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Autodiff: Practice

What about in practice?
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Discrepancy between theory and practice.
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Our Questions: Part 1

. Belief: Measure-zero non-differentiability would not matter.

e

________

Theorem h;’s are differentiable everywhereil = autodiff correctly computes Vh(x),
( almost- \ /\

)
(almost-everywhere

e.g., ReLU(x) =if x>0 then x else 0= ‘4

\ non-differentiable on a measure-zero set

almost-everywhere = except for a measure-zero set.
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Our Questions: Part 1

)

Theorem h;’s are differentiable everywhereil = autodiff correctly computes Vh(x),
(almost- /\

________

A

)
(almost-everywhere

\ almost- )
Chain Rule For f : R®* R™ and g : R™ — R! differentiable'everywhere,
g

D(ge°f)(x) = Dg(f(x)) - Df(x)| forevery x € R™.

[ almost- \ 12




Our Results: Part 1

Measure-zero non-differentiabilities do matter!

Theorem h;’s are differentiable everywher>-<autodiff correctly computes Vh(x),
(almost- \ /\

)
4 (almost-everywhere

\ .almost- )
Chain Rule For f : R® » R™ and g : R™ — R! differentiable'everywhere,
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Our Results: Part 1

Measure-zero non-differentiabilities do matter!

Theorem h;’s are differentiable everywher>-<autodiff correctly computes Vh(x),
(almost- ) /\

)
I (almost-everywhere

: . |
[ Our Result This and related claims are false! J Almost.
Chain Rule For f : R® » R™ and g : R™ — R! differentiable'everywhere,

MM\ &a -Df(xl for every x € R™.
[ almost- \
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Subtlety 1

Claim1 Forany f,g: R — R,

f, g : a.e-differentiable and continuous

-------

= gof) )= g'(f®) f' &

fora.e. x € R.
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Subtlety 1: Undefined (g o )’
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Subtlety 1: Undefined (g o )’

Claim1 Forany f,g: R - R,

f, g : a.e-differentiable and continuous

______________________________________________

__________________________________

-
-
-
S
-~
-

Counterexample Involves the Cantor function.

1 1

f g

0.5 05 r i
0 : 0

0 0.5 1 0 0.5 1

fora.e. x € R.
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Subtlety 1: Undefined (g o )’

Claim1 Forany f,g: R - R,
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Subtlety 1: Undefined (g o )’

Claim1 Forany f,g: R - R,

f, g : a.e-differentiable and continuous

X (92 @i fc}"(}'i}'{j')"}-5’}7";5‘; fora.e.x € R

-~ -
-
S~
~—
-~

Counterexample Involves the Cantor function. has pathological

\ properties
1 1 1
f is a bijection: f g

e continuous, a.e.-diff’l.

i 0.5 | 0.5 |
* positive-measure set \
2 measure-zero set.
0 ' 0 0

0 0.5 1 0 0.5 1 0 05 1




Subtlety 2

Claim2 Forany f,g: R - R,

andgof
fb(: a.e.-differentiable and continuous
= 9o = g(f@) f'@)

fora.e. x € R.
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Subtlety 2

Claim2 Forany f,g: R - R,

G$d9°f/
f, g": a.e-differentiable and continuous - ()

—————————————————————————————————————————————————————

' ' 'l ! Pt Y
? (g ° (x)a=ig(fgc));-af x)
- —————— —— ——— - ﬁ———————A— ———————— -

¢« T well-defined? -

Counterexample f(x) = 0and g(y) = ReLU(y).

—>  easy to check that (*) holds.

fora.e. x € R.
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Subtlety 2: Undefined g’

Claim2 Forany f,g: R - R,

G$d9°f/
f,g': a.e-differentiable and continuous

——————————————————————————————————————————————

———————————————————————————

> (€ °8(x>,5 = 59’(&(@)3% éc)

-~ -
-
S~
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Counterexample f(x) = 0and g(y) = ReLU(y).
= g’(/}(x))

= g'(0)
= undefined for all x

fora.e. x € R.
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Subtlety 2: Undefined g’

Claim2 Forany f,g: R - R,

G$d9°f/
f,g': a.e-differentiable and continuous
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Counterexample f(x) = 0and g(y) = ReLU(y).
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f f f
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= undefined for all x

fora.e. x € R.
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Subtlety 2: Undefined g’

Claim2 Forany f,g: R - R,

G$d9°f/
f,g': a.e-differentiable and continuous

——————————————————————————————————————————————

X (€ °8<x>,5= 59’(§éx))3-§f (),

———————————————————————————

-~ -
-
S~
~-
-~

Counterexample f(x) = 0and g(y) = ReLU(y).
= (g o?’(x) dg(f(x)) f’T(x)

=0 =0

7 fory =0
dg(y) = {g’(y) fory # 0

fora.e. x € R.
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Subtlety 2: Undefined g’

Claim2 Forany f,g: R - R,

Ha’;d geof
f,g': a.e-differentiable and continuous

——————————————————————————————————————————————

-----------------------------

-~ -
-
S~
~—
-~

= -Eq__f;,lffz_:_ciafﬁf () Xf'(x)} forallx € R
|7 fory =0
dg(y) = {g’(y) fory # 0

fora.e. x € R.
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Subtlety 3

Claim3 Forany f,g: R - R,

G$d9°f/
f,g': a.e-differentiable and continuous

-------

fora.e. x € R.

