
1/28

UNIFY: A UNIFIED POLICY DESIGNING
FRAMEWORK FOR SOLVING

CONSTRAINED OPTIMIZATION
PROBLEMS WITH MACHINE LEARNING

Mattia Silvestri, Allegra De Filippo, Michele Lombardi, Michela
Milano

presented by Francesco Demelas

2/28

Introduction

▶ Decomposition of the policy in two stages:
▶ an unconstrained Machine Learning Model
▶ a C.O. problem

The interface between the two is a new set of ”virtual” parameters.

▶ Can generalize several existing approaches, thus extending their
applicability, as:
▶ Decision Focused Learning
▶ Constrained Reinforced Learning
▶ Algorithm Configuration
▶ Stochastic Optimization

▶ Practical Problems:
▶ Energy Management System Problem.
▶ Set Multi-Cover with Stochastic Coverage Requirements Problem.

For both, we assume to have implicit and explicit knowledge of the
form:
▶ historical data or simulators
▶ an objective function
▶ problem constraints

3/28

The Unify Framework - Introduction

Let x ∈ X a vector of observable information and z ∈ C (x) ⊆ Rd a
decision vector.
We aim defining a (constrained) policy function

π :X ×Θ → Rd

(x , θ) → z ∈ C (x)

where θ are the parameters that we want learn in such a way that π
provides feasible (and possibly high-quality solutions).

4/28

The Unify Framework - Training and Inference

We can chose a θ using the

Training Problem

θ∗ ∈ argmin
θ∈Θ

E(x+,x)∼p

[
f (x+, x , π(x , θ))

]
where:

▶ f (x+, x , z) is a function with real values, returning the cost of
decisions z when x is observed and uncertainty unfold with outcome
x+ (w.l.o.g. x+ ∈ X).

▶ p is the training distribution, that is the distribution approximated
over the training set of simulators.

Once we have an optimal parameters vector θ∗ we can take a decision on
an unseen situation:

Inference Problem

x → z = π(x ; θ∗)

5/28

Note

The training problem presented so far is hard to solve, since π will
typically be trained on a large dataset and it is expected to return always
a feasible solution from a space possibly lacking a fixed structure.
Anyway the training equation can be made easier by decomposing the
policy into a traditional Machine Learning model and a traditional
Combinatorial Optimization problem.
In formulas we consider a policy of the form

π(x , θ) = g(x , h(x , θ))

where:

▶ h is the ML model that provides as output a vector of virtual
parameters y = h(x , θ).

▶ g(x , y) ≡ argminz∈C̃(x,y) f̃ (x , y , z) is an optimization problem

defined with virtual cost f̃ and virtual feasible set C̃ .

6/28

Reformulating the training problem

Now we can write

Training Problem

θ∗ ∈ argmin
θ

E(x+,x)∼p

[
f (x+, x , z)

]
with

z = g(x , y) = arg min
z∈C̃(x,y)

f̃ (x , y , z)

and y = h(x , θ)

Note:
▶ If h is differentiable we can using the Sub Gradient Descent:

▶ forward pass: evaluate h and then compute z .
▶ backward pass: fix z and differentiate h w.r.t. θ.

▶ g can be built on the fly adjusting the size of the decision vector z
as needed.

▶ Choosing y is a design decision as C̃ and f̃ depends on it. This
means that g may differ from the original optimization problem and
we can, for example, introduce:
▶ penalty rewards
▶ buffers on constraints satisfaction
▶ relax some constraints
▶ remove cost terms

7/28

Sequential Formulation

Sequential Training Problem

θ∗ ∈argmin
θ

Eτ∼p[
eoh∑
k=1

γk f (xk+1, xk , zk)]

zk = g(xk , yk) = arg min
z∈C̃(xk ,yk)

f̃ (xk , yk , zk)

yk = h(xk , θ)

where:

▶ τ is the trajectory of {(xk , yk , zk)}eohk=1

▶ eoh is the end oh the horizon and we should have:
▶ gamma = 1 if eoh < +∞
▶ 0 < gamma < 1 if eoh = +∞

8/28

Sequential Formulation

The sequential formulation could be interpreted as defining a RL problem
where h play the role of the conventional RL policy and g is at training
time part of the environment and at inference time part of the policy that
began g(x , h(x , θ∗)).

9/28

Relation to Other Approaches

▶ Decision Focused Learning

▶ Constrained RL

▶ Algorithm Configuration

▶ Stochastic Optimization

10/28

Decision Focused Learning

Description:
Train estimator for parameters of
optimization models, while explicitly
accounting for the impact that
estimation inaccuracy has on the
decisions. DFL craft customized loss
functions, which can improve
convergence and solution quality for
the training process.

Relation:

▶ All DFL approaches lack virtual
parameters: the ML model is
expected to estimate part of the
future state, i.e. y is a prediction
for a portion of x+ .

▶ f̃ always corresponds to the
original decision problem cost,
and in few cases C(x , y) = C .

▶ UNIFY more flexible than DFL,
however, it does not strictly
generalize DFL, due to our use
of the true cost f .

