Datatype led Deep Learning

Aloïs Brunel

Deepomatic alois@deepomatic.com

When differential programming did not exist, the world was a scary place

What is a neural network?

A composition tree of differentiable operators on finite-dimensional tensors.

A program that implements a differentiable function, whose learning weights can be optimized through (typically) back-propagation. Learnable parameters are "free variables" substituted by values that are tuned over time as the model is trained.

Feed forward neural network

There is a functional flavor to NN architectures

The functional flavor of NN architectures Example #1: RNN

let (h0, s1) = A x0 s0 in let (h1, s2) = A x1 s1 in let (h2, s3) = A x2 s2 in

...

let (ht, _) = A x(t-1) s(t-1) in ht

The functional flavor of NN architectures Example #2: Net-in-net

The functional flavor of NN architectures Example #3: Stack augmented NNs

- A RNN, where each layer perform a linear combination of push and pop operations
- This is state-passing-style
- $\bullet \qquad H: A \otimes S \to A \otimes S$

NNs are more functional than imperative

OVERVIEW

Quick introduction to inductive datatypes

• ADTs allow the programmer to create new datatypes from existing ones

• ADTs allow the programmer to create new datatypes from existing ones

Examples - Sum types

data **Bool** = **True** | **False**

• ADTs allow the programmer to create new datatypes from existing ones

Examples - Product types

data Point *a* = **P** *a a* **P** 1.0 2.0 :: **Point** Float

• ADTs allow the programmer to create new datatypes from existing ones

Examples - The type List of lists of elements of type a

data List a = Nil | Cons a (List a) Cons 1 (Cons 2 Nil) :: List Int

- ADTs come with a battery of useful programming patterns and tool
- An example: pattern matching
 - match b :: Bool with | True \rightarrow # Do something | False \rightarrow # Do something else
 - match I :: List a with
 - | Nil \rightarrow # Do something
 - | Cons x q \rightarrow # Do something else with x and q

Inductive datatypes

- Inductive datatypes are defined as fixed points
- Integers
 - data Int = Zero | Succ Int
 - <u>3</u> = Succ (Succ (Succ Zero)) :: Int
- Lists
 - data List a = Nil | Cons a (List a)
 - [1, 2, 3] = Cons 1 (Cons 2 (Cons 3 Nil)) :: List Int

- Binary Trees
 - data BinTree a = Nil | Node a (BinTree a) (BinTree a)
 - Node 1 (Node 2 Nil Nil) (Node 3 Nil Nil) :: BinTree Int
- Domain Specific Languages & ASTs

Data structure determines program structure

- "There are certain close analogies between the methods used for structuring data and the methods for structuring a program which processes that data."
 -- Hoare
- Inductive datatypes come with associated recursive schemes used to build programs that process that data.

Fold

- Consider the following function on lists
 - size (Nil) = 0
 - $\circ \qquad \text{size} \left(\text{Cons} \, x \, q \right) = \text{size} \, q + 1$
- This function collapses a list into a value (here, an integer)
- fold generalizes this type of function to any list
 - $\circ \qquad \textbf{fold}:: b \to (a \to b \to b) \to \textbf{List} \ a \to b$
 - fold z f (Cons x_1 (Cons x_2 ... (Cons x_n y)...)) → f x_1 (f x_2 ... (f x_n z) ...)
 - \circ size = fold 0 (\x -> \k -> 1 + k)

Fold

- The same exists for Int or BinTree
- Int
 - o data Int = Zero | Succ Int
 o fold :: b → (b → b) → Int → b
 - $\circ \qquad \textbf{fold } z \text{ f } \underline{\textbf{n}} \longrightarrow f^n(z) = f \dots f z$
- BinTree
 - data BinTree a = Leaf | Node a (BinTree a) (BinTree a)
 - fold :: $b \rightarrow (a \rightarrow b \rightarrow b \rightarrow b) \rightarrow BinTree a \rightarrow b$
 - $\circ \qquad \text{fold } z f (\underline{\text{Node a t1 t2}}) \rightarrow f a (I \text{ fold } z f t1) (I \text{ fold } z f t2)$

Fold

- fold can be generalized to any ADT
- Useful to build programs that follow closely their input
- It corresponds to the categorical notion of **catamorphism**
- Spoiler: there is a whole world beyond catamorphisms

Datatypes as a central component to deep learning architectures

Catamorphisms everywhere

- I propose a re-decomposition of neural networks according to two components:
 - Datatype
 - Layers
- The choice of datatype is responsible for the overall "shape" of the NN
 - A datatype AND a recursion scheme
- The layers are the individual operators that flow around the data, that contain both algorithmic and numerical components
 - Ex: Encoder block

