On Correctness of Automatic Differentiation for Non-Differentiable Functions

Autodiff: Theory

Problem For $h: \mathbb{R}^{N} \rightarrow \mathbb{R}$ given by $h(x)=\left(h_{L} \circ \cdots \circ h_{1}\right)(x)$, how to compute $\nabla h(x)$ correctly and efficiently?

Autodiff: Theory

Problem For $h: \mathbb{R}^{N} \rightarrow \mathbb{R}$ given by $h(x)=\left(h_{L} \circ \cdots \circ h_{1}\right)(x)$, how to compute $\nabla h(x)$ correctly and efficiently?

Chain Rule For $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ and $g: \mathbb{R}^{m} \rightarrow \mathbb{R}^{l}$ differentiable everywhere, $D(g \circ f)(x)=D g(f(x)) \cdot D f(x) \quad$ for every $x \in \mathbb{R}^{n}$.

Autodiff: Theory

Problem For $h: \mathbb{R}^{N} \rightarrow \mathbb{R}$ given by $h(x)=\left(h_{L} \circ \cdots \circ h_{1}\right)(x)$, how to compute $\nabla h(x)$ correctly and efficiently?

Autodiff \approx efficient way of applying the chain rule.

Chain Rule For $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ and $g: \mathbb{R}^{m} \rightarrow \mathbb{R}^{l}$ differentiable everywhere,

$$
D(g \circ f)(x)=D g(f(x)) \cdot D f(x) \quad \text { for every } x \in \mathbb{R}^{n}
$$

Autodiff: Theory

Problem For $h: \mathbb{R}^{N} \rightarrow \mathbb{R}$ given by $h(x)=\left(h_{L} \circ \cdots \circ h_{1}\right)(x)$, how to compute $\nabla h(x)$ correctly and efficiently?

Theorem h_{l} 's are differentiable everywhere \Rightarrow autodiff correctly computes $\nabla h(x)$.

Autodiff \approx efficient way of applying the chain rule.

Chain Rule For $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ and $g: \mathbb{R}^{m} \rightarrow \mathbb{R}^{l}$ differentiable everywhere,

$$
D(g \circ f)(x)=D g(f(x)) \cdot D f(x) \quad \text { for every } x \in \mathbb{R}^{n}
$$

Autodiff: Practice

Autodiff: Practice

Discrepancy between theory and practice.

Theorem h_{l} 's are differentaverywhere \Rightarrow autodiff correctly computes $\nabla h(x)$.
e.g., $\operatorname{ReLU}(x)=$ if $x \geq 0$ then x else $0=\square$

Autodiff: Practice

Discrepancy between theory and practice.

Theorem h_{l} 's are differenare \Rightarrow autodiff correctly computes $\nabla h(x)$.

non-differentiable on a measure-zero set
measure $=$ generalization of length, area, ...

Autodiff: Practice

Belief: Measure-zero non-differentiability would not matter.

Theorem h_{l} 's are differen \Rightarrow autodiff correctly computes $\nabla h(x)$.

non-differentiable on a measure-zero set
measure = generalization of length, area, ...

Our Questions: Part 1

Belief: Measure-zero non-differentiability would not matter.

Theorem h_{l} 's are differen \Rightarrow autodiff correctly computes $\nabla h(x)$.
e.g., $\operatorname{ReLU}(x)=$ if $x \geq 0$ then x else $0=\square$
non-differentiable on a measure-zero set

Our Questions: Part 1

Belief: Measure-zero non-differentiability would not matter.

Theorem $h_{l}{ }^{\prime}$ s are differentiable everywhere $\stackrel{a}{\Rightarrow}$ autodiff correctly computes $\nabla h(x)$,

almost-everywhere = except for a measure-zero set.

Our Questions: Part 1

Belief: Measure-zero non-differentiability would not matter.

Theorem h_{l} 's are differentiable everywhere $\stackrel{\rightharpoonup}{\Rightarrow}$ autodiff correctly computes $\nabla h(x)$. almost-

Chain Rule For $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ and $g: \mathbb{R}^{m} \rightarrow \mathbb{R}^{l}$ differentiable everywhere, $D(g \circ f)(x) \stackrel{\circ}{=} g(f(x)) \cdot D f(x)$ for every $x \in \mathbb{R}^{n}$.

Our Results: Part 1

Measure-zero non-differentiabilities do matter!

