

⊎
j∈J Σ+

j

is the least sub-category of C including all the Σ+
j 's.

Proof.

I
⊎

j∈J Σ+
j = {σn ◦ . . . ◦ σ1 | n ∈ N∗ , {j1, . . . , jn} ⊆ J and for

all k ∈ {1, . . . , n}, σk ∈ Σ+
jk
}, =⇒ (Af1)

I (Af2) also trivial
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The locale of Yoneda-f-systems (join)
I Take σn ◦ . . . ◦ σ1 ∈

⊎
j∈J Σ+

j with n ∈ N∗, {j1, . . . , jn} ⊆ J,

for all k ∈ {1, . . . , n}, σk ∈ Σ+
jk
and f ∈ Mo(C) with

src(σ1) = src(f ):
I

f

OO

σ1∈Σ+
j1

//
σn∈Σ+

jn

//

By a �nite induction using (Af3) for Σ+
j1
, . . . ,Σ+

jn
):

σ′1∈Σ+
j1//___

σ′n∈Σ+
jn//___

f

OO

σ1∈Σ+
j1

//

p.o. f1

OO�
�
�

σn∈Σ+
jn

//
fn−1

OO�
�
�
p.o. fn

OO�
�
�
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The locale of Yoneda-f-systems (join)

I Suppose

f
??�������

σn◦...◦σ1
__???????

g

MM

h

QQ

with σi ∈ Σ+
u(i) for all i = 1, . . . , n and u is a function from

{1, . . . , n} to I
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The locale of Yoneda-f-systems (join)

I So

f
??�������

σn
__???????

g

MM

σn−1◦...◦σ1◦h

QQ
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The locale of Yoneda-f-systems (join)

I (Af4) for Σ+
u(n) implies:

pullback

f
??�������

σn
__???????

σ̃n

__??????? fn

??�������
g

MM

σn−1◦...◦σ1◦h

QQ

qn

OO

with qn, fn ∈ C and σ̃n ∈ Σ+
u(n).
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The locale of Yoneda-f-systems (join)

I Now we carry on with:

fn
??�������

σn−1
__???????

qn

MM

σn−2◦...◦σ1◦h

QQ
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The locale of Yoneda-f-systems (join)

I hence by the same argument: diagram:

pullback

fn
??�������

σn−1
__???????

σ̃n−1

__??????? fn−1

??�������
qn

MM

σn−2◦...◦σ1◦h

QQ

qn−1

OO

with qn−1, fn−1 ∈ C and σ̃n−1 ∈ Σ+
u(n−1).

56



Static analysis Geometric semantics and components Orthogonal subcategories Computing components

The locale of Yoneda-f-systems (join)

I By induction: of n pullback squares:

f1
��

σ̃1∈Σ+
u(1)//___

f2
���
�
�

fn
���
�
�
σ̃n∈Σ+

u(n)//___

f
���
�
�

σ1∈Σ+
u(1)

//
p.b.

σn∈Σ+
u(n)

//
p.b.

with σ̃n ◦ σ̃1 ∈ Σ+

�
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Conclusion... (skipping some lemmas)

I Let C be a small category such that Iso(C) is pure in C. Then,
I the family of future Yoneda-systems of C is not empty and,
I together with ⊆ it forms a locale
I whose l.u.b. operator is

⊎
and g.l.b operator is

⋂
.

I Moreover, the least element of this locale (�bottom�) is Iso(C)

I There exists a maximal future Yoneda system in any category
C.

=⇒ Notion of future component category −→π0(X )
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It all works as with �full� components...

I We have a van Kampen theorem on future components
(consequence of the locale structure)

I For PV programs, allows for proving components are maxplus
polyhedra of some sort; inductive calculation and �algebra� of
maxplus polyhedra (see end of talk!)

I We have a lifting property (slightly di�erent - only one side!):
For every x1 ∈ C1 there exists x2 ∈ C2 such that the quotient
map

C(x1, x2)→ C/Σ+(C1,C2), f 7→ [f ]

is bijective.
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An extra condition on components (?)
(Conjecture(?)): automatically true in the PV case

I Let D be the category whose objects are X , X0, X1, . . ., Xn,
. . ., and whose only morphisms are of the form X → Xi

(i ≥ 0).