Datatype at the forefront

- A choice of inductive datatype (used to encode the input) and an output dimension d
- For each constructor C, a program A_c with the right type.
 - \circ ex: for Succ :: Int \rightarrow Int , we have A_{Succ} :: $R^d \rightarrow R^d$
- Each A_c has a certain number N_c of parameters, represented by free variables of type \mathbb{R}
- The NN is defined by fold $C_1 C_2 \dots C_n x : \mathbb{R}^d$
- Actually, there is a catch: if your ADT is actually using other ADTs as parameters, you have to apply the various fold functions recursively
 - example for List(Int): fold z (Cons n I) = C_{Cons} (fold_{int} $C_{Zero} C_{Succ}$ n) (fold $C_{Nil} C_{Cons}$ I)

RNN - The List(Int) example

- For Int:
 - $\begin{array}{l} \circ \quad \mathsf{A}_{\mathsf{Zero}} \colon \mathbb{R}^k \\ \circ \quad \mathsf{A}_{\mathsf{Succ}} \colon \mathbb{R}^k \longrightarrow \mathbb{R}^k \end{array}$
- For List(Int)

$$\begin{array}{l} \circ \quad \mathsf{A}_{\mathsf{Nil}} : \mathbb{R}^{\mathsf{d}} \\ \circ \quad \mathsf{A}_{\mathsf{Cons}} : \mathbb{R}^{\mathsf{k}} \to \mathbb{R}^{\mathsf{d}} \to \mathbb{R}^{\mathsf{d}} \end{array}$$

Token embedding

- In NLP, we typically process an input that is a list of tokens
- Provided to the NN through a token embedding
- Given a vocabulary of size d, each token is represented by a vector R^k
- In ADT words:
 - data Token = Tok_1 | Tok_2 | ... | Tok_d
 - $\circ \quad C_{tok1} \text{ is a } \mathsf{R}^k \text{ free variable}$

Tree-LSTMs

• Tree-LSTMs are similar to LSTMs (which are variants of RNNs) but take trees as input

_

The man driving the aircraft is speaking.

- data Token = man | is | speaking | ...
 - all possible words in the vocabulary
- **data** Tree a = Leaf | Node a (List Tree)
- data DepTree = Tree Token
- $A_{Cons} x y = x + y$
 - Node does sum pooling on its children
- A_{Node} is basically the LSTM block

Tree-LSTMs

• Tree-LSTMs are similar to LSTMs (which are variants of RNNs) but take trees as input

data ConsTree a = S (Tree a) (Tree a) | NP (Tree a) (Tree a) | VP (Tree a) (Tree a) | D a | N a | V a

Siamese networks

• Siamese networks are about comparing two inputs (e.g., image similarity)

- data Siamese a = Siam a a
- If we take Siamese Int

$$- S:: R^d \to R^d \to R$$

fold_{Siamese} C_{Siam} (Siam x y) =
 C_{Siam} (fold_{Int} C_{Zero} C_{Succ}x) (fold_{Int} C_{Zero} C_{Succ}y)
 S is the comparison block (e.g, distance)

By given having datatype as a first-class citizen...

- You can easily test various data representations and see which one yields the best results
- Induce interesting biases and properties intentionally, by choosing the data structure that possesses the traits you are looking for.
- You can actually achieve true end-to-end learning
- Explore the world of FP data structures and see what kind of NN they induce

Examples of interest: the zipper

- A way to represent the notion of "structure with a hole" (a context)
- A way to consider a location in a structure and provide navigation methods
- data ListZip a = Zip (List a) a (List a)

$$[a_1; a_2; a_3; a_4; ...; a_n] = Zip[a_2; a_1] a_3[a_4; ...; a_n]$$

 $\int_{Go Right} Go Right$
 $Zip[a_3; a_2; a_1] a_4[a_5; ...; a_n]$

Examples of interest: graphs

- Convolutional Graph Neural Networks work with graphs as inputs
- Conventional ADTs can't represent cycles, but generalizations exist [2001; Turbak, Wells], where CyFold is computed as a fixed point in an iterated manner
- Graph Neural Networks correspond to some bounded version of CyFold

Beyond ADTs and catamorphisms

- Other recursion schemes
 - Paramorphisms: Residual Link
 - Histomorphisms: dynamic programming
- GADT and indexed catamorphisms
- Cyclic structures and cyfold

Conclusion

- Inductive datatypes and fold-like functions provide a nice way to recover classical neural networks
- Composing datatypes allow for modularity of input representation
- Allow to explore the space of neural networks through the prism of existing FP concepts

Thank you.