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Autodiff: Theory

2

Problem For ℎ ∶ ℝ! → ℝ given by ℎ 𝑥 = (ℎ" ∘ ⋯ ∘ ℎ#)(𝑥),
how to compute ∇ℎ 𝑥 correctly and efficiently?
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3

Chain Rule For 𝑓 ∶ ℝ$ → ℝ% and 𝑔 ∶ ℝ% → ℝ&,differentiable everywhere,

𝐷 𝑔 ∘ 𝑓 𝑥 = 𝐷𝑔 𝑓 𝑥 ⋅ 𝐷𝑓(𝑥) for every 𝑥 ∈ ℝ$.

Problem For ℎ ∶ ℝ! → ℝ given by ℎ 𝑥 = (ℎ" ∘ ⋯ ∘ ℎ#)(𝑥),
how to compute ∇ℎ 𝑥 correctly and efficiently?
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4

Autodiff ≈ efficient way of applying the chain rule.

Chain Rule For 𝑓 ∶ ℝ$ → ℝ% and 𝑔 ∶ ℝ% → ℝ&,differentiable everywhere,

𝐷 𝑔 ∘ 𝑓 𝑥 = 𝐷𝑔 𝑓 𝑥 ⋅ 𝐷𝑓(𝑥) for every 𝑥 ∈ ℝ$.

Problem For ℎ ∶ ℝ! → ℝ given by ℎ 𝑥 = (ℎ" ∘ ⋯ ∘ ℎ#)(𝑥),
how to compute ∇ℎ 𝑥 correctly and efficiently?



Autodiff: Theory
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Theorem ℎ&’s are differentiable everywhere  ⟹ autodiff correctly computes ∇ℎ 𝑥 .

Autodiff  ≈ efficient way of applying the chain rule.

Chain Rule For 𝑓 ∶ ℝ$ → ℝ% and 𝑔 ∶ ℝ% → ℝ&,differentiable everywhere,

𝐷 𝑔 ∘ 𝑓 𝑥 = 𝐷𝑔 𝑓 𝑥 ⋅ 𝐷𝑓(𝑥) for every 𝑥 ∈ ℝ$.

Problem For ℎ ∶ ℝ! → ℝ given by ℎ 𝑥 = (ℎ" ∘ ⋯ ∘ ℎ#)(𝑥),
how to compute ∇ℎ 𝑥 correctly and efficiently?



Autodiff: Practice
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Theorem ℎ&’s are differentiable everywhere  ⟹ autodiff correctly computes ∇ℎ 𝑥 .

What about in practice?

?



Theorem ℎ&’s are differentiable everywhere  ⟹ autodiff correctly computes ∇ℎ 𝑥 .

Autodiff: Practice
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e.g., ReLU 𝑥 = if 𝑥 ≥ 0 then 𝑥 else 0 =

Discrepancy between theory and practice.



Theorem ℎ&’s are differentiable everywhere  ⟹ autodiff correctly computes ∇ℎ 𝑥 .

Autodiff: Practice
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Chain Rule For 𝑓 ∶ ℝ$ → ℝ% and 𝑔 ∶ ℝ% → ℝ&,differentiable everywhere,

𝐷 𝑔 ∘ 𝑓 𝑥 = 𝐷𝑔 𝑓 𝑥 ⋅ 𝐷𝑓(𝑥) for every 𝑥 ∈ ℝ$.

non-differentiable on a measure-zero set 

e.g., ReLU 𝑥 = if 𝑥 ≥ 0 then 𝑥 else 0 =

measure = generalization of length, area, … 

Discrepancy between theory and practice.



Theorem ℎ&’s are differentiable everywhere  ⟹ autodiff correctly computes ∇ℎ 𝑥 .

Autodiff: Practice
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Chain Rule For 𝑓 ∶ ℝ$ → ℝ% and 𝑔 ∶ ℝ% → ℝ&,differentiable everywhere,

𝐷 𝑔 ∘ 𝑓 𝑥 = 𝐷𝑔 𝑓 𝑥 ⋅ 𝐷𝑓(𝑥) for every 𝑥 ∈ ℝ$.

e.g., ReLU 𝑥 = if 𝑥 ≥ 0 then 𝑥 else 0 =

Belief: Measure-zero non-differentiability would not matter.

measure = generalization of length, area, … 

non-differentiable on a measure-zero set 



Theorem ℎ&’s are differentiable everywhere  ⟹ autodiff correctly computes ∇ℎ 𝑥 .

Our Questions: Part 1
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Chain Rule For 𝑓 ∶ ℝ$ → ℝ% and 𝑔 ∶ ℝ% → ℝ&,differentiable everywhere,

𝐷 𝑔 ∘ 𝑓 𝑥 = 𝐷𝑔 𝑓 𝑥 ⋅ 𝐷𝑓(𝑥) for every 𝑥 ∈ ℝ$.

non-differentiable on a measure-zero set 

e.g., ReLU 𝑥 = if 𝑥 ≥ 0 then 𝑥 else 0 =

measure = generalization of length, area, … 

Belief: Measure-zero non-differentiability would not matter.
?
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Chain Rule For 𝑓 ∶ ℝ$ → ℝ% and 𝑔 ∶ ℝ% → ℝ&,differentiable everywhere,

𝐷 𝑔 ∘ 𝑓 𝑥 = 𝐷𝑔 𝑓 𝑥 ⋅ 𝐷𝑓(𝑥) for every 𝑥 ∈ ℝ$.

non-differentiable on a measure-zero set 

almost-everywhere

?
almost-

e.g., ReLU 𝑥 = if 𝑥 ≥ 0 then 𝑥 else 0 =

almost-everywhere = except for a measure-zero set.
measure = generalization of length, area, … 

Belief: Measure-zero non-differentiability would not matter.
?
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Chain Rule For 𝑓 ∶ ℝ$ → ℝ% and 𝑔 ∶ ℝ% → ℝ&,differentiable everywhere,

𝐷 𝑔 ∘ 𝑓 𝑥 = 𝐷𝑔 𝑓 𝑥 ⋅ 𝐷𝑓(𝑥) for every 𝑥 ∈ ℝ$.

