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Introduction

▶ Leverage generic approximators available from ML to accelerate
the solution of mixed-integer linear two-stage stochastic
programs where the second stage is highly demanding.

▶ Substitute the exact second-stage solutions with ML predictions.

▶ Numerical results focus on the problem class addressed with the
integer and continuous L-shaped cuts.

▶ Problems derived from stochastic server location (SSLP) and
stochastic multi knapsack (SMKP) problems available in the
literature.

▶ The proposed method can solve the hardest instances of SSLP in
less than 9% of the time it takes the state- of-the-art exact method,
and in the case of SMKP the same figure is 20%.
Average optimality gaps are in most cases less than 0.1%.
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General Stochastic Linear two-stage problem

Two-stage stochastic problem (P) :

min
x,z,θ

cx + dz + θ

s.t. Ax + Cz ≤ b

Q(x)− θ ≤ 0

x ∈ {0, 1}n

z ≥ 0, z ∈ Z

where the second-stage subproblem (S) is

Q(x) := Eξ[min
y
{qξy : Wξy ≥ hξ − Tξx , y ∈ Y}]
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Bender’s decomposition - Exact Method

Master Problem (M)

min
x,z,θ

cx + dz + θ

s.t. Ax + Cz ≤ b

Πx − 1θ ≤ π0

x ∈ {0, 1}n

z ≥ 0, z ∈ Z

where 1 denotes a column vector of ones.

The set constraints Πx − 1θ ≤ π0 is initially empty and progressively
populated with optimality cuts as a Branch-and-Benders-Cut process
advances.
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L-shaped optimality cuts

Let x∗ an invalid first stage solution.

(Classical...1993) Integer cuts

(Q(x∗)− L)

 ∑
i∈S(x∗)

xi −
∑

i ̸∈S(x∗)

xi − |S(x∗)|

+ Q(x∗) ≤ θ

where S(x∗) := {i : x∗
i = 1} and Q(x∗) is the optimal value of (S) at x∗

State-of-art strategy (2016) alternates integer cuts with:

Continuous L-shaped mono-cuts (2011)

Eξ[ϕξ(hξ−Tξx)− 1′ψξ] ≤ θ

where ϕξ, ψξ are the solutions to the duals (DRS) corresponding to the linear
relaxation of (M), evaluated in x∗.

(DRS) max
ϕξ,ψξ

{ϕξ(hξ − Tξx
∗)− 1′ψξ : ϕξWξ − ψξ ≤ qξ, ϕξ ≥ 0, ψξ ≥ 0 }

The alternating algorithm calculate the integer L-shaped cut only if the
continuous L cut fails to separate the invalid first-stage solution.
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Progressive Hedging - Heuristic Method

The progressive hedging algorithm (PH)

is a practical way for splitting a large problem into smaller sub problems
and solving them iteratively, thus possibly reducing the solving time
considerably.

The idea is to aggregate the solutions of subproblems, where artificial
costs have been added. These added costs enforce that the aggregated
solutions become non-anticipative and are updated in every iteration of
the algorithm. Similar to an augmented Lagrangian Method.



10/34

Table of Contents

Introduction

Stochastic Target Problems and Bender’s decomposition

Learning Approach

SSLP and SMKP Problems - Data Construction

Learning Details

Numerical Experiments

Conclusions



11/34

ML-L-shaped

ML-L-Shaped is a heuristic version of both the standard integer L-shaped
method and the algorithm with alternating continuous and integer
L-shaped cuts , where they replace the costly computations, that is,
solution values of (S) (Q(x)) and (RS) (Q̃(x)) by fast ML predictions,
and solution values of (DRS) – ψξ, ϕξ, ∀ξ – by fast ML predictions of
low-dimensional reductions.
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Learned Cuts

Integer cuts

(QML(x∗)− L)

 ∑
i∈S(x∗)

xi −
∑

i ̸∈S(x∗)

xi − |S(x∗)|

+ QML(x∗) ≤ θ

where S(x∗) := {i : x∗i = 1} and x∗ an invalid first stage solution.

