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Main Ideas of the Approach

First-order methods to solve convex quadratic programs (QPs),
Douglas-Rachfors Splitting:

low per-iteration cost.
suffer from slow convergence to accurate solutions.

Learn a warm-start for a popular first-order method (DR splitting), two
modules:

feedforward neural network block (input the parameters of the QP) and
outputs a warm-start,
block which performs a fixed number of iterations of DR splitting and outputs
a candidate solution.

A key feature is the ddifferentiation through the DR iterations.

Provide generalization bounds that improve with the number of training
problems and the number of iterations simultaneously.

Applied to three real-time applications and they are able to significantly
reduce the number of iterations required to obtain high-quality solutions
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Literature Review

Other Papers:

Learning to warmstart solvers

Unrolling to learn Step Sizes for an
Algorithm

Learning Surrogate Model

This Paper:

With a Loss that takes into account
some iterations of the solver

Unrolling to learn warmstart

No approximation and no surrogates
model
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Quadratic Problems

Formulation Parametric (convex) QP

min(1/2)xTPx + cT x

s.t.Ax + s = b

s ≥ 0

with

parameter θ = (vec(P), vec(A), c, b) ∈ Rd ,

decision variables x ∈ Rn and s ∈ Rm,

P is a positive semidefinite matrix in Sn×n
+ ,

b and c are vectors in Rm and Rn respectively,

For a matrix Y, vec(Y ) denotes the vector obtained by stacking the columns of Y .

Goal:
quickly solve the QP with θ randomly drawn from a distribution D with compact
support set Θ, assuming that it admits an optimal solution for any θ ∈ Θ.
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Optimality conditions

The KKT optimality conditions of the QP problem (primal and dual feasibility,
and complementary slackness) are

KKT optimality conditions

Ax + s = b,

ATy + Px + c = 0,

s ≥ 0,

y ≥ 0,

s ⊥ y = 0,

where y ∈ Rm is the dual variable to QP problem.

End-to-End to Warm-Start Quadratic Optimization 8 / 34



9/34

Reformulation

We can compactly write these conditions as a linear complementarity problem,
i.e., the problem of finding

u = (x , y) ∈ Rm+n

such that
C ∋ u ⊥ Mu + q ∈ C∗,

where

M =

(
P AT

A 0

)
∈ R(m+n)×(m+n)

and q = (c , b) ∈ Rm+n, C = Rn × Rm
+ and C∗ = {0}n × Rm

+ is the dual cone of C.
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Another Reformulation

This problem is equivalent to:

finding u ∈ Rm +m that satisfy the following inclusion

0 ∈ Mu + q +NC (u)

where NC (u) is the normal cone of C defined as
NC (u) = {x |(y − u)T x ≤ 0, ∀y ∈ C} is u ∈ C and otherwise.

To ensure convergence of the algorithm (that we define next) is the fact that
Mu + q +NC (u) is the maximal monotone.
This follows from P ⪰ 0, C convex polyhedron, and the starting QP admitting
an optimal solution.
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Douglas-Rachfors (DR) splitting

For an operator F the resolvent is (I + F )−1

DR consists on evaluating the resolvent of the operators Mu + q and NC .
The resolvent of Mu + q is (M + I )−1(z − q)
and for NC is ΠC(z), i.e. the projection onto C.
Hence we obtain the DR algorithm:

End-to-End to Warm-Start Quadratic Optimization 12 / 34



13/34

The linear system defined in the first step is always solvable

The projection onto C simply clips negative values to zero and leaves
non-negative values unchanged.

Compact Formulation DR:

z i+1 = Tθ(z
i ) where Tθ(z) = z+ΠC(2(M+I )−1(z−q)−z)−(M+I )−1(z−q)
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Compact Formulation DR:

z i+1 = Tθ(z
i ) where Tθ(z) = z+ΠC(2(M+I )−1(z−q)−z)−(M+I )−1(z−q)

DR splitting is guaranteed to converge to a fixed point z∗ ∈ fixTθ such
that Tθ(z

∗) = z∗.

DR splitting returns an approximate solution zk from which we can recover
an approximated primal-dual solution of the original QP by computing

(xk , yk) = uk = (M + I )−1(zk − q)

and sk = b − Axk
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Architecture

Two Modules:

Standard Multi-Layer Perceptron with weigths W:

zW(θ) = hL(hL−1(· · · h1(θ)))

with hi (yl) = (Wlyl + bl)+.

