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effect<a> ctl default() : a

fun main()

with ctl default() ->
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val a = default()
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print(show(a : int) ++ ", " ++ show(b : int))

Output: 1, 1
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meaning that when executed the operations of smooth<a> may occur.
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Effect typing in Koka with row types

effect<a> ctl default() : a

effect ctl exception(info : string) : a

fun divide(x : int, y : int) : exception int

if y == 0 then exception("Divided by zero") else x / y

fun combined() : <exception,default<int>> int

divide(default(), default())

fun main() : console () {

with ctl exception(info) -> print("Exception: " ++ info)

with ctl default() -> resume(0)

print((combined : () -> <default<int>,exception,console> int)())

}



Handlers for different effects are order independent



Handlers for different effects are order independent

effect ctl eff0() : int

effect ctl eff1() : int



Handlers for different effects are order independent

effect ctl eff0() : int

effect ctl eff1() : int

fun main01()

with ctl eff0() -> resume(1)

with ctl eff1() -> resume(2)

print(eff0() + eff1() : int)

fun main10()

with ctl eff1() -> resume(2)

with ctl eff0() -> resume(1)

print(eff0() + eff1() : int)



Handlers have scope

effect<a> ctl default() : a

fun main()

val a =

with ctl default() -> resume(1)

(default : () -> <console,default<int>> int)()

val b =

with ctl default() -> resume(2)

default()

print(show(a : int) ++ ", " ++ show(b : int))

Output: 1, 2



Handlers have scope

effect<a> ctl default() : a

fun main()

val a =

with ctl default() -> resume(1)

(default : () -> <console,default<int>> int)()

val b =

with ctl default() -> resume(2)

default()

print(show(a : int) ++ ", " ++ show(b : int))

Output: 1, 2



The inner-most handler has priority

effect<a> ctl default() : a

fun main() : console () {

with ctl default() ->

resume(2)

with ctl default() ->

resume(1)

val a = (default : () -> <console,default<int>,default<int>> int)()

val b = default()

print(show(a : int) ++ ", " ++ show(b : int))

}

Output: 1, 1

The left default<int> corresponds to the inner handler.



The inner-most handler has priority

effect<a> ctl default() : a

fun main() : console () {

with ctl default() ->

resume(2)

with ctl default() ->

resume(1)

val a = (default : () -> <console,default<int>,default<int>> int)()

val b = default()

print(show(a : int) ++ ", " ++ show(b : int))

}

Output: 1, 1

The left default<int> corresponds to the inner handler.



Handlers can be bypassed dynamically

effect<a> ctl default() : a

fun main()

with ctl default() ->

resume(2)

with ctl default() ->

resume(1)

val a = (default : () -> <console,default<int>,default<int>> int)()

val b = mask<default>{

(default : () -> <console,default<int>> int)()

}

print(show(a : int) ++ ", " ++ show(b : int))

Output: 1, 2



Handlers can be bypassed dynamically

effect<a> ctl default() : a

fun main()

with ctl default() ->

resume(2)

with ctl default() ->

resume(1)

val a = (default : () -> <console,default<int>,default<int>> int)()

val b = mask<default>{

(default : () -> <console,default<int>> int)()

}

print(show(a : int) ++ ", " ++ show(b : int))

Output: 1, 2



Handlers must be bypassed for different instantiation

effect<a> ctl default() : a

fun main()

with ctl default() ->

resume(True )

with ctl default() ->

resume(1)

val a = (default : () -> <console,default<int>,default<bool>> int)()

val b = mask<default>{

(default : () -> <console,default<bool>> bool)()

}

print(show(a : int) ++ ", " ++ show(b : bool))

Output: 1, True
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effect<a> ctl default() : a

fun main()

with ctl default() -> resume(1)

with ctl default() -> resume(default() + 1)

print(default() : int)

Output: 2
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effect<a> ctl default() : a

fun main()

with ctl default() -> resume(1)
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print(default() : int)
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Effect polymorphism

fun twice(f : () -> e ()) : e ()

f()

f()

fun while_(pred : () -> <div|e> bool, body : () -> <div|e> ())

