End-to-End Learning to Warm-Start for Real-Time Quadratic Optimization

Rajiv Sambharya, Georgina Hall , Brandon Amos, and Bartolomeo Stellato

presented by Francesco Demelas

- Quadratic Problems and KKT
- Ouglas-Rachfors (DR) splitting
- End-to-End Learning
- 6 Generalization Bounds
- O Numerical Experiments
- Conclusion and Possible Extensions (?)

- Quadratic Problems and KKT
- 3 Douglas-Rachfors (DR) splitting
- End-to-End Learning
- 5 Generalization Bounds
- 6 Numerical Experiments
- 7 Conclusion and Possible Extensions (?)

- First-order methods to solve convex quadratic programs (QPs), Douglas-Rachfors Splitting:
 - low per-iteration cost.
 - suffer from *slow convergence* to accurate solutions.

Learn a warm-start for a popular first-order method (DR splitting), two modules:

- *feedforward neural network* block (input the parameters of the QP) and outputs a warm-start,
- block which performs a *fixed number of iterations of DR splitting* and outputs a candidate solution.
- A key feature is the ddifferentiation through the DR iterations.
- Provide **generalization bounds** that improve with the number of training problems and the number of iterations simultaneously.
- Applied to three real-time applications and they are able to significantly reduce the number of iterations required to obtain high-quality solutions

Other Papers:

- Learning to warmstart solvers
- Unrolling to learn Step Sizes for an Algorithm
- Learning Surrogate Model

This Paper:

- With a Loss that takes into account some iterations of the solver
- Unrolling to learn warmstart
- No approximation and no surrogates model

- Quadratic Problems and KKT
- 3 Douglas-Rachfors (DR) splitting
- End-to-End Learning
- 6 Generalization Bounds
- 6 Numerical Experiments
- Conclusion and Possible Extensions (?)

Quadratic Problems

Formulation Parametric (convex) QP

 $min(1/2)x^T P x + c^T x$ s.t.Ax + s = b s ≥ 0

with

- parameter $\theta = (vec(P), vec(A), c, b) \in \mathbb{R}^d$,
- decision variables $x \in \mathbb{R}^n$ and $s \in \mathbb{R}^m$,
- P is a positive semidefinite matrix in $S_{+}^{n \times n}$,
- b and c are vectors in \mathbb{R}^m and \mathbb{R}^n respectively,
- For a matrix Y, vec(Y) denotes the vector obtained by stacking the columns of Y .

Goal:

quickly solve the QP with θ randomly drawn from a distribution \mathcal{D} with compact support set Θ , assuming that it admits an optimal solution for any $\theta \in \Theta$.

The KKT optimality conditions of the QP problem (primal and dual feasibility, and complementary slackness) are

KKT optimality conditions

Ax + s = b, ATy + Px + c = 0, $s \ge 0,$ $y \ge 0,$ $s \perp y = 0,$

where $y \in \mathbb{R}^m$ is the dual variable to QP problem.

We can compactly write these conditions as a linear complementarity problem, i.e., the problem of finding

$$u = (x, y) \in \mathbb{R}^{m+n}$$

such that

$$\mathcal{C} \ni u \perp Mu + q \in \mathcal{C}^*,$$

where

$$M = \begin{pmatrix} P & A^T \\ A & 0 \end{pmatrix} \in \mathbb{R}^{(m+n) \times (m+n)}$$

and $q = (c, b) \in \mathbb{R}^{m+n}$, $\mathcal{C} = \mathbb{R}^n \times \mathbb{R}^m_+$ and $\mathcal{C}^* = \{0\}^n \times \mathbb{R}^m_+$ is the dual cone of \mathcal{C} .

This problem is equivalent to:

finding $u \in \mathbb{R}^m + m$ that satisfy the following inclusion

 $0 \in Mu + q + \mathcal{N}_{\mathcal{C}}(u)$

where $\mathcal{N}_{\mathcal{C}}(u)$ is the normal cone of \mathcal{C} defined as $\mathcal{N}_{\mathcal{C}}(u) = \{x | (y - u)^T x \leq 0, \forall y \in \mathcal{C}\}$ is $u \in \mathcal{C}$ and otherwise.

