DIFUSCO: Graph-based Diffusion Solvers for Combinatorial Optimization
Authors: Zhiqing Sun, Yiming Yang (presented by J. Le Roux)

22/01/24

Outline

Intro

Definition

Discrete or Continuous Distributions

Predicting Assignments

Results

Conclusion

Intro

Diffusion Models

A mecha robot playing the guitar in a forest, low quality, 3d, photorealistic
Diffusion Models are known to be good at generating images from texts. How can they be applied to CO?

Diffusion Models (2)

- learn how to generate as denoising via distribution p (backward)
- from noisy examples generated by a diffusion distribution q (forward)

3 types of ML-based CO solvers

Autoregressive Construction Heuristics Solvers

- each time-step a new variable assignment is added to a partial solution.
- inspired by RNN, LLM...
- however high time and space complexity, sequential generation, $O(n)^{2}$ complexity if self-attention

Non-autoregressive (Heatmaps) Construction Heuristics Solvers

- assume conditional independence among variables, all variables assigned in parallel
- however assumption limit to overly simple distributions
- hybrid approach with active search, MCTS \Rightarrow slow

Improvement Heuristics Solvers

- use MDP to iteratively refines an existing feasible solution with NN-guided operations (2-opt, node swap)
- however difficult to scale up (slow), difficult to learn (sparse rewards and sample efficiency in RL)

Definition

Notations

Generic formulation for CO, especially graph problems such as TSP and MIS.
For an instance of a problem s with N variables:

- solution space is $\mathcal{X}_{s}=\{0,1\}^{N}$
- objective $c_{s}(x)=\operatorname{cost}(x, s)+\operatorname{valid}(x, s)$
- cost is a real-valued function
- valid is a $0 /+\infty$ valued function.
- we write $x_{s}^{*}=\min _{x} c_{s}(x)$ or simply x_{0} when s is clear from context.

ML-based approach to CO

- from s we want to predict x_{0}
- we want to learn in a supervised framework
- MLE: we want to maximize $\mathbb{E}_{x_{0} \sim q}\left[\log p_{\theta}\left(x_{0}\right)\right]$

Definition (1)

DMs are Latent-Variables Probabilistic Models

T noisy versions of the observations generated before we see x_{0}

$$
p\left(x_{0}\right)=\int p\left(x_{0}, x_{1} \ldots, x_{T}\right) d x_{1} \ldots d x_{T}=\int p\left(x_{0: T}\right) d x_{1: T}
$$

We assume that we can factorize p as denoising T steps:

$$
p_{\theta}\left(x_{0: T}\right)=p_{\theta}\left(x_{T}\right) \prod_{t=1}^{T} p_{\theta}\left(x_{t-1} \mid x_{t}\right)
$$

The generation is reversible
Incremental mechanism to corrupt (diffuse noise) an observation

$$
q\left(x_{1: T} \mid x_{0}\right)=\prod_{t=1}^{N} q\left(x_{t} \mid x_{t-1}\right)
$$

q has no learned parameters. Its parameterization is an hyper-parameter of the system.

Definition (2)

Variational Inference

Define a family of approximations, depending on a function (here $p_{\theta}\left(x_{t} \mid x_{t+1}\right)$)

- Finding the best approximation by solving an optimization problem.
- When applied to maximizing probability of observations (evidence):
- derive a lowerbound based on a auxiliary distribution
- called ELBo (Evidence Lower Bound) (caveat minimization/maximization)

$$
\begin{aligned}
\mathbb{E}\left[-\log p_{\boldsymbol{\theta}}\left(\mathbf{x}_{0}\right)\right] & \leq \mathbb{E}_{q}\left[-\log \frac{p_{\boldsymbol{\theta}}\left(\mathbf{x}_{0: T}\right)}{q_{\boldsymbol{\theta}}\left(\mathbf{x}_{1: T} \mid \mathbf{x}_{0}\right)}\right] \\
& =\mathbb{E}_{q}\left[\sum_{t>1} D_{K L}\left[q\left(\mathbf{x}_{t-1} \mid \mathbf{x}_{t}, \mathbf{x}_{0}\right) \| p_{\boldsymbol{\theta}}\left(\mathbf{x}_{t-1} \mid \mathbf{x}_{t}\right)\right]-\log p_{\boldsymbol{\theta}}\left(\mathbf{x}_{0} \mid \mathbf{x}_{1}\right)\right]+C
\end{aligned}
$$

