[1] | Sylvie Boldo, François Clément, Vincent Martin, Micaela Mayero, and Houda Mouhcine. Lebesgue induction and tonelli's theorem in coq. In Formal Methods - 25th International Symposium, FM, Proceedings, LNCS, volume 14000, pages 39--55}, 2023. [ bib | http ] |
[2] | Hugo Férée, Samuel Hym, Micaela Mayero, Jean-Yves Moyen, and David Nowak. Formal proof of polynomial-time complexity with quasi-interpretations. In Proceedings of the 7th ACM SIGPLAN International Conference on Certified Programs and Proofs, CPP 2018, Los Angeles, CA, USA, January 8-9, 2018, pages 146--157, 2018. [ bib | .pdf ] |
[3] | Sylvie Boldo, François Clément, Florian Faissole, Vincent Martin, and Micaela Mayero. A coq formal proof of the laxmilgram theorem. In Proceedings of the 6th ACM SIGPLAN Conference on Certified Programs and Proofs, CPP 2017, Paris, France, January 16-17, 2017, pages 79--89, 2017. [ bib | http ] |
[4] | Érik Martin-Dorel, Laurence Rideau, Laurent Théry, Micaela Mayero, and Ioana Pasca. Certified, efficient and sharp univariate taylor models in COQ. In 15th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing, SYNASC 2013, Timisoara, Romania, September 23-26, 2013, pages 193--200, 2013. [ bib | .pdf ] |
[5] | Nicolas Brisebarre, Mioara Joldes, Erik Martin-Dorel, Micaela Mayero, Jean-Michel Muller, Ioana Pasca, Laurence Rideau, and Laurent Théry. Rigorous Polynomial Approximations using Taylor Models in Coq. In Proceedings of NFM 2012 (Nasa Formal Methods), volume 7226, pages 85--99. Springer-Verlag LNCS, 2012. [ bib | .pdf ] |
[6] | Franck Butelle, Florent Hivert, Micaela Mayero, and Frédéric Toumazet. Formal Proof of SCHUR Conjugate Function. In Proceedings of Calculemus 2010, pages 158--171. Springer-Verlag LNAI, 2010. [ bib | .pdf ] |
[7] | Sylvie Boldo, François Clément, Jean-Christophe Filliâtre, Micaela Mayero, Guillaume Melquiond, and Pierre Weis. Formal Proof of a Wave Equation Resolution Scheme: the Method Error. In Proceedings of ITP 2010 (Interactive Theorem Proving), pages 147--162. Springer-Verlag LNCS, 2010. [ bib | .pdf ] |
[8] | Christine Choppy, Micaela Mayero, and Laure Petrucci. Coloured Petri net refinement specification and correctness proof with Coq. In Proceedings of NFM09, 2009. [ bib | .pdf ] |
[9] | Bruno Monsuez, Franck Védrine, Micaela Mayero, and Nicolas Vallée. How an "incoherent behavior" inside generic hardware component characterizes functional errors ? In Proceedings of AIKED'09 Artificial Intelligence, Knowledge Engineering & Data bases), 2009. [ bib | .pdf ] |
[10] | Christine Choppy, Micaela Mayero, and Laure Petrucci. Experimenting formal proofs of petri nets refinements. In Proceedings of REFINE 2008, Electr. Notes Theor. Comput. Sci., volume 214, pages 231--254, 2008. [ bib | .pdf ] |
[11] | David Delahaye and Micaela Mayero. Quantifier Elimination over Algebraically Closed Fields in a Proof Assistant using a Computer Algebra System. In Proceedings of Calculemus 2005, volume 151(1) of ENTCS, pages 57--73, 2006. [ bib | .pdf ] |
[12] | Micaela Mayero. Using Theorem Proving for Numerical Analysis. Correctness Proof of al Automatic Differentiation Algorithm. In Proceedings of TPHOLs2002 (Theorem Proving in Higher Order Logics), volume 2410, page 246. Springer-Verlag LNCS, 2002. [ bib | .ps.gz ] |
[13] | Micaela Mayero. The Three Gap Theorem (steinhauss conjecture). In Proceedings of TYPES'99, volume 1956, pages 162--173. Springer-Verlag LNCS, 2000. [ bib | .ps.gz ] |
This file was generated by bibtex2html 1.99.