To **ensure convergence** of the algorithm (that we define next) is the fact that $Mu + q + N_C(u)$ is the **maximal monotone**. This follows from $P \succeq 0$, C **convex polyhedron**, and the starting QP **admitting**

an optimal solution.

- 2 Quadratic Problems and KKT
- Ouglas-Rachfors (DR) splitting
- End-to-End Learning
- 6 Generalization Bounds
- 6 Numerical Experiments
- 7 Conclusion and Possible Extensions (?)

For an operator F the *resolvent* is $(I + F)^{-1}$ DR consists on evaluating the *resolvent* of the operators Mu + q and $\mathcal{N}_{\mathcal{C}}$. The resolvent of Mu + q is $(M + I)^{-1}(z - q)$ and for $\mathcal{N}_{\mathcal{C}}$ is $\Pi_{\mathcal{C}}(z)$, i.e. the projection onto \mathcal{C} . Hence we obtain the DR algorithm:

Algorithm 1 The DR Splitting algorithm for k iterations to solve problem (4). Inputs: initial point z^0 , problem data (M, q), tolerance ϵ , k number of iterations Output: approximate solution z^k for $i = 0, \ldots, k - 1$ do $u^{i+1} = (M + I)^{-1} (z^i - q)$ $\tilde{u}^{i+1} = \prod_C (2u^{i+1} - z^i)$ $z^{i+1} = z^i + \tilde{u}^{i+1} - u^{i+1}$ end Algorithm 1 The DR Splitting algorithm for k iterations to solve problem (4). Inputs: initial point z^0 , problem data (M, q), tolerance ϵ , k number of iterations Output: approximate solution z^k for i = 0, ..., k - 1 do $u^{i+1} = (M + I)^{-1} (z^i - q)$ $\tilde{u}^{i+1} = \Pi_{\mathcal{C}} (2u^{i+1} - z^i)$ $z^{i+1} = z^i + \tilde{u}^{i+1} - u^{i+1}$ end

- The linear system defined in the first step is always solvable
- The **projection** onto C simply clips negative values to zero and leaves non-negative values unchanged.

Compact Formulation DR:

$$z^{i+1} = T_{\theta}(z^i)$$
 where $T_{\theta}(z) = z + \Pi_{\mathcal{C}}(2(M+I)^{-1}(z-q)-z) - (M+I)^{-1}(z-q)$

Compact Formulation DR:

$$z^{i+1} = T_{\theta}(z^i)$$
 where $T_{\theta}(z) = z + \Pi_{\mathcal{C}}(2(M+I)^{-1}(z-q)-z) - (M+I)^{-1}(z-q)$

- DR splitting is guaranteed to converge to a fixed point z^{*} ∈ fix T_θ such that T_θ(z^{*}) = z^{*}.
- DR splitting returns an approximate solution z^k from which we can recover an approximated primal-dual solution of the original QP by computing

$$(x^{k}, y^{k}) = u^{k} = (M + I)^{-1}(z^{k} - q)$$

and $s^k = b - Ax^k$

- 2 Quadratic Problems and KKT
- 3 Douglas-Rachfors (DR) splitting
- End-to-End Learning
 - 5 Generalization Bounds
- O Numerical Experiments
- 7 Conclusion and Possible Extensions (?)

Two Modules:

• Standard Multi-Layer Perceptron with weigths \mathcal{W} :

$$z_{\mathcal{W}}(\theta) = h_L(h_{L-1}(\cdots h_1(\theta)))$$

with $h_i(y_l) = (W_l y_l + b_l)_+$.

• Optimization Block: k-iterations of DR splitting

$$T^k_{ heta}(z_{\mathcal{W}}(heta)) = z^k_{\mathcal{W}}(heta)$$

The loss function is the fixed-point residual of the operator T_{θ} :

$$l_{\theta}(z) = ||T_{\theta}(z) - z||_2$$

The learning problem consists then in minimizing, w.r.t \mathcal{W} , the risk:

$$\mathbb{E}_{\theta \sim \mathcal{D}}\left[I_{\theta}(T_{\theta}^{k}(h_{\mathcal{W}}(\theta))\right]$$

To differentiate through the second block we have just to observe that one iteration simply consists of solving linear systems and projections onto C: linear systems are differentiable as they always have a unique solution and the projection is differentiable (everywhere less than in zero) as it simply consists in clipping non-negative values to zero.