= [A(g o f)'(x) = dg(f(x)) - df (x)
=

df,dg : R = R suchthat df =f', dg=g/, and\
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Subtlety 3

Claim3 Forany f,g: R - R,

and g o f
fw a.e.-differenti
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Subtlety 3

Claim3 Forany f,g: R - R,

@d g f/ _________ weII-defilned!\ ~~~~~
f,g": a.e-differentighle and contigyous

—————————————————————

-------------------

\

————————————————————————————

fora.e. x € R.

?

? //A\(g ) (0= dg(f(x)) df ()]

2 df.dg: R— R suchthat df 2f' dg®€g" and |
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Subtlety 3: Wrong Equation for (g o f)’

Claim3 Forany f,g: R - R,

G$d9°f/
f,g': a.e-differentiable and continuous

X

fora.e. x € R.

FA(Q o 1) () PKdg(F () - df (x)
=

df,dg: R - R suchthat df3f", dg*:g’, and |

Counterexample Involves the Cantor function again.
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0
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0.5

0

0

0.5
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Subtlety 3: Wrong Equation for (g o f)’

Claim3 Forany f,g: R - R,

G$d9°f/
f,g': a.e-differentiable and continuous

_________________
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X et o

-’
-
-
-
-
-
-
.~
-
-

__________________

Counterexample Involves the Cantor function again.

1 1
f g
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0 : 0
0 0.5 1 0
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Our Results: Part 1

Our Result This and related claims are false! J

D=7

(=P

\

-Df(xl

\ .almost- )
Chain Rule For f : R® » R™and g : R™ — R! differentiable'everywhere,

for every x € R,

[ almost- )
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Our Results: Part 1

[ Our Result Autodiff has been used without correctness guarantee! ]

Theorem h;’s are differentiable everywher><autodiff correctly computes Vh(
[ almost- \ (almost-everyw

)
ere

e
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Our Questions: Part 2

Can we recover the correctness theorem?
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Our Questions: Part 2

Can we recover the correctness theorem?

What do the outputs of autodiff even mean?
(e.g., ReLU’(Vr = (0 in TensorFlow, PyTorch, ...)

/
They are not Clarke-subdifferentials [KL18]:

¢« 0°f(x) = conv{%i_r)r(l)Df(xn) ‘ X, = x and ADf (x;,) }
* f(x) =ReLU(x) — ReLU(—x): 0¢f(0) = {1} 2 0 = f'(0) (by autodiff).



Our Results: Part 2

Theorem h;’s are dlfferentlable,everywher>-<autod|ff correctly computes Vh(x)

almost-

/almost—everywhere
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Our Results: Part 2

Theorem h;’s are

so-called “PAP/

new property we propose
, a.e.-differentiable ——

[HPAPII

- J

2 — autodiff correctly computes Vh(x/\

(almost-everywh

)
ere
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Our Results: Part 2

Theorem h;’s are

pathological func’s_|
(Cantor func, +)

(almost-everywh

new property we propose
, a.e.-differentiable —

IIPAP” . .
| func’s used in practice
(RelLU, ---)

%

s = autodiff correctly computes Vh(x/\

)
ere
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Our Results: Part 2

[ Our Result Prove the claim for| PAP functions h;’s. ]

(==s

1 :»E autodiff correctly computes Vh(x/\

Theorem h;’s are

- - -

)
o (almost-everywhere
so-called “PAP?

new property we propose
, a.e.-differentiable —

((PAP” . '
| func’s used in practice
(RelLU, ---)

J

pathological func’s_|

_>
(Cantor func, +)

-
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Our Results: Part 2

r

\_

Our Result Autodiff computes

so-called “intensional derivatives” of h. ]

r

.

Our Result Prove the claim for

PAP functions h;’s. ]

Theorem h;’s are

so-called “PAP/

(==s

1 :»E autodiff correctly computes Vh(x/\

- - -

)
(almost-everywhere

new property we propose

/ a.e.-differentiable —

pathological func’s_|

_>
(Cantor func, +)

.

