
Automatic Differentiation via
Algebraic Effects and Handlers

Jesse Sigal

LFCS
School of Informatics

University of Edinburgh

30 June 2020

Overview of this talk

▶ An introduction to Koka via examples.

▶ How to make smooth functions an effect.

▶ Koka’s effect type system.

▶ Forward mode and perturbation confusion.

▶ Micro-benchmarks.

▶ Reverse mode and more benchmarking.

Overview of this talk

▶ An introduction to Koka via examples.

▶ How to make smooth functions an effect.

▶ Koka’s effect type system.

▶ Forward mode and perturbation confusion.

▶ Micro-benchmarks.

▶ Reverse mode and more benchmarking.

Overview of this talk

▶ An introduction to Koka via examples.

▶ How to make smooth functions an effect.

▶ Koka’s effect type system.

▶ Forward mode and perturbation confusion.

▶ Micro-benchmarks.

▶ Reverse mode and more benchmarking.

Overview of this talk

▶ An introduction to Koka via examples.

▶ How to make smooth functions an effect.

▶ Koka’s effect type system.

▶ Forward mode and perturbation confusion.

▶ Micro-benchmarks.

▶ Reverse mode and more benchmarking.

Overview of this talk

▶ An introduction to Koka via examples.

▶ How to make smooth functions an effect.

▶ Koka’s effect type system.

▶ Forward mode and perturbation confusion.

▶ Micro-benchmarks.

▶ Reverse mode and more benchmarking.

Overview of this talk

▶ An introduction to Koka via examples.

▶ How to make smooth functions an effect.

▶ Koka’s effect type system.

▶ Forward mode and perturbation confusion.

▶ Micro-benchmarks.

▶ Reverse mode and more benchmarking.

Overview of this talk

▶ An introduction to Koka via examples.

▶ How to make smooth functions an effect.

▶ Koka’s effect type system.

▶ Forward mode and perturbation confusion.

▶ Micro-benchmarks.

▶ Reverse mode and more benchmarking.

Thank you to...

▶ Gordon Plotkin and Matija Pretnar for inventing algebraic effects and handlers,
many others for working in the area since.

▶ Daan Leijen and others for making Koka.

Thank you to...

▶ Gordon Plotkin and Matija Pretnar for inventing algebraic effects and handlers,
many others for working in the area since.

▶ Daan Leijen and others for making Koka.

Thank you to...

▶ Gordon Plotkin and Matija Pretnar for inventing algebraic effects and handlers,
many others for working in the area since.

▶ Daan Leijen and others for making Koka.

An introduction to effects and handlers with Koka

An introduction to effects and handlers with Koka

effect ctl exception(info : string) : a

An introduction to effects and handlers with Koka

effect ctl exception(info : string) : a

fun divide(x, y)

if y == 0 then exception("Divided by zero") else x / y

An introduction to effects and handlers with Koka

effect ctl exception(info : string) : a

fun divide(x, y)

if y == 0 then exception("Divided by zero") else x / y

fun main()

(

handler

ctl exception(info) ->

print("Exception: " ++ info)

) {

An introduction to effects and handlers with Koka

effect ctl exception(info : string) : a

fun divide(x, y)

if y == 0 then exception("Divided by zero") else x / y

fun main()

(

handler

ctl exception(info) ->

print("Exception: " ++ info)

) {

val a = divide(4, 2)

print("'a' is " ++ show(a) ++ ", ")

val b = divide(4, 0)

print("'b' is " ++ show(b))

}

Running our program

fun divide(x, y)

if y == 0 then exception("Divided by zero") else x / y

fun main()

(

handler

ctl exception(info) ->

print("Exception: " ++ info)

) {

val a = divide(4, 2)

print("'a' is " ++ show(a) ++ ", ")

val b = divide(4, 0)

print("'b' is " ++ show(b))

}

Output:

Running our program

fun divide(x, y)

if y == 0 then exception("Divided by zero") else x / y

fun main()

(

handler

ctl exception(info) ->

print("Exception: " ++ info)

) {

val a = divide(4, 2)

print("'a' is " ++ show(a) ++ ", ")

val b = divide(4, 0)

print("'b' is " ++ show(b))

}

Output:

Running our program

fun divide(x, y)

if y == 0 then exception("Divided by zero") else x / y

fun main()

(

handler

ctl exception(info) ->

print("Exception: " ++ info)

) {

val a = divide(4, 2)

print("'a' is " ++ show(a) ++ ", ")

val b = divide(4, 0)

print("'b' is " ++ show(b))

}

Output:

Running our program

fun divide(x, y)

if y == 0 then exception("Divided by zero") else x / y

fun main()

(

handler

ctl exception(info) ->

print("Exception: " ++ info)

) {

val a = divide(4, 2)

print("'a' is " ++ show(a) ++ ", ")

val b = divide(4, 0)

print("'b' is " ++ show(b))

}

Output:

Running our program

fun divide(x, y)

if y == 0 then exception("Divided by zero") else x / y

fun main()

(

handler

ctl exception(info) ->

print("Exception: " ++ info)

) {

val a = divide(4, 2)

print("'a' is " ++ show(a) ++ ", ")

val b = divide(4, 0)

print("'b' is " ++ show(b))

}

Output: ’a’ is 2,

Running our program

fun divide(x, y)

if y == 0 then exception("Divided by zero") else x / y

fun main()

(

handler

ctl exception(info) ->

print("Exception: " ++ info)

) {

val a = divide(4, 2)

print("'a' is " ++ show(a) ++ ", ")

val b = divide(4, 0)

print("'b' is " ++ show(b))

}

Output: ’a’ is 2,

Running our program

fun divide(x, y)

if y == 0 then exception("Divided by zero") else x / y

fun main()

(

handler

ctl exception(info) ->

print("Exception: " ++ info)

) {

val a = divide(4, 2)

print("'a' is " ++ show(a) ++ ", ")

val b = divide(4, 0)

print("'b' is " ++ show(b))

}

Output: ’a’ is 2,

Running our program

fun divide(x, y)

if y == 0 then exception("Divided by zero") else x / y

fun main()

(

handler

ctl exception(info) ->

print("Exception: " ++ info)

) {

val a = divide(4, 2)

print("'a' is " ++ show(a) ++ ", ")

val b = divide(4, 0)

print("'b' is " ++ show(b))

}

Output: ’a’ is 2,

Running our program

fun divide(x, y)

if y == 0 then exception("Divided by zero") else x / y

fun main()

(

handler

ctl exception(info) ->

print("Exception: " ++ info)

) {

val a = divide(4, 2)

print("'a' is " ++ show(a) ++ ", ")

val b = divide(4, 0)

print("'b' is " ++ show(b))