almost-

?
almost-everywhere

?
almost-

almost-

Belief: Measure-zero non-differentiability would not matter.
?
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Our Results: Part 1
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Chain Rule For 𝑓 ∶ ℝ$ → ℝ% and 𝑔 ∶ ℝ% → ℝ&,differentiable everywhere,

𝐷 𝑔 ∘ 𝑓 𝑥 = 𝐷𝑔 𝑓 𝑥 ⋅ 𝐷𝑓(𝑥) for every 𝑥 ∈ ℝ$.

almost- almost-everywhere

almost-

almost-

Measure-zero non-differentiabilities do matter!
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Chain Rule For 𝑓 ∶ ℝ$ → ℝ% and 𝑔 ∶ ℝ% → ℝ&,differentiable everywhere,

𝐷 𝑔 ∘ 𝑓 𝑥 = 𝐷𝑔 𝑓 𝑥 ⋅ 𝐷𝑓(𝑥) for every 𝑥 ∈ ℝ$.

almost- almost-everywhere

almost-

almost-Our Result This and related claims are false!

Measure-zero non-differentiabilities do matter!



⟹ (𝑔 ∘ 𝑓)' 𝑥 = 𝑑𝑔 𝑓 𝑥 ⋅ 𝑑𝑓(𝑥) for a.e. 𝑥 ∈ ℝ.

Subtlety 1
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Claim 1 For any 𝑓, 𝑔 ∶ ℝ → ℝ,

𝑓, 𝑔 : a.e.-differentiable and continuous

𝑔' 𝑓'

?



⟹ (𝑔 ∘ 𝑓)' 𝑥 = 𝑑𝑔 𝑓 𝑥 ⋅ 𝑑𝑓(𝑥) for a.e. 𝑥 ∈ ℝ.

Subtlety 1
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Claim 1 For any 𝑓, 𝑔 ∶ ℝ → ℝ,

𝑓, 𝑔 : a.e.-differentiable and continuous

𝑔' 𝑓'

well-defined??



well-defined?

⟹ (𝑔 ∘ 𝑓)' 𝑥 = 𝑑𝑔 𝑓 𝑥 ⋅ 𝑑𝑓(𝑥) for a.e. 𝑥 ∈ ℝ.

Subtlety 1
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Claim 1 For any 𝑓, 𝑔 ∶ ℝ → ℝ,

𝑓, 𝑔 : a.e.-differentiable and continuous

𝑔' 𝑓'

? ?



⟹ (𝑔 ∘ 𝑓)' 𝑥 = 𝑑𝑔 𝑓 𝑥 ⋅ 𝑑𝑓(𝑥) for a.e. 𝑥 ∈ ℝ.

Subtlety 1: Undefined 𝑔 ∘ 𝑓 !
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Claim 1 For any 𝑓, 𝑔 ∶ ℝ → ℝ,

𝑓, 𝑔 : a.e.-differentiable and continuous

𝑔' 𝑓'

well-defined?



⟹ (𝑔 ∘ 𝑓)' 𝑥 = 𝑑𝑔 𝑓 𝑥 ⋅ 𝑑𝑓(𝑥) for a.e. 𝑥 ∈ ℝ.

Subtlety 1: Undefined 𝑔 ∘ 𝑓 !
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Claim 1 For any 𝑓, 𝑔 ∶ ℝ → ℝ,

𝑓, 𝑔 : a.e.-differentiable and continuous

𝑔' 𝑓'

well-defined?

𝑓 𝑔

Counterexample Involves the Cantor function.



⟹ (𝑔 ∘ 𝑓)' 𝑥 = 𝑑𝑔 𝑓 𝑥 ⋅ 𝑑𝑓(𝑥) for a.e. 𝑥 ∈ ℝ.

Subtlety 1: Undefined 𝑔 ∘ 𝑓 !
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Claim 1 For any 𝑓, 𝑔 ∶ ℝ → ℝ,

𝑓, 𝑔 : a.e.-differentiable and continuous

𝑔' 𝑓'

well-defined?

𝑓 𝑔

Counterexample Involves the Cantor function. has pathological
properties



⟹ (𝑔 ∘ 𝑓)' 𝑥 = 𝑑𝑔 𝑓 𝑥 ⋅ 𝑑𝑓(𝑥) for a.e. 𝑥 ∈ ℝ.

Subtlety 1: Undefined 𝑔 ∘ 𝑓 !
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Claim 1 For any 𝑓, 𝑔 ∶ ℝ → ℝ,

𝑓, 𝑔 : a.e.-differentiable and continuous

𝑔' 𝑓'

well-defined?

𝑓 𝑔

Counterexample Involves the Cantor function.

𝑓 is a bijection:
• continuous, a.e.-diff’l.    
• positive-measure set
⇄ measure-zero set.

has pathological 
properties



⟹ (𝑔 ∘ 𝑓)' 𝑥 = 𝑑𝑔 𝑓 𝑥 ⋅ 𝑑𝑓(𝑥) for a.e. 𝑥 ∈ ℝ.

Subtlety 2
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Claim 2 For any 𝑓, 𝑔 ∶ ℝ → ℝ,

𝑓, 𝑔 : a.e.-differentiable and continuous
and 𝑔 ∘ 𝑓

𝑔' 𝑓'

?



⟹ (𝑔 ∘ 𝑓)' 𝑥 = 𝑑𝑔 𝑓 𝑥 ⋅ 𝑑𝑓(𝑥) for a.e. 𝑥 ∈ ℝ.

Subtlety 2
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Claim 2 For any 𝑓, 𝑔 ∶ ℝ → ℝ,

𝑓, 𝑔 : a.e.-differentiable and continuous
and 𝑔 ∘ 𝑓

𝑔' 𝑓'

? well-defined?



⟹ (𝑔 ∘ 𝑓)' 𝑥 = 𝑑𝑔 𝑓 𝑥 ⋅ 𝑑𝑓(𝑥) for a.e. 𝑥 ∈ ℝ.