Theorem h_{l} 's are differentiable everywhere almost-

Chain Rule For $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ and $g: \mathbb{R}^{m} \rightarrow \mathbb{R}^{l}$ differentiable everywhere,

$$
D(g \circ f)(x)=D g(x)) \cdot D f(x) \quad \text { for every } x \in \mathbb{R}^{n} .
$$

Our Results: Part 1

Measure-zero non-differentiabilities do matter!

Theorem $h_{l}{ }^{\prime}$'s are differentiable everywhere almost-

Our Result This and related claims are false!
Chain Rule For $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ and $g: \mathbb{R}^{m} \rightarrow \mathbb{R}^{l}$ differentiable everywhere,

Subtlety 1

Claim 1 For any $f, g: \mathbb{R} \rightarrow \mathbb{R}$,
f, g : a.e.-differentiable and continuous
?

$$
(g \circ f)^{\prime}(x)=g^{\prime}(f(x)) \cdot f^{\prime}(x)
$$

for a.e. $x \in \mathbb{R}$.

Subtlety 1

Claim 1 For any $f, g: \mathbb{R} \rightarrow \mathbb{R}$,
f, g : a.e.-differentiable and continuous

for a.e. $x \in \mathbb{R}$.

Subtlety 1

Claim 1 For any $f, g: \mathbb{R} \rightarrow \mathbb{R}$,

for a.e. $x \in \mathbb{R}$.

Subtlety 1: Undefined $(g \circ f)^{\prime}$

Claim 1 For any $f, g: \mathbb{R} \rightarrow \mathbb{R}$,
f, g : a.e.-differentiable and continuous

for a.e. $x \in \mathbb{R}$.

Subtlety 1: Undefined $(g \circ f)^{\prime}$

Claim 1 For any $f, g: \mathbb{R} \rightarrow \mathbb{R}$,
f, g : a.e.-differentiable and continuous

for a.e. $x \in \mathbb{R}$.

Counterexample Involves the Cantor function.

Subtlety 1: Undefined $(g \circ f)^{\prime}$

Claim 1 For any $f, g: \mathbb{R} \rightarrow \mathbb{R}$,
f, g : a.e.-differentiable and continuous

for a.e. $x \in \mathbb{R}$.

Counterexample Involves the Cantor function.
has pathological

Subtlety 1: Undefined $(g \circ f)^{\prime}$

Claim 1 For any $f, g: \mathbb{R} \rightarrow \mathbb{R}$,
f, g : a.e.-differentiable and continuous

for a.e. $x \in \mathbb{R}$.

Counterexample Involves the Cantor function.
has pathological
f is a bijection:

- continuous, a.e.-diff'l.
- positive-measure set \rightleftarrows measure-zero set.

Subtlety 2

Claim 2 For any $f, g: \mathbb{R} \rightarrow \mathbb{R}$, and $g \circ f$
f, g : a.e.-differentiable and continuous
$\Rightarrow \quad(g \circ f)^{\prime}(x)=g^{\prime}(f(x)) \cdot f^{\prime}(x)$
for a.e. $x \in \mathbb{R}$.

Subtlety 2

Claim 2 For any $f, g: \mathbb{R} \rightarrow \mathbb{R}$,
$\underbrace{\text { and } g \circ f}_{f, g: \text { a.e.-differentiable and continuous }}$

for a.e. $x \in \mathbb{R}$.

Subtlety 2

Claim 2 For any $f, g: \mathbb{R} \rightarrow \mathbb{R}$,
$\underbrace{\text { and } g \circ f}_{f, g: \text { a.e.-differentiable and continuous }}$

for a.e. $x \in \mathbb{R}$.

Subtlety 2

Claim 2 For any $f, g: \mathbb{R} \rightarrow \mathbb{R}$, $\underbrace{\text { and } g \circ f}_{f, g: \text { a.e.-differentiable and continuous } \cdots(*)}$

for a.e. $x \in \mathbb{R}$.

Counterexample $f(x)=0$ and $g(y)=\operatorname{ReLU}(y)$.
$\Rightarrow \quad$ easy to check that (*) holds.

Subtlety 2: Undefined g^{\prime}

Claim 2 For any $f, g: \mathbb{R} \rightarrow \mathbb{R}$,
$f, \stackrel{\overbrace{g}: \text { a.e.-differentiable and continuous }}{\text { and } g \circ f}$

for a.e. $x \in \mathbb{R}$.

