
Datatype led
Deep 
Learning
Aloïs Brunel
Deepomatic
alois@deepomatic.com 

mailto:alois@deepomatic.com


When differential programming did not exist, the world was a scary place

#
#
#
#


What is a neural network?

A composition tree of differentiable operators on finite-dimensional tensors. 

A : (ℝN ⊗ (ℝn1 ⊗ … ⊗ ℝnk)) →  ℝm1 ⊗ … ⊗ ℝmk

A program that implements a differentiable function, whose learning weights can be optimized through 

(typically) back-propagation. Learnable parameters are “free variables” substituted by values that are 

tuned over time as the model is trained.

Learnable parameters Input output

#
#
#
#


non-linear activation 

function 

Good Old Perceptron

M σ

(m+1) x n matrix

w
ij
 being the 

learnable weights

input  (ℝm
  
vector)

output (ℝn vector)
1

fc layer

#
#
#
#


Feed forward neural network

ℝm
   
vector ℝn  vectorfc1 fc2 fck…

#
#
#
#


There is a functional flavor to NN 
architectures

#
#
#
#


The functional flavor of NN architectures
Example #1: RNN

let (h0, s1) = A x0 s0 in 
  let (h1, s2) = A x1 s1 in 
    let (h2, s3) = A x2 s2 in
        … 
          let (ht, _) = A x(t-1) s(t-1) in 
          ht

#
#
#
#


The functional flavor of NN architectures
Example #2: Net-in-net

#
#
#
#


The functional flavor of NN architectures
Example #3: Stack augmented NNs

● A RNN, where each layer perform a linear combination of push 
and pop operations

● This is state-passing-style 

● H: A ⊗ S → A ⊗ S

#
#
#
#


NNs are more functional 
than imperative

#
#
#
#


OVERVIEW

Quick introduction to inductive 
datatypes

#
#
#
#


● ADTs allow the programmer to create new datatypes from existing ones

Algebraic Data Types

#
#
#
#


Examples - Sum types

data Bool = True | False

● ADTs allow the programmer to create new datatypes from existing ones

Algebraic Data Types

#
#
#
#


Examples - Product types

data Point a = P a a
P 1.0 2.0 :: Point Float

● ADTs allow the programmer to create new datatypes from existing ones

Algebraic Data Types

#
#
#
#


Examples - The type List of lists of elements of type a

data List a = Nil | Cons a (List a)
Cons 1 (Cons 2 Nil) :: List Int

● ADTs allow the programmer to create new datatypes from existing ones

Algebraic Data Types

#
#
#
#


● ADTs come with a battery of useful programming patterns and tool

● An example: pattern matching

○ match b :: Bool with
|  True  → # Do something
|  False → # Do something else

○ match l :: List a with
|  Nil             → # Do something
|  Cons x q → # Do something else with x and q

Algebraic Data Types

#
#
#
#


● Inductive datatypes are defined as fixed points

● Integers
○ data Int = Zero | Succ Int
○ 3 = Succ (Succ (Succ Zero)) :: Int

● Lists
○ data List a = Nil | Cons a (List a)
○ [1, 2, 3] = Cons 1 (Cons 2 (Cons 3 Nil)) :: List Int

Inductive datatypes

● Binary Trees
○ data BinTree a = Nil | Node a (BinTree a) (BinTree a)
○ Node 1 (Node 2 Nil Nil) (Node 3 Nil Nil) :: BinTree 

Int

● Domain Specific Languages & ASTs

#
#
#
#


Data structure determines program structure

- “There are certain close analogies between the methods used for structuring data and the 
methods for structuring a program which processes that data.” 
—— Hoare

- Inductive datatypes come with associated recursive schemes used to build programs that 
process that data.

#
#
#
#


Fold 

● Consider the following function on lists
○ size (Nil) = 0
○ size (Cons x q) = size q + 1

● This function collapses a list into a value (here, an integer)

● fold generalizes this type of function to any list
○ fold :: b → (a → b → b) → List a → b
○ fold z f (Cons x

1
 (Cons x

2
 … (Cons x

n  
y)...)) → f x

1
 (f x

2
 … (f x

n
 z) … )

○ size = fold 0 (\x -> \k -> 1 + k)

#
#
#
#


Fold 

● The same exists for Int or BinTree

● Int
○ data Int = Zero | Succ Int
○ fold :: b → (b → b) → Int → b
○ fold z f n → fn(z) = f … f z

● BinTree
○ data BinTree a = Leaf | Node a (BinTree a) (BinTree a)
○ fold ::             b   → (a → b → b → b)  → BinTree a → b
○ fold z f (Node a t1 t2) → f a (I fold z f t1) (l fold z f t2)

#
#
#
#


Fold

● fold can be generalized to any ADT

● Useful to build programs that follow closely their input

● It corresponds to the categorical notion of catamorphism

● Spoiler: there is a whole world beyond catamorphisms

#
#
#
#


A PROPOSAL

Datatypes as a central component to 
deep learning architectures

#
#
#
#


Catamorphisms everywhere

● I propose a re-decomposition of neural networks according to two components:
○ Datatype
○ Layers

● The choice of datatype is responsible for the overall “shape” of the NN
○ A datatype AND a recursion scheme

● The layers are the individual operators that flow around the data, that contain both algorithmic 
and numerical components
○ Ex: Encoder block

#
#
#
#


Datatype at the forefront

● A choice of inductive datatype (used to encode the input) and an output dimension d

● For each constructor C, a program A
C

 with the right type. 