Subtlety 2
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Claim 2 For any 𝑓, 𝑔 ∶ ℝ → ℝ,

𝑓, 𝑔 : a.e.-differentiable and continuous
and 𝑔 ∘ 𝑓

𝑔' 𝑓'

? ?
well-defined?



⟹ easy to check that ∗ holds. 

⟹ (𝑔 ∘ 𝑓)' 𝑥 = 𝑑𝑔 𝑓 𝑥 ⋅ 𝑑𝑓(𝑥) for a.e. 𝑥 ∈ ℝ.

Subtlety 2
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Claim 2 For any 𝑓, 𝑔 ∶ ℝ → ℝ,

𝑓, 𝑔 : a.e.-differentiable and continuous ⋯ ∗
and 𝑔 ∘ 𝑓

𝑔' 𝑓'

Counterexample 𝑓 𝑥 = 0 and 𝑔 𝑦 = ReLU 𝑦 .

well-defined?? ?

𝑓 = 𝑔 ∘ 𝑓

𝑔



⟹ (𝑔 ∘ 𝑓)' 𝑥 = 𝑑𝑔 𝑓 𝑥 ⋅ 𝑑𝑓(𝑥)

⟹ (𝑔 ∘ 𝑓)' 𝑥 = 𝑑𝑔 𝑓 𝑥 ⋅ 𝑑𝑓(𝑥) for a.e. 𝑥 ∈ ℝ.

Subtlety 2: Undefined 𝑔!
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Claim 2 For any 𝑓, 𝑔 ∶ ℝ → ℝ,

𝑓, 𝑔 : a.e.-differentiable and continuous
and 𝑔 ∘ 𝑓

𝑔' 𝑓'

Counterexample 𝑓 𝑥 = 0 and 𝑔 𝑦 = ReLU 𝑦 .

= 𝑔' 0
= undefined for all 𝑥

𝑔' 𝑓'

well-defined?

𝑓 = 𝑔 ∘ 𝑓

𝑔



⟹ (𝑔 ∘ 𝑓)' 𝑥 = 𝑑𝑔 𝑓 𝑥 ⋅ 𝑑𝑓(𝑥)

⟹ (𝑔 ∘ 𝑓)' 𝑥 = 𝑑𝑔 𝑓 𝑥 ⋅ 𝑑𝑓(𝑥) for a.e. 𝑥 ∈ ℝ.

Subtlety 2: Undefined 𝑔!

27

Claim 2 For any 𝑓, 𝑔 ∶ ℝ → ℝ,

𝑓, 𝑔 : a.e.-differentiable and continuous
and 𝑔 ∘ 𝑓

𝑔' 𝑓'

Counterexample 𝑓 𝑥 = 0 and 𝑔 𝑦 = ReLU 𝑦 .

= 0= 0 = 𝑔' 0
= undefined for all 𝑥

𝑔' 𝑓'

well-defined?

𝑓 = 𝑔 ∘ 𝑓

𝑔
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Subtlety 2: Undefined 𝑔!
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Claim 2 For any 𝑓, 𝑔 ∶ ℝ → ℝ,

𝑓, 𝑔 : a.e.-differentiable and continuous
and 𝑔 ∘ 𝑓

𝑔' 𝑓'

Counterexample 𝑓 𝑥 = 0 and 𝑔 𝑦 = ReLU 𝑦 .

𝑓'(𝑥)

= 0= 0

𝑑𝑔 𝑦 = =
7 for 𝑦 = 0
𝑔' 𝑦 for 𝑦 ≠ 0

well-defined?

𝑓 = 𝑔 ∘ 𝑓

𝑔



⟹ (𝑔 ∘ 𝑓)' 𝑥 = 𝑑𝑔 𝑓 𝑥 ×𝑑𝑓 for all 𝑥 ∈ ℝ.

⟹ (𝑔 ∘ 𝑓)' 𝑥 = 𝑑𝑔 𝑓 𝑥 ⋅ 𝑑𝑓(𝑥) for a.e. 𝑥 ∈ ℝ.

Subtlety 2: Undefined 𝑔!
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Claim 2 For any 𝑓, 𝑔 ∶ ℝ → ℝ,

𝑓, 𝑔 : a.e.-differentiable and continuous
and 𝑔 ∘ 𝑓

𝑔' 𝑓'

Counterexample 𝑓 𝑥 = 0 and 𝑔 𝑦 = ReLU 𝑦 .

𝑑𝑔 𝑦 = =
7 for 𝑦 = 0
𝑔' 𝑦 for 𝑦 ≠ 0

𝑓'(𝑥)

= 0= 0

well-defined?

𝑓 = 𝑔 ∘ 𝑓

𝑔



⟹ (𝑔 ∘ 𝑓)' 𝑥 = 𝑑𝑔 𝑓 𝑥 ⋅ 𝑑𝑓(𝑥) for a.e. 𝑥 ∈ ℝ.

Subtlety 3

30

Claim 3 For any 𝑓, 𝑔 ∶ ℝ → ℝ,

𝑓, 𝑔 : a.e.-differentiable and continuous

? ∃ 𝑑𝑓, 𝑑𝑔 ∶ ℝ → ℝ such that  𝑑𝑓 = 𝑓', 𝑑𝑔 = 𝑔', anda.e. a.e.

and 𝑔 ∘ 𝑓
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Subtlety 3
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Claim 3 For any 𝑓, 𝑔 ∶ ℝ → ℝ,

𝑓, 𝑔 : a.e.-differentiable and continuous

?

well-defined!and 𝑔 ∘ 𝑓

∃ 𝑑𝑓, 𝑑𝑔 ∶ ℝ → ℝ such that  𝑑𝑓 = 𝑓', 𝑑𝑔 = 𝑔', anda.e. a.e.
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Subtlety 3
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Claim 3 For any 𝑓, 𝑔 ∶ ℝ → ℝ,

𝑓, 𝑔 : a.e.-differentiable and continuous

?

well-defined!and 𝑔 ∘ 𝑓

∃ 𝑑𝑓, 𝑑𝑔 ∶ ℝ → ℝ such that  𝑑𝑓 = 𝑓', 𝑑𝑔 = 𝑔', anda.e. a.e.