Counterexample $f(x)=0$ and $g(y)=\operatorname{ReLU}(y)$.
\Rightarrow
$\begin{aligned} & g^{\prime}(f(x)) \\ = & g^{\prime}(0) \\ = & \text { undefined for all } x\end{aligned}$

Subtlety 2: Undefined g^{\prime}

Claim 2 For any $f, g: \mathbb{R} \rightarrow \mathbb{R}$, $\underbrace{\text { and } g \circ f}_{f, g: \text { a.e.-differentiable and continuous }}$

for a.e. $x \in \mathbb{R}$.

Counterexample $f(x)=0$ and $g(y)=\operatorname{ReLU}(y)$.

$$
\begin{array}{rlrl}
\Rightarrow \quad(g \circ f)^{\prime}(x) & g^{\prime}(f(x)) & f^{\prime}(x) \\
=0 & =g^{\prime}(0) & =0 \\
& =\text { undefined for all } x
\end{array}
$$

Subtlety 2: Undefined g^{\prime}

Claim 2 For any $f, g: \mathbb{R} \rightarrow \mathbb{R}$, $\underbrace{\text { and } g \circ f}_{f, g: \text { a.e.-differentiable and continuous }}$

for a.e. $x \in \mathbb{R}$.

Counterexample $f(x)=0$ and $g(y)=\operatorname{ReLU}(y)$.
$\begin{array}{ccc}\Rightarrow \quad(g \circ f)^{\prime}(x) & d g(f(x)) & f^{\prime}(x) \\ =0 & & =0\end{array}$

$$
d g(y)= \begin{cases}7 & \text { for } y=0 \\ g^{\prime}(y) & \text { for } y \neq 0\end{cases}
$$

Subtlety 2: Undefined g^{\prime}

Claim 2 For any $f, g: \mathbb{R} \rightarrow \mathbb{R}$, $\underbrace{\text { and } g \circ f}$
f, g : a.e.-differentiable and continuous

for a.e. $x \in \mathbb{R}$.

Counterexample $f(x)=0$ and $g(y)=\operatorname{ReLU}(y)$.
$\Rightarrow \quad \begin{gathered}(g \circ f)^{\prime}(x)=d g(f(x)) \times f^{\prime}(x) \\ =0\end{gathered}$ for all $x \in \mathbb{R}$. $d g(y)= \begin{cases}7 & \text { for } y=0 \\ g^{\prime}(y) & \text { for } y \neq 0\end{cases}$

Subtlety 3

Claim 3 For any $f, g: \mathbb{R} \rightarrow \mathbb{R}$,
$\underbrace{\text { and } g \circ f}$
f, g : a.e.-differentiable and continuous

$$
?
$$

Subtlety 3

Claim 3 For any $f, g: \mathbb{R} \rightarrow \mathbb{R}$,

Subtlety 3

Claim 3 For any $f, g: \mathbb{R} \rightarrow \mathbb{R}$,

Subtlety 3: Wrong Equation for $(g \circ f)^{\prime}$

Claim 3 For any $f, g: \mathbb{R} \rightarrow \mathbb{R}$,

$$
\underbrace{\text { and } g \circ f}_{f, g}
$$

$$
\underbrace{(g \circ f)^{\prime}(x)}_{\exists d f, d g: \mathbb{R} \rightarrow \mathbb{R} \text { such that } d f \stackrel{\text { a.e. }}{=} f^{\prime}, d g \stackrel{\text { a.e. }}{=} g^{\prime} \text {, and }} \text { for a.e. } x \in \mathbb{R} \text {. }
$$

Counterexample Involves the Cantor function again.

Subtlety 3: Wrong Equation for $(g \circ f)^{\prime}$

Claim 3 For any $f, g: \mathbb{R} \rightarrow \mathbb{R}$,

Counterexample Involves the Cantor function again.

Our Results: Part 1

Theorem h_{l} 's are differentiable everywhere almost-

Our Result This and related claims are false!
Chain Rule For $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ and $g: \mathbb{R}^{m} \rightarrow \mathbb{R}^{l}$ differentiable everywhere, $D(g \circ f)(x)=D(x)) \cdot D f(x) \quad$ for every $x \in \mathbb{R}^{n}$.

Our Results: Part 1

Our Result Autodiff has been used without correctness guarantee!
Theorem h_{l} 's are differentiable, everywhere autodiff correctly computes $\nabla h(x)$,

Our Result This and related claims are false!