○ ex: for Succ :: Int → Int , we have A
Succ

 :: Rd → Rd

● Each A
C

 has a certain number N
C

 of parameters, represented by free variables of type ℝ

● The NN is defined by fold C
1

 C
2

 … C
n
 x : ℝd

● Actually, there is a catch: if your ADT is actually using other ADTs as parameters, you have to apply 

the various fold functions recursively

○ example for List(Int): fold z (Cons n l) = C
Cons

 (fold
int

 C
Zero

 C
Succ

 n) (fold C
Nil

 C
Cons

 l)

#
#
#
#


● For Int:

○ A
Zero 

:  ℝk

○ A
Succ 

:  ℝk → ℝk

● For List(Int)

○ A
Nil     

:  ℝd

○ A
Cons

:  ℝk → ℝd → ℝd

RNN - The List(Int) example

Cons
Nil

Succ

Succ

Zero

Cons

Zero

ℝd

The NN that evaluates [ 0 ; 2 ] 

#
#
#
#


Token embedding

● In NLP, we typically process an input that is a list of tokens  

● Provided to the NN through a token embedding

● Given a vocabulary of size d, each token is represented by a vector Rk

● In ADT words:

○ data Token = Tok_1 | Tok_2 | … | Tok_d

○ C
tok1

 is a Rk free variable 

#
#
#
#


Tree-LSTMs

● Tree-LSTMs are similar to LSTMs (which are variants of RNNs) but take trees as input

- data Token = man | is | speaking | …

- all possible words in the vocabulary

- data Tree a = Leaf | Node a (List Tree)

- data DepTree = Tree Token

- A
Cons

 x y = x + y

- Node does sum pooling on its children

- A
Node

 is basically the LSTM block

#
#
#
#


Tree-LSTMs

● Tree-LSTMs are similar to LSTMs (which are variants of RNNs) but take trees as input

data ConsTree a = S (Tree a) (Tree a) | NP (Tree a) (Tree a) | VP 
(Tree a) (Tree a) | D a | N a | V a 

#
#
#
#


Siamese networks

● Siamese networks are about comparing two inputs (e.g, image similarity)

- data Siamese a = Siam a a

- If we take Siamese Int

- S :: Rd → Rd → R

- fold
Siamese

 C
Siam

  (Siam x y) =

 C
Siam

 (fold
Int

 C
Zero 

C
Succ

x) (fold
Int

 C
Zero 

C
Succ 

y)

- S is the comparison block (e.g, distance)

#
#
#
#


● You  can easily test various data representations and see which one yields the best results

● Induce interesting biases and properties intentionally, by choosing the data structure that 

possesses the traits you are looking for.

● You can actually achieve true end-to-end learning 

● Explore the world of FP data structures and see what kind of NN they induce

By given having datatype as a first-class citizen…

#
#
#
#


● A way to represent the notion of “structure with a hole” (a context)

● A way to consider a location in a structure and provide navigation methods

● data ListZip a = Zip (List a) a (List a)

Examples of interest: the zipper

[ a
1

 ; a
2

 ; a
3

 ; a
4

 ; … ; a
n
 ] = Zip [ a

2
; a

1
 ]  a

3
  [a

4
; … ; a

n
]

 Zip [ a
3

 ; a
2

; a
1

 ]  a
4

  [a
5

; … ; a
n
]

Go Right

#
#
#
#


Examples of interest: graphs 

● Convolutional Graph Neural Networks work with graphs as inputs

● Conventional ADTs can’t represent cycles, but generalizations exist [2001; Turbak, Wells], where 

CyFold is computed as a fixed point in an iterated manner

● Graph Neural Networks correspond to some bounded version of CyFold

● Transformers can be seen as particular GNNs (complete graphs)

#
#
#
#


● Other recursion schemes

○ Paramorphisms: Residual Link

○ Histomorphisms: dynamic programming

● GADT and indexed catamorphisms

● Cyclic structures and cyfold

Beyond ADTs and catamorphisms

#
#
#
#


● Inductive datatypes and fold-like functions provide a nice way to recover classical neural networks

● Composing datatypes allow for modularity of input representation

● Allow to explore the space of neural networks through the prism of existing FP concepts

Conclusion

#
#
#
#


Thank you.

#
#
#
#

