1. From RNNs to Convolutional Neural Nets

e Recurrent neural nets cannot capture phrases without prefix context
e Often capture too much of last words in final vector

1 1 5.5 4.5 2.5

3.5 > s 261 o g Y

0.4 2.1 7 4 2.3

03 33 7 4.5 3.6
Monae walked into the ceremony

e E.g., softmax for word prediction is usually calculated based on the last step

From RNNs to Convolutional Neural Nets

e Main Convolutional Neural Net (CNN/ConvNet) idea:

e What if we compute vectors for every possible word subsequence of a certain
length?

e Example: “tentative deal reached to keep government open” computes vectors for:

e tentative deal reached, deal reached to, reached to keep, to keep government, keep
government open

Regardless of whether phrase is grammatical
* Not very linguistically or cognitively plausible

Then group them afterwards (more soon)

What is a convolution anyway?

M
1d discrete convolution generally: (f = g)[n]| = Z fln —mlg[m|.
m=—M
Convolution is classically used to extract features from images
* Models position-invariant identification

e Gotocs231n!

1)1/1/00
2d example 2 0 1/1)1]0 4
Yellow color and red numbers 0x1 0 14 1)1
show filter (=kernel) weights 0/0/1/1|0
Green shows input 0/1]1]0]0
Pink shows output Image Eg::uorged

From Stanford UFLDL wiki

A 1D convolution for text

tentative 0.2
0.5
-0.1

0.1
0.2
-0.3

-0.3
-0.3
-0.2
03 -0.3 01 0.1
0.2 -0.3 04 0.2

01 02 -01 -01
m _04 -04 02 03

Apply a filter (or kernel) of size 3

0.4
-0.1
0.4

3 1 2 -3
-1 2 1 -3
1 1 -1 1

-1.0 0.0 0.50

-0.5 0.5 0.38

-3.6 2.6 0.93

-0.2 0.8 0.31

0.3 1.3 0.21
+ bias

-> non-linearity

1D convolution for text with padding

o 0ol 00l 00l 00
0.1

0.2 03 04
I o5 o2 -03 -01
01 -03 -02 0.4
B o3 03 o1 o1
R o2 03 o4 o2
01 02 -01 -0.1
EE o2 02 02 o3
¢ | 00] 00| 00

Apply a filter (or kernel) of size 3
3 1 2 -3
-1 2 1 -3
1 1 -1 1

-0.6
-1.0
-0.5
-3.6
-0.2

0.3
-0.5

w I
I -
o

00
0.1

0.2
-0.3
-0.3
-0.3

0.2
-0.4

0

-03 04
-0.3 -0.1
-0.2 04
01 0.1
04 0.2
-0.1 -0.1
0.2 03

Apply 3 filters of size 3

1 1

0O -1 -1 1

1

1 0

-0.6
-1.0
-0.5
-3.6
-0.2

0.3
-0.5

padding = 2

0.2
1.6
-0.1
0.3
0.1
0.6
-0.9

Could also use (zero)

3 channel 1D convolution with padding = 1 and 3 filters

1.4

-1.0

0.8
0.3
1.2
0.9
0.1

Also called “wide convolution”

convld, padded with max pooling over time

o 0ol 00l 00l 00
0.1

0.2 -03 04

-06 02 14
-1.0 16 -1.0
-05 -0.1 0.8
-36 03 03
-0.2 01 1.2

03 06 09
-05 -0.9 01

01 -03 -02 0.4
B o3 03 o1 o1
R o2 03 o4 o2
01 02 -01 -0.1

lopen 04 04 02 03
g | 00l 00l 00

Apply 3 filters of size 3

0.2 -03 -0.1

03 16 14

10

convld, padded with ave pooling over time

o 0ol 00l 00l 00
0.1

0.2 -03 04

-06 02 14
-1.0 16 -1.0
-05 -0.1 0.8
-36 03 03
-0.2 01 1.2

03 06 09
-05 -0.9 01

01 -03 -02 0.4
B o3 03 o1 o1
R o2 03 o4 o2
01 02 -01 -0.1

lopen 04 04 02 03
g | 00l 00l 00

Apply 3 filters of size 3

0.2 -03 -0.1

-0.87 0.26 0.53

In PyTorch

batch_size =16

word_embed_size =4

seq_len=7

input = torch.randn(batch_size, word_embed_size, seq_len)

convl = Convld(in_channels=word_embed_size, out_channels=3,
kernel_size=3) # can add: padding=1

hiddenl = convl(input)
hidden2 = torch.max(hiddenl, dim=2) # max pool

I 11

12

Other (maybe less useful) notions: stride = 2

o 0ol 00l 00l 00
0.1

0.2 03 04
01 -03 -02 0.4
B o3 03 o1 o1
R o2 03 o4 o2
01 02 -01 -0.1
EE o2 02 02 o3
¢ | 00| 00] 00