?



⟹ (𝑔 ∘ 𝑓)' 𝑥 = 𝑑𝑔 𝑓 𝑥 ⋅ 𝑑𝑓(𝑥) for a.e. 𝑥 ∈ ℝ.

Subtlety 3: Wrong Equation for 𝑔 ∘ 𝑓 !
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Claim 3 For any 𝑓, 𝑔 ∶ ℝ → ℝ,

𝑓, 𝑔 : a.e.-differentiable and continuous
and 𝑔 ∘ 𝑓

∃ 𝑑𝑓, 𝑑𝑔 ∶ ℝ → ℝ such that  𝑑𝑓 = 𝑓', 𝑑𝑔 = 𝑔', anda.e. a.e.

Counterexample Involves the Cantor function again.

𝑓 𝑔



⟹ (𝑔 ∘ 𝑓)' 𝑥 = 𝑑𝑔 𝑓 𝑥 ⋅ 𝑑𝑓(𝑥) for a.e. 𝑥 ∈ ℝ.

Subtlety 3: Wrong Equation for 𝑔 ∘ 𝑓 !
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Claim 3 For any 𝑓, 𝑔 ∶ ℝ → ℝ,

𝑓, 𝑔 : a.e.-differentiable and continuous
and 𝑔 ∘ 𝑓

Counterexample Involves the Cantor function again.

𝑓 𝑔

Show 𝑔 ∘ 𝑓 ' 𝑥 ≠ 0 and  𝑓' 𝑥 = 0 for positive-measure 𝑥.
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Chain Rule For 𝑓 ∶ ℝ$ → ℝ% and 𝑔 ∶ ℝ% → ℝ&,differentiable everywhere,

𝐷 𝑔 ∘ 𝑓 𝑥 = 𝐷𝑔 𝑓 𝑥 ⋅ 𝐷𝑓(𝑥) for every 𝑥 ∈ ℝ$.

almost- almost-everywhere

almost-

almost-Our Result This and related claims are false!
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Theorem ℎ&’s are differentiable everywhere  ⟹ autodiff correctly computes ∇ℎ 𝑥 .
almost- almost-everywhere

Our Result Autodiff has been used without correctness guarantee!Can we recover the correctness theorem?
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Theorem ℎ&’s are differentiable everywhere  ⟹ autodiff correctly computes ∇ℎ 𝑥 .
almost- almost-everywhere

Our Result Autodiff has been used without correctness guarantee!Can we recover the correctness theorem?

What do the outputs of autodiff even mean?
(e.g., ReLU& 0 = 0 in TensorFlow, PyTorch, …)
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Theorem ℎ&’s are differentiable everywhere  ⟹ autodiff correctly computes ∇ℎ 𝑥 .
almost- almost-everywhere

Our Result Autodiff has been used without correctness guarantee!Can we recover the correctness theorem?

What do the outputs of autodiff even mean?
(e.g., ReLU& 0 = 0 in TensorFlow, PyTorch, …)

They are not Clarke-subdifferentials [KL18]:
• 𝜕!𝑓 𝑥 ≔ conv lim

"→$
𝐷𝑓 𝑥" 𝑥" → 𝑥 and ∃𝐷𝑓 𝑥" . 



Chain Rule For 𝑓 ∶ ℝ$ → ℝ% and 𝑔 ∶ ℝ% → ℝ&,differentiable everywhere,

𝐷 𝑔 ∘ 𝑓 𝑥 = 𝐷𝑔 𝑓 𝑥 ⋅ 𝐷𝑓(𝑥) for every 𝑥 ∈ ℝ$.
almost-

almost-Our Result This and related claims are false!

Our Questions: Part 2
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Theorem ℎ&’s are differentiable everywhere  ⟹ autodiff correctly computes ∇ℎ 𝑥 .
almost- almost-everywhere

Our Result Autodiff has been used without correctness guarantee!Can we recover the correctness theorem?

What do the outputs of autodiff even mean?
(e.g., ReLU& 0 = 0 in TensorFlow, PyTorch, …)

They are not Clarke-subdifferentials [KL18]:
• 𝜕!𝑓 𝑥 ≔ conv lim

"→$
𝐷𝑓 𝑥" 𝑥" → 𝑥 and ∃𝐷𝑓 𝑥" . 

• 𝑓 𝑥 = ReLU 𝑥 − ReLU −𝑥 :  𝜕!𝑓 0 = 1 ∌ 0 = 𝑓% 0 (by autodiff).



Theorem ℎ&’s are differentiable everywhere  ⟹ autodiff correctly computes ∇ℎ 𝑥 .

Our Results: Part 2
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almost- almost-everywhere?



Our Results: Part 2
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Theorem ℎ&’s are differentiable everywhere  ⟹ autodiff correctly computes ∇ℎ 𝑥 .
almost- almost-everywhere

so-called “PAP”

a.e.-differentiable
“PAP”

new property we propose



Our Results: Part 2
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Theorem ℎ&’s are differentiable everywhere  ⟹ autodiff correctly computes ∇ℎ 𝑥 .
almost- almost-everywhere

so-called “PAP”

a.e.-differentiable
“PAP”

func’s used in practice
(ReLU, ⋯)

pathological func’s
(Cantor func, ⋯)

new property we propose



Our Results: Part 2
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Theorem ℎ&’s are differentiable everywhere  ⟹ autodiff correctly computes ∇ℎ 𝑥 .
almost- almost-everywhere

Our Result Prove the claim for PAP functions ℎ(’s.

so-called “PAP”

a.e.-differentiable
“PAP”

func’s used in practice
(ReLU, ⋯)

pathological func’s
(Cantor func, ⋯)

new property we propose



Theorem ℎ&’s are differentiable everywhere  ⟹ autodiff correctly computes ∇ℎ 𝑥 .