It should be possible to adapt DFL losses in UNIFY , and conversely
some ideas (e.g. virtual parameters) could be adapted to DFL.

11/28

Constrained RL

Description: Learn within the same
ML model how to satisfy the
constraints and how to maximize the
reward.

1. Reward shaping: constraint
violation is modeled as a negative
reward. Large penalty enforce
constraint satisfaction, but can
cause numerical instabilities and
lead to poorly optimized policies.

2. After a gradient update, a
projection adjusts the weights so
that the decision vector becomes
feasible This approach is more
numerically stable, but also more
computationally expensive.

Relation:

▶ In RL infeasible decisions may
still occur on unseen examples.
The second class of methods
enforces constraint satisfaction
via a projection in decision space
(rather than in weight space).
Guarantee constraint
satisfaction, but it can still lead
to lower rewards.

▶ The first class of approaches can
be seen as approximately solving
the unreformulated training
problem. The second class can
be assimilated to the sequential
training problem, except that the
ML output is already a decision
vector (i.e. y ∈ Z), and that
f̃ (x , y , z) is always the Euclidean
distance.

UNIFY generalizes both classes of approaches. The use of an arbitrary
optimization problem in UNIFY frees the ML model from the need to
output a decision vector, and opens up the possibility to solve a difficult
task by partitioning its complexity between the model h and the function
g .

12/28

Algorithm Configuration

Description:
▶ Adjusting the parameters of a

given algorithm so as to optimize
its behavior on a target
distribution.

▶ The Dynamic Algorithm
Configuration (DAC) approach,
adjust the parameter values as
the target algorithm progresses.

DAC works by casting the
configuration problem as a
Contextual MDP and using RL
to obtain a policy.

Relation:

▶ Traditional Algorithm
Configuration methods can be
interpreted as solving the
reformulated training problem,
while DAC as solving the
sequential formulation.

▶ The vector y corresponds to
algorithm parameters , rather
than model parameters ,they do
not take advantage of the
flexibility offered by virtual
parameters (1 exeption).

13/28

Stochastic Optimization

Description: Aims at improving
robustness in single- ormulti-stage
decision-making problems. Most
stochastic optimization algorithms
rely on Monte Carlo methods to
approximate expected values and
assess constraint satisfaction. The
Sample Average Approximation (SAA)
has long been a staple of the field,
combined with Benders decomposition
to address two-stage decision
problems. Multi-stage decision
problems have been often
approximated as a sequence of 2-stage
problems.

Relation:

▶ The stochastic optimization
algorithms discussed here can be
interpreted as addressing
reformulated or sequential
training problem in the case of
AMSAA, without making use of
a ML model, i.e. with
h(x , θ) = x .

▶ So, there is no training step and
solving a new instance requires
approximating the expected
value from scratch, making the
process quite expensive.

UNIFY suggests how by introducing a ML model the computational cost
of sampling can be paid in a single offline phase, making inference much
more efficient.

14/28

Practical Problems

▶ Energy Management System: Based on actual energy prices, and
forecasts on the availability of DERs and on consumption, the EMS
decides:

1. how much energy should be produced;
2. which generators should be used;
3. whether the surplus of energy should be stored or sold to the energy

market.

▶ Set Multi-Cover: Given a universe N containing n elements and a
collection of sets over N , the Set Multi-cover Problem requires
finding a minimum size sub-collection of the sets such that coverage
requirements for each element are satisfied. The sets may represent
products that need to be manufactured together, while the coverage
requirements represent product demands

15/28

Energy Management System

min
1

|Ω|
∑
ω∈Ω

n∑
k=1

∑
g∈G

ckg x
k
g ,ω

s.t.L̃k =
∑
g∈G

xkg ,ω ∀ω ∈ Ω,∀k = 1, · · · , n

0 ≤ γk + ηxk0 ≤ Γ ∀ω ∈ Ω,∀k = 1, · · · , n
lg ≤ xkg ≤ ug ∀ω ∈ Ω,∀k = 1, · · · , n
γk+1
ω = γk

ω + ηxk0,ω ∀ω ∈ Ω,∀k = 1, · · · , n − 1

xk+1
1,ω = R̂k + ξkR,ω ∀ω ∈ Ω,∀k = 1, · · · , n

L̃k+1
ω = L̂k + yk + ξkL,ω ∀ω ∈ Ω,∀k = 1, · · · , n

16/28

Set Multi-Cover (Deterministic Version)

min
∑
j∈J

cjxj∑
j∈J

ai,jxj ≥ di ∀i ∈ I

xj ≥ 0

xj ∈ Z
ai,j ∈ {0, 1}

where I is the universe J is the collection of all possible sets, a is the
availability matrix, di the requirement for the i−th element of the
universe, cj the cost of the j−th set and x the vector of all decision
variables.

