
Learning to learn by gradient descent
by gradient descent

Marcin Andrychowicz, Misha Denil, Sergio Gómez
Colmenarejo, Matthew W. Hoffman, David Pfau, Tom Schaul,

Brendan Shillingford, Nando de Freitas
presented bt Francesco Demelas

January 4, 2024

Unrolling Methods

Question
How the design of an optimization problem can be cast as learning
algorithm?

Answer
Authors develop a procedure to construct a learning algorithm that
performs well on a particular class of optimization problem.

In this context examples are problem istances and generalization
corresponds to the ability of transfer knowledge to different
problems (transfer learning).

Setting

Machine Learning Task - Optimization Problem

θ∗ ∈ arg min
θ∈Θ

f (θ)

where θ are the optimizee parameters.
We can solve it using Stocastic Gradient Descent:

SGD - Standard Sequential Updates

θt+1 = θt − αt∆f (θt)

Main Idea
Learning Update Rules

Instead of considering

SGD - Standard Sequential Updates

θt+1 = θt − αt∆f (θt)

they propose

Learn Updates Rules

θt+1 = θt + gt(∆f (θt), φ)

where g denotes the optimizer used as update rule and it depends
by 9its own parameters φ.
g will be a Recurrent Neural Netowork (RNN)

(Preistorical) Related Works

1998: meta-learning (learning to learn) survey 1.

2016: building blocks in artificial intelligence 2.

2016: see multi-task learning as generalization, by directly train
a base learner (rather than a training algorithm) 3.

1992,1993 the most general meta-learning approach: consider
networks that are able to modify their own weigths. 4 5

Differentiable end-to-end, but the learning rules are harder
to train.

1S. Thrun and L. Pratt. Learning to learn. Springer Science & Business
Media.

2B. M. Lake, T. D. Ullman, J. B. Tenenbaum, and S. J. Gershman.
Building machines that learn and think like people. arXiv.

3A. Santoro, S. Bartunov, M. Botvinick, D. Wierstra, and T. Lillicrap.
Meta-learning with memory-augmented neural networks. In International
Conference on Machine Learning.

4J. Schmidhuber. Learning to control fast-weight memories: An alternative
to dynamic recurrent networks. Neural Computation.

5J. Schmidhuber. A neural network that embeds its own meta-levels. In
International Conference on Neural Networks.

1997: use Success Story Algorithm (rather than gradient
descent) to modify its search strategy.6

2016: reiforcement learning to schedule step sizes. 7

1990, 1995 learn updates which avoids back-propagation by using
simple parametric rules. Learning to learn without
gradient descent by gradient descent. 8 9

1990,1999 fixed-weight RNN can exhibit dynamic behavior without
need to modify their network weights 10 11

6J. Schmidhuber, J. Zhao, and M. Wiering. Shifting inductive bias with
success-story algorithm, adaptive levin search, and incremental
self-improvement. Machine Learning.

7C. Daniel, J. Taylor, and S. Nowozin. Learning step size controllers for
robust neural network training. In Association for the Advancement of Artificial
Intelligence.

8S. Bengio, Y. Bengio, and J. Cloutier. On the search for new learning rules
for ANNs. Neural Processing Letters.

9Y. Bengio, S. Bengio, and J. Cloutier. Learning a synaptic learning rule.
Université de Montréal.

10N. E. Cotter and P. R. Conwell. Fixed-weight networks can learn. In
International Joint Conference on Neural Networks.

11A. S. Younger, P. R. Conwell, and N. E. Cotter. Fixed-weight on-line
learning. Transactions on Neural Networks.

1998, 1992, 1999 Similar to the previous in a filtering context 12 which is
directly related to simple multi-timescale optimizers 13 14

2001 connects these different threads of research by allowing for
the output of backpropagation from one network to feed
into an additional learning network, with both networks
trained jointly. 15 16

This work: builds on the last work by modifying the network
architecture of the optimizer in order to scale this
approach to larger neural-network optimization problems.

12L. A. Feldkamp and G. V. Puskorius. A signal processing framework based
on dynamic neural networks with application to problems in adaptation,
filtering, and classification. Proceedings of the IEEE.

13R. S. Sutton. Adapting bias by gradient descent: An incremental version of
delta-bar-delta. In Association for the Advancement of Artificial Intelligence.

14N. N. Schraudolph. Local gain adaptation in stochastic gradient descent.
In International Conference on Artificial Neural Networks, volume 2, pages
569–574, 1999

15A. S. Younger, S. Hochreiter, and P. R. Conwell. Meta-learning with
backpropagation. In International Joint Conference on Neural Networks, 2001

16S. Hochreiter, A. S. Younger, and P. R. Conwell. Learning to learn using
gradient descent. In International Conference on Artificial Neural Networks,
pages 87–94. Springer, 2001.

Learning Task

Final Optimizee parameters

θ∗ ≡ θ∗(f , φ)

where φ are the optimizer parameters.