- KL sum: denoising matching terms
- last: reconstruction term

Remark

$$
\begin{aligned}
-\log p_{\theta}\left(x_{0} \mid x_{1}\right) & =1 \times\left(-\log p_{\theta}\left(x_{0} \mid x_{1}\right)\right)=q\left(x_{0} \mid x_{1}, x_{0}\right)\left(-\log p_{\theta}\left(x_{0} \mid x_{1}\right)\right) \\
& =q\left(x_{0} \mid x_{1}, x_{0}\right)\left(0-\log p_{\theta}\left(x_{0} \mid x_{1}\right)\right) \\
& =q\left(x_{0} \mid x_{1}, x_{0}\right)\left(\log q\left(x_{0} \mid x_{1}, x_{0}\right)-\log p_{\theta}\left(x_{0} \mid x_{1}\right)\right) \\
& =q\left(x_{0} \mid x_{1}, x_{0}\right) \frac{\log q\left(x_{0} \mid x_{1}, x_{0}\right)}{\log p_{\theta}\left(x_{0} \mid x_{1}\right)}=K L\left[q\left(x_{0} \mid x_{1}, x_{0}\right)| | p_{\theta}\left(x_{0} \mid x_{1}\right)\right]
\end{aligned}
$$

Learning DM

Diffusion Models are optimized via MC sampling:

1. Draw one instance s randomly
2. Draw a time step t randomly between 1 and T
3. Make on gradient descent step with loss:

$$
\log q\left(x_{t-1} \mid x_{t}, x_{0}\right)-\log p_{\theta}\left(x_{t-1} \mid x_{t}\right)
$$

where x_{t} is sampled from q and x_{T}
The exact form of the loss depends on q and p_{θ}

Discrete or Continuous
Distributions

Discrete Case (Bernoulli Model)

let β_{t} the corruption ratio, for changing 0 to 1 or 1 to 0 between timesteps

$$
q\left(x_{t} \mid x_{t-1}\right)=\operatorname{Cat}\left(x_{t} ; p=\tilde{x}_{t-1} Q_{t}\right) \text { with } Q_{t}=\left[\begin{array}{cc}
\left(1-\beta_{t}\right) & \beta_{t} \\
\beta_{t} & \left(1-\beta_{t}\right)
\end{array}\right]
$$

- $\tilde{x} \in\{0,1\}^{N \times 2}$ is a one-hot encoding of x
- We can compose timesteps:

$$
q\left(x_{t} \mid x_{0}\right)=\operatorname{Cat}\left(x_{t} ; p=\tilde{x_{0}} Q_{1} Q_{2} \ldots Q_{t}\right)=\operatorname{Cat}\left(x_{t} ; p=\tilde{x_{0}} \overline{Q_{t}}\right)
$$

- So we can express the first part of the loss as:

$$
q\left(x_{t-1} \mid x_{t}, x_{0}\right)=\frac{q\left(x_{t} \mid x_{t-1}, x_{0}\right) q\left(x_{t-1} \mid x_{0}\right)}{q\left(x_{t} \mid x_{0}\right)}=\operatorname{Cat}\left(x_{t-1} ; \frac{\tilde{x_{t}} Q_{t}^{\top} \odot \tilde{x}_{0} Q_{t-1}^{-}}{\tilde{x_{0}} \bar{Q}_{t} \tilde{x_{t}^{\top}}}\right)
$$

- from x_{T} and this definition, we can sample any x_{t}, then we train a neural network with parameters θ to predict $p_{\theta}\left(\tilde{x_{0}} \mid x_{t}\right)$
- Then, when generating a test solution, we can derive:

$$
p_{\theta}\left(x_{t-1} \mid x_{t}\right)=\sum_{\tilde{x_{0}}} q\left(x_{t-1} \mid x_{t}, \tilde{x_{0}}\right) p_{\theta}\left(\tilde{x_{0}} \mid x_{t}\right)
$$

Continuous Case (Gaussian Models)