}

Output: ’a’ is 2, Exception: Divided by zero

Handlers are first class in Koka

effect ctl exception(info : string) : a

val print-exception = handler

ctl exception(info) ->

print("Exception: " ++ info)

fun divide(x, y)

if y == 0 then exception("Divided by zero") else x / y

fun main()

with print-exception

val a = divide(4, 2)

print("'a' is " ++ show(a) ++ ", ")

val b = divide(4, 0)

print("'b' is " ++ show(b))

Handlers are first class in Koka

effect ctl exception(info : string) : a

val print-exception = handler

ctl exception(info) ->

print("Exception: " ++ info)

fun divide(x, y)

if y == 0 then exception("Divided by zero") else x / y

fun main()

with print-exception

val a = divide(4, 2)

print("'a' is " ++ show(a) ++ ", ")

val b = divide(4, 0)

print("'b' is " ++ show(b))

Handlers can resume execution

Output:

Handlers can resume execution

effect<a> ctl default() : a

fun main()

with ctl default() ->

resume(1)

val a = default()

val b = default()

print(show(a : int) ++ ", " ++ show(b : int))

Output:

Handlers can resume execution

effect<a> ctl default() : a

fun main()

with ctl default() ->

resume(1)

val a = default()

val b = default()

print(show(a : int) ++ ", " ++ show(b : int))

Output:

Handlers can resume execution

effect<a> ctl default() : a

fun main()

with ctl default() ->

resume(1)

val a = default()

val b = default()

print(show(a : int) ++ ", " ++ show(b : int))

Output:

Handlers can resume execution

effect<a> ctl default() : a

fun main()

with ctl default() ->

resume(1)

val a = default()

val b = default()

print(show(a : int) ++ ", " ++ show(b : int))

Output:

Handlers can resume execution

effect<a> ctl default() : a

fun main()

with ctl default() ->

resume(1)

val a = default()

val b = default()

print(show(a : int) ++ ", " ++ show(b : int))

Output:

Handlers can resume execution

effect<a> ctl default() : a

fun main()

with ctl default() ->

resume(1)

val a = default()

val b = default()

print(show(a : int) ++ ", " ++ show(b : int))

Output:

Handlers can resume execution

effect<a> ctl default() : a

fun main()

with ctl default() ->

resume(1)

val a = default()

val b = default()

print(show(a : int) ++ ", " ++ show(b : int))

Output: 1, 1

Smooth functions as an effect

type nullary {Const (x : float64)}

type unary {Negate }

type binary {Plus ; Times }

effect smooth<a>

ctl ap0(n : nullary) : a

ctl ap1(u : unary, arg : a) : a

ctl ap2(b : binary, arg1 : a, arg2 : a) : a

Smooth functions as an effect

type nullary {Const (x : float64)}

type unary {Negate }

type binary {Plus ; Times }

effect smooth<a>

ctl ap0(n : nullary) : a

ctl ap1(u : unary, arg : a) : a

ctl ap2(b : binary, arg1 : a, arg2 : a) : a

Helper functions

inline fun c(i)

ap0(Const (i))

inline fun (~.)(x)

ap1(Negate , x)

inline fun (+.)(x, y)

ap2(Plus , x, y)

inline fun (*.)(x, y)

ap2(Times , x, y)

Helper functions

inline fun c(i)

ap0(Const (i))

inline fun (~.)(x)

ap1(Negate , x)

inline fun (+.)(x, y)

ap2(Plus , x, y)

inline fun (*.)(x, y)

ap2(Times , x, y)

Evaluating expressions

val evaluate = handler

ctl ap0(n) -> match(n) {Const (i) -> resume(i)}

ctl ap1(u,x) -> match(u) {Negate -> resume(~x : float64)}

ctl ap2(b,x,y) -> match(b)

Plus -> resume(x + y : float64)

Times -> resume(x * y : float64)

fun term(x, y)

c(1.0) +. (x *. x *. x) +. ((~.)(y *. y))

fun main()

with evaluate

term(2.0, 4.0)

Output: -7

Evaluating expressions

val evaluate = handler

ctl ap0(n) -> match(n) {Const (i) -> resume(i)}

ctl ap1(u,x) -> match(u) {Negate -> resume(~x : float64)}

ctl ap2(b,x,y) -> match(b)

Plus -> resume(x + y : float64)

Times -> resume(x * y : float64)

fun term(x, y)

c(1.0) +. (x *. x *. x) +. ((~.)(y *. y))

fun main()

with evaluate

term(2.0, 4.0)

Output: -7

Evaluating expressions

val evaluate = handler

ctl ap0(n) -> match(n) {Const (i) -> resume(i)}

ctl ap1(u,x) -> match(u) {Negate -> resume(~x : float64)}

ctl ap2(b,x,y) -> match(b)

Plus -> resume(x + y : float64)

Times -> resume(x * y : float64)

fun term(x, y)

c(1.0) +. (x *. x *. x) +. ((~.)(y *. y))

fun main()

with evaluate

term(2.0, 4.0)

Output: -7

Evaluating expressions

val evaluate = handler

ctl ap0(n) -> match(n) {Const (i) -> resume(i)}

ctl ap1(u,x) -> match(u) {Negate -> resume(~x : float64)}

ctl ap2(b,x,y) -> match(b)

Plus -> resume(x + y : float64)

Times -> resume(x * y : float64)

fun term(x, y)

c(1.0) +. (x *. x *. x) +. ((~.)(y *. y))

fun main()

with evaluate

term(2.0, 4.0)

Output: -7

Summary so far

▶ Effects and handlers are a control flow construct like try-catch.

▶ Handlers in Koka are first class.

▶ Importantly, effects and handers allow resumption!

▶ We can then create an effect for smooth functions.

▶ We define an evaluate handler to interpret our effect in the case of floats.

Summary so far

▶ Effects and handlers are a control flow construct like try-catch.

▶ Handlers in Koka are first class.

▶ Importantly, effects and handers allow resumption!

▶ We can then create an effect for smooth functions.

▶ We define an evaluate handler to interpret our effect in the case of floats.

Summary so far

▶ Effects and handlers are a control flow construct like try-catch.

▶ Handlers in Koka are first class.

▶ Importantly, effects and handers allow resumption!

▶ We can then create an effect for smooth functions.

▶ We define an evaluate handler to interpret our effect in the case of floats.

Summary so far

▶ Effects and handlers are a control flow construct like try-catch.

▶ Handlers in Koka are first class.

▶ Importantly, effects and handers allow resumption!

▶ We can then create an effect for smooth functions.

▶ We define an evaluate handler to interpret our effect in the case of floats.