Our Results: Part 2
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almost- almost-everywhere

Our Result Prove the claim for

so-called “PAP”

Our Result Autodiff computes so-called “intensional derivatives” of ℎ.

a.e.-differentiable
“PAP”

func’s used in practice
(ReLU, ⋯)

pathological func’s
(Cantor func, ⋯)

PAP functions ℎ(’s.

new property we propose



PAP Functions
Definition 𝑓 ∶ ℝ$ → ℝ% is called PAP if 𝑓 can be “decomposed” into

𝑓# , 𝑓( , ⋯
such that

𝑓) ∶ ℝ$ → ℝ% and 𝐴) ⊆ ℝ$ are “analytic”.
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𝐴! 𝐴"

piecewise analytic under analytic partition

analytic = has derivatives of all orders that are bounded nicely.



PAP Functions
Definition 𝑓 ∶ ℝ$ → ℝ% is called PAP if 𝑓 can be “decomposed” into

𝑓# , 𝑓( , ⋯
such that

𝑓) ∶ ℝ$ → ℝ% and 𝐴) ⊆ ℝ$ are “analytic”.

Example 𝑓 𝑥 = ReLU 𝑥 .
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0

𝐴! 𝐴"

analytic = has derivatives of all orders that are bounded nicely.



PAP Functions
Definition 𝑓 ∶ ℝ$ → ℝ% is called PAP if 𝑓 can be “decomposed” into

𝑓# , 𝑓( , ⋯
such that

𝑓) ∶ ℝ$ → ℝ% and 𝐴) ⊆ ℝ$ are “analytic”.

Example 𝑓 𝑥 = ReLU 𝑥 .

• (𝑓& 𝑥 = 0, 𝐴& = {𝑥 ∈ ℝ ∶ 𝑥 ≤ 0}),
(𝑓' 𝑥 = 𝑥, 𝐴' = {𝑥 ∈ ℝ ∶ 𝑥 > 0}).
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0

𝐴! 𝐴"

analytic = has derivatives of all orders that are bounded nicely.



PAP Functions
Definition 𝑓 ∶ ℝ$ → ℝ% is called PAP if 𝑓 can be “decomposed” into

𝑓# , 𝑓( , ⋯
such that

𝑓) ∶ ℝ$ → ℝ% and 𝐴) ⊆ ℝ$ are “analytic”.

Example 𝑓 𝑥 = ReLU 𝑥 .

• (𝑓& 𝑥 = 0, 𝐴& = {𝑥 ∈ ℝ ∶ 𝑥 ≤ 0}),
(𝑓' 𝑥 = 𝑥, 𝐴' = {𝑥 ∈ ℝ ∶ 𝑥 > 0}).
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analytic functions

0

𝐴! 𝐴"

analytic = has derivatives of all orders that are bounded nicely.



PAP Functions
Definition 𝑓 ∶ ℝ$ → ℝ% is called PAP if 𝑓 can be “decomposed” into

𝑓# , 𝑓( , ⋯
such that

𝑓) ∶ ℝ$ → ℝ% and 𝐴) ⊆ ℝ$ are “analytic”.

Example 𝑓 𝑥 = ReLU 𝑥 .

• (𝑓& 𝑥 = 0, 𝐴& = {𝑥 ∈ ℝ ∶ 𝑥 ≤ 0}),
(𝑓' 𝑥 = 𝑥, 𝐴' = {𝑥 ∈ ℝ ∶ 𝑥 > 0}).

• (𝑓& 𝑥 = 0,   𝐴& = {𝑥 ∈ ℝ ∶ 𝑥 < 0}),
(𝑓' 𝑥 = 𝑥,   𝐴' = {𝑥 ∈ ℝ ∶ 𝑥 > 0}),
(𝑓( 𝑥 = 7𝑥, 𝐴( = {𝑥 ∈ ℝ ∶ 𝑥 = 0}).
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0

𝐴! 𝐴"



PAP Functions
Definition 𝑓 ∶ ℝ$ → ℝ% is called PAP if 𝑓 can be “decomposed” into

𝑓# , 𝑓( , ⋯
such that

𝑓) ∶ ℝ$ → ℝ% and 𝐴) ⊆ ℝ$ are “analytic”.

Example 𝑓 𝑥 = ReLU 𝑥 .

• (𝑓& 𝑥 = 0, 𝐴& = {𝑥 ∈ ℝ ∶ 𝑥 ≤ 0}),
(𝑓' 𝑥 = 𝑥, 𝐴' = {𝑥 ∈ ℝ ∶ 𝑥 > 0}).

• (𝑓& 𝑥 = 0,   𝐴& = {𝑥 ∈ ℝ ∶ 𝑥 < 0}),
(𝑓' 𝑥 = 𝑥,   𝐴' = {𝑥 ∈ ℝ ∶ 𝑥 > 0}),
(𝑓( 𝑥 = 7𝑥, 𝐴( = {𝑥 ∈ ℝ ∶ 𝑥 = 0}).
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0

𝐴! 𝐴"

can be a subset of ℝ$



PAP Functions
Definition 𝑓 ∶ ℝ$ → ℝ% is called PAP if 𝑓 can be “decomposed” into

𝑓# , 𝑓( , ⋯
such that

𝑓) ∶ ℝ$ → ℝ% and 𝐴) ⊆ ℝ$ are “analytic”.

Example 𝑓 𝑥 = ReLU 𝑥 .

• (𝑓& 𝑥 = 0, 𝐴& = {𝑥 ∈ ℝ ∶ 𝑥 ≤ 0}),
(𝑓' 𝑥 = 𝑥, 𝐴' = {𝑥 ∈ ℝ ∶ 𝑥 > 0}).

• (𝑓& 𝑥 = 0,   𝐴& = {𝑥 ∈ ℝ ∶ 𝑥 < 0}),
(𝑓' 𝑥 = 𝑥,   𝐴' = {𝑥 ∈ ℝ ∶ 𝑥 > 0}),
(𝑓( 𝑥 = 7𝑥, 𝐴( = {𝑥 ∈ ℝ ∶ 𝑥 = 0}).
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Observation PAP functions include all functions used in practice.

Proposition PAP functions are a.e.-differentiable.

𝐴! 𝐴"



PAP Functions
Definition 𝑓 ∶ ℝ$ → ℝ% is called PAP if 𝑓 can be “decomposed” into

𝑓# , 𝑓( , ⋯
such that

𝑓) ∶ ℝ$ → ℝ% and 𝐴) ⊆ ℝ$ are “analytic”.

