Datatype led
Deep
Learning

Alois Brunel

Deepomatic
alois@deepomatic.com

mailto:alois@deepomatic.com

When differential programming did not exist, the world was a scary place

#
#
#
#

What is a neural network?

A composition tree of differentiable operators on finite-dimensional tensors.

A:(RNe (RMe.. oR%) 5 RMe oRMK

[N J [N
Y Y

Learnable parameters Input output

A program that implements a differentiable function, whose learning weights can be optimized through
(typically) back-propagation. Learnable parameters are “free variables” substituted by values that are
tuned over time as the model is trained.

#
#
#
#

Good Old Perceptron

fc layer

————— e =

» output (R"vector)

non-linear activation

(m+1) x n matrix function

w; being the
learnable weights

#
#
#
#

Feed forward neural network

R™ vector —

fc

fc

fc

— R" vector

#
#
#
#

There is a functional flavor to NN
architectures

#
#
#
#

The functional flavor of NN architectures
Example #1: RNN

let (h0,s1) =Ax0s0in

@ @ @ let (h1,s2)=Ax1slin

let (h2,s3)=Ax2s2in

”I.et (ht,) = Ax(t-1) s(t-1) in
ht

#
#
#
#

The functional flavor of NN architectures
Example #2: Net-in-net

b=
’ X
s LAY
¢ \“‘
’ A l‘n
‘ W
’ I‘l s
- Fr=vden (} 4
I foe v i A
’ "o \,
! N bt
. .
| D
Vs
[’
e

SR S |
DA e SR
s

Q \)

OO0

#
#
#
#

The functional flavor of NN architectures
Example #3: Stack augmented NNs

input hidden output

e ARNN, where each layer perform a linear combination of push
and pop operations

e Thisis state-passing-style

" o = 5 e HA®S-SA®S

/ °
5t1[0] A

¥ st[0]

St1 o St

stack(t-1) stack(t)

#
#
#
#

NNs are more functional
than imperative

#
#
#
#

OVERVIEW

Quick introduction to inductive
datatypes

#
#
#
#

Algebraic Data Types

e ADTs allow the programmer to create new datatypes from existing ones

#
#
#
#

Algebraic Data Types

e ADTs allow the programmer to create new datatypes from existing ones

Examples - Sum types

data Bool = True | False

#
#
#
#

Algebraic Data Types

e ADTs allow the programmer to create new datatypes from existing ones

Examples - Product types

data Pointa=Paa
P 1.0 2.0 :: Point Float

#
#
#
#

Algebraic Data Types

e ADTs allow the programmer to create new datatypes from existing ones

Examples - The type List of lists of elements of type a

data List a = Nil | Cons a (List a)
Cons 1 (Cons 2 Nil) : List Int

#
#
#
#

Algebraic Data Types

e ADTs come with a battery of useful programming patterns and tool
e Anexample: pattern matching

o matchb::Bool with
| True — # Do something
| False — # Do something else

o matchl::Listawith
| Nil — # Do something
| Cons x q— # Do something else with x and q

#
#
#
#

Inductive datatypes

° Inductive datatypes are defined as fixed points

Binary Trees
o dataBinTreea = Nil | Node a (BinTree a) (BinTree a)
o Node 1 (Node 2 Nil Nil) (Node 3 Nil Nil) :: BinTree
Int

e Integers
o datalnt=Zero| Succ Int
o 8=Succ(Succ (Succ Zero)) :: Int

° Lists
o datalLista= Nil| Consa (List a)
o [1,2,3]=Cons 1(Cons 2 (Cons 3 Nil)) :: List Int

Domain Specific Languages & ASTs

#
#
#
#

Data structure determines program structure

- “There are certain close analogies between the methods used for structuring data and the
methods for structuring a program which processes that data.”
——Hoare

- Inductive datatypes come with associated recursive schemes used to build programs that
process that data.

#
#
#
#

Fold

e Consider the following function on lists
o size(Nil)=0
o size(Consxq)=sizeq+1

e Thisfunction collapses a list into a value (here, an integer)

e fold generalizes this type of function to any list
o fold::b—(a—b—b)—Lista—b
o foldzf(Cons X, (Cons X,y oo (Cons X y)..)) = f X, (f Xy oe. (f X z)...)
o size=fold O (\x->\k->1+Kk)

#
#
#
#

Fold

e The same exists for Int or BinTree

e Int
o datalnt = Zero | Succ Int
o fold::b—(b—b)—Int—b
o foldzfn—f(z)=f...fz

e BinTree
o dataBinTreea = Leaf | Node a (BinTree a) (BinTree a)
o fold:: b -(a—b—b—b) ->BinTreea—b
o foldzf(Nodeatlt2) —fa(lfoldzftl)(lfoldzft2)