IIPAP” . '
| func’s used in practice
(RelLU, ---)

J
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PAP Functions

piecewise analytic under analytic partition

Definition f : R™ — R™ is called PAP if f can be “decomposed” into

fl‘Al' fZ‘AZI

such that

fi : R" - R™and A4; € R™ are “analytic”.

analytic = has derivatives of all orders that are bounded nicely.
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PAP Functions

Definition f : R™ — R™ is called PAP if f can be “decomposed” into

fl‘Al' fZ‘AZ'

such that

fi : R" - R™and 4; € R™ are “analytic”.

Example f(x) = ReLU(x).

analytic functions

analytic = has derivatives of all orders that are bounded nicely.
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PAP Functions

Definition f : R™ — R™ is called PAP if f can be “decomposed” into

fl‘Al’ fZ‘AZ’ coe
such that
fi : R® > R™and 4; € R" are “analytic”.
Example f(x) = ReLU(x). ;
(o
(f3(x):A3:{X6R2x=O)_ .
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PAP Functions ot of R
/ Cah pe a supset O

Definition f : R™ — R™ is called PAP if f can be “decomposed” into

fl‘Al' fZ‘AZI

such that

fi : R" -5 R™ and 4; € R™ are “analytic”.

Example f(x) = ReLU(x).

* (i(x) =0, A; ={x€R:{x <0}, ”.”
(fL(x) =x, A, ={x ER:x > 0}), -
(fs(x) =(7x) A3 = {x € R :(x = O}). . :




PAP Functions

Definition f : R™ — R™ is called PAP if f can be “decomposed” into

fl‘Al' fZ‘AZ'

such that

fi : R" - R™and 4; € R™ are “analytic”.

Observation PAP functions include all functions used in practice.

Proposition PAP functions are a.e.-differentiable.
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PAP Functions

Definition f : R™ — R™ is called PAP if f can be “decomposed” into

fl‘Al' fZ‘AZ'

such that

fi : R" -5 R™ and 4; € R™ are “analytic”.

Observation PAP functions include all functions used in practice.

Proposition PAP functions are a.e.-differentiable.

|

For any non-constant, analytic function g : R" — R,

{x € R"| g(x) = 0} has measure zero.
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PAP Functions

Definition f : R™ — R™ is called PAP if f can be “decomposed” into

fl‘Al' fZ‘AZ'

such that

fi : R" -5 R™ and 4; € R™ are “analytic”.

Observation PAP functions include all functions used in practice.

Proposition PAP functions are a.e.-differentiable.

Definition PAP functions have “intensional derivatives”.
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Intensional Derivatives

analytic functions

Example f(x)/= ReLU(x).

* {fi(x) =0} A; = {x ER: x < 0}),
fo(x) =x, A, ={x ER: x> 0}).
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Intensional Derivatives

analytic functions

(ff(x) =0,

Example f(x2/= ReLU(x). / (f,(x) =1, Ay

e (i(x) =0l 4, ={x eR: x <0}),
f,(0) =x, 4, ={x ER: x > 0}).

Ay ={
A; ={

x €ER:x < 0}),
x € R:x > 0}).

56



Intensional Derivatives

analytic functions

Example f(x2/= ReLU(x). / (f2(x) = 1

e (i(x) =0l 4, ={x eR: x <0}),
f,(0) =x, 4, ={x ER: x > 0}).

intensional derivative of f
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Intensional Derivatives

Example f(x) = ReLU(x).

e (ff(x) =0, A;={x€ER:x <0},
(fz(x) =x, A; ={x ER:x>0}),
(f3(x) =7x,A;3 = {x € R: x = 0}).

df(X)={

x €ER:x > 0}),
x € R:x = 0}).

0 forx <0
1 forx>0
7 forx =0
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Intensional Derivatives

Proposition Intensional derivative is a total function.

Proposition Intensional derivatives always satisfy the chain rule.
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Intensional Derivatives

Proposition Intensional derivative is a total function.

Proposition Intensional derivatives always satisfy the chain rule.

Proposition Intensional derivative L standard derivative.

{x e R" | df(x) # Df(x)} is contained in
a countable union of the zero-sets of (non-const) analytic func’s.
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Correctness of Autodiff

Proposition Intensional derivative is a total function.

Proposition Intensional derivatives always satisfy the chain rule.

Proposition Intensional derivative L standard derivative.

l

Theorem Forany h = h; o --- o hy with PAP h;,
autodiff computes an intensional derivative of h,

and thus computes the correct gradient of h a.e.
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Correctness of Autodiff

\if autodiff uses an intensional derivative of h; for “D"hl,j

Theorem Forany h = h; o ---o h; with PAP hl,Y
autodiff computes an intensional derivative of h,

and thus computes the correct gradient of h a.e.
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Correctness of Autodiff

In TensorFlow and PyTorch,
 “D"relu(x) =0forx <0; 1forx > 0. v 4

\if autodiff uses an intensional derivative of h; for “D”hl,}

Theorem Forany h = h; o ---o hy with PAP hl,Y
autodiff computes an intensional derivative of h,

and thus computes the correct gradient of h a.e.
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Correctness of Autodiff

In TensorFlow and PyTorch,
 “D”relu(x) =0forx <0; 1forx > 0. V4

o ”D”Sqr\t(x) = oo forx = 0; 1/2\/} forx > 0. x

\if autodiff uses an intensional derivative of h; for “D”hl,}

Theorem Forany h = h; o ---o hy with PAP hl,Y
autodiff computes an intensional derivative of h,

and thus computes the correct gradient of h a.e.