- Quadratic Problems and KKT
- 3 Douglas-Rachfors (DR) splitting
- End-to-End Learning
- 5 Generalization Bounds
- 6 Numerical Experiments
- 7 Conclusion and Possible Extensions (?)

Upper bound one the expected loss $R(h_W)$ of our framework for any $h_W in\mathcal{H}$. DR splitting achieves a **linear convergence rate**, i.e.

 $dist_{fixT_{ heta}} T_{ heta}(z) \leq \beta_{ heta} dist_{fixT_{ heta}} z$

where $dist_S(x) = min\{||x - y|| | y \in S\}$ and $\beta_{\theta} \in (0, 1)$

Theorem 1. Let $\beta = \max_{\theta \in \Theta} \beta_{\theta}$ for β_{θ} as in (8). Assume that \mathcal{H} is the set of mappings defined in Section 3 with the additional assumption that for any $h_{\mathcal{W}} \in \mathcal{H}$, $\operatorname{dist}_{\operatorname{fix} T_{\theta}}(h_{\mathcal{W}}(\theta)) \leq B$ for some B > 0 and any $\theta \in \Theta$. Then, with probability at least $1 - \delta$ over the draw of *i.i.d* samples,

$$R(h_{\mathcal{W}}) \le \hat{R}(h_{\mathcal{W}}) + 2\sqrt{2}\beta^k \left(2\mathbf{rad}(\mathcal{H}) + B\log(1/\delta)/(2N)\right), \quad \forall h_{\mathcal{W}} \in \mathcal{H},$$

where k is the number of iterations of DR splitting in the second module, N is the number of training samples, $rad(\mathcal{H})$ is the Rademacher complexity of \mathcal{H} , and $\beta \in (0, 1)$.

In the case of NNs linear functions with the bounded norm or 2-layer NNs with ReLU activation function, we can provide a bound on the generalization error of our framework which makes the dependence of k and N more explicit.

Corollary 2. Let \mathcal{H} be the set of linear functions with bounded norm, i.e., $\mathcal{H} = \{h \mid h(\theta) = W\theta\}$ where $\theta \in \mathbf{R}^d$, $W \in \mathbf{R}^{(m+n) \times d}$ and $(1/2) ||W||_F^2 \leq B$ for some B > 0. Then, with probability at least $1 - \delta$ over the draw of *i.i.d* samples,

$$R(h_{\mathcal{W}}) \le \hat{R}(h_{\mathcal{W}}) + 2\sqrt{2}\beta^k \left(2\rho_2(\theta)\sqrt{2d/N} + B\log(1/\delta)/(2N)\right), \quad \forall h_{\mathcal{W}} \in \mathcal{H},$$

where k and N are as defined in Theorem 1, and $\rho_2(\theta) = \max_{\theta \in \Theta} ||\theta||_2$ (Mohri et al.) 2012, Thm. 5.10).

- Quadratic Problems and KKT
- 3 Douglas-Rachfors (DR) splitting
- Ind-to-End Learning
- 5 Generalization Bounds
- O Numerical Experiments
 - 7 Conclusion and Possible Extensions (?)

- Example problems are QPs problem repeatedly solved in control and portfolio optimization.
- 10000 training problems, 2000 test
- MLP with 3 hidden layers of size 500 each.

Oscillating Masses

$$\begin{array}{ll} \text{minimize} & x_T^T Q_T x_T + \sum_{t=1}^{T-1} x_t^T Q x_t + u_t^T R u_t \\ \text{subject to} & x_{t+1} = A x_t + B u_t \quad t = 0, \dots, T-1, \\ & u_{\min} \leq u_t \leq u_{\max} \quad t = 0, \dots, T-1 \\ & x_{\min} \leq x_t \leq x_{\max} \quad t = 1, \dots, T, \\ & x_0 = x_{\min} \end{array}$$

where the states $x_t \in \mathbf{R}_x^n$ and the inputs $u_t \in \mathbf{R}^{n_u}$ are subject to lower and upper bounds. Matrices $A \in \mathbf{R}^{n_x \times n_x}$ and $B \in \mathbf{R}^{n_x \times n_u}$ define the system dynamics. The horizon length is T and the parameter θ is initial state x_{init} . Matrices $Q \in \mathbf{S}_+^{n_x}$ and $R \in \mathbf{S}_{++}^{n_u}$ define the state and input costs at each stage, and $Q_T \in \mathbf{S}_+^{n_x}$ the final stage cost.