Chain Rule For $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ and $g: \mathbb{R}^{m} \rightarrow \mathbb{R}^{l}$, differentiable everywhere,

Our Questions: Part 2

Can we recover the correctness theorem?

Our Questions: Part 2

Can we recover the correctness theorem?

What do the outputs of autodiff even mean? (e.g., $\operatorname{ReLU}^{\prime}(0)=0$ in TensorFlow, PyTorch, ...)

Our Questions: Part 2

Can we recover the correctness theorem?

What do the outputs of autodiff even mean?

$$
\text { (e.g., } \operatorname{ReLU}^{\prime}(0)^{\prime}=0 \text { in TensorFlow, PyTorch, ...) }
$$

They are not Clarke-subdifferentials [KL18]:

- $\partial^{c} f(x):=\operatorname{conv}\left\{\lim _{n \rightarrow 0} D f\left(x_{n}\right) \mid x_{n} \rightarrow x\right.$ and $\left.\exists D f\left(x_{n}\right)\right\}$.

Our Questions: Part 2

Can we recover the correctness theorem?

What do the outputs of autodiff even mean?

$$
\text { (e.g., } \operatorname{ReLU}^{\prime}(0)^{1}=0 \text { in TensorFlow, PyTorch, ...) }
$$

They are not Clarke-subdifferentials [KL18]:

- $\partial^{c} f(x):=\operatorname{conv}\left\{\lim _{n \rightarrow 0} D f\left(x_{n}\right) \mid x_{n} \rightarrow x\right.$ and $\left.\exists D f\left(x_{n}\right)\right\}$.
- $f(x)=\operatorname{ReLU}(x)-\operatorname{ReLU}(-x): \partial^{c} f(0)=\{1\} \nexists 0=f^{\prime}(0)$ (by autodiff).

Our Results: Part 2

Theorem h_{l} 's are differentiable,everywhere autodiff correctly computes $\nabla h(x)$, almost-

Our Results: Part 2

Theorem h_{l} 's are \Rightarrow autodiff correctly computes $\nabla h(x)$
new property we propose
a.e.-differentiable \qquad

Our Results: Part 2

Theorem h_{l} 's are \Rightarrow autodiff correctly computes $\nabla h(x)$

Our Results: Part 2

Our Result Prove the claim for PAP functions h_{l} 's.

Our Results: Part 2

Our Result Autodiff computes so-called "intensional derivatives" of h.

Our Result Prove the claim for PAP functions h_{l} 's.

PAP Functions

piecewise analytic under analytic partition
Definition $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is called PAP if f can be "decomposed" into

$$
\left.f_{1}\right|_{A_{1}},\left.f_{2}\right|_{A_{2}}, \cdots
$$

such that

$$
f_{i}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m} \text { and } A_{i} \subseteq \mathbb{R}^{n} \text { are "analytic". }
$$

analytic = has derivatives of all orders that are bounded nicely.

PAP Functions

Definition $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is called PAP if f can be "decomposed" into

$$
\left.f_{1}\right|_{A_{1}},\left.f_{2}\right|_{A_{2}}, \cdots
$$

such that

$$
f_{i}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m} \text { and } A_{i} \subseteq \mathbb{R}^{n} \text { are "analytic". }
$$

Example $f(x)=\operatorname{ReLU}(x)$.

analytic = has derivatives of all orders that are bounded nicely.

PAP Functions

Definition $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is called PAP if f can be "decomposed" into

$$
\left.f_{1}\right|_{A_{1}},\left.f_{2}\right|_{A_{2}}, \cdots
$$

such that

$$
f_{i}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m} \text { and } A_{i} \subseteq \mathbb{R}^{n} \text { are "analytic". }
$$

Example $f(x)=\operatorname{ReLU}(x)$.

- $\left(f_{1}(x)=0, A_{1}=\{x \in \mathbb{R}: x \leq 0\}\right)$, $\left(f_{2}(x)=x, A_{2}=\{x \in \mathbb{R}: x>0\}\right)$.

analytic = has derivatives of all orders that are bounded nicely.

PAP Functions

Definition $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is called PAP if f can be "decomposed" into

$$
\left.f_{1}\right|_{A_{1}},\left.f_{2}\right|_{A_{2}}, \cdots
$$

such that

$$
f_{i}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m} \text { and } A_{i} \subseteq \mathbb{R}^{n} \text { are "analytic". }
$$

Example $f(x)=\operatorname{ReLU}(x)$.

analytic $=$ has derivatives of all orders that are bounded nicely.

