Constrained Discrete Black-Box Optimization using Mixed-Integer Programming T. P. Papalexopoulos, C. Tjandraatmadja, R. Anderson, J. P. Vielma, D. Belanger

Alexandre Schulz

LIPN

May 16, 2023

A. Schulz (LIPN)

Presentation OptML

May 16, 2023

4 E b

Э

1 Introduction

- Context
- Model Based Optimization
- Focus of this paper
- Contributions

2 Model Based Optimization

- Baseline algorithm
- NN+MILP algorithm

3 MILP for MBO

- Setting
- Surrogate Model
- Acquisition MILP

Experiments

- Black-Box Objectives
- Inner-Loop Configurations
- Unconstrained Optimization
- Constrained Optimization

1 Introduction

- Context
- Model Based Optimization
- Focus of this paper
- Contributions

2 Model Based Optimization

- Baseline algorithm
- NN+MILP algorithm
- 3 MILP for MBO
 - Setting
 - Surrogate Model
 - Acquisition MILP

• Experiments

- Black-Box Objectives
- Inner-Loop Configurations
- Unconstrained Optimization
- Constrained Optimization

A E b

4 D b 4 A b

Э

- solving Black-box optimization problems with **Model based** optimiation (MBO)
- Issues:
 - Ω combinatorial structure, contraints
 - expensive evaluation of f, no gradient information
- Applications:
 - neural architecture search, Zoph & Le, 2017
 - program synthesis, Summers, 1977, Biermann, 1978
 - small-molecule design, Elton et al., 2019
 - protein design, Yang et al., 2019

• Objective:
$$x^* = \underset{\Omega}{\operatorname{arg\,max}} f(x)$$

- iteratively refines an approximator $\hat{f}\approx f$
- selects new **query points** by solving an **Inner-loop** optmization problem:

$$x_t = \operatorname*{arg\,max}_{\Omega_t} a(x)$$

• Acquisition function: $a: \Omega \to \mathbb{R}$

- derived from point evaluation or from posterior distribution over \hat{f}
- easier to solve
- "white-box" caracteristics

MBO has two issues :

- solving the Inner-loop may be difficult
- $\bullet\,$ Real world application require additional constraints on x

Using **Heuristic Inner-loop solvers** is a solution. Requires domain knowledge.

Authors remark

Crucially, by framing the inner-loop optimization as an MILP, our approach can flexibly incorporate a wide variety of logical, combinatorial, and polyhedral constraints on the domain, which need only be provided in a declarative sense.

- **NN+MILP**: MBO framework for *discrete optimization* with NN surrogates and with **exact** inner-loop guarantees
- Show that NN+MILP matches and surpasses MBO baseline with domain specific evolutionary algorithms
- Experimental benchmarking results : *MINLPLib*, *NAS-Bench-101 neural architecture*

Using **Heuristic Inner-loop solvers** is a solution. Requires domain knowledge.

イロト イボト イラト イラト 一戸

1 Introduction

- Context
- Model Based Optimization
- Focus of this paper
- Contributions

2 Model Based Optimization

- Baseline algorithm
- NN+MILP algorithm

3 MILP for MBO

- Setting
- Surrogate Model
- Acquisition MILP

• Experiments

- Black-Box Objectives
- Inner-Loop Configurations
- Unconstrained Optimization
- Constrained Optimization

프 🕨 🛛 프

Model Based Optimization

Baseline algorithm

Algorithm 1 MBO

Input: hypothesis class \mathcal{F} , budget N, initial dataset $\mathcal{D}_n = \{x_i, f(x_i)\}_{i=1}^n$, optimization domain Ω **for** t = n + 1 to t = N **do** $P(\hat{f}_t) \leftarrow \text{fit}(\mathcal{F}, \mathcal{D}_{t-1})$ $a(x) \leftarrow \text{get_acquisition_function}(P(\hat{f}_t))$ $x_t \leftarrow \text{inner_loop_solver}(a(x), \Omega)$ $\mathcal{D}_t \leftarrow \mathcal{D}_{t-1} \cup \{x_t, f(x_t)\}$ **end for return** arg $\max_{(x_t, y_t) \in \mathcal{D}_N} y_t$

Figure: MBO baseline algorithm

- 1. perform inference to approximate f
- 2. define a(x) based on f̂_t(x) quantifying the quality of points to query
- 3. x_t selected by solving the inner-loop problem

A. Schulz (LIPN)

Baseline algorithm

Algorithm 2 NN+MILP

Figure: NN+MILP algorithm

イロト イボト イヨト イヨト

= 990

1 Introduction

- Context
- Model Based Optimization
- Focus of this paper
- Contributions

2 Model Based Optimization

- Baseline algorithm
- NN+MILP algorithm

3 MILP for MBO

- Setting
- Surrogate Model
- Acquisition MILP

Experiments

- Black-Box Objectives
- Inner-Loop Configurations
- Unconstrained Optimization
- Constrained Optimization

4 B b

Goal: find $x^* = \arg \max f(x)$ where f is an **expensive**, noiseless black-box function with n decision variables.