Summary so far

▶ Effects and handlers are a control flow construct like try-catch.

▶ Handlers in Koka are first class.

▶ Importantly, effects and handers allow resumption!

▶ We can then create an effect for smooth functions.

▶ We define an evaluate handler to interpret our effect in the case of floats.

Summary so far

▶ Effects and handlers are a control flow construct like try-catch.

▶ Handlers in Koka are first class.

▶ Importantly, effects and handers allow resumption!

▶ We can then create an effect for smooth functions.

▶ We define an evaluate handler to interpret our effect in the case of floats.

What if we forget evaluate?

evaluate-examples.kk(6, 5): error: there are unhandled effects for

the main expression

inferred effect : (smooth/smooth<float64>)

unhandled effect: smooth/smooth<float64>

hint : wrap the main function in a handler

This is because term has the type

forall<a>. (a, a) -> (smooth<a>) a

meaning that when executed the operations of smooth<a> may occur.

What if we forget evaluate?

evaluate-examples.kk(6, 5): error: there are unhandled effects for

the main expression

inferred effect : (smooth/smooth<float64>)

unhandled effect: smooth/smooth<float64>

hint : wrap the main function in a handler

This is because term has the type

forall<a>. (a, a) -> (smooth<a>) a

meaning that when executed the operations of smooth<a> may occur.

What if we forget evaluate?

evaluate-examples.kk(6, 5): error: there are unhandled effects for

the main expression

inferred effect : (smooth/smooth<float64>)

unhandled effect: smooth/smooth<float64>

hint : wrap the main function in a handler

This is because term has the type

forall<a>. (a, a) -> (smooth<a>) a

meaning that when executed the operations of smooth<a> may occur.

Effect typing in Koka with row types

Effect typing in Koka with row types

effect<a> ctl default() : a

effect ctl exception(info : string) : a

Effect typing in Koka with row types

effect<a> ctl default() : a

effect ctl exception(info : string) : a

fun divide(x : int, y : int) : exception int

if y == 0 then exception("Divided by zero") else x / y

Effect typing in Koka with row types

effect<a> ctl default() : a

effect ctl exception(info : string) : a

fun divide(x : int, y : int) : exception int

if y == 0 then exception("Divided by zero") else x / y

fun combined() : <exception,default<int>> int

divide(default(), default())

Effect typing in Koka with row types

effect<a> ctl default() : a

effect ctl exception(info : string) : a

fun divide(x : int, y : int) : exception int

if y == 0 then exception("Divided by zero") else x / y

fun combined() : <exception,default<int>> int

divide(default(), default())

fun main() : console () {

with ctl exception(info) -> print("Exception: " ++ info)

with ctl default() -> resume(0)

print((combined : () -> <default<int>,exception,console> int)())

}

Handlers for different effects are order independent

Handlers for different effects are order independent

effect ctl eff0() : int

effect ctl eff1() : int

Handlers for different effects are order independent

effect ctl eff0() : int

effect ctl eff1() : int

fun main01()

with ctl eff0() -> resume(1)

with ctl eff1() -> resume(2)

print(eff0() + eff1() : int)

fun main10()

with ctl eff1() -> resume(2)

with ctl eff0() -> resume(1)

print(eff0() + eff1() : int)

Handlers have scope

effect<a> ctl default() : a

fun main()

val a =

with ctl default() -> resume(1)

(default : () -> <console,default<int>> int)()

val b =

with ctl default() -> resume(2)

default()

print(show(a : int) ++ ", " ++ show(b : int))

Output: 1, 2

Handlers have scope

effect<a> ctl default() : a

fun main()

val a =

with ctl default() -> resume(1)

(default : () -> <console,default<int>> int)()

val b =

with ctl default() -> resume(2)

default()

print(show(a : int) ++ ", " ++ show(b : int))

Output: 1, 2

The inner-most handler has priority

effect<a> ctl default() : a

fun main() : console () {

with ctl default() ->

resume(2)

with ctl default() ->

resume(1)

val a = (default : () -> <console,default<int>,default<int>> int)()

val b = default()

print(show(a : int) ++ ", " ++ show(b : int))

}

Output: 1, 1

The left default<int> corresponds to the inner handler.

The inner-most handler has priority

effect<a> ctl default() : a

fun main() : console () {

with ctl default() ->

resume(2)

with ctl default() ->

resume(1)

val a = (default : () -> <console,default<int>,default<int>> int)()

val b = default()

print(show(a : int) ++ ", " ++ show(b : int))

}

Output: 1, 1

The left default<int> corresponds to the inner handler.

Handlers can be bypassed dynamically

effect<a> ctl default() : a

fun main()

with ctl default() ->

resume(2)

with ctl default() ->

resume(1)

val a = (default : () -> <console,default<int>,default<int>> int)()

val b = mask<default>{

(default : () -> <console,default<int>> int)()

}

print(show(a : int) ++ ", " ++ show(b : int))

Output: 1, 2

Handlers can be bypassed dynamically

effect<a> ctl default() : a

fun main()

with ctl default() ->

resume(2)

with ctl default() ->

resume(1)

val a = (default : () -> <console,default<int>,default<int>> int)()

val b = mask<default>{

(default : () -> <console,default<int>> int)()

}

print(show(a : int) ++ ", " ++ show(b : int))

Output: 1, 2

Handlers must be bypassed for different instantiation

effect<a> ctl default() : a

fun main()

with ctl default() ->

resume(True)

with ctl default() ->

resume(1)

val a = (default : () -> <console,default<int>,default<bool>> int)()

val b = mask<default>{

(default : () -> <console,default<bool>> bool)()

}

print(show(a : int) ++ ", " ++ show(b : bool))

Output: 1, True

Handling an effect can use other effects

effect<a> ctl default() : a

fun main()

with ctl default() -> resume(1)

with ctl default() -> resume(default() + 1)

print(default() : int)

Output: 2

Handling an effect can use other effects

effect<a> ctl default() : a

fun main()

with ctl default() -> resume(1)

with ctl default() -> resume(default() + 1)

print(default() : int)

Output: 2

Effect polymorphism

Effect polymorphism

fun twice(f : () -> e ()) : e ()

f()

f()

Effect polymorphism

fun twice(f : () -> e ()) : e ()

f()

f()

fun while_(pred : () -> <div|e> bool, body : () -> <div|e> ())

: <div|e> ()

if pred() then {body(); while_(pred, body)} else ()

Effect polymorphism

fun twice(f : () -> e ()) : e ()

f()

f()

fun while_(pred : () -> <div|e> bool, body : () -> <div|e> ())