: <div|e> ()

if pred() then {body(); while_(pred, body)} else ()

fun main() : <div,console> ()

var i := 3

while_ ({i > 0} : () -> <div,console,local<_h>> bool)

i := i - 1

print(show(i) ++ " ")

Output: 2 1 0



Helper functions continued

inline fun op0(n)

match(n) {Const (x) -> c(x)}

inline fun op1(u, x)

match(u) {Negate -> (~.)(x)}

inline fun op2(b, x, y)

match(b)

Plus -> x +. y

Times -> x *. y

inline fun der1(u, x)

match(u) {Negate -> (~.)(c(1.0))}

inline fun der2L(b, x, y)

match(b)

Plus -> c(1.0)

Times -> y

inline fun der2R(b, x, y)

match(b)

Plus -> c(1.0)

Times -> x
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type dual<a>

Dual(v : a, dv : a)

val forward = handler

ctl ap0(n) ->

resume(Dual (op0(n), c(0.0)))

ctl ap1(u,x) ->

resume(Dual (op1(u,x.v), der1(u,x.v) *. x.dv))

ctl ap2(b,x,y) ->

resume(Dual (op2(b,x.v,y.v), (der2L(b,x.v,y.v) *. x.dv) +.

(der2R(b,x.v,y.v) *. y.dv)))
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type dual<a>

Dual(v : a, dv : a)

val forward = handler

ctl ap0(n) ->

resume(Dual (op0(n), c(0.0)))

ctl ap1(u,x) ->

resume(Dual (op1(u,x.v), der1(u,x.v) *. x.dv))

ctl ap2(b,x,y) ->

resume(Dual (op2(b,x.v,y.v), (der2L(b,x.v,y.v) *. x.dv) +.

(der2R(b,x.v,y.v) *. y.dv)))

fun d(f : dual<a> -> <smooth<dual<a>>,smooth<a>|e> dual<a>, x : a)

: <smooth<a>|e> a

val res = forward{f(Dual (x,mask<smooth>{c(1.0)}))}

res.dv



Using forward mode

fun main()

with evaluate

d(fn(x) {term(x, c(4.0))}, c(2.0))

We are calculating
d

dx

(
1 + x3 + (−y2)

)
= 3x2

at x = 2 and y = 4.

Output: 12
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Nesting forward mode

We can also nest forward mode to calculate second derivatives.

fun main()

with evaluate

d(fn(y) {d(fn(x) {x *. x *. x}, y)}, c(1.0))

Output: 6

What about perturbation confusion, e.g. correctly calculating

d

dx

x ·

(
d

dy
x + y

∣∣∣∣
y=1

)
x=1
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Perturbation confusion

fun confusion()

with evaluate

d(fn(x) {x *. d(fn(y) {x +. y}, c(1.0))}, c(1.0))

x : dual<a> and y : dual<dual<a>>
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Perturbation confusion

fun confusion()

with evaluate

d(fn(x) {x *. d(fn(y) {x +. y}, c(1.0))}, c(1.0))

forward-confusion-one.kk(9,17): error: types do not match (due to an

infinite type)

context : x *. d(fn(y) {x +. y}, c(1.0))

term : d(fn(y) {x +. y}, c(1.0))

inferred type: _a

expected type: dual<_a>

hint : give a type to the function definition?

x : dual<a> and y : dual<dual<a>>



Perturbation confusion, with lifting

fun lift(x : a) : <smooth<dual<a>>,smooth<a>> dual<a>

mask<smooth>{Dual (x, c(0.0))}

Thus lift(x) : dual<dual<a>>, and so

fun confusion-lift()

with evaluate

d(fn(x) {x *. d(fn(y) {lift(x) +. y}, c(1.0))}, c(1.0))

produces the correct output of 1.
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Perturbation confusion, with lifting the wrong way

fun lift(x : a) : <smooth<dual<a>>,smooth<a>> dual<a>

mask<smooth>{Dual (x, c(0.0))}

fun confusion-lift()

with evaluate

d(fn(x) {x *. lift(d(fn(y) {x +. y}, c(1.0)))}, c(1.0))

forward-confusion-lift-wrong.kk(9,17): error: types do not match (due

to an infinite type)

context : lift(d(fn(y) {x +. y}, c(1.0)))

term : lift

inferred effect: <smooth<_a>|_e1>

expected effect: <smooth<dual<_a>>,smooth<_a>|_e>

because : effect cannot be subsumed

hint : give a type to the function definition?
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Perturbation confusion, with lifting the wrong way explained

fun d(f : dual<a> -> <smooth<dual<a>>,smooth<a>|e> dual<a>, x : a)