What does it means for an optimizer to be good?

Loss function
Given a distribution of functions f we consider the loss:

L(φ) ≡ Ef [f (θ∗(f , φ))]

Trajectory Dependent Loss
Loss function
Given a distribution of functions f we consider the loss:

L(φ) ≡ Ef [f (θ∗(f , φ))]

for the training optimizer is convenient to have an objective that depends
on the entire trajectory of optimization, for some time horizon T:

Trajectory Loss

L(φ) ≡ Ef [
T∑
t=1

wt f (θt)]

where:

I θt+1 = θt + gt

I
[

gt
ht+1

]
= m(∆t , ht , φ)

I ∆t = ∆θf (θt)

I m will be a RNN model.

This is equivalent to the previous loss if we take wt = 1{t=T}

Structure of the network m

LSTM will enable to automatically integrate the history of the
gradients (like momentum).

Challenge
Using RNN in this setting we want to be able to optimize at least
ten of thousand of parameters, but a fully-connected RNN require
an enormous amount of parameters.

Proposed Solution:

Use an optimizer m which operates coordinate-wise on the
parameters of the objective function. LSTM model in figure.

I Different behavior on each
coordinate using serparate
activation functions for
each objective function
parameters.

I Use a small network has
the effect of making the
optimizer invariant to the
order of parameters in the
network.

Preprocessing and Postprocessing

I Rescale input and ouputs of LSTMS using a suitable constant

I In the Appendix A they present a more robust preprocessing
technique which provides sligly better performances (but we’ll
not discuss this here).

In all the experiments

I LST with 2 hidden layers and 20 units in each layer

I ADAM with random search to choose the learning rate

I BASElines: SGD, RMSprop, ADAM, NAG, LSTM

Quadratic Functions
10-dimensional quadratic functions

f (θ) = ||W θ − y ||2

where y ∈ R10 and W ∈ R10×10 are sampled using an IID
Gaussian distribution.
I each function is optimized for 100 steps and unrolled for 20

steps.
I no preprocessing or post-processing

Learned optimizer outperforms baseline.

Small Network on MNIST

MNIST if a classic dataset used for the recognition of number from
image. Here we use as f (θ) the cross-entropy.

I ∂f (θ)/∂θ is estimated using random batches of 128 samples.

I as (optimizee) model we consider a MLP with 1 hidden layer,
20 units and sigmoid activation function

I run for 100 steps and unrolled for 20 steps.

Also considering the (optimizer) model trained on the previous
problem (quadratic loss) it performs well on this problem,
outperforming hand-crafted methods.

Generalization to different architectures
Consider (for MNIST) a model trained with the previous model and test
on the following models:

1. MLP with 40 units (instead of 20)

2. MLP with 2 hidden layers (instead of 1)

3. Relu activation function (instead of sigmoid)

LSTM still performs well, but for the Relu it is not able to generalize as
the learning is associated to a different dynamic.

Systematical Variation of the tested architecture

as the models are sufficiently similars we can see that some models
outperforms the baseline model.

Convolutional Network on CIFAR-10
The CIFAR model is qan images dataset used to recognize
clothest.
I as (optimizee) model we consider a model with 3 hidden

convolutional layers with max-pooling, followed by a fully
connected layer with 32 units.

I All non.linearities are: Relu activation and batch
normalization.

I as (optimizer) model the LSTM used before was not sufficient

Neural Art
Each Neural Art problem starts from a content image c and a style
image s and is given by:

f (θ) = αLcontent(c , θ) + βLstyle(s, θ) + γLreg (θ)

the minimizer of f is called styled image.17

I 1 style and 1800 content images taken from ImageNet

I select 100 content images for testing and 20 content images
for validation of trained optimizers

I train the optimizer on 64x64 content images from ImageNet
and one fixed style

I test how well it generalizes to a different style image and
higher resolution (128x128)

I Each image was optimized for 128 steps and trained
optimizers were unrolled for 32 steps

I preprocessing described in Appendix A and no postprocessing
17L. A. Gatys, A. S. Ecker, and M. Bethge. A neural algorithm of artistic

style. arXiv Report 1508.06576, 2015.

The LSTM optimizer outperforms all standard optimizers if the
resolution and style image are the same as the ones on which it
was trained. Moreover, it continues to perform very well when
both the resolution and style are changed at test time.

Conclusions

I cast the design of optimization algorithms as a learning
problem, which enables us to train optimizers that are
specialized to particular classes of functions.

I learned neural optimizers compare favorably against
state-of-the-art optimization methods used in deep learning.

I remarkable degree of transfer:
I LSTM optimizer trained on 12,288 parameter neural art tasks

being able to generalize to tasks with 49,152 parameters,
different styles, and different content images all at the same
time

I transferring to different architectures in the MNIST task.
I on the CIFAR image labeling task show that the LSTM

optimizers outperform hand- engineered optimizers when
transferring to datasets drawn from the same data distribution.

