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@ Introduction

ic Optimization



o First-order methods to solve convex quadratic programs (QPs),
Douglas-Rachfors Splitting:
o low per-iteration cost.
o suffer from slow convergence to accurate solutions.
Learn a warm-start for a popular first-order method (DR splitting), two
modules:
o feedforward neural network block (input the parameters of the QP) and
outputs a warm-start,
o block which performs a fixed number of iterations of DR splitting and outputs
a candidate solution.

o A key feature is the ddifferentiation through the DR iterations.

o Provide generalization bounds that improve with the number of training
problems and the number of iterations simultaneously.

o Applied to three real-time applications and they are able to significantly
reduce the number of iterations required to obtain high-quality solutions
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Other Papers: This Paper:

. o With a Loss that takes into account
o Learning to warmstart solvers

) ) some iterations of the solver
o Unrolling to learn Step Sizes for an

Algorithm o Unrolling to learn warmstart
o Learning Surrogate Model ° Noc.iap?proxmatlon and no surrogates
mode
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© Quadratic Problems and KKT
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Formulation Parametric (convex) QP

min(1/2)x" Px + ¢ x

s.tAx+s=0b
s>0
with
o parameter 6 = (vec(P), vec(A), c, b) € RY,

o decision variables x € R” and s € R,

o P is a positive semidefinite matrix in S7*”,

@ b and c are vectors in R™ and R" respectively,
)

For a matrix Y, vec(Y ) denotes the vector obtained by stacking the columns of Y .

quickly solve the QP with 6 randomly drawn from a distribution D with compact
support set ©, assuming that it admits an optimal solution for any 6 € ©.
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The KKT optimality conditions of the QP problem (primal and dual feasibility,
and complementary slackness) are

KKT optimality conditions

Ax +s=b,

ATy + Px+c=0,
s >0,

y =0,
sly=0,

where y € R™ is the dual variable to QP problem.
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We can compactly write these conditions as a linear complementarity problem,
i.e., the problem of finding
u=(x,y) e R™"

such that
Co>ul Mu+qeC*,

— L A (m+n)x(m+n)

and g = (¢, b) € R™", C =R" x R} and C* = {0}" x R} is the dual cone of C.

where
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This problem is equivalent to:
finding v € R™ + m that satisfy the following inclusion
0€ Mu+ g+ Nc(u)

where N¢(u) is the normal cone of C defined as
Nc(u)={x|(y —u)"x <0, Vy €C}is ueC and otherwise.

To ensure convergence of the algorithm (that we define next) is the fact that
Mu + q + Nc(u) is the maximal monotone.

This follows from P = 0, C convex polyhedron, and the starting QP admitting
an optimal solution.
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© Douglas-Rachfors (DR) splitting
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For an operator F the resolvent is (I + F)™!

DR consists on evaluating the resolvent of the operators Mu + g and M.
The resolvent of Mu + g is (M +1)"}(z — q)

and for A is M¢(z), i.e. the projection onto C.

Hence we obtain the DR algorithm:

Algorithm 1 The DR Splitting algorithm for k iterations to solve problem .
Inputs: initial point 2%, problem data (M, q), tolerance €, k number of iterations
Output: approximate solution z*
fori=0,...,k—1do

utt = (M+ )7 (2~ q)

@t =Tl (2u — 2Y)

L = iy il il
end

End-to-End to Warm-Start Quadratic Optimization 12/34



Algorithm 1 The DR Splitting algorithm for % iterations to solve problem .
Inputs: initial point 2°, problem data (M, q), tolerance ¢, k number of iterations
Output: approximate solution z*
fori=0,....,k—1do

W= (£ 1) )

@ = T (2uit! — 27)

Sl — iy il gt
end

o The linear system defined in the first step is always solvable

o The projection onto C simply clips negative values to zero and leaves
non-negative values unchanged.

