Séance 1 : Transformée multiéchelle 1d

L'objectif de ce TD/TP est la mise en oeuvre numérique et l'étude numérique de la transformée de Haar (la transformée démi-somme/ démi-différences).

Le code demandé doit être réalisé en python et accompagné d'un notebook.

Les signaux considérés ici sont du type : $x=(x_1,x_2,\ldots,x_n)$, n représente la dimension du signal (on le suppose toujours une puissance de 2) et l'échantillon d'indice i est noté par x_i , pour éviter les problèmes de traitement aux bords du signal, nous considéreront que le signal est périodique (c'est à dire : $x_{n+1}=x_1, x_{n+2}=x_2$ etc., ainsi que $x_0=x_n, x_{-1}=x_{n-1}$ etc.)

On considère les exemples suivants :

 $-\text{ex}1: x_i = i, 1 \le i \le n.$

-ex2 : une ligne d'une image de votre choix.

-ex3: $x_i = \sin(2\pi i), 1 \le i \le n/2$ et $x_i = 1/2 + \sin(2\pi i), n/2 < i \le n$.

Exercice 1. Ecrire la fonction directe qui implémente la transformation directe de Haar multiéchelles.

Exercice 2. Ecrire la fonction inverse qui implémente la transformée inverse de Haar multiéchelles.

Exercice 3. Pour ces exemples vérifier que x = inverse(directe(x)) pour les signaux ex1 - ex3.

Exercice 4. Récrire les fonctions directe et inverse 1d en utilisant l'instruction "for".

Exercice 5. Ecrire une fonction seuillage qui en entrée a un vecteur x de taille n et une valeur de seuil T. La sortie y est définie de la manière suivante si $|y_i| \le T$ alors $y_i = 0$ autrement le $y_i = x_i$.

Exercice 6. Pour ces exemples visualiser les valeurs y = directe(x) supérieures à T, pour T = 128 et T = 12.

Exercice 7. Pour ces exemples calculer $e_{2,T} = ||x - inverse(seuillage(directe(x), T))||_2$, pour T = 128 et T = 12.

L'érreur entre deux vecteurs x et y se calcule par :

$$||x - y||_2 = \sqrt{\sum_{i=1}^{n} |x_i - y_i|^2}$$

Exercice 8. Etudier numériquement la qualité de la reconstruction par rapport aux seuils utilisées. Faire le graphe de l'érreur en fonction du seuil.