: <smooth<a>|e> a

fun lift(x : a) : <smooth<dual<a>>,smooth<a>> dual<a>

fun confusion-lift()

with evaluate

d(fn(x) {x *. lift(d(fn(y) {x +. y}, c(1.0)))}, c(1.0))

Working inside out, both x and y have type dual<a>. Thus, the inner d needs effect
context <smooth<a>|e>. Using lift requires unification with
<smooth<dual<a>>,smooth<a>|e’>. The leftmost occurrences of smooth must
unify, causing an infinite type.



Perturbation confusion, with lifting the wrong way continued

Therefore, if we hide the leftmost smooth, type checking succeeds.

fun lift(x : a) : <smooth<dual<a>>,smooth<a>> dual<a>

mask<smooth>{Dual (x, c(0.0))}

fun confusion-lift-mask()

with evaluate

d(fn(x) {x *. lift(mask<smooth>{d(fn(y) {x +. y}, c(1.0))})}, c(1.0))

Output: 2

The answer of 2 is the result of confusing the dual components of each derivative.



Perturbation confusion, with lifting the wrong way again

fun lift(x : a) : <smooth<dual<a>>,smooth<a>> dual<a>

mask<smooth>{Dual (x, c(0.0))}

fun confusion-lift()

with evaluate

d(fn(x) {x *. d(fn(y) {lift(x +. x) +. y}, c(1.0))}, c(1.0))

forward-confusion-lift-other.kk(9,26): error: types do not match (due

to an infinite type)

context : lift(x +. x)

term : lift

inferred effect: <smooth<dual<_a>>|_e1>

expected effect: <smooth<dual<dual<_a>>>,smooth<dual<_a>>|_e>

because : effect cannot be subsumed

hint : give a type to the function definition?
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Summary so far

▶ Koka has an effect type system using row types.

▶ Handlers create a scope, with the innermost handler having priority.

▶ We can choose to skip the innermost hander with a masking operation.

▶ Koka has effect polymorphism.

▶ Forward mode and a derivative operator are succintly expressed using handlers.

▶ The derivative operator can be iterated.

▶ The value and effect type systems help avoid perturbation confusion.
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Benchmarks!

1

x
=

∞∑
n=0

(
−(x − 1)

)n
fun approx-recip(iters : int, x : a) : <smooth<a>,div> a {

var acc := c(1.0)

var prev := c(1.0)

repeat(iters) {

prev := (prev *. (~.)(x -. c(1.0)))

acc := (acc +. prev)

}

acc

}
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Benchmark: evaluate

fun main()

val sz =

match get-args()

Nil -> 500

Cons (arg0, _) ->

match parse-int(arg0)

Just (sz) -> sz

_ -> 500

with evaluate

val res =

approx-recip(sz, c(0.5))

println(res : float64)
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Benchmark: forward

fun main()

val sz =

match get-args()

Nil -> 500

Cons (arg0, _) ->

match parse-int(arg0)

Just (sz) -> sz

_ -> 500

with evaluate

val res = d(fn(x)

{approx-recip(sz, x)},

c(0.5))

println(res : float64)

Oh no, quadratic! (Koka performance bug)
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Benchmark: forward

fun main()

val sz =

match get-args()

Nil -> 500

Cons (arg0, _) ->

match parse-int(arg0)

Just (sz) -> sz

_ -> 500

with evaluate

val res = d(fn(x)

{approx-recip(sz, x)},

c(0.5))

println(res : float64)

Oh no, quadratic! (Koka performance bug)



Tail resumptive effects

Both evaluate and forward are tail-resumptive, i.e. the last thing they do is call
resume. Koka can take advantage of this special case by using fun handler cases:

Unlike a general ctl operation, there is no need to yield upward to the handler,
capture the stack, and eventually resume again. This gives fun (and val)
operations a performance cost very similar to virtual method calls which can
be quite efficient. (Koka documentation)
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val evaluate = handler

ctl ap0(n) -> match(n) {Const (i) -> resume(i)}

ctl ap1(u,x) -> match(u) {Negate -> resume(~x : float64)}

ctl ap2(b,x,y) -> match(b)

Plus -> resume(x + y : float64)

Times -> resume(x * y : float64)



Tail resumptive effects

Both evaluate and forward are tail-resumptive, i.e. the last thing they do is call
resume. Koka can take advantage of this special case by using fun handler cases:

Unlike a general ctl operation, there is no need to yield upward to the handler,
capture the stack, and eventually resume again. This gives fun (and val)
operations a performance cost very similar to virtual method calls which can
be quite efficient. (Koka documentation)

val evaluate = handler

fun ap0(n) -> match(n) {Const (i) -> i}

fun ap1(u,x) -> match(u) {Negate -> (~x : float64)}

fun ap2(b,x,y) -> match(b)

Plus -> (x + y : float64)

Times -> (x * y : float64)



Performance gains for evaluate

We get almost a x20 speed-up!
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Performance of forward

Forward mode AD is a constant
multiple slower than no AD as
both lines are linear. Unfortunately
it is about x10 slower than no AD,
whereas the theoretical optimum
is x2-3, but not quadratic!
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Why even have control operators then?

effect<a> ctl choice(l : a, r : a) : a

val all-choices = handler

return(x) -> [x]

ctl choice(l, r) -> resume(l) ++ resume(r)

fun main()

val res =

with all-choices

[choice("a","x"),choice("b","y")]

res.map(join)

Output: ["ab","ay","xb","xy"]



Reverse mode AD



Reverse mode AD

type prop<h,a>

Prop(v : a, dv : ref<h, a>)



Reverse mode AD

type prop<h,a>

Prop(v : a, dv : ref<h, a>)

val reverse = handler

ctl ap0(n) ->

val r = Prop (op0(n), ref(c(0.0)))

resume(r)

ctl ap1(u,x) ->

val r = Prop (op1(u,x.v), ref(c(0.0)))

resume(r)

set(x.dv, !x.dv +. (der1(u,x.v) *. !r.dv))

ctl ap2(b,x,y) ->

val r = Prop (op2(b,x.v,y.v), ref(c(0.0)))

resume(r)

set(x.dv, !x.dv +. (der2L(b,x.v,y.v) *. !r.dv))

set(y.dv, !y.dv +. (der2R(b,x.v,y.v) *. !r.dv))

Essentially the same
as “Demystifying”



Reverse mode AD continued

fun grad(f, x)

val z = Prop (x, ref(c(0.0)))

reverse{set(f(z).dv, mask<smooth>{c(1.0)})}

!z.dv

fun main()

with evaluate

grad(fn(x) {term(x, c(4.0))}, c(2.0))

Output: 12

Can also be nested like forward mode, and multiple modes can be mixed.
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match parse-int(arg0)

Just (sz) -> sz

_ -> 500

with evaluate

val res = grad(

fn(x) {approx-recip(sz, x)},
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println(res : float64)

Also quadratic, and very slow
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val sz =

match get-args()
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Just (sz) -> sz

_ -> 500
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A workaround using control effects

val reverse = handler

ctl ap0(n) ->

val r = evaluate({Prop (op0(n), ref(c(0.0)))})

resume(r)

ctl ap1(u,x) ->

val r = evaluate({Prop (op1(u,x.v), ref(c(0.0)))})

resume(r)

with evaluate

set(x.dv, !x.dv +. (der1(u,x.v) *. !r.dv))

ctl ap2(b,x,y) ->

val r = evaluate({Prop (op2(b,x.v,y.v), ref(c(0.0)))})

resume(r)

with evaluate

set(x.dv, !x.dv +. (der2(b,L ,x.v,y.v) *. !r.dv))

set(y.dv, !y.dv +. (der2(b,R ,x.v,y.v) *. !r.dv))
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Benchmarking the workaround

reverse : forall<h,e>. (() -> <st<h>,smooth<prop<h,float64>>|e> ())

-> <st<h>|e> ()

Everything is linear! However, we
lose compositionality. Also, things
are still slow.
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Benchmarking the workaround

reverse : forall<h,e>. (() -> <st<h>,smooth<prop<h,float64>>|e> ())

-> <st<h>|e> ()

Everything is linear! However, we
lose compositionality. Also, things
are still slow.