PAP Functions

Definition $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is called PAP if f can be "decomposed" into

$$
\left.f_{1}\right|_{A_{1}},\left.f_{2}\right|_{A_{2}}, \cdots
$$

such that

$$
f_{i}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m} \text { and } A_{i} \subseteq \mathbb{R}^{n} \text { are "analytic". }
$$

Example $f(x)=\operatorname{ReLU}(x)$.

- $\left(f_{1}(x)=0, A_{1}=\{x \in \mathbb{R}: x \leq 0\}\right)$, $\left(f_{2}(x)=x, A_{2}=\{x \in \mathbb{R}: x>0\}\right)$.
- $\left(f_{1}(x)=0, A_{1}=\{x \in \mathbb{R}: x<0\}\right)$, $\left(f_{2}(x)=x, A_{2}=\{x \in \mathbb{R}: x>0\}\right)$, $\left(f_{3}(x)=7 x, A_{3}=\{x \in \mathbb{R}: x=0\}\right)$.

PAP Functions

can be a subset of \mathbb{R}^{n}

Definition $f: \mathbb{R}^{\stackrel{n}{\rightarrow} \rightarrow \mathbb{R}^{m}}$ is call/ed PAP if f can be "decomposed" into

$$
\text { such that }\left.\left.f_{1}\right|_{A_{1}, f} f_{2}\right|_{A_{2}}, \cdots
$$

Example $f(x)=\operatorname{ReLU}(x)$.

- $\left(f_{1}(x)=0, A_{1}=\{x \in \mathbb{R}: x \leq 0\}\right)$, $\left(f_{2}(x)=x, A_{2}=\{x \in \mathbb{R}: x>0\}\right)$.
- $\left(f_{1}(x)=0, A_{1}=\{x \in \mathbb{R}: x<0\}\right)$, $\left(f_{2}(x)=x, A_{2}=\{x \in \mathbb{R}: x>0\}\right)$, $\left(f_{3}(x)=7 x, A_{3}=\{x \in \mathbb{R}: x=0\}\right)$.

PAP Functions

Definition $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is called PAP if f can be "decomposed" into

$$
\left.f_{1}\right|_{A_{1}},\left.f_{2}\right|_{A_{2}}, \cdots
$$

such that

$$
f_{i}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m} \text { and } A_{i} \subseteq \mathbb{R}^{n} \text { are "analytic". }
$$

Observation PAP functions include all functions used in practice.

Proposition PAP functions are a.e.-differentiable.

PAP Functions

Definition $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is called PAP if f can be "decomposed" into

$$
\left.f_{1}\right|_{A_{1}},\left.f_{2}\right|_{A_{2}}, \cdots
$$

such that

$$
f_{i}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m} \text { and } A_{i} \subseteq \mathbb{R}^{n} \text { are "analytic". }
$$

Observation PAP functions include all functions used in practice.

Proposition PAP functions are a.e.-differentiable.

> For any non-constant, analytic function $g: \mathbb{R}^{n} \rightarrow \mathbb{R}$, $\left\{x \in \mathbb{R}^{n} \mid g(x)=0\right\}$ has measure zero.

PAP Functions

Definition $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is called PAP if f can be "decomposed" into

$$
\left.f_{1}\right|_{A_{1}},\left.f_{2}\right|_{A_{2}}, \cdots
$$

such that

$$
f_{i}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m} \text { and } A_{i} \subseteq \mathbb{R}^{n} \text { are "analytic". }
$$

Observation PAP functions include all functions used in practice.

Proposition PAP functions are a.e.-differentiable.

Definition PAP functions have "intensional derivatives".

Intensional Derivatives

> analytic functions
> Example $f(x) /=\operatorname{ReLU}(x)$.
> • $\left.\begin{array}{l}f_{1}(x)=0, \\ f_{2}(x)=x,\end{array} A_{1}=\{x \in \mathbb{R}: x \leq 0\}\right)$, $\left.A_{2}=\{x \in \mathbb{R}: x>0\}\right)$.