17/28

Set Multi-Cover (Stochastic Version)

min
∑
j∈J

cjxj +
1

|Ω|
∑
ω∈Ω

∑
i∈I

wi,ωsi,ω∑
j∈J

ai,jxj ≥ di,ω(1− zi,ω) ∀i ∈ I

zi,ω ⇒ si,ω ≥ di,ω −
∑
j∈J

ai,jxj xj ≥ 0

zi,ω ∈ [0, 1]

si,ω ≥ 0

x , z ∈ Z

where ω ∈ Ω are the sampled scenarios, w the penalty vector, z a vector
of indicator variables that allows the violation of requirement constraints
and s is a vector of slack variables that keep track of the not satisfied
demands.

18/28

Numerical Results

Use UNIFY to:

1. perform tuning of virtual parameters, similarly to Algorithm
Configuration

2. enforce constraint satisfaction in Reinforcement Learning

3. obtain results analogous to DFL in a scenario where existing
approaches are not applicable

4. improve decision robustness without relying on the Sample Average
Approximation

19/28

Model Parameter Tuning

Practical Problem: EMS

Algorithm for Comparison: TUNING modification. Deep
Reinforcement Learning as a black-box tool to find the
optimal c st of the EMS described above.

Use of UNIFY: ▶ UNIFY - SINGLE - STEP: the ML model h
provides the virtual costs for all the stages, namely
y = cst {1, ...96} .

▶ UNIFY - SEQUENTIAL : the model output at each
step k is yk = cstk

20/28

Figure: Optimality gap of the state-of-the-art TUNING approach and the
UNIFY methods w.r.t. the computational time.

21/28

Constrained RL

Practical Problem: EMS

Algorithm for Comparison: ▶ end-to-end DRL algorithm to provide
a solution, by learning constraints satisfaction only
from the reward signal and refer to it as RL

▶ Projection-based DRL algorithms (e.g. Safety Layer)
provide an alternative to full end-to-end methods
when dealing with constraints: we have experimented
with SAFETY - LAYER .

Use of UNIFY: in UNIFY - SEQUENTIAL the RL agent is indirectly
guiding a problem-specific solver, which has the same
guarantees in terms of feasibility, but it is arguably a
simpler task.

22/28

Figure: In this figure we show how demanding constraints satisfaction to the
downstream solver greatly improves a full end-to-end RL method and SAFETY
- LAYER.

UNIFY - SEQUENTIAL quickly converges as well, and it also improves
the previous methods of a non-negligible gap. These experimental results
demonstrate that Reinforcement Learning can benefit from a policy
reformulation that properly balances learning and optimization.

23/28

Generalization of DFL

Practical Problem: Set Multi-Cover.

Algorithm for Comparison: predict-then-optimize .Train a ML model
to accurately predict the rates of the underlying Poisson
distribution that generates the stochastic coverage
requirements, and then we use the predicted rates as the
requirements in the Set Multi-cover optimization model.

Use of UNIFY: RL policy predicts the coverage requirements,
y = {dj}j∈N that are then plugged into the optimization
model, and the overall policy is trained to minimize the
solution cost.

24/28

Figure: Here we report the predicted λ MAPE of the Machine Learning model
employed in the predict-then-optimize approach.

The Mean Absolute Percentage Error (MAPE) for each of the rate
λi ∀i ∈ I is low, proving that the ML model is accurate.
The true task loss (solution cost) is far from optimal. the UNIFY
implementation that is trained to directly minimize the task loss greatly
outperforms the predict-then-optimize approach and it is considerably
closer to the optimal cost.

25/28

Figure: This figure reports the mean cost and standard deviation for the UNIFY
and the Predict-then-optimize approaches compared to the optimal values.

We can conclude that UNIFY is a valid alternative to traditional Decision
Focused Learning approaches, when those cannot be easily applied.

26/28

Stochastic Optimization

Practical Problem: Set Multi-cover

Algorithm for Comparison: ▶ SAA method that computes the
optimal solution on a fixed set of instances (referred
to as training instances).

▶ More robust baseline method that relies on the
predict-then-optimize framework: ML model estimate
the parametrization of the probability distribution
then exploit the model predictions to generate
samples.

Use of UNIFY: RL policy predicts the demands and the overall policy is
trained to minimize the task loss, the same as described in
the previous paragraph; notably, the latter approach does
not rely on sampling. It is worth highlighting that the
comparison favors the SAA method, since it is designed by
assuming exact knowledge of the type of probability
distribution; the UNIFY implementation makes no such
assumption.

27/28

Figure: Optimality gap of the three methods on the Set Multi-cover problem
with stochastic demands and the solution time of the predict-then-optimize
approach w.r.t. the number of scenarios.

28/28

Both the simple SAA algorithm and predict- then-optimize approaches
benefit from increasing the number of sampled scenarios.
UNIFY does not depend on the number of sampled scenarios, because it
directly predicts the coverage values that are then plugged into the
optimization model.
Predict-then-optimize surpasses UNIFY only when at least ∼ 50 scenarios
are used and, to obtain better results, predict-then-optimize requires
more than 200 times the computation of UNIFY .
A smart implementation of UNIFY is a cheaper alternative to a SAA
method for improving the robustness of the solver when facing stochastic
optimization problems.