#
#
#
#

Fold

e fold can be generalized to any ADT
e Useful to build programs that follow closely their input
e It corresponds to the categorical notion of catamorphism

e Spoiler: there is a whole world beyond catamorphisms

#
#
#
#

A PROPOSAL

Datatypes as a central component to
deep learning architectures

#
#
#
#

Catamorphisms everywhere

e | propose are-decomposition of neural networks according to two components:
o Datatype
o Layers

e The choice of datatype is responsible for the overall “shape” of the NN
o Adatatype AND arecursion scheme

e Thelayers are the individual operators that flow around the data, that contain both algorithmic

and numerical components
o Ex:Encoder block

#
#
#
#

Datatype at the forefront

e Achoice of inductive datatype (used to encode the input) and an output dimensiond
e Foreach constructor C, a program A with the right type.
o ex:forSucc:Int— Int,wehave A, ::R?— R
e EachA_hasacertain number N of parameters, represented by free variables of type &
e TheNNisdefinedbyfoldC,C,...C x:R

e Actually, thereis a catch: if your ADT is actually using other ADTs as parameters, you have to apply
the various fold functions recursively

fold C, _C. n)(foldC, C

o example for List(Int):foIdz(ConsnI)=CCOnS(it Coero Couee Nl ConsI)

#
#
#
#

RNN - The List(Int) example

For Int:

For List(Int)

O

o

A
A

Nil -~

Cons”

Nil

Succ

Cons

Succ

Zero

Zero

Cons

The NN that evaluates[0; 2]

#
#
#
#

Token embedding

e In NLP, we typically process an input that is a list of tokens

e Provided to the NN through a token embedding
e Given avocabulary of size d, each token is represented by a vector RX
e InADT words:

o dataToken=Tok 1| Tok 2]...| Tok_d

o C, is a R*free variable
ok1

#
#
#
#

Tree-LSTMs

e Tree-LSTMs are similar to LSTMs (which are variants of RNNs) but take trees as input

The man driving the aircraft is speaking.

data Token = man | is | speaking | ...

ya% - all possible words in the vocabulary
man\ is

- dataTree a = Leaf | Node a (List Tree)
- data DepTree = Tree Token

the driving
. B ACons Xy=Xty
alrcrIaft - Node does sum pooling on its children
the = A\ IS basically the LSTM block

Dependency tree

#
#
#
#

Tree-LSTMs

e Tree-LSTMs are similar to LSTMs (which are variants of RNNs) but take trees as input

The man driving the aircraft is speaking.

data ConsTree a=S (Tree a) (Tree a) | NP (Tree a) (Tree a) | VP

/sw (Tree a) (Treea) [Da|Na|Va
P

’ \
f\“ ?\P\ L ek
)

the aircraft

The man driving

Constituency tree

#
#
#
#

Siamese networks

e Siamese networks are about comparing two inputs (e.g, image similarity)

Conv network
Input

& - =+
X1

=- -

Conv network

Encoding
f(x1)
Differencing Layer
Ny Similarity
Score

Encoding

d(x, x2) = [If Gen) — f eI

f(xz)

If X1, X, are same then the ||f(x;) — f(x,)||? is small
If X3, X, are different then the ||f (x;) — f(x,)||? is large

data Siamesea=Siamaa
If we take Siamese Int
S:RYI->RIR

fold (Siamxy) =

Siamese Slam

(fold C x) (fold C

Slam Zero Succ Zero Succ Y)

S is the comparison block (e.g, distance)

#
#
#
#

By given having datatype as a first-class citizen..

e You caneasily test various data representations and see which one yields the best results

e Induce interesting biases and properties intentionally, by choosing the data structure that
possesses the traits you are looking for.

e You can actually achieve true end-to-end learning

e Explore the world of FP data structures and see what kind of NN they induce

#
#
#
#

Examples of interest: the zipper

e Away torepresent the notion of “structure with a hole” (a context)
e Away toconsider alocationin astructure and provide navigation methods
e datalistZipa=_Zip(Lista)a(Lista)

[a,;a,5a55a,;...;a |=Zip[aya,] a; [a,;...;a]

Go Right

Zip[a,;aa,]a, [ag...;a]

#
#
#
#

Examples of interest: graphs

e Convolutional Graph Neural Networks work with graphs as inputs

e Conventional ADTs can’'t represent cycles, but generalizations exist [2001; Turbak, Wells], where
CyFold is computed as a fixed point in an iterated manner

e Graph Neural Networks correspond to some bounded version of CyFold

e Transformers can be seen as particular GNNs (complete graphs) < ®

#
#
#
#

Beyond ADTs and catamorphisms

e Other recursion schemes

o Paramorphisms: Residual Link

o Histomorphisms: dynamic programming
e GADT and indexed catamorphisms

e Cyclicstructures and cyfold

#
#
#
#

Conclusion

e Inductive datatypes and fold-like functions provide a nice way to recover classical neural networks
e Composing datatypes allow for modularity of input representation

e Allow to explore the space of neural networks through the prism of existing FP concepts

#
#
#
#

Thank youl.

#
#
#
#