By-The-Book application of DMs

- \hat{X}_{T} is sampled from a $\mathcal{N}(0 ; I)$ and \hat{x}_{0} is rescaled from $\{0,1\}$ to $\{-1,1\}$,
- With β_{t} the corruption ratio at timestep t:

$$
q\left(\hat{\mathbf{x}}_{t} \mid \hat{\mathbf{x}}_{t-1}\right):=\mathcal{N}\left(\hat{\mathbf{x}}_{t} ; \sqrt{1-\beta_{t}} \hat{\mathbf{x}}_{t-1}, \beta_{t} \mathbf{I}\right)
$$

Via Gaussian properties

 we define $\alpha_{t}=1-\beta_{t}$ and $\bar{\alpha}_{t}=\alpha_{1} \cdots \alpha_{t}$. We obtain:$$
q\left(\hat{\mathbf{x}}_{t} \mid \hat{\mathbf{x}}_{0}\right):=\mathcal{N}\left(\hat{\mathbf{x}}_{t} ; \sqrt{\bar{\alpha}_{t}} \hat{\mathbf{x}}_{0},\left(1-\bar{\alpha}_{t}\right) \mathbf{I}\right)
$$

Learning

Distance between gaussians, with same mean: amounts to predicting the expected noise

$$
\tilde{\boldsymbol{\epsilon}}_{t}=\left(\hat{\mathbf{x}}_{t}-\sqrt{\bar{\alpha}_{t}} \hat{\mathbf{x}}_{0}\right) / \sqrt{1-\bar{\alpha}_{t}}=\bar{f}_{\theta}\left(\hat{\mathbf{x}}_{t}, t\right)
$$

Generation: p_{θ} becomes a Gaussian

$$
p_{\boldsymbol{\theta}}\left(\hat{\mathbf{x}}_{t-1} \mid \hat{\mathbf{x}}_{t}\right)=q\left(\hat{\mathbf{x}}_{t-1} \mid \hat{\mathbf{x}}_{t}, \frac{\hat{\mathbf{x}}_{t}-\sqrt{1-\bar{\alpha}_{t}} f_{\theta}\left(\hat{\mathbf{x}}_{t}, t\right)}{\sqrt{\bar{\alpha}_{t}}}\right)
$$

then final \hat{x}_{0} is clipped to $\{0,1\}$

Predicting Assignments

Neural Parameterization

To sum up, the model has to parameterize:

Discrete Case $p_{\theta}\left(\tilde{x_{0}} \mid x_{t}\right)$
$n n_{\theta}\left(x_{t}, t\right)$ returns 2 logits per variable that are passed through softmax to define p

Continuous Case

$$
\tilde{\boldsymbol{\epsilon}}_{t}=\left(\hat{\mathbf{x}}_{t}-\sqrt{\bar{\alpha}_{t} \hat{\mathbf{x}}_{0}}\right) / \sqrt{1-\bar{\alpha}_{t}}=\bar{f}_{\boldsymbol{\theta}}\left(\hat{\mathbf{x}}_{t}, t\right)
$$

$n n_{\theta}\left(x_{t}, t\right)$ returns 1 real number per variable used to parameterize a Gaussian:

Defined as a Graph Neural Network

Anisotropic

$$
\begin{aligned}
& \hat{e}_{i j}^{\epsilon+1}=P^{\prime} e_{i j}^{e}+Q^{\prime} \boldsymbol{h}_{i}^{\epsilon}+\boldsymbol{R}^{\prime} \boldsymbol{h}_{j}^{\prime}, \\
& e_{i j}^{e+1}=e_{i j}^{e}+\operatorname{MLP}_{e}\left(\operatorname{BN}_{\left(\hat{e}_{i j}^{t+1}\right)}\right)+\operatorname{MLP}_{t}(\mathbf{t}), \\
& \boldsymbol{h}_{i}^{t+1}=\boldsymbol{h}_{i}^{\ell}+\alpha\left(\operatorname{BN}\left(U^{t} \boldsymbol{h}_{i}^{\ell}+\mathcal{A}_{j \in \mathcal{N}_{i}}\left(\theta\left(\hat{e_{i j}^{\ell+1}}\right) \odot V^{t} \boldsymbol{h}_{j}^{\ell}\right)\right)\right)
\end{aligned}
$$