Apply 3 filters of size 3

0.2 -03 -0.1

-0.6
-0.5
-0.2
-0.5

0.2
-0.1
0.1
-0.9

1.4
0.8
1.2
0.1

Local max pool, stride =2

-0.4 -0.4

Apply 3 filters of size 3

3 1 2 -3 1 0 O
-1 2 1 -3 1 0 -1
1 1 -1 1 O 1 0O

0.2 -01

-0.3
0.2 -0.3

-0.1
0.4
0.1
0.2

-0.1

-0.6
-1.0 16 -1.0
-05 -0.1 038
-36 03 03
-0.2 01 1.2

m
the
m 06 0.9

05 -09 0.1
m —Inf -Inf -Inf

?,t,d,r -06 16 14
d,rtk -0.5 03 0.8
03 06 1.2
g,0, -0.5 -0.9 0.1

02 14

14

convld, k-max pooling over time, k = 2

o 0ol 00
0.1

0.2

EZE o -o

-03 04
-0.3 -0.1
-0.2 04
01 0.1
04 0.2
-0.1 -0.1
0.2 03

Apply 3 filters of size 3

-0.6
-1.0
-0.5
-3.6
-0.2

0.3
g,0, -0.5

0.3
-0.2

1 -1
0
2

o

0.2
1.6
-0.1
0.3
0.1
0.6
-0.9

1.6
0.6

2
-1
2

1.4
-1.0
0.8
0.3
1.2
0.9
0.1

1.4
1.2

-1
3
1

Other somewhat useful notions: dilation = 2

-0.3
0.2 -03 -0.1

0.1 -03 -02 0.4
_ 03 01 01 01 12

-03 04 0.2 03 06 0.9
government

(o]
02 -01 -01 ~05 -09 0.1

-06 02 14

0.8

Apply 3 filters of size 3

5| a| af = 1 0 0 1 1 -1 2 -1

1 2 1 -3 1 0 -1 -1 1 0 -1 3 2 3 1 o
1 1 -1 1 0 1 0 1 0o 2 2 1 1 -1 -1 1 1 -1

3 1 O 3 1 -1

2. Single Layer CNN for Sentence Classification

* Yoon Kim (2014): Convolutional Neural Networks for Sentence
Classification. EMNLP 2014. https://arxiv.org/pdf/1408.5882.pdf

e Goal: Sentence classification:
e Mainly positive or negative sentiment of a sentence

e Other tasks like:
e Subjective or objective language sentence
e Question classification: about person, location, number, ...

Single Layer CNN for Sentence Classification

17

A simple use of one convolutional layer and pooling

Word vectors: x; € R

Sentence: X1, = X1 D x, @ - P X,, (vectors concatenated)
Concatenation of words in range: X;.;;; (symmetric more common)
Convolutional filter: w € R¥ (over window of h words)
Note, filter is a vector

Filter could be of size 2, 3, or 4 words:

1.1
(0.4 2.1 7 4 2.3
0.3 3.3 7 4.5 3.6
he

country of my birth

t

Single layer CNN

18

Filter w is applied to all possible windows (concatenated vectors)

To compute feature (one channel) for CNN layer:
. T
ci = f(W" Xi:ixn—1 + b)

Sentence: X1, = X1 DXoD ... DX,

All possible windows of length h: {x1.;,, X051, -+, Xn_hitn}
Result is a feature map: ¢ = [¢1,¢2,...,Cn_ha1] € Rn—htl
1.1 3.5 2.4

r N N
0.4 . 2.3
0.3 . . 3.6

the country of my birth

Pooling and channels

* Pooling: max-over-time pooling layer

e |dea: capture most important activation (maximum over time)
* Fromfeaturemap ¢ = [c1,¢o,...,Ch_pi1] € RPIH]

* Pooled single number: ¢ = max{c}

e Use multiple filter weights w (i.e., multiple channels)
e Useful to have different window sizes h
e Because of max pooling ¢ = max{c}, length of ¢ can be variable
c=|c1,c9,...,Ch_pi1] € RPAHL
e So, we can have some filters that look at unigrams, bigrams, tri-grams, 4-grams, etc.
* Even without padding