: <div|e> ()

if pred() then {body(); while_(pred, body)} else ()

fun main() : <div,console> ()

var i := 3

while_ ({i > 0} : () -> <div,console,local<_h>> bool)

i := i - 1

print(show(i) ++ " ")

Output: 2 1 0

Helper functions continued

inline fun op0(n)

match(n) {Const (x) -> c(x)}

inline fun op1(u, x)

match(u) {Negate -> (~.)(x)}

inline fun op2(b, x, y)

match(b)

Plus -> x +. y

Times -> x *. y

inline fun der1(u, x)

match(u) {Negate -> (~.)(c(1.0))}

inline fun der2L(b, x, y)

match(b)

Plus -> c(1.0)

Times -> y

inline fun der2R(b, x, y)

match(b)

Plus -> c(1.0)

Times -> x

Helper functions continued

inline fun op0(n)

match(n) {Const (x) -> c(x)}

inline fun op1(u, x)

match(u) {Negate -> (~.)(x)}

inline fun op2(b, x, y)

match(b)

Plus -> x +. y

Times -> x *. y

inline fun der1(u, x)

match(u) {Negate -> (~.)(c(1.0))}

inline fun der2L(b, x, y)

match(b)

Plus -> c(1.0)

Times -> y

inline fun der2R(b, x, y)

match(b)

Plus -> c(1.0)

Times -> x

Helper functions continued

inline fun op0(n)

match(n) {Const (x) -> c(x)}

inline fun op1(u, x)

match(u) {Negate -> (~.)(x)}

inline fun op2(b, x, y)

match(b)

Plus -> x +. y

Times -> x *. y

inline fun der1(u, x)

match(u) {Negate -> (~.)(c(1.0))}

inline fun der2L(b, x, y)

match(b)

Plus -> c(1.0)

Times -> y

inline fun der2R(b, x, y)

match(b)

Plus -> c(1.0)

Times -> x

Forward mode AD

Forward mode AD

type dual<a>

Dual(v : a, dv : a)

val forward = handler

ctl ap0(n) ->

resume(Dual (op0(n), c(0.0)))

ctl ap1(u,x) ->

resume(Dual (op1(u,x.v), der1(u,x.v) *. x.dv))

ctl ap2(b,x,y) ->

resume(Dual (op2(b,x.v,y.v), (der2L(b,x.v,y.v) *. x.dv) +.

(der2R(b,x.v,y.v) *. y.dv)))

Forward mode AD

type dual<a>

Dual(v : a, dv : a)

val forward = handler

ctl ap0(n) ->

resume(Dual (op0(n), c(0.0)))

ctl ap1(u,x) ->

resume(Dual (op1(u,x.v), der1(u,x.v) *. x.dv))

ctl ap2(b,x,y) ->

resume(Dual (op2(b,x.v,y.v), (der2L(b,x.v,y.v) *. x.dv) +.

(der2R(b,x.v,y.v) *. y.dv)))

fun d(f : dual<a> -> <smooth<dual<a>>,smooth<a>|e> dual<a>, x : a)

: <smooth<a>|e> a

val res = forward{f(Dual (x,mask<smooth>{c(1.0)}))}

res.dv

Using forward mode

fun main()

with evaluate

d(fn(x) {term(x, c(4.0))}, c(2.0))

We are calculating
d

dx

(
1 + x3 + (−y2)

)
= 3x2

at x = 2 and y = 4.

Output: 12

Using forward mode

fun main()

with evaluate

d(fn(x) {term(x, c(4.0))}, c(2.0))

We are calculating
d

dx

(
1 + x3 + (−y2)

)
= 3x2

at x = 2 and y = 4.

Output: 12

Using forward mode

fun main()

with evaluate

d(fn(x) {term(x, c(4.0))}, c(2.0))

We are calculating
d

dx

(
1 + x3 + (−y2)

)
= 3x2

at x = 2 and y = 4.

Output: 12

Nesting forward mode

We can also nest forward mode to calculate second derivatives.

fun main()

with evaluate

d(fn(y) {d(fn(x) {x *. x *. x}, y)}, c(1.0))

Output: 6

What about perturbation confusion, e.g. correctly calculating

d

dx

x ·

(
d

dy
x + y

∣∣∣∣
y=1

)
x=1

= 1

from J. M. Siskind and B. A. Pearlmutter, ‘Perturbation Confusion and Referential
Transparency’

Nesting forward mode

We can also nest forward mode to calculate second derivatives.

fun main()

with evaluate

d(fn(y) {d(fn(x) {x *. x *. x}, y)}, c(1.0))

Output: 6

What about perturbation confusion, e.g. correctly calculating

d

dx

x ·

(
d

dy
x + y

∣∣∣∣
y=1

)
x=1

= 1

from J. M. Siskind and B. A. Pearlmutter, ‘Perturbation Confusion and Referential
Transparency’

Nesting forward mode

We can also nest forward mode to calculate second derivatives.

fun main()

with evaluate

d(fn(y) {d(fn(x) {x *. x *. x}, y)}, c(1.0))

Output: 6

What about perturbation confusion, e.g. correctly calculating

d

dx

x ·

(
d

dy
x + y

∣∣∣∣
y=1

)
x=1

= 1

from J. M. Siskind and B. A. Pearlmutter, ‘Perturbation Confusion and Referential
Transparency’

Nesting forward mode

We can also nest forward mode to calculate second derivatives.

fun main()

with evaluate

d(fn(y) {d(fn(x) {x *. x *. x}, y)}, c(1.0))

Output: 6

What about perturbation confusion, e.g. correctly calculating

d

dx

x ·

(
d

dy
x + y

∣∣∣∣
y=1

)
x=1

= 1

from J. M. Siskind and B. A. Pearlmutter, ‘Perturbation Confusion and Referential
Transparency’

Perturbation confusion

fun confusion()

with evaluate

d(fn(x) {x *. d(fn(y) {x +. y}, c(1.0))}, c(1.0))

x : dual<a> and y : dual<dual<a>>

Perturbation confusion

d

dx

x ·

(
d

dy
x + y

∣∣∣∣
y=1

)
x=1

fun confusion()

with evaluate

d(fn(x) {x *. d(fn(y) {x +. y}, c(1.0))}, c(1.0))

x : dual<a> and y : dual<dual<a>>

Perturbation confusion

fun confusion()

with evaluate

d(fn(x) {x *. d(fn(y) {x +. y}, c(1.0))}, c(1.0))

forward-confusion-one.kk(9,17): error: types do not match (due to an

infinite type)

context : x *. d(fn(y) {x +. y}, c(1.0))

term : d(fn(y) {x +. y}, c(1.0))

inferred type: _a

expected type: dual<_a>

hint : give a type to the function definition?

x : dual<a> and y : dual<dual<a>>

Perturbation confusion, with lifting

fun lift(x : a) : <smooth<dual<a>>,smooth<a>> dual<a>

mask<smooth>{Dual (x, c(0.0))}

Thus lift(x) : dual<dual<a>>, and so

fun confusion-lift()

with evaluate

d(fn(x) {x *. d(fn(y) {lift(x) +. y}, c(1.0))}, c(1.0))

produces the correct output of 1.