Compact Formulation DR:

Z = Ty(2')  where  Ty(2) = z+Nc2(M+1) " (z—q)—2)—(M+1)"(z—q)
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Compact Formulation DR:

Z = Ty(z) where  Ty(z) = 2+ Me(2M+1) "} (z—q)—2)—(M+1)}(z—q)

o DR splitting is guaranteed to converge to a fixed point z* € fix Ty such
that Ty(z*) = z*.

o DR splitting returns an approximate solution zX from which we can recover
an approximated primal-dual solution of the original QP by computing

Ky ) =u =M+ 1) —q)

and sk = b — Axk
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@ End-to-End Learning
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DR splitting with a learned warm-start

Standard DR splitting

NN with |,z
0 —Zw —
? kDR | . k() 9_{ weights W © kDR
iterations

9 —| iterations

12 (6)— Lo(23(9))

No learning

Learn with V¢ through the DR iterates

Two Modules:
o Standard Multi-Layer Perceptron with weigths W:

2w(0) = ho(he-1(--- h(9)))

with hi(y)) = (Wiys + br)+.
o Optimization Block: k-iterations of DR splitting

k _ _k
Ty (2w (0)) = Zw(e)



The loss function is the fixed-point residual of the operator Ty:
lo(2) = 1| To(2) — 2l2

The learning problem consists then in minimizing, w.r.t W, the risk:
Eo~p [lo(T5 (hw(0))]

To differentiate through the second block we have just to observe that one
iteration simply consists of solving linear systems and projections onto C: linear
systems are differentiable as they always have a unique solution and the projection
is differentiable (everywhere less than in zero) as it simply consists in clipping
non-negative values to zero.
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© Generalization Bounds

End-to-End to Warm-Start Quadratic Optimization



Upper bound one the expected loss R(hyy) of our framework for any hyyinH.
DR splitting achieves a linear convergence rate, i.e.

distfit, To(2) < Podistfir, z

where dists(x) = min{||x —y|| |y € S} and 5y € (0,1)
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Theorem 1. Let 8 = maxgyeo By for Py as in . Assume that H is the set of mappings
defined in Section@ with the additional assumption that for any hyy € H, distaxr, (hw(0)) <
B for some B > 0 and any 6 € ©. Then, with probability at least 1 — 0 over the draw of i.i.d
samples,

R(hyw) < R(hyw) +2V28" (2rad(H) + Blog(1/6)/(2N)), Vhy € H,

where k is the number of iterations of DR splitting in the second module, N is the number
of training samples, rad(H) is the Rademacher complexity of H, and € (0,1).
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In the case of NNs linear functions with the bounded norm or 2-layer NNs with
ReLU activation function, we can provide a bound on the generalization error of
our framework which makes the dependence of k and N more explicit.

Corollary 2. Let H be the set of linear functions with bounded norm, i.e., H = {h | h(0) =
WO} where € RY, W e R4 gnd (1/2)|W]|[% < B for some B > 0. Then, with

probability at least 1 — & over the draw of i.i.d samples,
R(hw) < R(hy) + 2v23 <2p2(0)\/2d/N + Blog(1/5) /(2N)> , VhyeH,

where k and N are as defined in Theorem[1} and ps(0) = maxgee ||0|]2 (Mohri et ol
Thm. 5.10).
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e Numerical Experiments
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o Example problems are QPs problem repeatedly solved in control and portfolio
optimization.

@ 10000 training problems, 2000 test
o MLP with 3 hidden layers of size 500 each.
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minimize  #2Qrar + i aTQw: + ul Ruy

subject to x4 = Axy+Buy t=0,...,T -1,
Uin S U S Upaxy t=0,...,7—1
Toin S X < Tpax t=1,...,T,

Lo = Tinit

where the states z; € R}, and the inputs u; € R™ are subject to lower and upper bounds.
Matrices A € R™*"™ and B € R"**™ define the system dynamics. The horizon length is

T and the parameter 0 is initial state @iy Matrices @ € S* and R € S'", define the state

and input costs at each stage, and Q7 € S'" the final stage cost.

states x; € R{
inputs uy € R™
the matrices A and B define the system dynamics.

Q and S defines the state and input costs at each stage.

parameter 0 is the initial state x;,;
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Time horizon T=50

Table 1: Oscillating masses problem. We compare the number of iterations of DR splitting
required to reach different levels of accuracy with different warm-starts (learned warm-start
with & = 5,15,50, no warm-start, and a nearest neighbor warm-start). The reduction
columns are the iterations reduced as a fraction of the no learning iterations.

no learning nearest neighbor train k =5 train k = 15 train k& = 50
€ iters iters reduction iters reduction iters reduction iters reduction
0.01 381 353 0.07 279 0.27 176 0.54 127 0.67
0.001 651 616  0.05 555  0.15 438  0.33 338 048
0.0001 1019 973 0.05 932 0.09 816  0.20 663  0.35
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minimize  (yr — y5N) 7 Qyr — yi") + 05 (e — 4T Qr(ye — yi) + uf Ruy
subject to 441 = A(v)ay + B(v)uy + E(v)d, t=0,...,7 —1

lug] <@, |ug—wy| <Au, t=0,....,T—1

y=Cxy, t=0,....,T—1

Ty = Tinit,

state x, € R*

input u; € R3

ot € R driver steering input

ye € R3 output

yref € R3 reference trajectory

Q, Q7 defines the states costs, R the input costs and C the output costs.
v € R longitudinal velocity

A, B, E parametrize v

i, Vu bound the magnitude of inputs and change with inputs.