Optimization Block: k-iterations of DR splitting

T k
θ (zW(θ)) = zkW(θ)
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Learning Task

The loss function is the fixed-point residual of the operator Tθ:

lθ(z) = ||Tθ(z)− z ||2

The learning problem consists then in minimizing, w.r.t W, the risk:

Eθ∼D
[
lθ(T

k
θ (hW(θ))

]
To differentiate through the second block we have just to observe that one
iteration simply consists of solving linear systems and projections onto C: linear
systems are differentiable as they always have a unique solution and the projection
is differentiable (everywhere less than in zero) as it simply consists in clipping
non-negative values to zero.
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Generalization Bounds

Upper bound one the expected loss R(hW) of our framework for any hW inH.
DR splitting achieves a linear convergence rate, i.e.

distfixTθ
Tθ(z) ≤ βθdistfixTθ

z

where distS(x) = min{||x − y || | y ∈ S} and βθ ∈ (0, 1)
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In the case of NNs linear functions with the bounded norm or 2-layer NNs with
ReLU activation function, we can provide a bound on the generalization error of
our framework which makes the dependence of k and N more explicit.
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Example problems are QPs problem repeatedly solved in control and portfolio
optimization.

10000 training problems, 2000 test

MLP with 3 hidden layers of size 500 each.

End-to-End to Warm-Start Quadratic Optimization 23 / 34



24/34

Oscillating Masses

states xt ∈ Rn
x

inputs ut ∈ Rnu

the matrices A and B define the system dynamics.

Q and S defines the state and input costs at each stage.

parameter θ is the initial state xinit
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Time horizon T=50
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Vehicle dynamics control problem

state xt ∈ R4

input ut ∈ R3

σt ∈ R driver steering input

yt ∈ R3 output

y ref
t ∈ R3 reference trajectory

Q,QT defines the states costs, R the input costs and C the output costs.

v ∈ R longitudinal velocity

A,B,E parametrize v

ū, ∇̄u bound the magnitude of inputs and change with inputs.

parameter θ = (xinit , v , u·−1, (y
ref
t )Tt=0, (σt)

T
t=0)
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Time horizon T=30
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Portfolio Optimization

x ∈ Rn portfolio

µ ∈ Rn expected returns

1/ρ > 0 the risk-aversion parameter∑
∈ Sn

+ the covariance.

parameter θ = µ
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The three problems together
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What we can do in a more general context?

In order to use a similar approach for the SGD or for the Bundle method we first
need each iteration in order to:

deduce a fixed point equation

assures the differentiability or at least the sub-differentiability

We can start with the easier algorithm the Gradient Descent.
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In this case if we denote by z ∈ Rm the Lagrangian multipliers vector and we want
minimize l(z), An iteration is given by

z i+1 = z i − α∂z l(z)

hence the fixed point iteration is

z = z − α∂z l(z)

This means that
T (z) = z − α∂z l(z)

and we are minimizing

||T (z)− z ||2 = ||z − z + α∂z l(z)||2 = ||α∂z l(z)||2

and this is not necessarily a good idea as we do not necessarily calculate the
second derivative ∂z∂z l(z).
For example if l(z) = minx z

tx , then ∂l(z) = argminx z
tx and we cannot

calculate ∂2
z l(z) = ∂zargminx z

tx The only possibility is to approximate the
derivative of the argmin.
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For the bundle method, we can write an iteration as:

z i+1 = z̄ i + argmax
d

(min
j∈Bi

(g t
j d + αj))

Here z̄ i is the stabilization point and is given by

z̄ i =

{
z̄ i−1 ifl(z i ) < l(z̄ i−1)
z i otherwise

Clearly it is not possible to write z̄ i without taking into account all the trajectory
of z composed by the algorithm. Anyway we can observe that near to the
optimum z̄ ≃ z and so, also in this case consider a functor T of the form

T (z) = z + ∂zargmax
d

(min
j∈Bi

(g t
j d + αj))

. Hence, also in this case we are minimizing ||T (z)− z ||2 =
||z − z + ∂zargmaxd(minj∈Bi (g

t
j d + αj)||2 = ||∂zargmaxd(minj∈Bi (g

t
j d + αj)||2.

In this case is even ”worst” than the SGD as we need to compute
∂zargmaxd(minj∈Bi (g

t
j d + αj) and ∂2

z argmaxd(minj∈Bi (g
t
j d + αj). Both these

sub-gradients need an approximation.
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