- N: fixed budget of queries to f
- $\mathcal{X}_t = \{x_i\}_{i=1}^t$: set of sampled points at step t
- $\mathcal{D}_t = \{x_i, y_i = f(x_i)\}_{i=1}^t$: set of sampled points with corresponding reward

At iteration t solving the **acquisition problem** is finding :

$$x_t = \operatorname*{arg\,max}_{x \in \Omega \setminus \mathcal{X}_{t-1}} \hat{f}_t(x)$$

A. Schulz (LIPN)

- \hat{f} chosen as feedforward neural network with piecewise-linear activation functions.
- fully connected layers with ReLU activation
- compatible with convolution and max-pooling

At each iteration \hat{f}_t is trained from scratch with random weight initialization and SGD. \hat{f}_t is trained on \mathcal{D}_{t-1} with L^2 loss. The acquisition is taken to be $a(x) = \hat{f}_t(x)$.

The inner-loop optimization problem \mathcal{M}_t is :

$$x_t = \operatorname*{arg\,max}_{x \in \Omega \setminus \mathcal{X}_{t-1}} \hat{f}_t(x)$$

Domain

If not already binary, decision variables are **one-hot encoded**:

$$z_{ij} = \mathbb{I}[x_i = j], \quad i \in [n], j \in \Omega_i$$

subject to the constraints : $\sum z_{ij} = 1, \quad \forall i$ $i \in \Omega_i$ Problem specific constraints can be added as needed.

A. Schulz (LIPN)

No-Good Constraints

Leverage the binary nature of z to eliminate \mathcal{X}_{t-1} from \mathcal{M}_t . Consider $\overline{x} \in \Omega$ a point we wish to exclude and \overline{z} its one-hot encoding. Then the constraint

$$\sum_{j:\overline{z}_{ij}=0} z_{ij} + \sum_{i,j:\overline{z}_{ij}=1} (1-z_{ij}) \ge 1$$

ensures that candidate has Hamming distance of at least one to $\overline{z}.$

Note that this formulation will not work for continuous x.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

Neural Network

" The overall MILP objective is the activation corresponding to the regressor's output neuron."

Let $y = \max(0, w^T x + b)$ be the output of a single layer with weights w and bias b.

At optimization time w, b are fixed and x, y are the decision variables.

Non-linearity: α binary decision variable indicating the ReLU is activated. We add the constraints

$$0 \le y \le M\alpha \tag{1}$$

$$w^T x + b \le y \le w^T x + b + M(1 - \alpha)$$
(2)

where M is a large constant (such as upper bound on range of y).

1 Introduction

- Context
- Model Based Optimization
- Focus of this paper
- Contributions

2 Model Based Optimization

- Baseline algorithm
- NN+MILP algorithm

3 MILP for MBO

- Setting
- Surrogate Model
- Acquisition MILP

Experiments

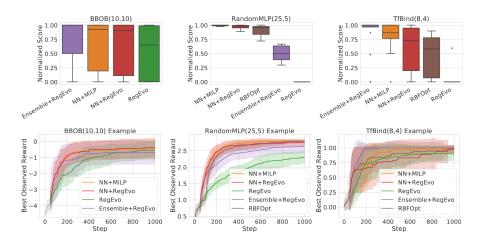
- Black-Box Objectives
- Inner-Loop Configurations
- Unconstrained Optimization
- Constrained Optimization

- **RandomMLP** The output of a multi-layer perceptron operating on a one-hot encoding of the input.
- **TfBind** Binding strength of a length-8 DNA sequence to a given transcription factor (Barrera et al., 2016).
- **BBOB** Non-linear function from the continuous Black- Box Optimization Benchmarking library (Hansen et al., 2009)
- **Ising** The negative energy of fully-connected binary Ising Model with normally distributed pairwise potentials.

- **RegEvo** Local evolutionary search (Real et al., 2019).
- NN + RegEvo An ablation of NN+MILP, with the only difference being the use of **RegEvo** in lieu of MILP for solving the acquisition problem.
- Ensemble + RegEvo A re-implementation of the 'MBO' baseline from Angermueller et al. (2020), using an ensemble of linear and random forest regressors as the surrogate.
- **RBFOpt** A competitive mixed-integer black-box optimization solver that uses the 'Radial Basis Function method' as a surrogate model (Costa Nannicini, 2018).

Experiments

Unconstrained Optimization



A. Schulz (LIPN)

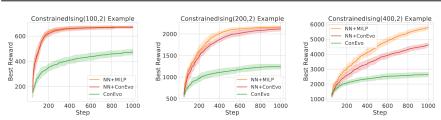
Presentation OptML

ъ May 16, 2023

4 ∃ ≥

SQC 20/22

Э



Constrained Discrete Black-Box Optimization using MILP

Figure 2: Best observed reward as a function of iteration for an example constrained problem (Section 4.3) for each of n =100, 200, and 400 (left-to-right). Lines and bands indicate the average and ± 1 sd respectively, over 20 trials for n = 100and 10 trials for the rest. Distribution of normalized final scores and more examples can be found in Appendix E.2

-÷ May 16, 2023

4 E b

э

Thank You for Your Attention!

Α.	Scl	hulz	: (L	JPN)

イロト イヨト イヨト イヨト

Ð.