© ©6 6 6 06 6 oo o o o

parameter 6 = (Xinir, v, U._1, (v ) o, (04) o)
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Time horizon T=30

Table 2: Vehicle problem. We compare the number of iterations of DR splitting required
to reach different levels of accuracy with different warm-starts (learned warm-start with
k = 5,15,50, no warm-start, and a nearest neighbor warm-start). The reduction columns
are the iterations reduced as a fraction of the no learning iterations.

no learning nearest neighbor train k =5 train k =15 train k = 50
€ iters iters reduction iters reduction iters reduction iters reduction
0.01 639 520  0.19 203 0.68 48 0.92 48 0.92
0.001 1348 1163 0.14 895  0.34 351 0.74 299  0.78
0.0001 2126 1948 0.08 1653  0.22 1006  0.53 882  0.59
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maximize pplax — a7 Y2
subject to 1Tz =1, x>0,

x € R" portfolio

1 € R"” expected returns

1/p > 0 the risk-aversion parameter
>~ € S7 the covariance.

parameter 6 = p

End-to-End to Warm-Start Quadratic Optimization



Table 3: Markowitz problem. We compare the number of iterations of DR splitting required
to reach different levels of accuracy with different warm-starts (learned warm-start with
k = 5,15,50, no warm-start, and a nearest neighbor warm-start). The reduction columns
are the iterations reduced as a fraction of the no learning iterations.

no learning nearest neighbor train k =5 train k = 15 train k& = 50
€ iters iters reduction iters reduction iters reduction iters reduction
0.01 14 7 0.5 7 0.5 9 0.36 11 0.21
0.001 54 24 0.56 22 0.59 16 0.7 19 0.65
0.0001 186 148 0.2 147 0.21 72 0.61 61 0.67
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Figure 2:  We plot the test fixed point residuals for different warm-starts of DR splitting.
We train our architecture with & = 5,15, and 50 DR iterations with loss function . We
compare our results against a random initialization (black) and against warm-starting DR
splitting with the nearest neighbor from the train set (magenta). Left: oscillating masses
example. Middle: vehicle dynamics example. Right: portfolio optimization example.
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@ Conclusion and Possible Extensions (?)

End-to-End to Warm-Start Quadratic Optimization



In order to use a similar approach for the SGD or for the Bundle method we first
need each iteration in order to:

o deduce a fixed point equation
o assures the differentiability or at least the sub-differentiability
We can start with the easier algorithm the Gradient Descent.
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In this case if we denote by z € R™ the Lagrangian multipliers vector and we want
minimize /(z), An iteration is given by

Ztt =2z — a0,1(z)
hence the fixed point iteration is
z=2z—ad,l(z)

This means that
T(z) =z — ad,l(2)

and we are minimizing
1T(2) = zll2 = [|z = 2+ a0:1(2)|]2 = ||ad:/(2)||2

and this is not necessarily a good idea as we do not necessarily calculate the
second derivative 0,0,/(z).

For example if /(z) = miny z'x, then 8/(z) = argmin, z'x and we cannot
calculate 92/(z) = d,argmin, ztx The only possibility is to approximate the
derivative of the argmin.
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For the bundle method, we can write an iteration as:

i+l _ i (ot _
Zt =z +argmjx(jn2|Br:(ng+aJ))

Here Z' is the stabilization point and is given by

y {zi-_l ifl(z') < I(Z'~1)

z' otherwise

Clearly it is not possible to write Z' without taking into account all the trajectory
of z composed by the algorithm. Anyway we can observe that near to the
optimum Z ~ z and so, also in this case consider a functor T of the form

T(z) = z + Darg mjx(jrréi’g(gfd + a;))
. Hence, also in this case we are minimizing || T(z) — z||2 =
||z —z+ O,arg maxd(minjeBi(gjtd + )| = ||0zarg maxd(minjeBi(gjtd + oj)||2.
In this case is even "worst” than the SGD as we need to compute
arg maxg(min;ep,(gfd + ;) and &2arg max4(min;ep,(gfd + ;). Both these
sub-gradients need an approximation.
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