Perturbation confusion, with lifting

fun lift(x : a) : <smooth<dual<a>>,smooth<a>> dual<a>

mask<smooth>{Dual (x, c(0.0))}

Thus lift(x) : dual<dual<a>>, and so

fun confusion-lift()

with evaluate

d(fn(x) {x *. d(fn(y) {lift(x) +. y}, c(1.0))}, c(1.0))

produces the correct output of 1.

Perturbation confusion, with lifting

fun lift(x : a) : <smooth<dual<a>>,smooth<a>> dual<a>

mask<smooth>{Dual (x, c(0.0))}

Thus lift(x) : dual<dual<a>>, and so

fun confusion-lift()

with evaluate

d(fn(x) {x *. d(fn(y) {lift(x) +. y}, c(1.0))}, c(1.0))

produces the correct output of 1.

Perturbation confusion, with lifting the wrong way

fun lift(x : a) : <smooth<dual<a>>,smooth<a>> dual<a>

mask<smooth>{Dual (x, c(0.0))}

fun confusion-lift()

with evaluate

d(fn(x) {x *. lift(d(fn(y) {x +. y}, c(1.0)))}, c(1.0))

forward-confusion-lift-wrong.kk(9,17): error: types do not match (due

to an infinite type)

context : lift(d(fn(y) {x +. y}, c(1.0)))

term : lift

inferred effect: <smooth<_a>|_e1>

expected effect: <smooth<dual<_a>>,smooth<_a>|_e>

because : effect cannot be subsumed

hint : give a type to the function definition?

Perturbation confusion, with lifting the wrong way

fun lift(x : a) : <smooth<dual<a>>,smooth<a>> dual<a>

mask<smooth>{Dual (x, c(0.0))}

fun confusion-lift()

with evaluate

d(fn(x) {x *. lift(d(fn(y) {x +. y}, c(1.0)))}, c(1.0))

forward-confusion-lift-wrong.kk(9,17): error: types do not match (due

to an infinite type)

context : lift(d(fn(y) {x +. y}, c(1.0)))

term : lift

inferred effect: <smooth<_a>|_e1>

expected effect: <smooth<dual<_a>>,smooth<_a>|_e>

because : effect cannot be subsumed

hint : give a type to the function definition?

Perturbation confusion, with lifting the wrong way

fun lift(x : a) : <smooth<dual<a>>,smooth<a>> dual<a>

mask<smooth>{Dual (x, c(0.0))}

fun confusion-lift()

with evaluate

d(fn(x) {x *. lift(d(fn(y) {x +. y}, c(1.0)))}, c(1.0))

forward-confusion-lift-wrong.kk(9,17): error: types do not match (due

to an infinite type)

context : lift(d(fn(y) {x +. y}, c(1.0)))

term : lift

inferred effect: <smooth<_a>|_e1>

expected effect: <smooth<dual<_a>>,smooth<_a>|_e>

because : effect cannot be subsumed

hint : give a type to the function definition?

Perturbation confusion, with lifting the wrong way explained

fun d(f : dual<a> -> <smooth<dual<a>>,smooth<a>|e> dual<a>, x : a)

: <smooth<a>|e> a

fun lift(x : a) : <smooth<dual<a>>,smooth<a>> dual<a>

fun confusion-lift()

with evaluate

d(fn(x) {x *. lift(d(fn(y) {x +. y}, c(1.0)))}, c(1.0))

Working inside out, both x and y have type dual<a>. Thus, the inner d needs effect
context <smooth<a>|e>. Using lift requires unification with
<smooth<dual<a>>,smooth<a>|e’>. The leftmost occurrences of smooth must
unify, causing an infinite type.

Perturbation confusion, with lifting the wrong way continued

Therefore, if we hide the leftmost smooth, type checking succeeds.

fun lift(x : a) : <smooth<dual<a>>,smooth<a>> dual<a>

mask<smooth>{Dual (x, c(0.0))}

fun confusion-lift-mask()

with evaluate

d(fn(x) {x *. lift(mask<smooth>{d(fn(y) {x +. y}, c(1.0))})}, c(1.0))

Output: 2

The answer of 2 is the result of confusing the dual components of each derivative.

Perturbation confusion, with lifting the wrong way again

fun lift(x : a) : <smooth<dual<a>>,smooth<a>> dual<a>

mask<smooth>{Dual (x, c(0.0))}

fun confusion-lift()

with evaluate

d(fn(x) {x *. d(fn(y) {lift(x +. x) +. y}, c(1.0))}, c(1.0))

forward-confusion-lift-other.kk(9,26): error: types do not match (due

to an infinite type)

context : lift(x +. x)

term : lift

inferred effect: <smooth<dual<_a>>|_e1>

expected effect: <smooth<dual<dual<_a>>>,smooth<dual<_a>>|_e>

because : effect cannot be subsumed

hint : give a type to the function definition?

Perturbation confusion, with lifting the wrong way again

fun lift(x : a) : <smooth<dual<a>>,smooth<a>> dual<a>

mask<smooth>{Dual (x, c(0.0))}

fun confusion-lift()

with evaluate

d(fn(x) {x *. d(fn(y) {lift(x +. x) +. y}, c(1.0))}, c(1.0))

forward-confusion-lift-other.kk(9,26): error: types do not match (due

to an infinite type)

context : lift(x +. x)

term : lift

inferred effect: <smooth<dual<_a>>|_e1>

expected effect: <smooth<dual<dual<_a>>>,smooth<dual<_a>>|_e>

because : effect cannot be subsumed

hint : give a type to the function definition?

Summary so far

▶ Koka has an effect type system using row types.

▶ Handlers create a scope, with the innermost handler having priority.

▶ We can choose to skip the innermost hander with a masking operation.

▶ Koka has effect polymorphism.

▶ Forward mode and a derivative operator are succintly expressed using handlers.

▶ The derivative operator can be iterated.

▶ The value and effect type systems help avoid perturbation confusion.

Summary so far

▶ Koka has an effect type system using row types.

▶ Handlers create a scope, with the innermost handler having priority.

▶ We can choose to skip the innermost hander with a masking operation.

▶ Koka has effect polymorphism.