Example 𝑓 𝑥 = ReLU 𝑥 .

• (𝑓& 𝑥 = 0, 𝐴& = {𝑥 ∈ ℝ ∶ 𝑥 ≤ 0}),
(𝑓' 𝑥 = 𝑥, 𝐴' = {𝑥 ∈ ℝ ∶ 𝑥 > 0}).

• (𝑓& 𝑥 = 0,   𝐴& = {𝑥 ∈ ℝ ∶ 𝑥 < 0}),
(𝑓' 𝑥 = 𝑥,   𝐴' = {𝑥 ∈ ℝ ∶ 𝑥 > 0}),
(𝑓( 𝑥 = 7𝑥, 𝐴( = {𝑥 ∈ ℝ ∶ 𝑥 = 0}).
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Observation PAP functions include all functions used in practice.

Proposition PAP functions are a.e.-differentiable.

𝐴! 𝐴"

For any non-constant, analytic function 𝑔 ∶ ℝ$ → ℝ,
𝑥 ∈ ℝ$| 𝑔 𝑥 = 0 has measure zero.



PAP Functions
Definition 𝑓 ∶ ℝ$ → ℝ% is called PAP if 𝑓 can be “decomposed” into

𝑓# , 𝑓( , ⋯
such that

𝑓) ∶ ℝ$ → ℝ% and 𝐴) ⊆ ℝ$ are “analytic”.

Example 𝑓 𝑥 = ReLU 𝑥 .

• (𝑓& 𝑥 = 0, 𝐴& = {𝑥 ∈ ℝ ∶ 𝑥 ≤ 0}),
(𝑓' 𝑥 = 𝑥, 𝐴' = {𝑥 ∈ ℝ ∶ 𝑥 > 0}).

• (𝑓& 𝑥 = 0,   𝐴& = {𝑥 ∈ ℝ ∶ 𝑥 < 0}),
(𝑓' 𝑥 = 𝑥,   𝐴' = {𝑥 ∈ ℝ ∶ 𝑥 > 0}),
(𝑓( 𝑥 = 7𝑥, 𝐴( = {𝑥 ∈ ℝ ∶ 𝑥 = 0}).
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𝐴! 𝐴"

Definition PAP functions have “intensional derivatives”.

Observation PAP functions include all functions used in practice.

Proposition PAP functions are a.e.-differentiable.



Intensional Derivatives

Example 𝑓 𝑥 = ReLU 𝑥 .

• (𝑓& 𝑥 = 0, 𝐴& = {𝑥 ∈ ℝ ∶ 𝑥 ≤ 0}),
(𝑓' 𝑥 = 𝑥, 𝐴' = {𝑥 ∈ ℝ ∶ 𝑥 > 0}).

• (𝑓& 𝑥 = 0,   𝐴& = {𝑥 ∈ ℝ ∶ 𝑥 < 0}),
(𝑓' 𝑥 = 𝑥,   𝐴' = {𝑥 ∈ ℝ ∶ 𝑥 > 0}),
(𝑓( 𝑥 = 7𝑥, 𝐴( = {𝑥 ∈ ℝ ∶ 𝑥 = 0}).
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analytic functions



Intensional Derivatives

Example 𝑓 𝑥 = ReLU 𝑥 .

• (𝑓& 𝑥 = 0, 𝐴& = {𝑥 ∈ ℝ ∶ 𝑥 ≤ 0}),
(𝑓' 𝑥 = 𝑥, 𝐴' = {𝑥 ∈ ℝ ∶ 𝑥 > 0}).

• (𝑓& 𝑥 = 0,   𝐴& = {𝑥 ∈ ℝ ∶ 𝑥 < 0}),
(𝑓' 𝑥 = 𝑥,   𝐴' = {𝑥 ∈ ℝ ∶ 𝑥 > 0}),
(𝑓( 𝑥 = 7𝑥, 𝐴( = {𝑥 ∈ ℝ ∶ 𝑥 = 0}).
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analytic functions
(𝑓&% 𝑥 = 0, 𝐴& = {𝑥 ∈ ℝ ∶ 𝑥 ≤ 0}),
(𝑓'% 𝑥 = 1, 𝐴' = {𝑥 ∈ ℝ ∶ 𝑥 > 0}).



Intensional Derivatives

Example 𝑓 𝑥 = ReLU 𝑥 .

• (𝑓& 𝑥 = 0, 𝐴& = {𝑥 ∈ ℝ ∶ 𝑥 ≤ 0}),
(𝑓' 𝑥 = 𝑥, 𝐴' = {𝑥 ∈ ℝ ∶ 𝑥 > 0}).

• (𝑓& 𝑥 = 0,   𝐴& = {𝑥 ∈ ℝ ∶ 𝑥 < 0}),
(𝑓' 𝑥 = 𝑥,   𝐴' = {𝑥 ∈ ℝ ∶ 𝑥 > 0}),
(𝑓( 𝑥 = 7𝑥, 𝐴( = {𝑥 ∈ ℝ ∶ 𝑥 = 0}).
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analytic functions
(𝑓&% 𝑥 = 0, 𝐴& = {𝑥 ∈ ℝ ∶ 𝑥 ≤ 0}),
(𝑓'% 𝑥 = 1, 𝐴' = {𝑥 ∈ ℝ ∶ 𝑥 > 0}).

𝑑𝑓 𝑥 = E0 for 𝑥 ≤ 0
1 for 𝑥 > 0

intensional derivative of 𝑓



Intensional Derivatives

Example 𝑓 𝑥 = ReLU 𝑥 .

• (𝑓& 𝑥 = 0, 𝐴& = {𝑥 ∈ ℝ ∶ 𝑥 ≤ 0}),
(𝑓' 𝑥 = 𝑥, 𝐴' = {𝑥 ∈ ℝ ∶ 𝑥 > 0}).