I Let F be a functor from D to a category C.
I We call in�nite pushout the colimit of F (D) in C, when it

exists.

Ask for future (resp. past) components to have in�nite pushouts
(resp. pullbacks).
(They already had �nite pushouts)
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Extension of the lifting property

With this extra property, we have both for past and future
components:

I the lifting property holds

I even if the set of morphisms (in C/Σ) between two objects is
not �nite.
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Orthogonal subcategories
See e.g. Borceux

Let C be a category and Σ a class of morphisms of C.
I By the orthogonal subcategory of C determined by Σ, we mean

the full subcategory CΣ of C,
I whose objects are those X ∈ C such that s ⊥ X for every

s ∈ Σ, i.e.,

I such that for every s : A→ B ∈ Σ, for every morphism
f : A→ X , there exists a unique morphism b : B → X such
that b ◦ s = f .

A

∀f ∈C
��

s∈Σ // B

∃!b��~
~

~
~

X
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The orthogonal subcategory of Σ+ is re�ective
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Theorem
Let Σ be the inessential morphisms in the future, in the category

C = −→π1(
−→
X ) for some local po-space X .

Suppose that Σ has in�nite pushouts then
I CΣ is equivalent to C[Σ−1]

I CΣ is re�ective in −→π1(
−→
X )

(note that −→π1(
−→
( )X ) is in general not complete, and that not

all objects are representable!)

This gives (indirectly) a reason why we had:
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Geometric interpretation of the components - duality

(here, components, but for future this works too, based on van
Kampen)

The components A, B , C and D correspond
to the squares separated by the horizontal
and vertical lines from the min and max
points of the forbidden region F .

I �Duality�: we identify e1 with the codimension 1 linear variety
(here, the vertical segment, orthogonal to e1)

I Similarly, e2 is identi�ed with the horizontal line left of the min
point of F etc.

I There is no interesting codimension 2 linear variety here, hence
no relation between morphisms.
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Example
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Geometric interpretation of the induction step: �duality�

(proof in �generic� situations by van Kampen)
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Inductive presentation of the component category -
CONCUR'05, E. Goubault & E. Haucourt

I Component categories (in the classical concurrency theory
setting) are generated by 2-dimensional pre-cubical sets

I Base case is OK, now the induction step: given the component
category of [0, 1]n\R generated by a 2-dimensional precubical
set (Y0,Y1,Y2, δ

0, δ1), de�ne a new structure
(Z0,Z1,Z2, ∂

0, ∂1) which will generate (an �approximation� of)
the component category of U\R :

I Z0 = {A ∩ B | A ∈ X0,B ∈ Y0,A ∩ B 6= ∅}
I Z1 =

{A ∩ f | A ∈ X0,B ∈ Y1,A ∩ f 6= ∅}
∪{e ∩ B | e ∈ X1,B ∈ Y0, e ∩ B 6= ∅}

I Z2 =
{e ∩ f �non degenerate� | e ∈ X1, f ∈ Y1, e ∩ f 6= ∅}
∪{R ∩ B | R ∈ X2,B ∈ Y0,R ∩ B 6= ∅}
∪{A ∩ S | A ∈ X0,S ∈ Y2,A ∩ S 6= ∅}
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Interlude...: Max-plus

I Consider the semi-ring R ∪ {−∞}, where addition (⊕) is max
and multiplication (.) is +

I Almost a ring, but addition is not invertible, just idempotent

I Unit for ⊕ is −∞ = 0, and for . is 0 = 1

I Extremely rich theory:
I in particular, most of ordinary linear algebra, convex geometry

etc. has been redevelopped
I Maxplus semi-modules, matrices etc.
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Maxplus polyhedra
I sets of the form AX ≤ BX (once again addition is max etc.)
I Hence of the form (for 1 ≤ i ≤ m):

max(ai ,1 + x1, . . . , ai ,n + xn) ≤ max(bi ,1 + x1, . . . , bi ,n + xn)

I Such polyhedra P are convex in the maxplus sense:

∀x , y ∈ P, λx ⊕ µy ∈ P

(for all λ, µ such that λ⊕ µ = 1)
I Of course, intersection of maxplus polyhedra are maxplus

polyhedra...
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Now: inductive computation for future components!
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Future components!

x ⊕ 1 = 1
y ⊕ 1 = 1
x ⊕ 0 = x

y ⊕ 0 = y
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Future components!