▶ Forward mode and a derivative operator are succintly expressed using handlers.

▶ The derivative operator can be iterated.

▶ The value and effect type systems help avoid perturbation confusion.

Summary so far

▶ Koka has an effect type system using row types.

▶ Handlers create a scope, with the innermost handler having priority.

▶ We can choose to skip the innermost hander with a masking operation.

▶ Koka has effect polymorphism.

▶ Forward mode and a derivative operator are succintly expressed using handlers.

▶ The derivative operator can be iterated.

▶ The value and effect type systems help avoid perturbation confusion.

Summary so far

▶ Koka has an effect type system using row types.

▶ Handlers create a scope, with the innermost handler having priority.

▶ We can choose to skip the innermost hander with a masking operation.

▶ Koka has effect polymorphism.

▶ Forward mode and a derivative operator are succintly expressed using handlers.

▶ The derivative operator can be iterated.

▶ The value and effect type systems help avoid perturbation confusion.

Summary so far

▶ Koka has an effect type system using row types.

▶ Handlers create a scope, with the innermost handler having priority.

▶ We can choose to skip the innermost hander with a masking operation.

▶ Koka has effect polymorphism.

▶ Forward mode and a derivative operator are succintly expressed using handlers.

▶ The derivative operator can be iterated.

▶ The value and effect type systems help avoid perturbation confusion.

Summary so far

▶ Koka has an effect type system using row types.

▶ Handlers create a scope, with the innermost handler having priority.

▶ We can choose to skip the innermost hander with a masking operation.

▶ Koka has effect polymorphism.

▶ Forward mode and a derivative operator are succintly expressed using handlers.

▶ The derivative operator can be iterated.

▶ The value and effect type systems help avoid perturbation confusion.

Summary so far

▶ Koka has an effect type system using row types.

▶ Handlers create a scope, with the innermost handler having priority.

▶ We can choose to skip the innermost hander with a masking operation.

▶ Koka has effect polymorphism.

▶ Forward mode and a derivative operator are succintly expressed using handlers.

▶ The derivative operator can be iterated.

▶ The value and effect type systems help avoid perturbation confusion.

Summary so far

▶ Koka has an effect type system using row types.

▶ Handlers create a scope, with the innermost handler having priority.

▶ We can choose to skip the innermost hander with a masking operation.

▶ Koka has effect polymorphism.

▶ Forward mode and a derivative operator are succintly expressed using handlers.

▶ The derivative operator can be iterated.

▶ The value and effect type systems help avoid perturbation confusion.

Benchmarks!

1

x
=

∞∑
n=0

(
−(x − 1)

)n
fun approx-recip(iters : int, x : a) : <smooth<a>,div> a {

var acc := c(1.0)

var prev := c(1.0)

repeat(iters) {

prev := (prev *. (~.)(x -. c(1.0)))

acc := (acc +. prev)

}

acc

}

Benchmarks!

1

x
=

∞∑
n=0

(
−(x − 1)

)n

fun approx-recip(iters : int, x : a) : <smooth<a>,div> a {

var acc := c(1.0)

var prev := c(1.0)

repeat(iters) {

prev := (prev *. (~.)(x -. c(1.0)))

acc := (acc +. prev)

}

acc

}

Benchmarks!

1

x
=

∞∑
n=0

(
−(x − 1)

)n
fun approx-recip(iters : int, x : a) : <smooth<a>,div> a {

var acc := c(1.0)

var prev := c(1.0)

repeat(iters) {

prev := (prev *. (~.)(x -. c(1.0)))

acc := (acc +. prev)

}

acc

}

Benchmark: evaluate

fun main()

val sz =

match get-args()

Nil -> 500

Cons (arg0, _) ->

match parse-int(arg0)

Just (sz) -> sz

_ -> 500

with evaluate

val res =

approx-recip(sz, c(0.5))

println(res : float64)

Benchmark: evaluate

fun main()

val sz =

match get-args()

Nil -> 500

Cons (arg0, _) ->

match parse-int(arg0)

Just (sz) -> sz

_ -> 500

with evaluate

val res =

approx-recip(sz, c(0.5))

println(res : float64)

Benchmark: evaluate

fun main()

val sz =

match get-args()

Nil -> 500

Cons (arg0, _) ->

match parse-int(arg0)

Just (sz) -> sz

_ -> 500

with evaluate

val res =

approx-recip(sz, c(0.5))

println(res : float64)

Benchmark: forward

fun main()

val sz =

match get-args()

Nil -> 500

Cons (arg0, _) ->

match parse-int(arg0)

Just (sz) -> sz

_ -> 500

with evaluate

val res = d(fn(x)

{approx-recip(sz, x)},

c(0.5))

println(res : float64)

Oh no, quadratic! (Koka performance bug)

Benchmark: forward

fun main()

val sz =

match get-args()

Nil -> 500

Cons (arg0, _) ->

match parse-int(arg0)

Just (sz) -> sz

_ -> 500

with evaluate

val res = d(fn(x)

{approx-recip(sz, x)},

c(0.5))

println(res : float64)

Oh no, quadratic! (Koka performance bug)

Benchmark: forward

fun main()

val sz =

match get-args()

Nil -> 500

Cons (arg0, _) ->

match parse-int(arg0)

Just (sz) -> sz

_ -> 500

with evaluate

val res = d(fn(x)

{approx-recip(sz, x)},

c(0.5))

println(res : float64)

Oh no, quadratic! (Koka performance bug)

Tail resumptive effects

Both evaluate and forward are tail-resumptive, i.e. the last thing they do is call
resume. Koka can take advantage of this special case by using fun handler cases:

Unlike a general ctl operation, there is no need to yield upward to the handler,
capture the stack, and eventually resume again. This gives fun (and val)
operations a performance cost very similar to virtual method calls which can
be quite efficient. (Koka documentation)

Tail resumptive effects

Both evaluate and forward are tail-resumptive, i.e. the last thing they do is call
resume. Koka can take advantage of this special case by using fun handler cases:

Unlike a general ctl operation, there is no need to yield upward to the handler,
capture the stack, and eventually resume again. This gives fun (and val)
operations a performance cost very similar to virtual method calls which can
be quite efficient. (Koka documentation)

Tail resumptive effects

Both evaluate and forward are tail-resumptive, i.e. the last thing they do is call
resume. Koka can take advantage of this special case by using fun handler cases:

Unlike a general ctl operation, there is no need to yield upward to the handler,
capture the stack, and eventually resume again. This gives fun (and val)
operations a performance cost very similar to virtual method calls which can
be quite efficient. (Koka documentation)

val evaluate = handler

ctl ap0(n) -> match(n) {Const (i) -> resume(i)}

ctl ap1(u,x) -> match(u) {Negate -> resume(~x : float64)}

ctl ap2(b,x,y) -> match(b)

Plus -> resume(x + y : float64)

Times -> resume(x * y : float64)

Tail resumptive effects

Both evaluate and forward are tail-resumptive, i.e. the last thing they do is call
resume. Koka can take advantage of this special case by using fun handler cases:

Unlike a general ctl operation, there is no need to yield upward to the handler,
capture the stack, and eventually resume again. This gives fun (and val)
operations a performance cost very similar to virtual method calls which can
be quite efficient. (Koka documentation)

val evaluate = handler

fun ap0(n) -> match(n) {Const (i) -> i}

fun ap1(u,x) -> match(u) {Negate -> (~x : float64)}

fun ap2(b,x,y) -> match(b)

Plus -> (x + y : float64)

Times -> (x * y : float64)

Performance gains for evaluate

We get almost a x20 speed-up!