- vectors of size 256,12 layers!
- t is the sinusoidal representation of t
- $t[2 i]=\sin \left(t / T^{2 i / 256}\right)$
- $t[2 i+1]=\cos \left(t / T^{2 i / 256}\right)$

Init

- TSP: $e_{i j}^{0}$ distance (i, j) and h_{i}^{0} is the sinusoidal for timestep forall i
- for MIS $e_{i j}^{0}$ are zeros h_{i}^{0} are the costs

From $p\left(x_{0}\right)$ to Assignment

Naive sampling from obtained distributions do not perform well... : (

Heatmaps

- discrete: $p_{\theta}\left(x_{0}=1 \mid s\right)$
- continuous $0.5\left(\hat{x}_{0}+1\right)$

TSP Decoding

$A_{i, j}$ the heatmap

1. greedy decoding, rank edges by $\$\left(A_{i, j}+A_{j, i}\right) /\left\|c_{i}-c_{j}\right\|$, add them one by one if no conflict (+option 2-opt)
2. MCTS, k transformation are sampled guided by heatmap

MIS

1. greedy decoding from heatmap A_{i}

Results

Figure 1: Comparison of continuous (Gaussian noise) and discrete (Bernoulli noise) diffusion models with different inference diffusion steps and inference schedule (linear v.s. cosine).

Table 1: Comparing results on TSP-50 and TSP-100. * denotes the baseline for computing the performance gap. ${ }^{\dagger}$ indicates that the diffusion model samples a single solution as its greedy decoding scheme. Please refer to Sec .4 for details.

Algorithm	Type	TSP-50		TSP-100	
		Length \downarrow	GAP(\%) \downarrow	Length \downarrow	$\mathrm{GAP}(\%) \downarrow$
Concorde*	Exact	5.69	0.00	7.76	0.00
2-OPT	Heuristics	5.86	2.95	8.03	3.54
AM	Greedy	5.80	1.76	8.12	4.53
GCN	Greedy	5.87	3.10	8.41	8.38
Transformer	Greedy	5.71	0.31	7.88	1.42
POMO	Greedy	5.73	0.64	7.84	1.07
SYM-NCO	Greedy	-	-	7.84	0.94
DPDP	$1 k$-Improvements	5.70	0.14	7.89	1.62
Image Diffusion	Greedy ${ }^{\dagger}$	5.76	1.23	7.92	2.11
Ours	Greedy ${ }^{\dagger}$	5.70	0.10	7.78	0.24
AM	$1 k \times$ SAMPLING	5.73	0.52	7.94	2.26
GCN	$2 k \times$ SAMPLING	5.70	0.01	7.87	1.39
Transformer	$2 k \times$ Sampling	5.69	0.00	7.76	0.39
POMO	$8 \times$ Augment	5.69	0.03	7.77	0.14
SYM-NCO	$100 \times$ SAMPLING	-	-	7.79	0.39
MDAM	$50 \times$ SAMPLING	5.70	0.03	7.79	0.38
DPDP	100 k -IMPROVEMENTS	5.70	0.00	7.77	0.00
Ours	$16 \times$ Sampling	5.69	-0.01	7.76	-0.01

Table 2: Results on large-scale TSP problems. RL, SL, AS, G, S, BS, and MCTS denotes Reinforcement Learning, Supervised Learning, Active Search, Greedy decoding, Sampling decoding, Beam-search, and Monte Carlo Tree Search, respectively. * indicates the baseline for computing the performance gap. Results of baselines are taken from Fu et al. [27] and Qiu et al. [92], so the runtime may not be directly comparable. See Section 4 and appendix for detailed descriptions.

