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Motivation

Prune a ”heavy” neural network and significantly reduce the parameters with
minimal loss.

Two main approaches in literature :

I magnitude-based: use the absolute value of weight to determine its
importance

I impact-based: remove weights based on how much their removal would
impact the loss function

CBS (Combinatorial Brain Surgeon) [2] is an optimization-based approach that
considers the joint effect of multiple weights, but computationally expensive
(Hessian of the loss function).

CHITA (Combinatorial Hessian free Iterative Thresholding Algorithm)

I consider a local quadratic approximation of the loss function

I propose an equivalent reformulation of the problem as an l0-constrained
sparse linear regression problem

I multi-stage algorithm that updates the local quadratic model during pruning,
to leave the small neighborhood of the current solution
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Outline

1. Problem Setup and Related Work

2. CHITA (Combinatorial Hessian-free Iterative Thresholding Algorithm)

3. Experimental Results

I Compare with one shot pruning approaches

I Performance on gradual pruning

2



Problem setup

Empirical loss function L(w) = 1
N
∑N

i=1 li(w), w ∈ Rp the vector of trainable
parameters, N the number of data points.

Given a pre-trained weight vector w̄ ∈ Rp and a target level of sparsity τ ∈ (0, 1),
construct a new vector w

I The loss function at w is as close as possible to the loss before pruning:
L(w) ≈ L(w̄)

I The number of nonzero weights at w respects the sparsity budget:
||w||0 ≤ (1− τ)p

local quadratic approximation of L around the pre-trained weight w̄

L(w) = L(w̄) +∇L(w̄)T (w − w̄) +
1

2
(w − w̄)T∇2L(w̄)(w − w̄) + O(||w − w̄||3)

g ≈ ∇L(w̄), H ≈ ∇2L(w̄) gradient and Hessian approximations and ignore
higher-order terms, L can be locally approximated by:

Q0 = L(w̄) + gT (w − w̄) +
1

2
(w − w̄)T H(w − w̄) (1)

minimize Q0(w) subject to a cardinality constraint
min

w
Q0(w) s.t. ||w||0 ≤ k (2)
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Related Work

I OBD (Optimal Brain Damage) framework : it is usually assumed that w̄ is a
local optimum of L and g = 0, searches for a single weight i to prune with
minimal increase of the loss function,

I OBS (Optimal Brain Surgeon): use empirical Fisher information matrix to
approximate Hessian on a small subset of the training data (n << N)
∇2L(w̄) ≈ H = 1

n
∑n

i=1 ∇li(w̄)∇li(w̄)T

OBD and OBS do not to consider the possible interactions that can arise
when pruning multiple weights.

I approximate the gradient by the stochastic gradient, using the same samples
for estimating the Hessian g = 1

n
∑n

i=1 ∇li(w̄)

I one-shot pruning methods can be followed by a few fine-tuning and
re-training steps to recover some of the accuracy lost when pruning (gradual
pruning).
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l0-regression formulation

The formulation is based on a critical observation that the Hessian approximation
in has a low-rank structure:

H =
1

n

n∑
i=1

∇li(w̄)∇li(w̄)T =
1

n
AT A ∈ Rp×p (3)

A = [∇l1(w̄), . . . ,∇ln(w̄)]T ∈ Rn×p has rank at most n << p

Problem (2) can be equivalently written in the following Hessian-free form
(b = Aw̄ − e)

min
w

1

2
||b − Aw||2 s.t. ||w||0 ≤ k (4)

To improve solution quality, include a ridge-like regularizer to the objective in (4)

min
w

Q(w) =
1

2
||b − Aw||2 +

nλ
2

||w − w̄||2 s.t. ||w||0 ≤ k (5)
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1

2
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2
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the success of final pruned model depends heavily on the accuracy of the quadratic
approximation of the loss function. One way to achieve this is by including a
squared l2 penalty, also known as the ridge, on the difference w − w̄.
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Algorithm design

The optimization framework relies on the IHT (Iterative Hard Thresholding)
algorithm (slow for large parameters). They propose a new line search scheme and
use an active set strategy to update the weights on the nonzero weights upon
support stabilization.