19

A pitfall when fine-tuning word vectors

e Setting: We are training a model for movie review sentiment building on word vectors
e Inthe training data we have “tedious”, “dull”; in the testing data we have “plodding”

e The pre-trained word vectors have all three similar:

e Question: What happens when we update the word vectors?

e Answer: Words in the training data move around; other words stay where they were

tedious
dull
redi This can be bad!
edious
dull
plodding plodding

20

Channel doubling multi-channel input idea

e Initialize model with pre-trained word vectors (e.g., word2vec or Glove)

e Start with two copies

e Backprop into only one set, keep other “static”
e Fine-tuning should be useful for improving word vectors for task

e But there is a problem that words in pre-training (and maybe runtime data) but not
in training data will not move. So, it also makes sense to leave all word vectors
where they are and to only update the parameters above the word vectors

e Having two copies is an attempt to get the best of both worlds

e Both channel sets are added to c; before max-pooling

21

Classification after one CNN layer

e First one convolution, followed by one max-pooling

A

* To obtain final feature vector: z = [C1,...,Cm]
(assuming m filters w)

e Used 100 feature maps each of sizes 3,4, 5

e Simple final softmax layer
y = softmax (W(S)z -+ b)

I 22

+ activation function

L]
K I m (2 0 1 4) convolution 1-max softmax function
\ ; regularization
\ + v pocing v in this layer
3 region sizes: (2,3,4) 2 feature \/
F ro m : Sentence matrix 2 filters for each region maps for 6 univariate 2 classes
7%x5 size each vectors
totally 6 filters region size concatenated
Zhang and Wallace togelher to form &
single feature
vector

(2015) A Sensitivity
Analysis of (and
Practitioners’ Guide

|
to) Convolutional i
Neural Networks for ey
Sentence ™)- I
Classification Ejﬂ_‘ - I

https://arxiv.org/pdf/
1510.03820.pdf

(follow on paper, not
famous, but a nice picture)

|IIIIIV

All hyperparameters in Kim (2014)

e Find hyperparameters based on dev set
e Nonlinearity: ReLU
e Window filter sizesh=3,4,5
e Each filter size has 100 feature maps
* Dropoutp=0.5
e Kim (2014) reports 2—4% accuracy improvement from dropout
e L, constraint s for rows of softmax, s =3
e Mini batch size for SGD training: 50
e Word vectors: pre-trained with word2vec, k =300

e During training, keep checking performance on dev set and pick
I highest accuracy weights for final evaluation
24

Experiments on text classification

25

Model MR | SST-1 | SST-2 | Subj | TREC| CR | MPQA
CNN-rand 76.1 45.0 82.7 89.6 | 91.2 79.8 83.4
CNN-static 81.0 45.5 86.8 93.0 | 92.8 84.7 | 89.6
CNN-non-static 81.5 | 48.0 87.2 93.4 | 93.6 84.3 89.5
CNN-multichannel 81.1 47.4 88.1 93.2 92.2 | 85.0 | 89.4
RAE (Socher et al., 2011) 7.7 43.2 82.4 — — — 86.4
MV-RNN (Socher et al., 2012) 79.0 44.4 82.9 — — — —
RNTN (Socher et al., 2013) — 45.7 85.4 — — — —
DCNN (Kalchbrenner et al., 2014) — 48.5 86.8 — 93.0 — —
Paragraph-Vec (Le and Mikolov, 2014) — 48.7 | 87.8 — — — —
CCAE (Hermann and Blunsom, 2013) 77.8 — — — — — 87.2
Sent-Parser (Dong et al., 2014) 79.5 — — — — — 86.3
NBSVM (Wang and Manning, 2012) 79.4 — — 93.2 — 81.8 | 86.3
MNB (Wang and Manning, 2012) 79.0 — — 93.6 — 80.0 | 86.3
G-Dropout (Wang and Manning, 2013) || 79.0 — — 93.4 — 82.1 | 86.1
F-Dropout (Wang and Manning, 2013) || 79.1 — — 93.6 — 81.9 | 86.3
Tree-CRF (Nakagawa et al., 2010) 77.3 — — — — 81.4 86.1
CRF-PR (Yang and Cardie, 2014) — — — — — 82.7 —
SVMg (Silva et al., 2011) — — — — 95.0 — —

Problem with comparison?

* Dropout gives 2—4 % accuracy improvement

e But several compared-to systems didn’t use dropout and would possibly gain equally
from it

e Still seen as remarkable results from a simple architecture!

e Differences from window architecture we described in an early lecture:

* Many filters and pooling

26