Continuous cuts

Eξ[ϕ
ML
ξ (hξ − Tξx)− 1′ψML

ξ ] ≤ θ

i.e.
Eξ[ϕ

ML
ξ hξ]− Eξ[ϕ

ML
ξ Tξ]x − Eξ[1

′ψML
ξ ] ≤ θ

Hence, it is not required to compute ϕML
ξ and ψML

ξ , but only the
reductions:

Eξ[ϕ
ML
ξ hξ], Eξ[ϕ

ML
ξ Tξ] and Eξ[1

′ψML
ξ ]
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ML-L-shaped
Benders
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ML-L-shaped
Callback
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▶ ν, µ important hyper-parameters that control the likelihood that
Q̃ML(x) and QML(x) overestimate the corresponding exact values.

▶ isAlt controls if use or not the alternating cuts (it is not evident that
they could be useful in the ML-version).

▶ They consider another two-phase variants of the algorithm (where
bender’s is used in a first phase to produce a feasible solution):

1. The solution is used alone to warmstart the exact standard integer
L-shaped method (or with alternating cuts).

2. In addition to supplying a warm-start solution, they introduce a
probabilistic lower bound on the value of the first stage objective in
the exact solution process. They obtain the probabilistic lower
bound for a given problem family by computing the empirical
distribution of exact objective values from a preliminary, independent
set of instances and calculating the 10% one-side Chebyshev lower
confidence bound.
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Target Problems

General second-stage subproblem (S) is

Q(x) := Eξ[min
y
{qξy : Wξy ≥ hξ − Tξx , y ∈ Y}]

Stochastic server location problems (SSLP) and the stochastic multi
knapsack problems (SMKP).

▶ In both SSLP and SMKP, z is absent, i.e., Z = ∅ and Y imposes
only binary restrictions.

▶ In SSLP, qξ ≡ q, Wξ ≡ W , Tξ ≡ T , ∀ξ, i.e., all second-stage
coefficients are deterministic, except the right-hand sides of some
constraints.

▶ In SMKP, hξ ≡ h, Wξ ≡ W , Tξ ≡ T , ∀ξ, i.e., all second-stage
coefficients are deterministic, except those appearing in the
objective.

In comparison with problems in SSLP, problems in SMKP feature
considerably harder first stages and considerably easier integral second-
stage problems.
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Frame Title

From SSLP they select problems SSLP(10, 50, 2000) and SSLP(15, 45,
15), where SSLP(a, b, c) features a servers, b clients and c second-stage
scenarios.

According to the state of art these are the most difficult to solve exactly
among the problems in SSLP whose detailed statements have been made
publicly available.

The second stages of these problems are also among the most difficult to
solve in SSLP.

▶ Parameterized SSLP(10, 50, 2000) and SSLP(15, 45, 15): allowing the
individual deterministic capacities of the servers to vary ranging between
75 and 300 (in the original instances equal to 188 and 112).

▶ Parameterized SMKP(29) and SMKP(30): allowing the coefficients of the
deterministic technology matrix T and the deterministic right-hand side
values h appearing in the coupling constraints to vary, whereas the
recourse matrix W remains fixed.
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Two additional families: SSLPF(15, 45, 150) and SSLPF(15, 80, 15) to assess
the effects of moderate increases in the complexity of second stage on the
relative performances.
First-stage problem as that of SSLPF(15, 45, 15).

▶ SSLPF(15, 45, 150) shares the same recourse matrix W with SSLPF(15,
45, 15) but features 150 instead of 15 scenarios in its second stage

▶ SSLPF(15, 80, 15) shares the same 15 scenarios with SSLPF(15, 45, 15)
but features 80 clients instead of 15. In SSLPF(15, 80, 15), the
coefficients of the new recourse matrix W are generated according to the
same distribution for generating those of SSLP(15, 45, 15).

