Fast as CHITA: Neural Network Pruning with

Combinatorial Optimization

Group lecture opt-ml

18/09/2023

[1] Benbaki, Riade, et al. "Fast as CHITA: Neural Network Pruning with Combinatorial Opti-
mization.” arXiv preprint arXiv:2302.14623 (2023)

Prune a "heavy” neural network and significantly reduce the parameters with
minimal loss.

Prune a "heavy” neural network and significantly reduce the parameters with
minimal loss.

Two main approaches in literature :

F magnitude-based: use the absolute value of weight to determine its
importance

T impact-based: remove weights based on how much their removal would
impact the loss function

CBS (Combinatorial Brain Surgeon) [2] is an optimization-based approach that
considers the joint effect of multiple weights, but computationally expensive
(Hessian of the loss function).

Prune a "heavy” neural network and significantly reduce the parameters with
minimal loss.

Two main approaches in literature :
F magnitude-based: use the absolute value of weight to determine its
importance
T impact-based: remove weights based on how much their removal would

impact the loss function

CBS (Combinatorial Brain Surgeon) [2] is an optimization-based approach that
considers the joint effect of multiple weights, but computationally expensive
(Hessian of the loss function).

CHITA (Combinatorial Hessian free Iterative Thresholding Algorithm)

* consider a local quadratic approximation of the loss function

* propose an equivalent reformulation of the problem as an [y-constrained
sparse linear regression problem

* multi-stage algorithm that updates the local quadratic model during pruning,
to leave the small neighborhood of the current solution

1. Problem Setup and Related Work

Problem setup

Empirical loss function £(w) = % vazl li(w), w € RP the vector of trainable

parameters, N the number of data points.

Problem setup

Empirical loss function £(w) = % vazl li(w), w € RP the vector of trainable

parameters, N the number of data points.

Given a pre-trained weight vector @ € RP and a target level of sparsity 7 € (0, 1),
construct a new vector w

* The loss function at w is as close as possible to the loss before pruning;:
L(w) ~ L(w)

* The number of nonzero weights at w respects the sparsity budget:
[lwllo < (1 —7)p

local quadratic approximation of £ around the pre-trained weight w
1
L(w) = L(@) + VL(@) T (w— @) + S(w= @) TV2L(w)(w —) + O(||w — @||®)
g~ VL(w), H~ V2L(w) gradient and Hessian approximations and ignore
higher-order terms, £ can be locally approximated by:
1
Qo:E(fu)—i-gT(w—fu)—l-i(w—fu)TH(w—fu) (1)

minimize Qp(w) subject to a cardinality constraint
minQo(w) st lullo < k (2)

Related Work

* OBD (Optimal Brain Damage) framework : it is usually assumed that w is a
local optimum of £ and g = 0, searches for a single weight ¢ to prune with
minimal increase of the loss function,

OBS (Optimal Brain Surgeon): use empirical Fisher information matrix to
approximate Hessian on a small subset of the training data (n << N)
Vic(w)~ H=1%" Vi(w)Vi(w)T
OBD and OBS do not to consider the possible interactions that can arise
when pruning multiple weights.

* approximate the gradient by the stochastic gradient, using the same samples
for estimating the Hessian g = % >r . Vi(w)

* one-shot pruning methods can be followed by a few fine-tuning and
re-training steps to recover some of the accuracy lost when pruning (gradual
pruning).

2. CHITA (Combinatorial Hessian-free Iterative Thresholding Algorithm)

lp-regression formulation

The formulation is based on a critical observation that the Hessian approximation
in has a low-rank structure:

sz YWi(@)T = 2 AT A ¢ RP*P 3)
n

A=[Vi(),...,Vi(@)]T € R"*P has rank at most n << p

lp-regression formulation

The formulation is based on a critical observation that the Hessian approximation
in has a low-rank structure:

z 1
=1 > Vi(@)Vi(w)T = —ATA € RP¥P (3)
n =1 n

A= [Vi(),...,Vi(w)]T € R**P has rank at most n << p

Problem (2) can be equivalently written in the following Hessian-free form
(b=Aw—e)

min 2| — Awl® st [fullo < & @)

To improve solution quality, include a ridge-like regularizer to the objective in (4)
min Q(u) = 216~ Aull? + 2 |w—al> st |fullo <k ©)
the success of final pruned model depends heavily on the accuracy of the quadratic

approximation of the loss function. One way to achieve this is by including a
squared ly penalty, also known as the ridge, on the difference w — w.

Algorithm design

The optimization framework relies on the IHT (Iterative Hard Thresholding)
algorithm (slow for large parameters). They propose a new line search scheme and
use an active set strategy to update the weights on the nonzero weights upon
support stabilization.