Performance gains for evaluate

We get almost a x20 speed-up!

Performance of forward

Forward mode AD is a constant
multiple slower than no AD as
both lines are linear. Unfortunately
it is about x10 slower than no AD,
whereas the theoretical optimum
is x2-3, but not quadratic!

Performance of forward

Forward mode AD is a constant
multiple slower than no AD as
both lines are linear. Unfortunately
it is about x10 slower than no AD,
whereas the theoretical optimum
is x2-3, but not quadratic!

Why even have control operators then?

Why even have control operators then?

effect<a> ctl choice(l : a, r : a) : a

Why even have control operators then?

effect<a> ctl choice(l : a, r : a) : a

val all-choices = handler

return(x) -> [x]

ctl choice(l, r) -> resume(l) ++ resume(r)

Why even have control operators then?

effect<a> ctl choice(l : a, r : a) : a

val all-choices = handler

return(x) -> [x]

ctl choice(l, r) -> resume(l) ++ resume(r)

fun main()

val res =

with all-choices

[choice("a","x"),choice("b","y")]

res.map(join)

Output: ["ab","ay","xb","xy"]

Reverse mode AD

Reverse mode AD

type prop<h,a>

Prop(v : a, dv : ref<h, a>)

Reverse mode AD

type prop<h,a>

Prop(v : a, dv : ref<h, a>)

val reverse = handler

ctl ap0(n) ->

val r = Prop (op0(n), ref(c(0.0)))

resume(r)

ctl ap1(u,x) ->

val r = Prop (op1(u,x.v), ref(c(0.0)))

resume(r)

set(x.dv, !x.dv +. (der1(u,x.v) *. !r.dv))

ctl ap2(b,x,y) ->

val r = Prop (op2(b,x.v,y.v), ref(c(0.0)))

resume(r)

set(x.dv, !x.dv +. (der2L(b,x.v,y.v) *. !r.dv))

set(y.dv, !y.dv +. (der2R(b,x.v,y.v) *. !r.dv))

Essentially the same
as “Demystifying”

Reverse mode AD continued

fun grad(f, x)

val z = Prop (x, ref(c(0.0)))

reverse{set(f(z).dv, mask<smooth>{c(1.0)})}

!z.dv

fun main()

with evaluate

grad(fn(x) {term(x, c(4.0))}, c(2.0))

Output: 12

Can also be nested like forward mode, and multiple modes can be mixed.

Reverse mode AD continued

fun grad(f, x)

val z = Prop (x, ref(c(0.0)))

reverse{set(f(z).dv, mask<smooth>{c(1.0)})}

!z.dv

fun main()

with evaluate

grad(fn(x) {term(x, c(4.0))}, c(2.0))

Output: 12

Can also be nested like forward mode, and multiple modes can be mixed.

Reverse mode AD continued

fun grad(f, x)

val z = Prop (x, ref(c(0.0)))

reverse{set(f(z).dv, mask<smooth>{c(1.0)})}

!z.dv

fun main()

with evaluate

grad(fn(x) {term(x, c(4.0))}, c(2.0))

Output: 12

Can also be nested like forward mode, and multiple modes can be mixed.

Reverse mode AD continued

fun grad(f, x)

val z = Prop (x, ref(c(0.0)))

reverse{set(f(z).dv, mask<smooth>{c(1.0)})}

!z.dv

fun main()

with evaluate

grad(fn(x) {term(x, c(4.0))}, c(2.0))

Output: 12

Can also be nested like forward mode, and multiple modes can be mixed.

Benchmark: reverse

fun main()

val sz =

match get-args()

Nil -> 500

Cons (arg0, _) ->

match parse-int(arg0)

Just (sz) -> sz

_ -> 500

with evaluate

val res = grad(

fn(x) {approx-recip(sz, x)},

c(0.5))

println(res : float64)

Also quadratic, and very slow

Benchmark: reverse

fun main()

val sz =

match get-args()

Nil -> 500

Cons (arg0, _) ->

match parse-int(arg0)

Just (sz) -> sz

_ -> 500

with evaluate

val res = grad(

fn(x) {approx-recip(sz, x)},

c(0.5))

println(res : float64)

Also quadratic, and very slow

Benchmark: reverse

fun main()

val sz =

match get-args()

Nil -> 500

Cons (arg0, _) ->

match parse-int(arg0)

Just (sz) -> sz

_ -> 500

with evaluate

val res = grad(

fn(x) {approx-recip(sz, x)},

c(0.5))

println(res : float64)

Also quadratic, and very slow

A workaround using control effects

val reverse = handler

ctl ap0(n) ->

val r = evaluate({Prop (op0(n), ref(c(0.0)))})

resume(r)

ctl ap1(u,x) ->

val r = evaluate({Prop (op1(u,x.v), ref(c(0.0)))})

resume(r)

with evaluate

set(x.dv, !x.dv +. (der1(u,x.v) *. !r.dv))

ctl ap2(b,x,y) ->

val r = evaluate({Prop (op2(b,x.v,y.v), ref(c(0.0)))})

resume(r)

with evaluate

set(x.dv, !x.dv +. (der2(b,L ,x.v,y.v) *. !r.dv))

set(y.dv, !y.dv +. (der2(b,R ,x.v,y.v) *. !r.dv))

A workaround using control effects

val reverse = handler

ctl ap0(n) ->

val r = evaluate({Prop (op0(n), ref(c(0.0)))})

resume(r)

ctl ap1(u,x) ->

val r = evaluate({Prop (op1(u,x.v), ref(c(0.0)))})

resume(r)

with evaluate

set(x.dv, !x.dv +. (der1(u,x.v) *. !r.dv))

ctl ap2(b,x,y) ->

val r = evaluate({Prop (op2(b,x.v,y.v), ref(c(0.0)))})

resume(r)

with evaluate

set(x.dv, !x.dv +. (der2(b,L ,x.v,y.v) *. !r.dv))

set(y.dv, !y.dv +. (der2(b,R ,x.v,y.v) *. !r.dv))

Benchmarking the workaround

reverse : forall<h,e>. (() -> <st<h>,smooth<prop<h,float64>>|e> ())

-> <st<h>|e> ()

Everything is linear! However, we
lose compositionality. Also, things
are still slow.