Better solution, use taped reverse AD

Show code



Comparison of taped reverse AD



Checkpointed reverse mode

rec effect checkpoint<h,a,e>

ctl check(

prog : () -> <checkpoint<h,a,e>,smooth<prop<h,a>>,div|e> prop<h,a>

) : prop<h,a>

fun lift(action : () -> <smooth<prop<h,a>>|e> b)

: <smooth<prop<h,a>>, smooth<a>|e> b {
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Checkpointed reverse mode

rec effect checkpoint<h,a,e>

ctl check(

prog : () -> <checkpoint<h,a,e>,smooth<prop<h,a>>,div|e> prop<h,a>

) : prop<h,a>

fun lift(action : () -> <smooth<prop<h,a>>|e> b)

: <smooth<prop<h,a>>, smooth<a>|e> b {



Checkpointed reverse mode continued

fun evaluatet(

s : ref<h,a>

, action : (() -> <checkpoint<h,a,e>,div,

smooth<prop<h,a>>,smooth<a>|e> b)

) : <div,smooth<a>|e> b

with handler

ctl check(p) ->

val r = evaluatet(s, {lift{p()}})

resume(r)

with handler

ctl ap0(n) -> resume(Prop (op0(n), s))

ctl ap1(u,x) -> resume(Prop (op1(u,x.v), s))

ctl ap2(b,x,y) -> resume(Prop (op2(b,x.v,y.v), s))

action()



Checkpointed reverse mode continued

fun evaluatet(
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val r = evaluatet(s, {lift{p()}})

resume(r)
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ctl ap0(n) -> resume(Prop (op0(n), s))

ctl ap1(u,x) -> resume(Prop (op1(u,x.v), s))

ctl ap2(b,x,y) -> resume(Prop (op2(b,x.v,y.v), s))

action()



Checkpointed reverse mode continued

fun reversec(

action : (() -> <checkpoint<h,a,<st<h>|e>>,div,

smooth<prop<h,a>>,smooth<a>,st<h>|e> ())

) : <div,st<h>,smooth<a>|e> ()

with handler

ctl check(p) ->

val s = ref(c(0.0))

val res = evaluatet(s, {lift{p()}})

val r = Prop (res.v, ref(c(0.0)))

resume(r)

reversec{set((lift{p()}).dv, !r.dv)}

with reverse

action()



Checkpointed reverse mode continued

fun reversec(

action : (() -> <checkpoint<h,a,<st<h>|e>>,div,

smooth<prop<h,a>>,smooth<a>,st<h>|e> ())

) : <div,st<h>,smooth<a>|e> ()

with handler

ctl check(p) ->

val s = ref(c(0.0))

val res = evaluatet(s, {lift{p()}})

val r = Prop (res.v, ref(c(0.0)))

resume(r)

reversec{set((lift{p()}).dv, !r.dv)}

with reverse

action()



Conclusion

▶ We’ve seen how to implement various AD modes using algebraic effects.

▶ The effect type system helps us avoid perturbation confusion.

▶ Algebraic effects impose some overhead, but still provide the correct asymptotics.

▶ Algebraic effects are making their way into other languages, OCaml 5.0 has them,
and so will WASM.
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Hessian-vector product via forward-over-reverse

fun grad-list(f, xs)

val z : list<_> = map(xs, fn(x) {Prop (x, ref(c(0.0)))})

reverse{set(f(z).reverse/dv, mask<smooth>{c(1.0)})}

map(z, fn(x) {!x.reverse/dv})

fun hessian-vector(f, w, v)

val backward = fn(r)

grad-list(f, zipwith(w, v, fn(wi, vi) {lift(wi) +. (r *. lift(vi))}))

val prod = forward{

backward(Dual (mask<smooth>{c(0.0)},mask<smooth>{c(1.0)}))

}

prod.map(dv)


