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Intro



Diffusion Models

A mecha robot playing the guitar in a forest, low quality, 3d, photorealistic

Diffusion Models are known to be good at generating images from texts. How can they
be applied to CO?
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Diffusion Models (2)

• learn how to generate as denoising via distribution p (backward)

• from noisy examples generated by a diffusion distribution q (forward)

3



3 types of ML-based CO solvers

Autoregressive Construction Heuristics Solvers

• each time-step a new variable assignment is added to a partial solution.

• inspired by RNN, LLM…

• however high time and space complexity, sequential generation, O(n)2 complexity
if self-attention

Non-autoregressive (Heatmaps) Construction Heuristics Solvers

• assume conditional independence among variables, all variables assigned in
parallel

• however assumption limit to overly simple distributions

• hybrid approach with active search, MCTS⇒ slow

Improvement Heuristics Solvers

• use MDP to iteratively refines an existing feasible solution with NN-guided
operations (2-opt, node swap)

• however difficult to scale up (slow), difficult to learn (sparse rewards and sample
efficiency in RL)
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Definition



Notations

Generic formulation for CO, especially graph problems such as TSP and MIS.

For an instance of a problem s with N variables:

• solution space is Xs = {0, 1}N

• objective cs(x) = cost(x, s) + valid(x, s)
• cost is a real-valued function
• valid is a 0/ + ∞ valued function.

• we write x∗s = minx cs(x) or simply x0 when s is clear from context.

ML-based approach to CO

• from s we want to predict x0
• we want to learn in a supervised framework

• MLE: we want to maximize Ex0∼q[log pθ(x0)]
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Definition (1)

DMs are Latent-Variables Probabilistic Models

T noisy versions of the observations generated before we see x0

p(x0) =
∫
p(x0, x1 . . . , xT)dx1 . . . dxT =

∫
p(x0:T)dx1:T

We assume that we can factorize p as denoising T steps:

pθ(x0:T) = pθ(xT)
T∏
t=1

pθ(xt−1|xt)

The generation is reversible

Incremental mechanism to corrupt (diffuse noise) an observation

q(x1:T |x0) =
N∏
t=1

q(xt|xt−1)

q has no learned parameters. Its parameterization is an hyper-parameter of the
system.

6



Definition (2)

Variational Inference

Define a family of approximations, depending on a function (here pθ(xt|xt+1))

• Finding the best approximation by solving an optimization problem.
• When applied to maximizing probability of observations (evidence):

• derive a lowerbound based on a auxiliary distribution
• called ELBo (Evidence Lower Bound) (caveat minimization/maximization)

• KL sum: denoising matching terms
• last: reconstruction term

Remark
− log pθ(x0|x1) = 1× (− log pθ(x0|x1)) = q(x0|x1, x0)(− log pθ(x0|x1))

= q(x0|x1, x0)(0− log pθ(x0|x1))

= q(x0|x1, x0)(log q(x0|x1, x0)− log pθ(x0|x1))

= q(x0|x1, x0)
log q(x0|x1, x0)
log pθ(x0|x1)

= KL[q(x0|x1, x0)||pθ(x0|x1)]
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Learning DM

Diffusion Models are optimized via MC sampling:

1. Draw one instance s randomly

2. Draw a time step t randomly between 1 and T

3. Make on gradient descent step with loss:

log q(xt−1|xt, x0)− log pθ(xt−1|xt)

where xt is sampled from q and xT
The exact form of the loss depends on q and pθ
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Discrete or Continuous
Distributions



Discrete Case (Bernoulli Model)

let βt the corruption ratio, for changing 0 to 1 or 1 to 0 between timesteps

q(xt|xt−1) = Cat(xt; p = x̃t−1Qt) with Qt =
[
(1− βt) βt

βt (1− βt)

]

• x̃ ∈ {0, 1}N×2 is a one-hot encoding of x

• We can compose timesteps:
q(xt|x0) = Cat(xt; p = x̃0Q1Q2 . . .Qt) = Cat(xt; p = x̃0Q̄t)

• So we can express the first part of the loss as:

q(xt−1|xt, x0) =
q(xt|xt−1, x0)q(xt−1|x0)

q(xt|x0)
= Cat(xt−1;

x̃tQ>
t � x̃0 ¯Qt−1

x̃0Q̄t x̃t>
)

• from xT and this definition, we can sample any xt , then we train a neural network
with parameters θ to predict pθ(x̃0|xt)

• Then, when generating a test solution, we can derive:

pθ(xt−1|xt) =
∑
x̃0

q(xt−1|xt, x̃0)pθ(x̃0|xt)
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Continuous Case (Gaussian Models)

By-The-Book application of DMs

• x̂T is sampled from a N (0; I) and x̂0 is rescaled from {0, 1} to {−1, 1},

• With βt the corruption ratio at timestep t:

Via Gaussian properties

we define αt = 1− βt and ᾱt = α1 · · ·αt . We obtain:

Learning

Distance between gaussians, with same mean: amounts to predicting the expected
noise

Generation: pθ becomes a Gaussian

then final x̂0 is clipped to {0, 1} 10



Predicting Assignments



Neural Parameterization

To sum up, the model has to parameterize:

Discrete Case pθ(x̃0|xt)

nnθ(xt, t) returns 2 logits per variable
that are passed through softmax to
define p

Continuous Case

nnθ(xt, t) returns 1 real number per
variable used to parameterize a
Gaussian:

Defined as a Graph Neural Network

Anisotropic

• vectors of size 256, 12 layers!
• t is the sinusoidal representation
of t

• t[2i] = sin(t/T2i/256)
• t[2i + 1] = cos(t/T2i/256)

Init

• TSP: e0ij distance (i, j) and h0i is the
sinusoidal for timestep forall i

• for MIS e0ij are zeros h
0
i are the

costs
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From p(x0) to Assignment

Naive sampling from obtained distributions do not perform well… :(

Heatmaps

• discrete: pθ(x0 = 1|s)

• continuous 0.5(x̂0 + 1)

TSP Decoding

Ai,j the heatmap

1. greedy decoding, rank edges by $(Ai,j + Aj,i) / || ci - cj ||, add them one by one if
no conflict (+option 2-opt)

2. MCTS, k transformation are sampled guided by heatmap

MIS

1. greedy decoding from heatmap Ai
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Results



TSP (1)
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TSP (2)
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Conclusion



Conclusion

Summary

• A lot of Maths!

• SOTA results on 2 benchmarks (with lot of compettitors)

• modelisation tailored for graph problems

• A new? GNN architecture

Questions

• Can we take into account decomposition in this framework (cf. recent works in
NLP)?
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