STRUCTURE-AWARE IHT UPDATE

I for any vector x, Ik(x) denotes the indices of k components of x that have the
largest absolute value.

I hard thresholding operator Pk(x) =
{

xi , if i ∈ Ik(x)
0, otherwise

for each i-th coordinate

of Pk(x).
I IHT applied to problem (5) leads to the following update:

wt+1 = HT(wk , k, τ s) = Pk(wt − τ s∇Q(wt))

= Pk

(
wt − τ s

(
AT (Ab − wt) + nλ(wt − w̄)

))
(6)

where τ s is a suitable stepsize. The computation of HT(wk , k, τ s) is in O(np)
(n << p).

Active set strategy restricts the IHT updates to an active set (a relatively small
subset of variables) and occasionally augmenting the active set with variables that
violate certain optimality conditions.
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Algorithm design

DETERMINING A GOOD STEPSIZE

Appropriate stepsize τ s is crucial for fast convergence of the IHT algorithm. A
common choice is to use a constant stepsize of τ s = 1

L , where L is the Lipschitz
constant of the gradient of the objective function.

Backtracking line search starts with a relatively large estimate of the stepsize and
iteratively shrinking the step size until a sufficient decrease of the objective
function is observed. However multiple evaluations of the objective function can
be computationally expensive.

novel line search method improves the convergence speed of IHT, finds the stepsize
that leads to the maximum decrease in the objective.

min
τs≥0

g(τ s) = Q
(

Pk
(
wt − τ s∇Q(wt)

))
(7)

g(τ s) is a piecewise quadratic function

The single-stage algorithm CHITA takes as input a low-rank matrix A, the initial
weight w̄ and the l0-constraint k; and returns a pruned weight w that serves as a
good solution to (5).
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Multi-stage CHITA++

The final performance/accuracy of the pruned network depends heavily on the
quality of the local quadratic approximation (especially for high levels of sparsity).

CHITA++ gradually increases the sparsity constraint and takes a small step
towards higher sparsity in each stage to ensure the validity of the local quadratic
approximation. (unlike other gradual pruning approach that also includes
fine-tuning steps in which SGD is applied to further optimize the parameters for
better results) multi-stage method is a one-shot pruning method and only requires
constructing and solving Problem (5)
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RUNTIME COMPARISON

I MP (Magnitude Pruning)
I WF (WoodFisher)
I CBS (Combinatorial Brain Surgeon)
I M-FAC (Matrix-Free Approximate Curvature)

Using more samples for Hessian and gradient approximation results in better

accuracy.
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ACCURACY OF THE PRUNED MODELS

Our single-stage method
achieves comparable
results to other
state-of-the-art
approaches with much
less time consumption.
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One-shot pruning on ResNet50 (large network)

CHITA achieves a lower
objective value, and in
this case, it also results
in a better test accuracy
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Sparsity schedule in multi-stage procedure

linear mesh outperforms the exponential mesh in the first few iterations, but its
performance drops dramatically in the last two iterations. The reason is that in
high sparsity levels, even a slight increase in the sparsity rate leads to a large drop
in accuracy.

Taking small “stepsizes” in high sparsity levels allows the exponential mesh to
fine-tune the weights in the last several stages and achieve good performance.

14



Sparsity schedule in multi-stage procedure

linear mesh outperforms the exponential mesh in the first few iterations, but its
performance drops dramatically in the last two iterations. The reason is that in
high sparsity levels, even a slight increase in the sparsity rate leads to a large drop
in accuracy.

Taking small “stepsizes” in high sparsity levels allows the exponential mesh to
fine-tune the weights in the last several stages and achieve good performance.

14



Performance on gradual pruning

Alternate between pruning steps where a sparse weight is computed and
fine-tuning steps on the current support via Stochastic Gradient Descent (SGD).
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Performance on gradual pruning
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