1 ≤ x ⊕ y

x ⊕ 3 ≤ 3
y ⊕ 3 ≤ 3
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Future components!
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Future components!
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Future components!
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Future components!
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Future components!
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Future components!

1 ≤ x ⊕ y

x ⊕ 3 ≤ 3
y ⊕ 3 ≤ 3

1
2
≤ x ⊕ y
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Mathematical improvements
I Computation of morphisms in the component category:

I Help from homology? (many tries!) Promising one:
non-abelian cohomology (using coe�cients in semi-rings)

I (on the longer run) simpli�cation of the retract by considering

also the
→
π
n [�homotopical resolution�, or �higher-order

syzygies�], example:

1st order: [a,b],
[b,c], [a,c]
2nd order: [a,b,c]

I Use of trace spaces? (M. Raussen)
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Open mathematical issues

I Components in the presence of loops/non-determinism:

I

the category of components is exactly π1
(continuum of points)!
di�cult to �nd a direct notion of Yoneda
system in that case
we would like something like
components∼ (N,+)

I Should be coherent with the view that one would have when
looking at the universal dicovering (see recent work by L.
Fajstrup, also S. Krishnan)
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Open mathematical issues

I dihomotopy equivalence? Algebraic homotopical structure
(Quillen, Baues...)?
=⇒ leads in work by M. Grandis, P. Gaucher, K. Worytkiewicz
etc.

I Classi�cation of models modulo dihomotopy equivalence? (at
least in dimension 2?)
=⇒ right �primitive� synchronisation primitives? (fundational
work, concurrent Turing machine?)

I Enrichment of the model, e.g. timing issues:
=⇒ geodesics, CAT0 conditions (see R. Ghrist/V. Paterson)
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Open mathematical issues
I Right directed notions in cubical sets?

=⇒ would be much more natural in the context of semantics
and static analysis - leads in work (classical case) of R. Jardine

I What is the correct category involved?
I Can we de�ne directly an algebraic homotopical structure (for

the directed equivalence)? Quillen equivalence with the
(di-)topological case?

I Relation with causality issues in theoretical physics (general
relativity)?
=⇒ see Penrose models, P. Panangaden/K. Martin work

I Relationship with topological complexity (Mike Farber)? with
classical work in combinatorial algebraic topology
(arrangement spaces, see Dimitri Kozlov)? ...

Thanks for your attention!
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Related Work

I �Components of the Fundamental Category II�, E. Goubault,
E. Haucourt, in Applied Categorical Structures 07

I �Components of the Fundamental Category�, L. Fajstrup, E.
Goubault, E. Haucourt, M. Raussen, in Applied Categorical
Structures 04.

I �Algebraic Topology and Concurrency �, L. Fajstrup, E.
Goubault, M. Raussen, (MFPS'98) Theoretical Computer
Science 05.

I �Detecting Deadlocks in Concurrent Systems �, L. Fajstrup, E.
Goubault, M. Raussen (Concur'98).

I �Some Geometric Perspectives in Concurrency Theory �, E.
Goubault, in Homology, Homotopy and Applications 03.
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Related Work

I M. Raussen and L. Fajstrup (many things, among which a
complete treatment for dimension 2, characterization of
obstructions to dihomotopies etc.)

I M. Grandis �quotient models� and higher fundamental
categories (a lot there again)

I R. Ghrist and V. Peterson (only mutex, but geodesics!)

I (partial order reduction methods, Godefroid, Wolper...) Ample
sets, persistent sets, stubborn sets, sleep sets etc.
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