Intensional Derivatives

$$
\begin{aligned}
& \left.\begin{array}{l}
\text { analytic functions } \\
\text { Example } f(x)
\end{array}\right)=\operatorname{ReLU}(x) . \\
& \text { • } \begin{array}{l}
\left(f_{1}^{\prime}(x)=0, A_{1}=\{x \in \mathbb{R}: x \leq 0\}\right), \\
\left(f_{2}^{\prime}(x)=1, A_{2}=\{x \in \mathbb{R}: x>0\}\right) . \\
f_{2}(x)=x,
\end{array}, \begin{array}{l}
\left.A_{2}=\{x \in \mathbb{R}: x \leq 0\}\right),
\end{array} \\
& \left.A_{2}=\{x \in \mathbb{R}: x>0\}\right) .
\end{aligned}
$$

Intensional Derivatives

Intensional Derivatives

Example $f(x)=\operatorname{ReLU}(x)$.

- $\left(f_{1}(x)=0, A_{1}=\{x \in \mathbb{R}: x \leq 0\}\right)$,

- $\left(f_{1}(x)=0, A_{1}=\{x \in \mathbb{R}: x<0\}\right)$, $\left(f_{2}(x)=x, \quad A_{2}=\{x \in \mathbb{R}: x>0\}\right)$, $\left(f_{3}(x)=7 x, A_{3}=\{x \in \mathbb{R}: x=0\}\right)$.

$$
d f(x)= \begin{cases}0 & \text { for } x<0 \\ 1 & \text { for } x>0 \\ 7 & \text { for } x=0\end{cases}
$$

$$
\begin{aligned}
& \left(f_{1}^{\prime}(x)=0, A_{1}=\{x \in \mathbb{R}: x<0\}\right), \\
& \left(f_{2}^{\prime}(x)=1, A_{2}=\{x \in \mathbb{R}: x>0\}\right), \\
& \left(f_{3}^{\prime}(x)=7, A_{3}=\{x \in \mathbb{R}: x=0\}\right) .
\end{aligned}
$$

Intensional Derivatives

Proposition Intensional derivative is a total function.

Proposition Intensional derivatives always satisfy the chain rule.

Intensional Derivatives

Proposition Intensional derivative is a total function.

Proposition Intensional derivatives always satisfy the chain rule.
Proposition Intensional derivative $\stackrel{\text { a.e. }}{=}$ standard derivative.
$\left\{x \in \mathbb{R}^{n} \mid d f(x) \neq D f(x)\right\}$ is contained in a countable union of the zero-sets of (non-const) analytic func's.

Correctness of Autodiff

Proposition Intensional derivative is a total function.

Proposition Intensional derivatives always satisfy the chain rule.
Proposition Intensional derivative $\stackrel{\text { a.e. }}{=}$ standard derivative.

Theorem For any $h=h_{L} \circ \cdots \circ h_{1}$ with PAP h_{l}, autodiff computes an intensional derivative of h, and thus computes the correct gradient of h a.e.

Correctness of Autodiff

(if autodiff uses an intensional derivative of h_{l} for " D " h_{l},
Theorem For any $h=h_{L} \circ \cdots \circ h_{1}$ with PAP h_{l}, autodiff computes an intensional derivative of h, and thus computes the correct gradient of h a.e.

Correctness of Autodiff

In TensorFlow and PyTorch,

- " D "relu $(x)=0$ for $x \leq 0 ; 1$ for $x>0$.
(if autodiff uses an intensional derivative of h_{l} for " D " h_{l},
Theorem For any $h=h_{L} \circ \cdots \circ h_{1}$ with PAP h_{l}, autodiff computes an intensional derivative of h, and thus computes the correct gradient of h a.e.

Correctness of Autodiff

In TensorFlow and PyTorch,

- " D " $\operatorname{relu}(x)=0$ for $x \leq 0 ; 1$ for $x>0$.
- " D " $\operatorname{sqrt}(x)=\infty$ for $x=0 ; 1 / 2 \sqrt{x}$ for $x>0$.
(if autodiff uses an intensional derivative of h_{l} for " D " h_{l},
Theorem For any $h=h_{L} \circ \cdots \circ h_{1}$ with PAP h_{l}, autodiff computes an intensional derivative of h, and thus computes the correct gradient of h a.e.