64



Correctness of Autodiff

In TensorFlow and PyTorch,
 “D”relu(x) =0forx <0; 1forx > 0. V4

« “D”sqrt(x) = oo for x = 0; 1/2+/x forx > 0. X
For f(x) = sqrt(mult(x,0)), they compute f'(x) = NaN for all x.

\if autodiff uses an intensional derivative of h; for “D”hl,}

Theorem Forany h = h; o ---o hy with PAP hl,Y
autodiff computes an intensional derivative of h,

and thus computes the correct gradient of h a.e.
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Correctness of Autodiff

In TensorFlow and PyTorch,
* “D’relu(x) = O forx < 0; 1forx > 0. V4

« “D”sqrt(x) ‘eu'forx = 0; 1/2+/x for x > 0. V4
For f(x) = sqrt(mult(x,0)), they compute f'(x) = "N'a'H"fOI’ all x.

\if autodiff uses an intensional derivative of h; for “D”hl,}

Theorem Forany h = h; o ---o hy with PAP hl,Y
autodiff computes an intensional derivative of h,

and thus computes the correct gradient of h a.e.
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Intensional Derivatives: Remarks

First-order — higher-order.
 (First-order) intensional derivative = PAP function.

* Extended to higher-order derivatives. Enjoy the same properties.
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Intensional Derivatives: Remarks

First-order — higher-order.
 (First-order) intensional derivative = PAP function.

* Extended to higher-order derivatives. Enjoy the same properties.

Difference from Clarke-subdifferentials.
* Intentional derivative: 8'f € P([R™ - R™"]).
* Clarke-subdifferential: 9¢f € [R"™ — P (R™*")].

— Difficult to extend to higher-order derivatives.
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High-Level Messages

We often have discrepancy between theory and practice of ML algorithms.
But our theoretical understanding on such discrepancy is still limited.

ML Algorithm Theory Practice

Autodiff differentiable func’s a.e.-differentiable func’s
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High-Level Messages

We often have discrepancy between theory and practice of ML algorithms.

But our theoretical understanding on such discrepancy is still limited.

ML Algorithm

Theory

Practice

Autodiff and many more

differentiable func’s

a.e.-differentiable func’s

Algorithm for estimating

Vol fo(2)dz

Reparameterization Gradient
for Non-differentiable Models

Wonyeol Lee Hangyeol Yu

Hongseok Yang

AIST

School of Computing,
Daejeon, South Ko

{wonyeol, yhk1344, hongseok.¥y

[NeurlPS’'18]
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High-Level Messages

We often have discrepancy between theory and practice of ML algorithms.
But our theoretical understanding on such discrepancy is still limited.

ML Algorithm Theory Practice
Autodiff and many more differentiable func’s a.e.-differentiable func’s
. : func’s with finite integrals func’s with infinite integrals
Variational inference, ... ) ) :
(and other nice properties) (or some bad properties)

Towards Verified Stochastic Variational Inference for
Probabilistic Programs

WONYEOL LEE, School of Computing, KAIST, South Korea
HANGYEOL YU, School of Computing, KAIST, South Korea

XAVIER RIVAL, INRIA Paris, Département d’Informatique of ENS, and CNRS/PSL Ut [POPL’20]
HONGSEOK YANG, School of Computing, KAIST, South Korea
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High-Level Messages

We often have discrepancy between theory and practice of ML algorithms.
But our theoretical understanding on such discrepancy is still limited.

ML Algorithm Theory Practice
Autodiff and many more differentiable func’s a.e.-differentiable func’s
. : func’s with finite integrals func’s with infinite integrals
Variational inference, ... ) ) .
(and other nice properties) (or some bad properties)
Most algorithms func’s on reals func’s on floating-points

Verifying Bit-Manipulations of Floating-Point
On Automatically Proving the Correctness of math.h

Wonyeol Lee  Rahul Sharma  Alex Aiken .
Implementations

) Stanford University, USA
[P LDI 16] {wonyeol, sharmar, aiken}@cs.stanford.edu

WONYEOL LEE*, Stanford University, USA
RAHUL SHARMA, Microsoft Research, India
ALEX AIKEN, Stanford University, USA
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Comments? Questions?
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