- states $x_t \in \mathbb{R}^n_x$
- inputs $u_t \in \mathbb{R}^{n_u}$
- the matrices A and B define the system dynamics.
- Q and S defines the state and input costs at each stage.
- parameter θ is the initial state x_{init}

Time horizon T=50

Table 1: Oscillating masses problem. We compare the number of iterations of DR splitting required to reach different levels of accuracy with different warm-starts (learned warm-start with k = 5, 15, 50, no warm-start, and a nearest neighbor warm-start). The reduction columns are the iterations reduced as a fraction of the no learning iterations.

	no learning	nearest neighbor		train $k = 5$		train $k = 15$		train $k = 50$	
ϵ	iters	iters	reduction	iters	reduction	iters	reduction	iters	reduction
0.01 0.001 0.0001	381 651 1019	353 616 973	$0.07 \\ 0.05 \\ 0.05$	279 555 932	$0.27 \\ 0.15 \\ 0.09$	$176 \\ 438 \\ 816$	0.54 0.33 0.20	$127 \\ 338 \\ 663$	$0.67 \\ 0.48 \\ 0.35$

Vehicle dynamics control problem

 $\begin{array}{ll} \text{minimize} & (y_T - y_T^{\text{ref}})^T Q(y_T - y_T^{\text{ref}}) + \sum_{t=1}^{T-1} (y_t - y_t^{\text{ref}})^T Q_T(y_t - y_t^{\text{ref}}) + u_t^T R u_t \\ \text{subject to} & x_{t+1} = A(v) x_t + B(v) u_t + E(v) \delta_t \quad t = 0, \dots, T-1 \\ & |u_t| \leq \bar{u}, \quad |u_t - u_{t-1}| \leq \overline{\Delta u}, \quad t = 0, \dots, T-1 \\ & y_t = C x_t, \quad t = 0, \dots, T-1 \\ & x_0 = x_{\text{init}}, \end{array}$

- state $x_t \in \mathbb{R}^4$
- input $u_t \in \mathbb{R}^3$
- $\sigma_t \in \mathbb{R}$ driver steering input
- $y_t \in \mathbb{R}^3$ output
- $y_t^{ref} \in \mathbb{R}^3$ reference trajectory
- Q, Q_T defines the states costs, R the input costs and C the output costs.
- $v \in \mathbb{R}$ longitudinal velocity
- A, B, E parametrize v
- $\bar{u}, \nabla \bar{u}$ bound the magnitude of inputs and change with inputs.

• parameter
$$\theta = (x_{init}, v, u_{-1}, (y_t^{ref})_{t=0}^T, (\sigma_t)_{t=0}^T)$$

Time horizon T=30

Table 2: Vehicle problem. We compare the number of iterations of DR splitting required to reach different levels of accuracy with different warm-starts (learned warm-start with k = 5, 15, 50, no warm-start, and a nearest neighbor warm-start). The reduction columns are the iterations reduced as a fraction of the no learning iterations.

	no learning	nearest neighbor		train $k = 5$		train $k = 15$		train $k = 50$	
ϵ	iters	iters	reduction	iters	reduction	iters	reduction	iters	reduction
$\begin{array}{c} 0.01 \\ 0.001 \\ 0.0001 \end{array}$	639 1348 2126	$520 \\ 1163 \\ 1948$	0.19 0.14 0.08	$203 \\ 895 \\ 1653$	0.68 0.34 0.22	48 351 1006	0.92 0.74 0.53	48 299 882	0.92 0.78 0.59

maximize $\rho \mu^T x - x^T \Sigma x$ subject to $\mathbf{1}^T x = 1, \quad x \ge 0,$