Algorithm	TYPE	TSP-500			TSP-1000			TSP-10000		
		LENGTH	GAP \downarrow	Time \downarrow	LENGTH \downarrow	GAP \downarrow	TIME \downarrow	LENGTH	GAP \downarrow	TIME \downarrow
Concorde	EXACT	16.55*	-	37.66 m	23.12*	-	6.65 h	N/A	N/A	N/A
Gurobi	Exact	16.55	0.00\%	45.63h	N/A	N/A	N/A	N/A	N/A	N/A
LKH-3 (DEFAULT)	Heuristics	16.55	0.00\%	46.28 m	23.12	0.00\%	2.57 h	71.77*	-	8.8h
LKH-3 (LESS TRAILS)	Heuristics	16.55	0.00\%	3.03 m	23.12	0.00\%	7.73 m	71.79	—	51.27 m
FARTHEST InSERTION	Heuristics	18.30	10.57%	Os	25.72	11.25\%	0 s	80.59	12.29\%	6 s
AM	RL+G	20.02	20.99\%	1.51 m	31.15	34.75\%	3.18 m	141.68	97.39\%	5.99 m
GCN	SL+G	29.72	79.61%	6.67 m	48.62	110.29\%	28.52 m	N/A	N/A	N/A
POMO+EAS-EMB	RL+AS+G	19.24	16.25\%	12.80 h	N/A	N/A	N/A	N/A	N/A	N/A
POMO+EAS-TAB	RL+AS+G	24.54	48.22\%	11.61h	49.56	114.36\%	63.45h	N/A	N/A	N/A
DIMES	RL+G	18.93	14.38\%	0.97 m	26.58	14.97\%	2.08 m	86.44	20.44\%	4.65 m
DIMES	RL+AS+G	17.81	7.61\%	2.10 h	24.91	7.74\%	4.49 h	80.45	12.09\%	3.07 h
OURS (DIFUSCO)	SL+G \dagger	18.35	10.85\%	3.61 m	26.14	13.06\%	11.86 m	98.15	36.75\%	28.51 m
OURS (DIFUSCO)	$\mathrm{SL}+\mathrm{G} \dagger+2$-OPT	16.80	1.49\%	3.65 m	23.56	1.90\%	12.06 m	73.99	3.10\%	35.38m
EAN	RL+S+2-OPT	23.75	43.57\%	57.76 m	47.73	106.46\%	5.39h	N/A	N/A	N/A
AM	RL+BS	19.53	18.03%	21.99 m	29.90	29.23\%	1.64h	129.40	80.28\%	1.81 h
GCN	SL+BS	30.37	83.55\%	38.02 m	51.26	121.73\%	51.67 m	N/A	N/A	N/A
DIMES	RL+S	18.84	13.84\%	1.06 m	26.36	14.01\%	2.38 m	85.75	19.48\%	4.80 m
DIMES	RL+AS+S	17.80	7.55\%	2.11 h	24.89	7.70\%	4.53 h	80.42	12.05\%	3.12 h
Ours (DIFUSCO)	SL+S	17.23	4.08\%	11.02 m	25.19	8.95\%	46.08 m	95.52	33.09\%	6.59 h
OURS (DIFUSCO)	SL+S+2-OPT	16.65	0.57\%	11.46 m	23.45	1.43\%	48.09 m	73.89	2.95\%	6.72 h
Att-GCN	SL+MCTS	16.97	2.54\%	2.20 m	23.86	3.22\%	4.10 m	74.93	4.39\%	21.49 m
DIMES	RL+MCTS	16.87	1.93\%	2.92 m	23.73	2.64\%	6.87 m	74.63	3.98\%	29.83 m
DIMES	RL+AS+MCTS	16.84	1.76\%	2.15 h	23.69	2.46\%	4.62 h	74.06	3.19\%	3.57 h
OURS (DIFUSCO)	SL+MCTS	16.63	0.46\%	10.13 m	23.39	1.17\%	24.47 m	73.62	2.58\%	47.36 m

Conclusion

Conclusion

Summary

- A lot of Maths!
- SOTA results on 2 benchmarks (with lot of compettitors)
- modelisation tailored for graph problems
- A new? GNN architecture

Questions

- Can we take into account decomposition in this framework (cf. recent works in NLP)?

Ssd-LM: Semi-autoregressive Simplex-based Diffusion Language Model for Text Generation and Modular Control

Xiaochuang Han* Sachin Kumar* Yulia Tsvetkov*

${ }^{*}$ Paul G. Allen School of Computer Science \& Engineering, University of Washington
${ }^{4}$ Language Technologies Institute, Carnegie Mellon University
$\left\{x h a n 77\right.$, yuliats\}@cs.washington.edu ${ }^{*}$ sachink@cs.cmu.edu ${ }^{*}$