• (𝑓& 𝑥 = 0,   𝐴& = {𝑥 ∈ ℝ ∶ 𝑥 < 0}),
(𝑓' 𝑥 = 𝑥,   𝐴' = {𝑥 ∈ ℝ ∶ 𝑥 > 0}),
(𝑓( 𝑥 = 7𝑥, 𝐴( = {𝑥 ∈ ℝ ∶ 𝑥 = 0}).
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(𝑓&% 𝑥 = 0, 𝐴& = {𝑥 ∈ ℝ ∶ 𝑥 ≤ 0}),
(𝑓'% 𝑥 = 1, 𝐴' = {𝑥 ∈ ℝ ∶ 𝑥 > 0}).

𝑑𝑓 𝑥 = E0 for 𝑥 ≤ 0
1 for 𝑥 > 0

(𝑓&% 𝑥 = 0, 𝐴& = {𝑥 ∈ ℝ ∶ 𝑥 < 0}),
(𝑓'% 𝑥 = 1, 𝐴' = {𝑥 ∈ ℝ ∶ 𝑥 > 0}),
(𝑓(% 𝑥 = 7, 𝐴( = {𝑥 ∈ ℝ ∶ 𝑥 = 0}).

𝑑𝑓 𝑥 = H
0 for 𝑥 < 0
1 for 𝑥 > 0
7 for 𝑥 = 0



Intensional Derivatives

Example 𝑓 𝑥 = ReLU 𝑥 .

• (𝑓& 𝑥 = 0, 𝐴& = {𝑥 ∈ ℝ ∶ 𝑥 ≤ 0}),
(𝑓' 𝑥 = 𝑥, 𝐴' = {𝑥 ∈ ℝ ∶ 𝑥 > 0}).

• (𝑓& 𝑥 = 0,   𝐴& = {𝑥 ∈ ℝ ∶ 𝑥 < 0}),
(𝑓' 𝑥 = 𝑥,   𝐴' = {𝑥 ∈ ℝ ∶ 𝑥 > 0}),
(𝑓( 𝑥 = 7𝑥, 𝐴( = {𝑥 ∈ ℝ ∶ 𝑥 = 0}).
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(𝑓&% 𝑥 = 0, 𝐴& = {𝑥 ∈ ℝ ∶ 𝑥 ≤ 0}),
(𝑓'% 𝑥 = 1, 𝐴' = {𝑥 ∈ ℝ ∶ 𝑥 > 0}).

𝑑𝑓 𝑥 = E0 for 𝑥 ≤ 0
1 for 𝑥 > 0

(𝑓&% 𝑥 = 0, 𝐴& = {𝑥 ∈ ℝ ∶ 𝑥 < 0}),
(𝑓'% 𝑥 = 1, 𝐴' = {𝑥 ∈ ℝ ∶ 𝑥 > 0}),
(𝑓(% 𝑥 = 7, 𝐴( = {𝑥 ∈ ℝ ∶ 𝑥 = 0}).

𝑑𝑓 𝑥 = H
0 for 𝑥 < 0
1 for 𝑥 > 0
7 for 𝑥 = 0

Proposition Intensional derivatives always satisfy the chain rule.

Proposition Intensional derivative is a total function.



Intensional Derivatives

Example 𝑓 𝑥 = ReLU 𝑥 .

• (𝑓& 𝑥 = 0, 𝐴& = {𝑥 ∈ ℝ ∶ 𝑥 ≤ 0}),
(𝑓' 𝑥 = 𝑥, 𝐴' = {𝑥 ∈ ℝ ∶ 𝑥 > 0}).

• (𝑓& 𝑥 = 0,   𝐴& = {𝑥 ∈ ℝ ∶ 𝑥 < 0}),
(𝑓' 𝑥 = 𝑥,   𝐴' = {𝑥 ∈ ℝ ∶ 𝑥 > 0}),
(𝑓( 𝑥 = 7𝑥, 𝐴( = {𝑥 ∈ ℝ ∶ 𝑥 = 0}).
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(𝑓&% 𝑥 = 0, 𝐴& = {𝑥 ∈ ℝ ∶ 𝑥 ≤ 0}),
(𝑓'% 𝑥 = 1, 𝐴' = {𝑥 ∈ ℝ ∶ 𝑥 > 0}).

𝑑𝑓 𝑥 = E0 for 𝑥 ≤ 0
1 for 𝑥 > 0

(𝑓&% 𝑥 = 0, 𝐴& = {𝑥 ∈ ℝ ∶ 𝑥 < 0}),
(𝑓'% 𝑥 = 1, 𝐴' = {𝑥 ∈ ℝ ∶ 𝑥 > 0}),
(𝑓(% 𝑥 = 7, 𝐴( = {𝑥 ∈ ℝ ∶ 𝑥 = 0}).

𝑑𝑓 𝑥 = H
0 for 𝑥 < 0
1 for 𝑥 > 0
7 for 𝑥 = 0

Proposition Intensional derivatives always satisfy the chain rule.

Proposition Intensional derivative  = standard derivative.a.e.

Proposition Intensional derivative is a total function.

𝑥 ∈ ℝ$ | 𝑑𝑓 𝑥 ≠ 𝐷𝑓 𝑥 is contained in
a countable union of the zero-sets of (non-const) analytic func’s.



Correctness of Autodiff

Example 𝑓 𝑥 = ReLU 𝑥 .

• (𝑓& 𝑥 = 0, 𝐴& = {𝑥 ∈ ℝ ∶ 𝑥 ≤ 0}),
(𝑓' 𝑥 = 𝑥, 𝐴' = {𝑥 ∈ ℝ ∶ 𝑥 > 0}).

• (𝑓& 𝑥 = 0,   𝐴& = {𝑥 ∈ ℝ ∶ 𝑥 < 0}),
(𝑓' 𝑥 = 𝑥,   𝐴' = {𝑥 ∈ ℝ ∶ 𝑥 > 0}),
(𝑓( 𝑥 = 7𝑥, 𝐴( = {𝑥 ∈ ℝ ∶ 𝑥 = 0}).
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(𝑓&% 𝑥 = 0, 𝐴& = {𝑥 ∈ ℝ ∶ 𝑥 ≤ 0}),
(𝑓'% 𝑥 = 1, 𝐴' = {𝑥 ∈ ℝ ∶ 𝑥 > 0}).