Algorithm design

STRUCTURE-AWARE IHT UPDATE
* for any vector z, Zp(z) denotes the indices of k components of z that have the
largest absolute value.
z;, if 7 € I]C(.’It)

* hard thresholding operator Py(z) = for each i-th coordinate
0, otherwise

of Py(x).
THT applied to problem (5) leads to the following update:
wt = HT(wk k, 7%) = Pi(w' — 75V Q(w'))

- P, <wt - 7-5<AT(Ab — wt) + nA(wh — @))) (6)

where 7% is a suitable stepsize. The computation of HT(w*, k,7%) is in O(np)
(n << p).

Active set strategy restricts the IHT updates to an active set (a relatively small
subset of variables) and occasionally augmenting the active set with variables that
violate certain optimality conditions.

Algorithm design

DETERMINING A GOOD STEPSIZE

Appropriate stepsize 79 is crucial for fast convergence of the IHT algorithm. A
common choice is to use a constant stepsize of 7% = %, where L is the Lipschitz

constant of the gradient of the objective function.

Backtracking line search starts with a relatively large estimate of the stepsize and
iteratively shrinking the step size until a sufficient decrease of the objective
function is observed. However multiple evaluations of the objective function can
be computationally expensive.

Algorithm design

DETERMINING A GOOD STEPSIZE

Appropriate stepsize 79 is crucial for fast convergence of the IHT algorithm. A

common choice is to use a constant stepsize of 7% = %, where L is the Lipschitz

constant of the gradient of the objective function.

Backtracking line search starts with a relatively large estimate of the stepsize and
iteratively shrinking the step size until a sufficient decrease of the objective
function is observed. However multiple evaluations of the objective function can
be computationally expensive.

novel line search method improves the convergence speed of IHT, finds the stepsize
that leads to the maximum decrease in the objective.
min g(r*) = Q(Pi(v' — 'V Q")) (7
TS>

g(7°) is a piecewise quadratic function

Algorithm design

DETERMINING A GOOD STEPSIZE

Appropriate stepsize 79 is crucial for fast convergence of the IHT algorithm. A
common choice is to use a constant stepsize of 78 = L, where L is the Lipschitz

L)
constant of the gradient of the objective function.

Backtracking line search starts with a relatively large estimate of the stepsize and
iteratively shrinking the step size until a sufficient decrease of the objective
function is observed. However multiple evaluations of the objective function can
be computationally expensive.

novel line search method improves the convergence speed of IHT, finds the stepsize
that leads to the maximum decrease in the objective.
min g(r*) = Q(Pi(v' — 'V Q")) (7
TS>

g(7°) is a piecewise quadratic function

The single-stage algorithm CHITA takes as input a low-rank matrix A, the initial
weight w and the [p-constraint k; and returns a pruned weight w that serves as a
good solution to (5).

Multi-stage CHITA 4+

The final performance/accuracy of the pruned network depends heavily on the
quality of the local quadratic approximation (especially for high levels of sparsity).

Multi-stage CHITA 4+

The final performance/accuracy of the pruned network depends heavily on the
quality of the local quadratic approximation (especially for high levels of sparsity).

CHITA++ gradually increases the sparsity constraint and takes a small step
towards higher sparsity in each stage to ensure the validity of the local quadratic
approximation. (unlike other gradual pruning approach that also includes
fine-tuning steps in which SGD is applied to further optimize the parameters for
better results) multi-stage method is a one-shot pruning method and only requires
constructing and solving Problem (5)

Algorithm 1 CHITA++: a multi-stage pruning procedure
Require: Pre-trained weights w, a target sparsity level 7,
number of stages f.

1: Imitialization: Construct a increasing sequence of spar-

sity parameters 7y, T2, ..., Tf = 7; and set w? =

2: fort=1,2,..., fdo

3: Atcurrent solution w!~!, calculate the gradient based
on a batch of n data points and construct the matrix
A given in (4).

4: Obtain a solution w' to problem (8) by invoking
CHITA(A,w,k) with w = w!~! and number of
nonzeros k = | (1 — 7¢)p].

5: end for

Outline

3. Experimental Results
* Compare with one shot pruning approaches

#* Performance on gradual pruning

10

RUNTIME COMPARISON

* MP (Magnitude Pruning)

* WF (WoodFisher)

* CBS (Combinatorial Brain Surgeon)

* M-FAC (Matrix-Free Approximate Curvature)

11

RUNTIME COMPARISON

Using more samples for Hessian and gradient approximation results in better

accuracy.