Correctness of Autodiff

In TensorFlow and PyTorch,

- " D "relu $(x)=0$ for $x \leq 0 ; 1$ for $x>0$.
- "D"sqrt $(x)=\infty$ for $x=0 ; 1 / 2 \sqrt{x}$ for $x>0$. X For $f(x)=\operatorname{sqrt}(\operatorname{mult}(x, 0))$, they compute $f^{\prime}(x)=\operatorname{NaN}$ for all x.
(if autodiff uses an intensional derivative of h_{l} for " D " h_{l},
Theorem For any $h=h_{L} \circ \cdots \circ h_{1}$ with PAP h_{l}, autodiff computes an intensional derivative of h, and thus computes the correct gradient of h a.e.

Correctness of Autodiff

In TensorFlow and PyTorch,

- " D "relu $(x)=0$ for $x \leq 0 ; 1$ for $x>0$.
- " D " $\operatorname{sqrt}(x)={ }^{7}$ for $x=0 ; 1 / 2 \sqrt{x}$ for $x>0$. For $f(x)=\operatorname{sqrt}(\operatorname{mult}(x, 0))$, they compute $f^{\prime}(x)=\frac{\operatorname{LNa}^{0}}{\operatorname{Nan}}$ for all x.
(if autodiff uses an intensional derivative of h_{l} for " D " h_{l},
Theorem For any $h=h_{L} \circ \cdots \circ h_{1}$ with PAP h_{l}, autodiff computes an intensional derivative of h, and thus computes the correct gradient of h a.e.

Intensional Derivatives: Remarks

First-order \rightarrow higher-order.

- (First-order) intensional derivative = PAP function.
- Extended to higher-order derivatives. Enjoy the same properties.

Intensional Derivatives: Remarks

First-order \rightarrow higher-order.

- (First-order) intensional derivative = PAP function.
- Extended to higher-order derivatives. Enjoy the same properties.

Difference from Clarke-subdifferentials.

- Intentional derivative: $\partial^{i} f \in \mathcal{P}\left(\left[\mathbb{R}^{n} \rightarrow \mathbb{R}^{m \times n}\right]\right)$.
- Clarke-subdifferential: $\partial^{c} f \in\left[\mathbb{R}^{n} \rightarrow \mathcal{P}\left(\mathbb{R}^{m \times n}\right)\right]$.
\rightarrow Difficult to extend to higher-order derivatives.

High-Level Messages

We often have discrepancy between theory and practice of ML algorithms. But our theoretical understanding on such discrepancy is still limited.

ML Algorithm	Theory	Practice
Autodiff	differentiable func's	a.e.-differentiable func's

High-Level Messages

We often have discrepancy between theory and practice of ML algorithms.
But our theoretical understanding on such discrepancy is still limited.

ML Algorithm	Theory	Practice
Autodiff and many more	differentiable func's	a.e.-differentiable func's

Algorithm for estimating $\nabla_{\theta} \int f_{\theta}(z) d z$

Reparameterization Gradient

 for Non-differentiable Models

High-Level Messages

We often have discrepancy between theory and practice of ML algorithms.
But our theoretical understanding on such discrepancy is still limited.

ML Algorithm	Theory	Practice
Autodiff and many more	differentiable func's	a.e.-differentiable func's
Variational inference, ...	func's with finite integrals (and other nice properties)	func's with infinite integrals (or some bad properties)

Towards Verified Stochastic Variational Inference for Probabilistic Programs

```
WONYEOL LEE, School of Computing, KAIST, South Korea
HANGYEOL YU, School of Computing, KAIST, South Korea
XAVIER RIVAL, INRIA Paris, Département d'Informatique of ENS, and CNRS/PSL U
HONGSEOK YANG, School of Computing, KAIST, South Korea
[POPL'20]
```


High-Level Messages

We often have discrepancy between theory and practice of ML algorithms.
But our theoretical understanding on such discrepancy is still limited.

ML Algorithm Theory	Theory	Pract	
Autodiff and many more differe	differentiable func's	a.e.-differentiable func's	
Variational inference, ... $\begin{array}{ll}\text { func's } \\ \text { (and ot }\end{array}$	func's with finite integrals (and other nice properties)	func's with infinite integrals (or some bad properties)	
Most algorithms func's	func's on reals	func's on floating-points	
Verifying Bit-Manipulations of Floating-Point			
Wonyeol Lee Rahul Sharma Alex Aiken\square Stanford University, USA \{wonyeol, sharmar, aiken\}@cs.stanford.edu	On Automatically Proving the Correctness of math.h Implementations		
	WONYEOL LEE*, Stanford University, USA RAHUL SHARMA, Microsoft Research, India		[POPL'18]

Comments? Questions?