𝑑𝑓 𝑥 = E0 for 𝑥 ≤ 0
1 for 𝑥 > 0

(𝑓&% 𝑥 = 0, 𝐴& = {𝑥 ∈ ℝ ∶ 𝑥 < 0}),
(𝑓'% 𝑥 = 1, 𝐴' = {𝑥 ∈ ℝ ∶ 𝑥 > 0}),
(𝑓(% 𝑥 = 7, 𝐴( = {𝑥 ∈ ℝ ∶ 𝑥 = 0}).

𝑑𝑓 𝑥 = H
0 for 𝑥 < 0
1 for 𝑥 > 0
7 for 𝑥 = 0

Theorem For any ℎ = ℎ" ∘ ⋯ ∘ ℎ# with PAP ℎ&,
autodiff computes an intensional derivative of ℎ, 
and thus computes the correct gradient of ℎ a.e.

Proposition Intensional derivatives always satisfy the chain rule.

Proposition Intensional derivative  = standard derivative.a.e.

Proposition Intensional derivative is a total function.



Correctness of Autodiff
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Theorem For any ℎ = ℎ" ∘ ⋯ ∘ ℎ# with PAP ℎ&,
autodiff computes an intensional derivative of ℎ, 
and thus computes the correct gradient of ℎ a.e.

if autodiff uses an intensional derivative of ℎ& for “𝐷”ℎ&,



In TensorFlow and PyTorch,
• “𝐷”relu 𝑥 = 0 for 𝑥 ≤ 0; 1 for 𝑥 > 0.

Correctness of Autodiff
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Theorem For any ℎ = ℎ" ∘ ⋯ ∘ ℎ# with PAP ℎ&,
autodiff computes an intensional derivative of ℎ, 
and thus computes the correct gradient of ℎ a.e.

if autodiff uses an intensional derivative of ℎ& for “𝐷”ℎ&,



In TensorFlow and PyTorch,
• “𝐷”relu 𝑥 = 0 for 𝑥 ≤ 0; 1 for 𝑥 > 0.
• “𝐷”sqrt 𝑥 = ∞ for 𝑥 = 0; 1/2 𝑥 for 𝑥 > 0.

Correctness of Autodiff
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Theorem For any ℎ = ℎ" ∘ ⋯ ∘ ℎ# with PAP ℎ&,
autodiff computes an intensional derivative of ℎ, 
and thus computes the correct gradient of ℎ a.e.

if autodiff uses an intensional derivative of ℎ& for “𝐷”ℎ&,



In TensorFlow and PyTorch,
• “𝐷”relu 𝑥 = 0 for 𝑥 ≤ 0; 1 for 𝑥 > 0.
• “𝐷”sqrt 𝑥 = ∞ for 𝑥 = 0; 1/2 𝑥 for 𝑥 > 0.

For 𝑓 𝑥 = sqrt(mult(𝑥, 0)), they compute 𝑓' 𝑥 = NaN for all 𝑥.

Correctness of Autodiff
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Theorem For any ℎ = ℎ" ∘ ⋯ ∘ ℎ# with PAP ℎ&,
autodiff computes an intensional derivative of ℎ, 
and thus computes the correct gradient of ℎ a.e.

if autodiff uses an intensional derivative of ℎ& for “𝐷”ℎ&,



In TensorFlow and PyTorch,
• “𝐷”relu 𝑥 = 0 for 𝑥 ≤ 0; 1 for 𝑥 > 0.
• “𝐷”sqrt 𝑥 = ∞ for 𝑥 = 0; 1/2 𝑥 for 𝑥 > 0.

For 𝑓 𝑥 = sqrt(mult(𝑥, 0)), they compute 𝑓' 𝑥 = NaN for all 𝑥.

Correctness of Autodiff
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Theorem For any ℎ = ℎ" ∘ ⋯ ∘ ℎ# with PAP ℎ&,
autodiff computes an intensional derivative of ℎ, 
and thus computes the correct gradient of ℎ a.e.

if autodiff uses an intensional derivative of ℎ& for “𝐷”ℎ&,
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Intensional Derivatives: Remarks

First-order ➝ higher-order.
• (First-order) intensional derivative = PAP function.
• Extended to higher-order derivatives. Enjoy the same properties.
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Intensional Derivatives: Remarks

First-order ➝ higher-order.
• (First-order) intensional derivative = PAP function.
• Extended to higher-order derivatives. Enjoy the same properties.

Difference from Clarke-subdifferentials.
• Intentional derivative: 𝜕)𝑓 ∈ 𝒫( ℝ$ → ℝ%×$ ).
• Clarke-subdifferential: 𝜕,𝑓 ∈ [ℝ$ → 𝒫(ℝ%×$)].
➝ Difficult to extend to higher-order derivatives.
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High-Level Messages

We often have discrepancy between theory and practice of ML algorithms.
But our theoretical understanding on such discrepancy is still limited.
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70

ML Algorithm Theory Practice

Autodiff and many more differentiable func’s a.e.-differentiable func’s

Algorithm for estimating
∇!∫ 𝑓! 𝑧 𝑑𝑧

[NeurIPS’18]



High-Level Messages

We often have discrepancy between theory and practice of ML algorithms.
But our theoretical understanding on such discrepancy is still limited.
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ML Algorithm Theory Practice

Autodiff and many more differentiable func’s a.e.-differentiable func’s

Variational inference, … func’s with finite integrals
(and other nice properties)

func’s with infinite integrals
(or some bad properties)

[POPL’20]



High-Level Messages

We often have discrepancy between theory and practice of ML algorithms.
But our theoretical understanding on such discrepancy is still limited.
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ML Algorithm Theory Practice

Autodiff and many more differentiable func’s a.e.-differentiable func’s

Variational inference, … func’s with finite integrals
(and other nice properties)

func’s with infinite integrals
(or some bad properties)

Most algorithms func’s on reals func’s on floating-points

[PLDI’16]

[POPL’18]



Comments?  Questions?
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