—~
) 1000
e
o 21
O 100+
g3 "
= %
S 0]

5]
(]
g 7
o= 14
p) o R
= -,* —— CHITA, ResNet20 ==@== CHITA, MLPNet
é 27 I M-FAC, ResNet20 M-FAC, MLPNet

0.14, T T T T
0 5k 10k 15k 20k

Fisher sample size (n)

Figure 1: Runtime comparison between our single-stage ap-
proaches and M-FAC (the fastest among the competitive methods)
while pruning MLPNet and ResNet20 to 90% sparsity level (90%
of the entries are zero). Note that Woodfisher and CBS are at least
1000 times slower than M-FAC. The error bar represents the stan-
dard error over four runs. CHITA here uses IHT to find a support
and performs a back-solve on the found support.

11

ACCURACY OF THE PRUNED MODELS

Network Sparsity MP WF CBS CHITA CHITA++

0.5 9393 94.02 93.96 | 93.97 (£0.03) 95.97 (x0.05)
0.6 9378 93.82 93.96 | 93.94 (£0.02) 95.93 (x0.04)

MLPNet 0.7 93.62 9377 93.98 | 93.80 (x0.01) 95.89 (+0.06)
on MNIST 0.8 9289 93.57 93.90 | 93.59 (£0.03) 95.80 (x0.03)
(93.97%) 0.9 90.30 91.69 93.14 | 92.46 (+0.04) 95.55 (+0.03)

0.95 83.64 85.54 88.92 | 88.09 (£0.24) 94.70 (+0.06)
0.98 3225 3826 5545 | 46.25(%0.85) 90.73 (x0.11)

0.3 90.77 91.37 91.35 | 91.37 (£0.04) 91.25 (+0.08)
0.4 89.98 91.15 91.21 | 91.19 (x0.05) 91.20 (x0.05)

ResNet20 05 | 8844 9023 90.58 | 90.60 (x0.07) 9104 (+0.09)
onCIFARIO | 0.6 |8524 87.96 88.88 | 89.22(0.19) 90.78 (:0.12) ;
(91.36%) 07 | 7879 81.05 81.84 | 84.12(20.38) 9038 (:0.10) Our single-stage method
08 | 5401 6263 51.28 | 57.90(x1.04) 8872 (20.17) achieves comparable
09 | 1179 1149 13.68 | 1560 (x1.79) 7932 (x1.19)
results to other
03 | 7160 7188 71.88 | 71.87(20.01) 71.86(20.02)
MobileNetvl | 04 | 6916 TLIS 7145 | 7150 2002) 7161 (20.02) state-of-the-art
05 | 6261 6891 7021 | 70.42(20.02) 7099 (£0.04) :
"';7“1";““5';”)“ 06 | 4194 6090 6637 | 6730(20.03) 6954 (+0.01) approaches with much
: 0.7 6.78 2936 55.11 | 59.40 (x0.09) 66.42 (+0.03) less time consumption.
08 | 011 024 1638 | 29.78(20.18) 47.45 (0.25)

Table 1: The pruning performance (model accuracy) of various
methods on MLPNet, ResNet20, MobileNetV1. As to the perfor-
mance of MP, WF, and CBS, we adopt the results reported in Yu
et al. (2022). We take five runs for our single-stage (CHITA) and
multi-stage (CHI TA++) approaches and report the mean and stan-
dard error (in the brackets). The best accuracy values (significant)
are highlighted in bold. Here sparsity denotes the fraction of zero
weights in convolutional and dense layers.

12

One-shot pruning on ResNet50 (large network)

Test accuracy (in %)

=3
S
n

N
=)
n

N
)
n

o
n

Algorithm

=—8— CHITA
MFAC

——p

T T
0.5 0.6 0.7 0.8 0.9

Sparsity (proportion of zero entries)

(a) Test accuracy for one-shot pruning on ResNet50.

Objective value

(b) The objective value in (8) for pruning ResNet50.

I3
S
I

I
)
n

N
S
I

Algorithm
——@— CHITA
MFAC
T T T T T
0.5 0.6 0.7 0.8 0.9

Sparsity (proportion of zero entries)

CHITA achieves a lower
objective value, and in
this case, it also results
in a better test accuracy

13

Sparsity schedule in multi-stage procedure

Sparsity schedule: exp —e— const —e— linea
0.8
0.2 : 04 0499 0 %%
80
2
% 0.6 I
ol ISt
=) = 60
%) . a
0.4 Sparsity schedule 154
exp ©
—e— const B 404
inec 3}
0.24 —e— linear = R
T ' ! 204 0.9
5 10 15 M
Stage 00 . 00 . o9 . o9 09
T T T
Figure 3: Three different sparsity schedules: exponential, lin 5 10 15
and constant schedules. Stage