Benchmarking the workaround

reverse : forall<h,e>. (() -> <st<h>,smooth<prop<h,float64>>|e> ())

-> <st<h>|e> ()

Everything is linear! However, we
lose compositionality. Also, things
are still slow.

Benchmarking the workaround

reverse : forall<h,e>. (() -> <st<h>,smooth<prop<h,float64>>|e> ())

-> <st<h>|e> ()

Everything is linear! However, we
lose compositionality. Also, things
are still slow.

Better solution, use taped reverse AD

Show code

Comparison of taped reverse AD

Checkpointed reverse mode

rec effect checkpoint<h,a,e>

ctl check(

prog : () -> <checkpoint<h,a,e>,smooth<prop<h,a>>,div|e> prop<h,a>

) : prop<h,a>

fun lift(action : () -> <smooth<prop<h,a>>|e> b)

: <smooth<prop<h,a>>, smooth<a>|e> b {

Checkpointed reverse mode

rec effect checkpoint<h,a,e>

ctl check(

prog : () -> <checkpoint<h,a,e>,smooth<prop<h,a>>,div|e> prop<h,a>

) : prop<h,a>

fun lift(action : () -> <smooth<prop<h,a>>|e> b)

: <smooth<prop<h,a>>, smooth<a>|e> b {

Checkpointed reverse mode

rec effect checkpoint<h,a,e>

ctl check(

prog : () -> <checkpoint<h,a,e>,smooth<prop<h,a>>,div|e> prop<h,a>

) : prop<h,a>

fun lift(action : () -> <smooth<prop<h,a>>|e> b)

: <smooth<prop<h,a>>, smooth<a>|e> b {

Checkpointed reverse mode continued

fun evaluatet(

s : ref<h,a>

, action : (() -> <checkpoint<h,a,e>,div,

smooth<prop<h,a>>,smooth<a>|e> b)

) : <div,smooth<a>|e> b

with handler

ctl check(p) ->

val r = evaluatet(s, {lift{p()}})

resume(r)

with handler

ctl ap0(n) -> resume(Prop (op0(n), s))

ctl ap1(u,x) -> resume(Prop (op1(u,x.v), s))

ctl ap2(b,x,y) -> resume(Prop (op2(b,x.v,y.v), s))

action()

Checkpointed reverse mode continued

fun evaluatet(

s : ref<h,a>

, action : (() -> <checkpoint<h,a,e>,div,

smooth<prop<h,a>>,smooth<a>|e> b)

) : <div,smooth<a>|e> b

with handler

ctl check(p) ->

val r = evaluatet(s, {lift{p()}})

resume(r)

with handler

ctl ap0(n) -> resume(Prop (op0(n), s))

ctl ap1(u,x) -> resume(Prop (op1(u,x.v), s))

ctl ap2(b,x,y) -> resume(Prop (op2(b,x.v,y.v), s))

action()

Checkpointed reverse mode continued

fun reversec(

action : (() -> <checkpoint<h,a,<st<h>|e>>,div,

smooth<prop<h,a>>,smooth<a>,st<h>|e> ())

) : <div,st<h>,smooth<a>|e> ()

with handler

ctl check(p) ->

val s = ref(c(0.0))

val res = evaluatet(s, {lift{p()}})

val r = Prop (res.v, ref(c(0.0)))

resume(r)

reversec{set((lift{p()}).dv, !r.dv)}

with reverse

action()

Checkpointed reverse mode continued

fun reversec(

action : (() -> <checkpoint<h,a,<st<h>|e>>,div,

smooth<prop<h,a>>,smooth<a>,st<h>|e> ())

) : <div,st<h>,smooth<a>|e> ()

with handler

ctl check(p) ->

val s = ref(c(0.0))

val res = evaluatet(s, {lift{p()}})

val r = Prop (res.v, ref(c(0.0)))

resume(r)

reversec{set((lift{p()}).dv, !r.dv)}

with reverse

action()

Conclusion

▶ We’ve seen how to implement various AD modes using algebraic effects.

▶ The effect type system helps us avoid perturbation confusion.

▶ Algebraic effects impose some overhead, but still provide the correct asymptotics.

▶ Algebraic effects are making their way into other languages, OCaml 5.0 has them,
and so will WASM.

Conclusion

▶ We’ve seen how to implement various AD modes using algebraic effects.

▶ The effect type system helps us avoid perturbation confusion.

▶ Algebraic effects impose some overhead, but still provide the correct asymptotics.

▶ Algebraic effects are making their way into other languages, OCaml 5.0 has them,
and so will WASM.

Conclusion

▶ We’ve seen how to implement various AD modes using algebraic effects.

▶ The effect type system helps us avoid perturbation confusion.

▶ Algebraic effects impose some overhead, but still provide the correct asymptotics.

▶ Algebraic effects are making their way into other languages, OCaml 5.0 has them,
and so will WASM.

Conclusion

▶ We’ve seen how to implement various AD modes using algebraic effects.

▶ The effect type system helps us avoid perturbation confusion.

▶ Algebraic effects impose some overhead, but still provide the correct asymptotics.

▶ Algebraic effects are making their way into other languages, OCaml 5.0 has them,
and so will WASM.

Conclusion

▶ We’ve seen how to implement various AD modes using algebraic effects.

▶ The effect type system helps us avoid perturbation confusion.

▶ Algebraic effects impose some overhead, but still provide the correct asymptotics.

▶ Algebraic effects are making their way into other languages, OCaml 5.0 has them,
and so will WASM.

Hessian-vector product via forward-over-reverse

fun grad-list(f, xs)

val z : list<_> = map(xs, fn(x) {Prop (x, ref(c(0.0)))})

reverse{set(f(z).reverse/dv, mask<smooth>{c(1.0)})}

map(z, fn(x) {!x.reverse/dv})

fun hessian-vector(f, w, v)

val backward = fn(r)

grad-list(f, zipwith(w, v, fn(wi, vi) {lift(wi) +. (r *. lift(vi))}))

val prod = forward{

backward(Dual (mask<smooth>{c(0.0)},mask<smooth>{c(1.0)}))

}

prod.map(dv)