- $x \in \mathbb{R}^n$ portfolio
- $\mu \in \mathbb{R}^n$ expected returns
- 1/
 ho > 0 the risk-aversion parameter
- $\sum \in S^n_+$ the covariance.
- parameter $\theta = \mu$

Table 3: Markowitz problem. We compare the number of iterations of DR splitting required to reach different levels of accuracy with different warm-starts (learned warm-start with k = 5, 15, 50, no warm-start, and a nearest neighbor warm-start). The reduction columns are the iterations reduced as a fraction of the no learning iterations.

	no learning	nearest neighbor		train $k = 5$		train $k = 15$		train $k = 50$	
ϵ	iters	iters	reduction	iters	reduction	iters	reduction	iters	reduction
0.01	14	7	0.5	7	0.5	9	0.36	11	0.21
0.001	54	24	0.56	22	0.59	16	0.7	19	0.65
0.0001	186	148	0.2	147	0.21	72	0.61	61	0.67

The three problems together

■ no warm-start ■ nearest neighbor warm-start learned warm-start $k = \{ \blacksquare 5 \blacksquare 15 \blacksquare 50 \}$

Figure 2: We plot the test fixed point residuals for different warm-starts of DR splitting. We train our architecture with k = 5, 15, and 50 DR iterations with loss function (7). We compare our results against a random initialization (black) and against warm-starting DR splitting with the nearest neighbor from the train set (magenta). Left: oscillating masses example. Middle: vehicle dynamics example. Right: portfolio optimization example.

- 2 Quadratic Problems and KKT
- 3 Douglas-Rachfors (DR) splitting
- Ind-to-End Learning
- 5 Generalization Bounds
- 6 Numerical Experiments
- Conclusion and Possible Extensions (?)

In order to use a similar approach for the SGD or for the Bundle method we first need each iteration in order to:

- deduce a fixed point equation
- assures the differentiability or at least the sub-differentiability

We can start with the easier algorithm the Gradient Descent.

In this case if we denote by $z \in \mathbb{R}^m$ the Lagrangian multipliers vector and we want minimize I(z), An iteration is given by

$$z^{i+1} = z^i - \alpha \partial_z l(z)$$

hence the fixed point iteration is

$$z = z - \alpha \partial_z I(z)$$

This means that

$$T(z)=z-\alpha\partial_z I(z)$$

and we are minimizing

$$||T(z) - z||_2 = ||z - z + \alpha \partial_z I(z)||_2 = ||\alpha \partial_z I(z)||_2$$

and this is not necessarily a good idea as we do not necessarily calculate the second derivative $\partial_z \partial_z l(z)$. For example if $l(z) = \min_x z^t x$, then $\partial l(z) = \arg \min_x z^t x$ and we cannot calculate $\partial_z^2 l(z) = \partial_z \arg \min_x z^t x$ The only possibility is to **approximate** the derivative of the argmin. For the bundle method, we can write an iteration as:

$$z^{i+1} = ar{z}^i + rg\max_d (\min_{j \in B_i} (g_j^t d + lpha_j))$$

Here \bar{z}^i is the stabilization point and is given by

$$ar{z}^i = \left\{ egin{array}{cc} ar{z}^{i-1} & {
m if} l(z^i) < l(ar{z}^{i-1}) \ z^i & {
m otherwise} \end{array}
ight.$$

Clearly it is not possible to write \bar{z}^i without taking into account all the trajectory of z composed by the algorithm. Anyway we can observe that near to the optimum $\bar{z} \simeq z$ and so, also in this case consider a functor T of the form

$$\mathcal{T}(z) = z + \partial_z rg\max_d (\min_{j \in B_i} (g_j^t d + lpha_j))$$

. Hence, also in this case we are minimizing $||T(z) - z||_2 =$ $||z - z + \partial_z \arg \max_d(\min_{j \in B_i}(g_j^t d + \alpha_j))|_2 = ||\partial_z \arg \max_d(\min_{j \in B_i}(g_j^t d + \alpha_j))|_2$. In this case is even "worst" than the SGD as we need to compute $\partial_z \arg \max_d(\min_{j \in B_i}(g_j^t d + \alpha_j) \text{ and } \partial_z^2 \arg \max_d(\min_{j \in B_i}(g_j^t d + \alpha_j))$. Both these sub-gradients need an approximation.