14

Sparsity schedule in multi-stage procedure

Sparsity schedule: exp —e— const —e— linea
0.8
0.2 : 04 0499 0 %%
80
2
% 0.6 I
ol ISt
=) = 60
%)) a
0.4 Sparsity schedule 154
exp ©
—e— const B 404
inec 3}
0.24 —e— linear = R
T ' ! 204 0.9
5 10 15 M
Stage 00 . 00 . o9 . o9 09
T T T
Figure 3: Three different sparsity schedules: exponential, lin 5 10 15
and constant schedules. Stage

linear mesh outperforms the exponential mesh in the first few iterations, but its
performance drops dramatically in the last two iterations. The reason is that in
high sparsity levels, even a slight increase in the sparsity rate leads to a large drop
in accuracy.

Taking small “stepsizes” in high sparsity levels allows the exponential mesh to
fine-tune the weights in the last several stages and achieve good performance.

14

Performance on gradual pruning

Alternate between pruning steps where a sparse weight is computed and
fine-tuning steps on the current support via Stochastic Gradient Descent (SGD).

Sparsity ~ Pruned Relative Drop (%) Remaining

Method (%) Accuracy W # of params
Incremental 74.11 67.70 -4.11 1.09 M
STR 75.28 68.35 -5.07 1.04 M
Global Magnitude ~ 75.28 69.90 -2.92 1.04 M
WoodFisher 75.28 70.09 -2.65 1.04 M
CHITA 75.28 71.11 -1.23 1.04 M
Incremental 89.03 61.80 -12.46 046 M
STR 89.01 62.10 -13.75 046 M
Global Magnitude 89.00 63.02 -12.47 0.46 M
WoodFisher 89.00 63.87 -11.29 0.46 M
CHITA 89.00 67.68 -6.00 046 M

Table 2: Results of gradually pruning MobilenetV1 in 75% and
89% sparsity regimes, comparing CHI TA to other baselines (Dense
accuracy: 72.00%). We also include the relative drop in accuracy to
account for different methods starting from different dense weights.
CHITA numbers are averaged across two runs. Numbers for other
baselines are taken from Singh & Alistarh (2020).

15

Performance on gradual pruning

Sparsity ~ Pruned Relative Drop (%) Remaining

Method (%) Accuracy % # of params
GMP +LS 90.00 7391 -3.62 256 M
Variational Dropout ~ 90.27 73.84 -3.72 249M
RIGL + ERK 90.00 73.00 -4.94 256 M
SNFS +LS 90.00 72.90 -5.32 256 M
STR 90.23 74.31 -3.51 249M
Global Magnitude 90.00 75.20 -2.42 256 M
DNW 90.00 74.00 -4.52 2.56 M
‘WoodFisher 90.00 75.21 -2.34 256 M
CHITA 90.00 75.29 -2.23 2.56 M
GMP 95.00 70.59 -7.95 1.28M
Variational Dropout ~ 94.92 69.41 -9.49 1.30M
Variational Dropout ~ 94.94 71.81 -6.36 1.30M
RIGL + ERK 95.00 70.00 -8.85 1.28M
DNW 95.00 68.30 -11.31 1.28M
STR 94.80 70.97 -7.84 1.33M
STR 95.03 70.40 -8.58 1.27M
Global Magnitude 95.00 71.79 -6.78 1.28M
WoodFisher 95.00 72.12 -6.35 1.28 M
CHITA 95.00 73.46 -4.61 1.28 M
GMP +LS 98.00 57.90 -24.50 051 M
Variational Dropout ~ 98.57 64.52 -15.87 036 M
DNW 98.00 58.20 -24.42 051 M
STR 98.05 61.46 -20.19 0.50 M
STR 97.78 62.84 -18.40 0.57M
Global Magnitude 98.00 64.28 -16.53 0.51 M
WoodFisher 98.00 65.55 -14.88 0.51 M
CHITA 98.00 69.80 -9.36 0.51M

16

Table 3: Results of oraduallv prunine a ResNetS0 network in

Benbaki, R. et al. Fast as CHITA: Neural Network Pruning with
Combinatorial Optimization. arXiv preprint arXiv:2502.14623 (2023).

Yu, X., Serra, T., Ramalingam, S. & Zhe, S. The combinatorial brain
surgeon: pruning weights that cancel one another in neural

networks. in International Conference on Machine Learning (2022),
25668-25683.

17

	Problem Setup and Related Work
	CHITA (Combinatorial Hessian-free Iterative Thresholding Algorithm)
	Experimental Results
	Compare with one shot pruning approaches
	Performance on gradual pruning

	References