But they consider also another additional family:

▶ SSLPF-indx(10, 50, 2000). Same problem statements as those of
SSLPF(10, 50, 2000), but instead of calculating the solution as an
expectation over all second-stage scenarios, they calculate it for a single
randomly selected scenario.
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The second-stage problems are simulated by pseudo-randomly sampling
individual server capacities from independent discrete uniform distributions with
support [75, 300] and by pseudo-randomly sampling from independent discrete
uniform distributions the values of the binary coupling variables shared by the
first and second stages.

Then, the corresponding optimal solution of second stage is computed exactly.

Each such (problem statement, problem solution) pair constitutes a supervised
example available to ML.

▶ Problems in SSLPF(10, 50, 2000) are summarized by vectors in N20 (10
integral servers capacities + 10 coupling binaries),

▶ Problems in SSLPF(15, 45, 15), SSLPF(15, 45, 150) and SSLPF(15, 80,
15) are summarized by vectors in in N30 (15 integral servers capacities +
15 coupling binaries)

▶ Problems in SMKPF(29) and SMKPF(30) can be stated compactly with a
vector in R5 since each problem is fully described by the real vector
h + Tx of dimension 5× 1.
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Dataset:

▶ 1M of instance for each problem-type (2 datasets for each SMPF).

▶ partitioned according to proportions 64%, 16%, 20% between
training, validation and test sets.

▶ Different dataset for each problem, but also different architectures.

▶ The non-binary inputs of the predictors for the SSLP families are
rescaled in [0, 1] (for the SMKP families rescaling is unnecessary).

Learning Task

Minimize L1 error over the training set with stochastic mini-batch
gradient descent equipped with Adam learning rate adaptation and
mini-batch size equal to 128. Weighting inversely proportional to the
sample averages of the output values measured on the training set is
applied to the individual L1 errors of the networks outputting multiple
values when calculating the training and validation errors.
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Networks details

▶ Networks outputting a single value QML(x) (SSLP and SMKP
families) are equipped with 10 hidden layers of 800 units each.

▶ Networks outputting multiple values (SMKP families) are equipped
with 15 hidden layers of 1000 units each.

▶ All units except those in last hidden and output layers are fitted with
rectified linear activations. Units in last hidden and output layers are
fitted with linear activations.
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Description and Performance of ML predictors.
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Computing times

ML-Std-L :

▶ achieves computing times far smaller than those required by Alt-L.

▶ becomes more advantageous as the complexity of the second-stage
problems increases.
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First-stage values and Optimality GAPs

▶ The performance of ML-Std-L in regard to the values achieved for
the objective of first stage is excellent.

▶ SSLPF-indx(10, 50, 2000)) provides evidence in favor of implicit
second-stage predictors when generating second-stage data based on
all scenarios is highly time-consuming
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Number of first-stage nodes

Excludes simplification of the first-stage problems as the main source of
reduction in computing times between Alt-L and ML-Std-L.
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Integral second-stage problems

Tables 5 and 6 report the numbers of integral and relaxed second-stage
problems and the total times spent in the latter.
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Warmstart

ML-L-Shaped outputs a feasible, approximate solution that is used as a
warm-start incumbent first-stage solution in Alt-L.

The lower panel of the table reports a similarly calculated average ratio
when a probabilistic lower bound on the value of the first-stage objective
is introduced in addition in the exact solution process. The joint effect of
introducing the warm-start incumbent solution and the probabilistic lower
bound on the average time ratio is then moderately yet unambiguously
advantageous.
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Heuristics Comparison



33/34

Table of Contents

Introduction

Stochastic Target Problems and Bender’s decomposition

Learning Approach

SSLP and SMKP Problems - Data Construction

Learning Details

Numerical Experiments

Conclusions



34/34

Conclusions
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